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Abstract.—With the increasing availability of whole genome data, many species trees are being constructed from hundreds
to thousands of loci. Although concatenation analysis using maximum likelihood is a standard approach for estimating
species trees, it does not account for gene tree heterogeneity, which can occur due to many biological processes, such
as incomplete lineage sorting. Coalescent species tree estimation methods, many of which are statistically consistent in
the presence of incomplete lineage sorting, include Bayesian methods that coestimate the gene trees and the species tree,
summary methods that compute the species tree by combining estimated gene trees, and site-based methods that infer
the species tree from site patterns in the alignments of different loci. Due to concerns that poor quality loci will reduce
the accuracy of estimated species trees, many recent phylogenomic studies have removed or filtered genes on the basis of
phylogenetic signal and/or missing data prior to inferring species trees; little is known about the performance of species tree
estimation methods when gene filtering is performed. We examine how incomplete lineage sorting, phylogenetic signal of
individual loci, and missing data affect the absolute and the relative accuracy of species tree estimation methods and show
how these properties affect methods’ responses to gene filtering strategies. In particular, summary methods (ASTRAL-II,
ASTRID, and MP-EST), a site-based coalescent method (SVDquartets within PAUP*), and an unpartitioned concatenation
analysis using maximum likelihood (RAxML) were evaluated on a heterogeneous collection of simulated multilocus data
sets, and the following trends were observed. Filtering genes based on gene tree estimation error improved the accuracy of
the summary methods when levels of incomplete lineage sorting were low to moderate but did not benefit the summary
methods under higher levels of incomplete lineage sorting, unless gene tree estimation error was also extremely high (a
model condition with few replicates). Neither SVDquartets nor concatenation analysis using RAxML benefited from filtering
genes on the basis of gene tree estimation error. Finally, filtering genes based on missing data was either neutral (i.e., did
not impact accuracy) or else reduced the accuracy of all five methods. By providing insight into the consequences of gene
filtering, we offer recommendations for estimating species tree in the presence of incomplete lineage sorting and reconcile
seemingly conflicting observations made in prior studies regarding the impact of gene filtering. [Gene tree estimation error;
incomplete lineage sorting; missing data; multispecies coalescent; species tree estimation.]

Species tree estimation is greatly enabled through the
use of multiple loci, and increased access to genomic
data over the last decade has opened up the possibility
of improving our understanding of how life has evolved
on earth (Posada 2016). The traditional approach to
multilocus species tree estimation is concatenation
analysis, where the alignments for different loci
are combined into a single supermatrix to which
a phylogeny estimation method, such as maximum
likelihood, is applied. Although numerical parameters
may be optimized separately for each locus, this
approach assumes that all sites in the concatenated
alignment evolve down a common tree topology.
However, this assumption does not always hold, as
biological processes, such as gene duplication and
loss, horizontal gene transfer, and incomplete lineage
sorting, result in different genomic regions having
different evolutionary histories (Ohno 1970; Syvanen
1985; Maddison 1997). Gene tree heterogeneity due to
incomplete lineage sorting (ILS), which is modeled by
the multispecies coalescent (MSC) model (Pamilo and
Nei 1988; Maddison 1997; Rannala and Yang 2003), is
likely to occur with high frequency in the presence
of rapid radiations; for example, ILS is expected to
have impacted many major groups, including birds
(Jarvis et al. 2014), land plants (Wickett et al. 2014),

lizards (Linkem et al. 2016), and placental mammals
(McCormack et al. 2012). Hence, species tree estimation
in the presence of ILS is receiving considerable attention
(Degnan and Rosenberg 2009; Edwards 2009).

Simulations under the MSC model have shown that
concatenation analysis using maximum likelihood
(CA-ML) can have poor accuracy in the presence of gene
tree heterogeneity due to ILS (Kubatko and Degnan
2007), leading to the conjecture (later proven in Roch
and Steel 2015) that CA-ML is statistically inconsistent
under the MSC model. In fact, CA-ML has been proven
to converge to a tree other than the species tree as the
number of genes increases under some conditions with
high levels of ILS (Roch and Steel 2015); in other words,
when data are generated under the MSC model, CA-ML
can be positively misleading. However, recent results
have shown that the model conditions under which
CA-ML is statistically inconsistent are not restricted to
the anomaly zone (i.e., when the most probable gene
tree topology does not match the species tree topology;
Degnan and Rosenberg 2006), and that CA-ML can even
be statistically consistent under some model conditions
in the anomaly zone (Mendes and Hahn 2017). Thus, the
conditions under which CA-ML can be relied upon to
provide accurate species trees are not fully understood,
and there is substantial interest in statistically

285

D
o

w
n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
y
s
b
io

/a
rtic

le
/6

7
/2

/2
8
5
/4

1
5
9
1
9
3
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



286 SYSTEMATIC BIOLOGY VOL. 67

consistent methods for inferring species trees under the
MSC model.

Bayesian coestimation of the gene trees and the species
tree is widely considered to be the most promising
approach to species tree estimation; coestimation
methods include BEST (Edwards et al. 2007; Liu
2008), *BEAST (Heled and Drummond 2010), and
StarBeast2 (Ogilvie et al. 2017). Although simulation
studies have demonstrated that these methods can
offer substantial improvements in accuracy over other
coalescent methods (Edwards 2009; Leaché and Rannala
2010; Bayzid and Warnow 2013), one of the most popular
coestimation methods, *BEAST, does not converge in
practical amounts of time on data sets with much more
than 25 species and 100 genes (McCormack et al. 2009;
Zimmermann et al. 2014; Leavitt et al. 2016). StarBeast2
(Ogilvie et al. 2017) is an improved version of *BEAST
that may scale to somewhat larger data sets. BBCA
(Zimmermann et al. 2014) is an approach for scaling
coestimation methods to large numbers of genes but
does not improve scalability to large numbers of species.

Coalescent methods that combine estimated gene
trees into a species tree, referred to as “summary
methods,” are able to analyze data sets with both
large numbers of species and large numbers of loci;
summary methods include STAR (Liu et al. 2009), STEM
(Kubatko et al. 2009), MP-EST (Liu et al. 2010), NJst
(Liu and Yu 2011), iGLASS (Jewett and Rosenberg 2012),
ASTRAL (Mirarab et al. 2014b), ASTRAL-II (Mirarab
and Warnow 2015), and a modification of NJst, called
ASTRID, designed for greater scalability and ability to
handle missing data (Vachaspati and Warnow 2015).
Although summary methods all use estimated gene trees
as inputs, they differ in their approaches to species tree
estimation. For example, NJst computes the average leaf-
to-leaf distances from the input gene trees and then
applies Neighbor Joining (Saitou and Nei 1987) to the
resulting distance matrix. In contrast, ASTRAL and
ASTRAL-II solve a constrained optimization problem
based on the frequency with which four-leaf trees, called
quartet trees, appear in the input gene trees. Many
different summary methods are statistically consistent
under the MSC model and have excellent accuracy when
given a sufficient number of highly accurate gene trees
(Liu et al. 2010; Liu and Yu 2011; Mirarab et al. 2014b;
Mirarab and Warnow 2015; Vachaspati and Warnow
2015). Comparisons of summary methods and CA-ML
on simulated data sets have suggested that CA-ML is
typically more accurate than summary methods when
ILS is sufficiently low and that summary methods
are typically more accurate than CA-ML when ILS is
sufficiently high (Leaché and Rannala 2010; Bayzid and
Warnow 2013; Patel et al. 2013; Mirarab et al. 2014a;
Bayzid et al. 2015; Chou et al. 2015; Mirarab et al. 2016).
Hence, summary methods are popular methods for
species tree estimation when ILS is high.

However, as discussed in Roch and Warnow (2015), the
proofs of statistical consistency for standard summary
methods assume true gene trees (without any missing
data) based on recombination-free genomic regions, and

so the statistically consistency of summary methods has
not yet been established for more general conditions.
Furthermore, many simulations have shown that gene
tree estimation error (GTEE) reduces the accuracy of
summary methods (Huang et al. 2010; Bayzid and
Warnow 2013; Patel et al. 2013; DeGiorgio and Degnan
2014; Mirarab et al. 2014a; Lanier and Knowles 2015;
Mirarab and Warnow 2015; Xi et al. 2015), suggesting that
summary methods may be inappropriate methods when
gene trees cannot be estimated with high accuracy. This
raises potential concerns, since low bootstrap support
values for gene trees, which are suggestive of high GTEE,
have been reported for empirical data sets. For example,
the average bootstrap support for gene trees computed
for the Thousand Plant Transcriptome project was ∼50%
(Wickett et al. 2014); the Avian Phylogenomics Project
reported average bootstrap values for its gene trees that
ranged from as low as ∼25% for the exons to as high
as ∼50% for the introns, with intermediate values of
40% for the UCEs (Jarvis et al. 2014). Our analyses of
gene trees estimated on the UCE data set from Hosner
et al. (2016) and the exon data set from Blom et al.
(2017) show average bootstrap support values below 30%
(Table 1). While low bootstrap support can have many
causes, a common explanation is low phylogenetic signal
resulting from insufficient sequence lengths or low rates
of evolution (Hosner et al. 2016; Blom et al. 2017). Finally,
low phylogenetic signal in individual genes is known to
result in high GTEE, suggesting that GTEE is likely to
be a common problem for some types of phylogenomic
data sets, such as UCEs and RADseq data sets.

Missing data is another common challenge to species
tree estimation, as many (or perhaps even most) genes
will have some degree of missing data if full genomes
are to be utilized (see Driskell et al. 2004; Streicher et al.
2016; Xi et al. 2016 for an entry into this literature).
Simulations have shown that the accuracy of summary
methods can degrade when genes are missing taxa,
especially when data sets have limited numbers of genes
(Hovmöller et al. 2013; Vachaspati and Warnow 2015; Xi
et al. 2016) or when the distribution of missing data is
biased (Xi et al. 2016). Because GTEE and missing data
affect both the theoretical guarantees and the empirical
accuracy of summary methods, some researchers have
substantial concern about the validity of estimating
species trees using summary methods under many
biologically realistic conditions (Gatesy and Springer
2014; Springer and Gatesy 2016)—with some groups
deciding not to use summary methods for species tree
estimation on their multilocus data sets (e.g., Leaché et al.
2015; de Oca et al. 2017).

Site-based methods, such as SNAPP (Bryant et al.
2012), SVDquartets (Chifman and Kubatko 2014, 2015),
SMRT-ML (DeGiorgio and Degnan 2010), and METAL
(Dasarathy et al. 2015, 2017), bypass gene tree estimation,
and thus, they are expected to be more accurate
than summary methods when individual loci have
few phylogenetically informative sites. SVDquartets, for
example, estimates quartet trees by applying techniques
from statistical linear algebra to the concatenated gene
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TABLE 1. Empirical statistics for biological data sets

Data set Number Number Locus Number of Mean bootstrap SMC versus CA-ML
Study type of taxa of loci length informative sites support FP FN

Blom et al. (2017) exon 29 1361 384 ± 251 12 ± 10 0.28±0.11 0.45±0.26 0.87±0.09
Hosner et al. (2016) UCE 91 4817 462 ± 369 37 ± 42 0.28±0.12 0.37±0.25 0.83±0.17
Jarvis et al. (2014) exon 48 8251 1612 ± 1308 453 ± 418 0.26±0.07 0.22±0.25 0.85±0.08
Jarvis et al. (2014) intron 48 2516 7654 ± 8539 4315 ± 4654 0.47±0.12 0.20±0.13 0.68±0.09
Jarvis et al. (2014) UCE 48 3679 2509 ± 164 1062 ± 278 0.40±0.05 0.11±0.11 0.71±0.03
Streicher et al. (2016) UCE 29 4784 NA NA 0.39±0.09 0.36±0.26 0.78±0.12

Notes: Means and standard deviations across all loci are reported for the individual locus length, the number of parsimony informative sites,
the mean bootstrap support, and the distance between a gene tree and the species tree estimated via concatenation analysis using maximum
likelihood (CA-ML). Empirical statistics were computed using the loci alignments, the bootstrap gene trees, and the CA-ML trees provided by
these studies (see Supplementary Materials available on Dryad for details). In particular, we used the bootstrap gene trees for each locus to
build a greedy consensus tree and a (strict) majority consensus (SMC) tree (i.e., a tree with all branches having greater than 50% support). The
greedy consensus tree was used to compute mean bootstrap support by averaging the bootstrap support values across all branches. The SMC
tree was used to compute the distance between a gene tree and the species tree computed using CA-ML. The distance between the SMC tree
and the estimated species tree is separated into False Positive (FP) rate and False Negative (FN) rate. FN rate is the fraction of branches in the
estimated species tree that are missing from the SMC; FP rate is the fraction of branches in the SMC that are missing from the estimated species
tree. Streicher et al. (2016) provided concatenated alignments but not alignments for the individual loci in their Dryad repository, and so the
mean locus length and the mean number of parsimony informative sites per locus could not be computed for this table.

alignments; then a quartet amalgamation method (e.g.,
Snir and Rao 2012; Reaz et al. 2014) is used to assemble
these estimated quartet trees into a species tree on the
full taxon set. A preliminary study (Chou et al. 2015)
comparing SVDquartets to CA-ML and two summary
methods (ASTRAL-II and NJst) demonstrated that
SVDquartets was more accurate than the summary
methods under some conditions with very short
loci—but was not more accurate than CA-ML under
these conditions. For longer loci, Chou et al. (2015)
found that ASTRAL-II and NJst were more accurate
than SVDquartets, likely due to greater phylogenetic
signal across individual loci. Hence, summary methods
and CA-ML remain important tools for species trees
estimation.

Because poor gene tree quality reduces the accuracy
of summary methods, gene filtering (where genes
are removed based on predetermined criteria prior
to species tree estimation) is an increasingly explored
aspect of experimental design. Information-theoretic
arguments using the classical Data Processing Inequality
(Kinney and Atwal 2014) would seem to suggest that
phylogenetic estimation methods should benefit from
more data, and hence, gene filtering would not be
beneficial. However, the proof that more data are
never detrimental to phylogeny estimation has only
been established for maximum likelihood (Steel and
Székely 2002) under some conditions, including the
condition that the data do not violate model assumptions
(e.g., gene sequences evolve down the same model
tree). Consequently, applying the intuition that more
data are always better for species tree estimation can
be problematic; for example, summary methods that
are statistically inconsistent under conditions without
missing data can be statistically consistent when enough
data are missing (see Appendix).

Filtering data (both sites and genes) has a long
history in phylogenetics (see Wiens and Morrill 2011;
Chen et al. 2015; Streicher et al. 2016 for an entry

into this literature). Many of these prior gene filtering
studies have been restricted to concatenation analyses
(often based on maximum likelihood) and/or data sets
simulated without gene tree heterogeneity (e.g., Cho
et al. 2011; Wiens and Morrill 2011; Salichos and Rokas
2013; Betancur-R et al. 2014; Dornburg et al. 2014; Jiang
et al. 2014; Salichos et al. 2014; Streicher and Wiens
2016; Dornburg et al. 2017), and so are not directly
applicable to understanding the effect of gene filtering
on coalescent species tree estimation methods and on
summary methods in particular.

Although some studies have examined the impact
of gene filtering strategies on coalescent methods (e.g.,
Chen et al. 2015; Liu et al. 2015b; Xi et al. 2015; Hosner
et al. 2016; Huang and Knowles 2016; Meiklejohn et al.
2016; Simmons et al. 2016; Streicher et al. 2016; Blom
et al. 2017; Longo et al. 2017; Lanier et al. 2014), many
of these studies used empirical data sets, and so the
true species trees were unknown. Therefore, species
tree accuracy on empirical data sets was assessed using
various criteria, including overall bootstrap support,
similarity to another species tree estimated (typically
using concatenation analysis) on the same data set,
and recovery and bootstrap support of well-established
clades. Some studies have also examined stability by
comparing species trees estimated on subsets of the
loci to the species tree estimated on the full set of
loci. These empirical studies have come to contradictory
conclusions: some found filtering to be beneficial while
others found filtering to be detrimental—making it
difficult to draw any general guidelines from these
studies. One difficulty in interpreting these results is
that simulations have shown species tree estimation
methods can produce highly supported false positive
branches under some model conditions (see ? for an
example with CA-ML in the presence of high ILS, and
see Bayzid et al. 2015 for examples with summary
methods in the presence of high GTEE). Therefore, high
similarity to an estimated species tree or high bootstrap
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support may not be reliable indicators of topological
accuracy.

To the best of our knowledge, only three prior
simulation studies (Lanier et al. 2014; Liu et al. 2015b;
Huang and Knowles 2016) have directly or indirectly
examined the impact of gene filtering on coalescent
methods. Huang and Knowles (2016) filtered genes with
missing data when using the shallowest divergence
method (Takahata, 1989) on datasets with eight species;
Liu et al. (2015b) added genes with lower bootstrap
support when using MP-EST on datasets with six
species; Lanier et al. (2014) added low-variation genes
when using STEM on datasets with eight species. None
of these studies found filtering to be beneficial to
coalescent methods. However, many other coalescent
methods are now in active use, and the effect of
gene filtering likely depends on the method itself as
well as the model condition, including the number
of species, the number of genes, the level of ILS,
the degree of phylogenetic signal or GTEE, and the
amount of deviation from the strict molecular clock
(Liu et al. 2009). Hence, a thorough evaluation of gene
filtering is needed, especially to examine its effect on the
relative performance of some of the leading species tree
estimation methods.

We present the results of a simulation study examining
the impact of phylogenetic signal (of individual loci),
missing data, and gene filtering strategies on species
tree estimation methods, all in the context of gene
tree heterogeneity due to ILS. In particular, we used
26-taxon, 1000-gene data sets simulated under a wide
range of model conditions to evaluate several of the
leading coalescent species tree estimation methods
(ASTRAL-II, ASTRID, MP-EST, and SVDquartets) as
well as unpartitioned CA-ML using RAxML (Stamatakis
2014). Summary methods (ASTRAL-II, ASTRID, and
MP-EST) were more accurate than CA-ML, provided
that the level of ILS was sufficiently high and the
level of GTEE was sufficiently low. When GTEE was
sufficiently high, SVDquartets was more accurate than
the summary methods, but otherwise it was often among
the least accurate methods. CA-ML was competitive
with (and often outperformed) the other methods under
many conditions, including when the levels of ILS and
GTEE were both extremely high. In general, the relative
performance of different species tree estimation methods
was unaffected by the use of gene filtering based on
either GTEE or missing data. SVDquartets and CA-
ML did not benefit from either type of filtering, and
filtering based on missing data generally reduced the
accuracy of all methods examined. Filtering genes based
on GTEE typically improved the accuracy of summary
methods when the level of ILS was sufficiently low but
otherwise tended to reduce accuracy. Exceptions to this
trend occurred when the level of GTEE was extremely
high, in which case filtering based on GTEE often
improved summary methods. However, the exceptions
occurred for model conditions with only a few replicates:
2 replicates with low/moderate ILS, 5 replicates with
high ILS, and 17 replicates with very high ILS.

MATERIALS AND METHODS

Overview

Our study evaluated three summary methods
(ASTRAL-II, ASTRID, and MP-EST), a site-based
coalescent method (SVDquartets using PAUP*; Swofford
2002, 2016), and unpartitioned CA-ML (using RAxML)
on a collection of data sets originally simulated by
Mirarab and Warnow (2015). We modified these data sets
for this study to produce a range of model conditions
from the relatively easy (i.e., moderate GTEE and
low/moderate levels of ILS) to the very challenging (i.e.,
high levels of ILS and GTEE as well as missing data).
Genes were removed from these data sets (based on
GTEE or amount of missing data) to explore the impact
of gene filtering on species tree estimation methods.
All distances between trees were measured with the
normalized Robinson–Foulds (RF) distance (Robinson
and Foulds 1981) using Dendropy (Sukumaran and
Holder 2010).

Simulated Data Sets

We give a brief overview of the simulation protocol
used by Mirarab and Warnow (2015), describe our
modifications to their data sets, and report empirical
statistics about the simulated data sets that we explored.

Model species trees and gene trees.—Mirarab and Warnow
(2015) used SimPhy (Mallo et al. 2016) to simulate 200-
taxon species trees and gene trees under three levels of
ILS with deep or recent speciation events. Because MP-
EST is computationally intensive on data sets with 50
species (Bayzid et al. 2014; Mirarab and Warnow 2015),
we restricted the data sets to 26 species (the outgroup
taxon and 25 randomly selected taxa) and used only 20
(out of the original 50) replicates in our study.

After the data sets were restricted to 26 species, we
computed several empirical statistics for each model
condition that reflect the level of ILS: the average distance
(AD) between the true species tree and the true gene
trees, the percentage of replicates with species trees in
the anomaly zone (Degnan and Rosenberg 2006), and
the number of different tree topologies that appeared
in the set of 1000 true gene trees. The mean AD
(±standard deviation) across replicates was 12±2% for
the low/moderate ILS condition, 41±6% for the high ILS
condition, and 75±1% for the very high ILS condition.
Under the low/moderate ILS condition, 20% of the
replicates with speciation towards the leaves and 60%
of the replicates with speciation towards the root were
in the anomaly zone. The number of distinct gene
tree topologies was also high for the low/moderate
ILS condition: there were 344–442 different topologies
(across all 1000 true gene trees) for replicates with
recent speciation events and 509–824 different topologies
(across all 1000 true gene trees) for replicates with deep
speciation events. Hence, while the AD was only 12%,
the gene tree heterogeneity in this “low/moderate” ILS
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condition was still substantial; this condition represents
cases where the species tree is a mixture of short and
long edges, with perhaps a few rapid radiations creating
the anomaly zone. In the other model conditions (high
and extremely high ILS), 100% of the replicates were
in the anomaly zone, and each replicate had 999 or
1000 different gene tree topologies. These high and
extremely high levels of ILS are representative of a single
clade that has undergone a rapid radiation, so that
nearly every edge is short. Thus, all model conditions
explored have a high incidence of species trees in the
anomaly zone but differ in the fraction of branches in
the species tree that are short enough for coalescence to
be likely to occur. We evaluated species tree estimation
methods on this entire range of data sets in order to
examine conditions that were similar to those from prior
simulation studies, including those that mainly focused
on estimating species trees with mostly short internal
branches (e.g., Liu et al. 2010) and others that focused on
estimating species trees with a mixture of short and long
branches (e.g., Mirarab and Warnow 2015). Both types of
species trees occur in phylogenomic data sets and so are
relevant to systematics.

Gene sequence data.—Mirarab and Warnow (2015) used
Indelible (Fletcher and Yang 2009) to simulate the
evolution of sequences under the Generalized Time
Reversible or GTR (Tavaré 1986) model (with gamma-
distributed rates across sites) down gene trees with
branch lengths deviating from a strict molecular clock.
These sequences had variable lengths (300–1500 sites)
and no insertions/deletions. We modified these gene
sequence alignments to have shorter lengths (100 sites)
and/or missing data. The data sets with sequences
truncated to the first 100 sites were intended to produce
conditions with fewer phylogenetically informative sites
and higher GTEE; such conditions may be characteristic
of data sets where the mean bootstrap support of gene
trees is low (e.g., Jarvis et al. 2014; Wickett et al. 2014;
Hosner et al. 2016; Blom et al. 2017) or data sets where
gene sequences are shortened to avoid recombination
(e.g., Hobolth et al. 2011). In the data set from Hosner
et al. (2016), the degree of missing data varied across
genes but was uncorrelated with evolutionary rate
(Supplementary Table S1 and Fig. S1 available on Dryad
at http://dx.doi.org/10.5061/dryad.km24v), and thus,
we deleted species from gene sequence alignments
using a protocol (see Supplementary Materials available
on Dryad for details) designed to produce data sets
with missing data biased towards random subsets
of genes. The resulting data sets had the following
pattern of missing data: 250 genes missing between
13 and 19 sequences (i.e., 50–73%), 250 genes missing
between 7 and 12 sequences (i.e., 27–46%), 250 missing
between 3 and 6 sequences (i.e., 12–23%), 150 genes
missing 2 sequences (i.e., 8%), 50 genes missing 1
sequence (i.e., 4%), and 50 genes missing no sequences
(Supplementary Table S2 available on Dryad). The total
amount of missing data was approximately 30% for all
data sets.

Gene Tree Estimation

We estimated maximum likelihood gene trees using
RAxML v8.2.8 with a single tree search under the
GTRGAMMA model of evolution (see Supplementary
Materials available on Dryad for details). The mean
GTEE of a replicate (with 1000 genes) is the normalized
RF distance between the true and estimated gene trees,
averaged across all genes. Replicates were partitioned
based on their mean GTEE. Replicates in the full length
sequence data sets (300–1500 sites) were partitioned into
low/moderate GTEE (i.e., mean GTEE between 0% and
20%) and moderate/high GTEE (i.e., mean GTEE between
20% and 50%). The mean GTEE averaged across these
full-length replicates (±standard deviation) was 16±2%
and 35±8% for low/moderate and moderate/high GTEE,
respectively (Supplementary Tables S3 and S4 available
on Dryad). Replicates in the truncated sequence data sets
(100 sites) had higher GTEE, and so were partitioned
into very high GTEE (i.e., mean GTEE within 50–80%)
and extremely high GTEE (i.e., mean GTEE within 80–
100%). The mean GTEE averaged across these truncated
sequence data set replicates (± standard deviation) was
69±8% and 86±5% for very high and extremely high
GTEE, respectively (Supplementary Tables S5 and S6
available on Dryad).

Gene Filtering Experiments

We evaluated the impact of gene filtering by removing
0%, 25%, 50%, 75%, 90%, and 95% of the genes, thus
producing data sets that varied in the number of genes
retained for species tree inference. To filter genes by
GTEE, gene trees were sorted based on GTEE, and then
25%, 50%, 75%, 90%, and 95% of genes with the highest
GTEE were removed prior to species tree estimation.
To filter genes by missing data, gene trees were sorted
based on the amount of missing data (i.e., the fraction
of species deleted from the gene sequence alignment)
and genes missing at least 50%, 25%, 10%, 5% and 1%
of species were removed prior to species tree estimation.
Given the protocol for producing data sets with missing
data, these thresholds for filtering resulted in the same
number of genes being removed for each of the two
filtering experiments, making them comparable.

Species Tree Estimation

We explored the performance of five methods for
species tree estimation, including, three summary
methods (ASTRAL-II (i.e., ASTRAL v4.10.5), ASTRID
v1.1, and MP-EST v1.5), a site-based method SVDquartets
using PAUP* v4a152, (Swofford 2016), and unpartitioned
CA-ML (RAxML v8.2.8) under the GTRGAMMA model
of evolution (Supplementary Table S9 available on
Dryad). Summary methods were run on the best found
maximum likelihood gene trees (rather than on the
bootstrap gene trees), which has been shown to improve
species tree accuracy for sufficiently large numbers
of loci (Mirarab et al. 2016). ASTRAL-II and ASTRID
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were run in default mode on unrooted gene trees.
Since MP-EST requires rooted gene trees, estimated gene
trees were rooted at the outgroup when available and
otherwise rooted at the midpoint of the longest leaf-
to-leaf path using Dendropy v4.1.0 (Sukumaran and
Holder 2010). For MP-EST, the best pseudolikelihood
scoring species tree was taken from 10 independent
runs. We used the local branch support technique from
ASTRAL-II [rather than the more common approach of
multilocus bootstrapping (MLBS)] to compute branch
support for the species trees estimated using ASTRAL-
II. The local branch support implemented in ASTRAL-II
has been shown to be a better predictor of topological
accuracy than support calculated using MLBS (Sayyari
and Mirarab 2016).

RESULTS

We present the results of four experiments. The
first and second experiments evaluated the impact of
ILS and phylogenetic signal per gene (which impacts
GTEE) on five species tree estimation methods (ASTRID,
ASTRAL-II, MP-EST, SVDquartets, and CA-ML) with
and without missing data, respectively. The third and
fourth experiments evaluated the impact of gene filtering
based on GTEE and missing data, respectively, on the five
methods.

Effects of Incomplete Lineage Sorting and Phylogenetic
Signal

In this experiment, species trees were estimated on
data sets without missing data and without gene filtering
to show how ILS and phylogenetic signal per gene
affect method accuracy. The phylogenetic signal per gene
was reduced by truncating gene sequence alignments
from their original lengths (300–1500 sites) down to 100
sites. Because this modification decreases the number
of sites per gene as well as the total number of sites
in the concatenated alignment, the resulting decrease in
phylogenetic signal has the potential to impact summary
methods (ASTRAL, ASTRID, and MP-EST) as well
as site-based methods (SVDquartets and CA-ML). We
quantify the average phylogenetic signal per gene by
reporting the mean GTEE, noting that high mean GTEE
corresponds to low phylogenetic signal per gene and
conversely low mean GTEE corresponds to moderate to
high phylogenetic signal per gene.

We found that species tree error increased for all
methods as levels of ILS and/or GTEE increased (Fig. 1)
and that the relative performance between methods
depended on both ILS and GTEE. For the low/moderate
ILS condition (12% AD), CA-ML was the most accurate
method for all levels of GTEE (Fig. 1a). All five methods
had good accuracy with mean species tree error below
7% when mean GTEE was less than 50%. When mean
GTEE was between 80% and 85%, the mean species tree
error rate for CA-ML was 5%, the mean error rates for
summary methods ranged from 16% (ASTRAL-II) to

19% (MP-EST), and the mean error rate for SVDquartets
was 20%. Although the differences between methods
were noteworthy, this model condition had only five
replicates.

For the high ILS condition (41% AD), the relative
performance between methods changed dramatically
with GTEE (Fig. 1b). The three summary methods
outperformed SVDquartets and CA-ML when GTEE
was low to moderate (i.e., mean GTEE < 50%), but
SVDquartets and CA-ML outperformed the summary
methods when GTEE was extremely high (Fig. 1b,c).
CA-ML produced more accurate species trees than
SVDquartets under the high ILS condition except for the
highest GTEE condition (a model condition with only
four replicates), where they had similar accuracy.

For the very high ILS condition (75% AD), results were
similar but more pronounced than those observed for
the high ILS condition (Fig. 1c). Under lower levels of
GTEE, CA-ML and SVDquartets were distinctly worse
than the summary methods but still provided reasonable
accuracy. All methods decreased in accuracy as the level
of GTEE increased, but the accuracy of SVDquartets
and CA-ML decreased more gradually than that of
the summary methods. When mean GTEE was at least
90% (a model condition with only four replicates), the
differences between methods were dramatic: the mean
species tree error rates for summary methods were all
greater than 90%, while the mean error rates for CA-
ML and SVDquartets were much lower at 30% and 37%,
respectively.

Thus, both ILS and GTEE had strong effects on
the absolute and the relative performance of methods.
The summary methods typically dominated or else
matched CA-ML when GTEE was sufficiently low but
were less accurate when GTEE was high. SVDquartets
was typically less accurate than the other methods
but was dramatically more accurate than the summary
methods under the most difficult conditions (very high
GTEE and very high ILS). Finally, CA-ML nearly always
outperformed SVDquartets and also outperformed
summary methods under the lowest level of ILS as well
as under higher levels of GTEE.

Effects of Missing Data

The relative performance of different methods was
typically similar for data sets with and without
missing data (Supplementary Fig. S4 available on
Dryad). Although deleting species from gene sequence
alignments nearly always reduced accuracy (Fig. 2), this
reduction tended to be fairly small (typically below
5%). Methods differed somewhat in their response to
missing data. ASTRAL-II and ASTRID were quite robust
to missing data, with mean species tree estimation error
never increasing by more than 6% (and most increases
in error were much smaller). Missing data resulted in
larger increases in species tree estimation error for the
other methods, especially under very high levels of ILS
or GTEE. Interestingly, the accuracy of some summary
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a) b)

c)

FIGURE 1. The impact of gene tree estimation error (GTEE) and incomplete lineage sorting (ILS) on species tree error is shown for five methods:
ASTRAL-II (blue), ASTRID (orange), MP-EST (green), SVDquartets (red), and unpartitioned concatenation analysis using maximum likelihood
(CA-ML), specifically RAxML (purple). Species tree error is the normalized Robinson–Foulds (RF) distance between the true and estimated
species trees. Subplots a, b, and c show three levels of increasing ILS, where AD is the normalized RF distance between the true species and true
gene trees averaged across all genes. The mean GTEE range and the number of replicates (N) for that model condition are given on the x-axis.
Means and medians are denoted by the gray dot and bar, respectively. Box plots are defined by quartiles, e.g., boxes extend from the first to the
third quartiles. Greater levels of ILS and/or GTEE increased species tree error rates for all methods, and the relative performance of methods
depended on both ILS and GTEE. Under low to moderate ILS, CA-ML tended to have better accuracy than the coalescent methods. Under higher
levels of ILS, summary methods were typically more accurate than CA-ML and SVDquartets except for conditions with high GTEE.

methods improved on some data sets with incomplete
genes (Fig. 2c) when the level of ILS was very high and
the mean GTEE was greater than 85%; however, this
model condition had only nine replicates.

Effects of Filtering Based on Gene Tree Estimation Error

The impact of filtering genes based on GTEE depended
on the method and also on the levels of ILS and GTEE; for
example, gene filtering based on GTEE made summary
methods more accurate when the level of ILS was
sufficiently low (12% AD) and the level of GTEE was
moderate to very high, provided that the number of
retained genes was not too small (Fig. 3a,b). For example,
the removal of ∼75% of the genes based on GTEE
resulted in ∼2–3% improvement in species tree accuracy
for the three summary methods under the lowest level
of ILS. Under higher ILS conditions, filtering based
on GTEE was at best neutral and typically increased

species tree error (Fig. 3c–f). However, when GTEE was
extremely high (mean GTEE >85%), filtering based on
GTEE improved the summary methods for all ILS levels
(Table 2, Supplementary Tables S10 and S11 available
on Dryad); the replicates with extremely high GTEE
were limited to 2 replicates with low/moderate ILS, 5
replicates with high ILS, and 17 replicates with very high
ILS. SVDquartets and CA-ML decreased in topological
accuracy when the sequence alignments from genes with
high GTEE were removed (Supplementary Fig. S5, Tables
S12 and S13 available on Dryad). Although summary
methods could become more accurate with gene filtering
based on GTEE for the low/moderate ILS condition we
examined (12% AD), CA-ML was still the most accurate
method under this ILS condition. Finally, gene filtering
based on GTEE had minimal impact on ASTRAL-II’s
local branch support but typically decreased the mean
support of the true branches recovered by ASTRAL-II
and increased the number of true branches with support
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a) b)

c)

FIGURE 2. Differences in species tree error between data sets with no missing data and data sets with approximately 30% missing data are
shown for five methods: ASTRAL-II (blue), ASTRID (orange), MP-EST (green), SVDquartets (red), and unpartitioned concatenation analysis
using maximum likelihood (CA-ML), specifically RAxML (purple). Positive values indicate increases in error, whereas negative values indicate
reductions in error. Subplots a, b, and c show three levels of increasing incomplete lineage sorting (ILS), where AD is the normalized RF distance
between the true species and true gene trees averaged across all genes. The mean gene tree estimation error (GTEE) range and the number of
replicates (N) for that model condition are given on the x-axis. Means and medians are denoted by the gray dot and bar, respectively. Box plots
are defined by quartiles, e.g., boxes extend from the first to the third quartiles.

less than 75% (Supplementary Figs. S6 and S7 available
on Dryad).

Filtering genes based on GTEE reduced the mean
GTEE among the set of retained genes as compared to the
original set of genes (Supplementary Fig. S8 available on
Dryad). For example, when GTEE was moderate/high,
the mean GTEE of the unfiltered data sets was 35–40%;
after the removal of 75% of the genes, the mean GTEE
was ∼20%, corresponding to a 15–20% reduction in mean
GTEE (Supplementary Fig. S8a,c,e available on Dryad).
Despite the substantial reduction in mean GTEE, species
tree error tended to increase except for the lowest ILS
condition.

Effects of Filtering Based on Missing Data

Filtering genes based on missing data typically
reduced the accuracy of all methods, but the extent
of this reduction depended on the levels of ILS and
GTEE as well as the number of genes remaining after

filtering (Fig. 4, Supplementary Tables S14–S18 available
on Dryad). For all the experiments shown, deleting
only half the genes (and so retaining 500 genes of
the original 1000) had a negligible impact on accuracy.
When more genes were deleted, the error rates increased
for all methods under all conditions examined. Under
the easiest conditions (i.e., for low/moderate ILS and
moderate GTEE), the impact of filtering 95% of the genes
was relatively small for all methods (i.e., species tree
error rates increased by approximately 5% (Fig. 4a). At
the other extreme, when the levels of ILS and GTEE
were both very high (Fig. 4f), filtering 95% of the genes
(corresponding to removing all genes with missing
data) decreased accuracy by approximately 25% for all
methods. Finally, filtering genes based on missing data
could decrease the mean branch support of the true
branches recovered by ASTRAL-II, resulting in a higher
frequency of true branches with support less than 75%
(Supplementary Figs. S9 and S10 available on Dryad).
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c)

e) f)

d)

b)a)

FIGURE 3. The impact of filtering genes by gene tree estimation error (GTEE) on species tree error is shown for three gene tree summary
methods: ASTRAL-II (solid blue), ASTRID (solid orange), and MP-EST (solid green). Genes were filtered by removing the top 25%, 50%, 75%,
90%, and 95% of genes with the highest GTEE. SVDquartets (dashed red) and unpartitioned concatenation analysis using maximum likelihood
(CA-ML), specifically RAxML (dashed purple), are shown without filtering. Species tree error is the normalized Robinson–Foulds (RF) distance
between the true and estimated species trees. Lines indicate the mean across all replicates, and filled regions indicate the standard error. Rows
show three levels of increasing incomplete lineage sorting (ILS), where the AD is defined as the normalized RF distance between the true species
tree and true gene trees averaged across all genes. Columns show two levels of GTEE. When ILS was sufficiently low, gene filtering (up to 75%
of genes) increased the accuracy of gene tree summary methods (a–b). When ILS was high to very high, gene filtering had little impact on the
accuracy of gene tree summary methods or else reduced summary method accuracy (d–f).

DISCUSSION

The data sets used in this study cover a broad range
of model conditions with varying levels of ILS and
GTEE, both with and without missing data. Nearly all
replicates were in the anomaly zone; therefore, this study
considered a very wide range of model conditions where
coalescent species tree estimation methods are relevant.
However, this study was constrained to five methods and
to data sets with 26 species and 1000 genes (unless gene
filtering was performed). Therefore, the trends reported

in this study may not generalize to other methods or to
data sets with much smaller or much larger numbers of
species and/or genes.

Accuracy of Species Tree Estimation Methods

Effects of incomplete lineage sorting and phylogenetic
signal.—In this study, both ILS and GTEE affected the
relative accuracy of species tree estimation methods.
CA-ML had the best accuracy of all methods under
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TABLE 2. Proportions of replicates for which filtering based on GTEE increased or decreased the accuracy of ASTRAL-II

Mean Number of Number of Proportion of replicates affected by filtering (increased/decreased accuracy)
GTEE replicates informative sites when the following percentages of genes were removed

25% 50% 75% 90% 95%

Low/moderate ILS (12% AD)
0–20% 10 596 ± 224 0.00/0.00 0.00/0.00 0.00/0.10 0.00/0.00 0.00/0.20
20–50% 23 464 ± 276 0.09/0.04 0.26/0.00 0.35/0.09 0.30/0.04 0.26/0.13
50–80% 26 63 ± 14 0.23/0.04 0.23/0.04 0.31/0.12 0.35/0.23 0.35/0.31
80–85% 5 40 ± 28 0.40/0.60 0.40/0.40 0.40/0.60 0.20/0.60 0.20/0.80
85–100% 2 5 ± 3 0.50/0.00 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00

High ILS (41% AD)
0–20% 2 487 ± 9 0.00/0.50 0.00/0.50 0.00/1.00 0.00/0.00 0.00/0.50
20–50% 33 349 ± 208 0.03/0.09 0.15/0.27 0.15/0.33 0.03/0.55 0.03/0.70
50–80% 35 42 ± 17 0.11/0.17 0.26/0.17 0.26/0.34 0.14/0.49 0.17/0.60
80–85% 4 22 ± 10 0.75/0.00 0.50/0.00 0.25/0.00 0.25/0.25 0.25/0.50
85–100% 1 6 ± 0 0.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00

Very high ILS (75% AD)
0–20 0 NA NA NA NA NA NA
20–50% 29 213 ± 123 0.07/0.45 0.07/0.59 0.14/0.59 0.00/0.93 0.00/1.00
50–80% 23 30 ± 9 0.22/0.35 0.17/0.61 0.09/0.70 0.04/0.87 0.00/1.00
80–85% 8 17 ± 10 0.75/0.00 0.62/0.25 0.62/0.25 0.50/0.38 0.00/0.75
85–100% 9 6 ± 6 0.56/0.00 0.67/0.00 0.78/0.00 0.78/0.11 0.78/0.22

Notes: The proportion of replicates for which filtering based on gene tree estimation error (GTEE) increased and decreased the accuracy of
ASTRAL-II is given on the left and right of the forward slash, respectively. The larger of these two values is in bold. If these two fractions do not
sum to one, then the remainder is the proportion of replicates for which filtering did not impact accuracy. The number of replicates as well as
the mean (± standard deviation) of parsimony informative sites is given for each model condition, specified by the level of incomplete lineage
sorting (ILS) and the range of mean GTEE.

the low/moderate ILS condition, even though many
of the replicates were shown to be in the anomaly
zone. Interestingly, the improvement of CA-ML over
coalescent methods occurred under some conditions
with very high ILS, specifically when mean GTEE was
greater than 85% (a model condition with only nine
replicates). The differences in accuracy between CA-ML
and the summary methods were usually small except
when GTEE was sufficiently high. Summary methods
were typically more accurate than CA-ML when the level
of ILS was not too low and GTEE was not too high (mean
<50%). Hence, summary methods performed close to
best (and sometimes best) under many conditions—but
always provided that GTEE was not too high.

Prior simulation studies evaluating the performance
of species tree estimation methods on multilocus data
sets without missing data found similar trends with
respect to the relative accuracy of ASTRAL-II, ASTRID,
MP-EST, and CA-ML (Mirarab et al. 2014a,b; Bayzid et al.
2015; Chou et al. 2015; Davidson et al. 2015; Vachaspati
and Warnow 2015; Mirarab et al. 2016); these trends are
also consistent with earlier simulation studies evaluating
other coalescent methods (Leaché and Rannala 2010;
Liu and Yu 2011; Bayzid and Warnow 2013; Patel et al.
2013; Liu et al. 2015a). The improvement of CA-ML over
summary methods has been noted before for high levels
of ILS (e.g., Mirarab and Warnow 2015) but not (to
our knowledge) for conditions with very high ILS (75%
AD), as was observed in this study. Finally, the good
performance of ASTRID in this study is consistent with
prior simulation studies comparing ASTRID or NJst to

other species tree estimation methods (Liu et al. 2015a;
Vachaspati and Warnow 2015).

In general, SVDquartets was not among the best
methods. Although it was dramatically more accurate
than the summary methods under the highest ILS
and GTEE condition (a model condition with only
nine replicates), CA-ML was at least as accurate as
SVDquartets (and usually more accurate), even under
the highest levels of ILS, on which SVDquartets would
be expected to have an advantage.

Relatively little is known about the performance
of SVDquartets. A prior simulation study evaluating
SVDquartets in comparison to other species tree
estimation methods (Chou et al. 2015) also found that
SVDquartets was less accurate than CA-ML and was
typically less accurate than the summary methods
examined. Our results agree with the overall trends
in Chou et al. (2015), except that Chou et al. (2015)
observed that SVDquartets was (slightly) more accurate
than ASTRAL-II in a few cases. It is likely that some
differences in model conditions between the two studies
produced this small change in the relative performance
between SVDquartets and summary methods.

Effects of missing data.—In this study, missing data
typically resulted in a slight reduction in accuracy,
a trend that has also been noted in prior studies
(Hovmöller et al. 2013; Vachaspati and Warnow 2015;
Xi et al. 2016). The few cases (Fig. 2c) where missing
data improved the accuracy of some summary methods
are worth examining more carefully. When missing data
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c)

e) f)

d)

b)a)

FIGURE 4. The impact of filtering genes by missing data on species tree error is shown for five methods: ASTRAL-II (blue), ASTRID (orange), MP-
EST (green), SVDquartets (red), and unpartitioned concatenation analysis using maximum likelihood (CA-ML), specifically RAxML (purple).
Genes were filtered by removing the top 25%, 50%, 75%, 90%, and 95% of genes with the highest fractions of missing data; this resulted in
removing genes missing at least 50%, 25%, 10%, 5%, and 1% of taxa. Species tree error is the normalized Robinson–Foulds (RF) distance between
the true and estimated species trees. Lines indicate the mean across all replicates, and filled regions indicate the standard error. Rows show three
levels of increasing incomplete lineage sorting (ILS), where the AD is defined as the normalized RF distance between the true species tree and
true gene trees averaged across all genes. Columns show two levels of gene tree estimation error (GTEE). Gene filtering based on missing data
was at best neutral but often reduced the accuracy of species tree estimation methods.

improved accuracy, deleting species from gene sequence
alignments typically resulted in more accurate gene
trees; this was especially true for model conditions
characterized by very high ILS (75% AD) and extremely
high GTEE (>85%). For this model condition (with only
9 replicates), missing data reduced GTEE as follows: on
average 835 genes (out of the 950 genes with missing
data) had lower GTEE after deleting taxa, with an
average reduction in error of 3.6%. One would expect
many of these true gene trees to have short branches
(because species trees with very high ILS have very short

branches), and hence, a possible explanation for our
observation is that the random deletion of taxa increased
some branch lengths in the gene trees, making them
easier to estimate.

Effects of Gene Filtering

The impact of gene filtering on the accuracy of species
tree estimation depended on the filtering criterion, the
method, and the model condition; however, filtering
based on either GTEE or missing data always had a
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negative affect on all species tree estimation methods
when the number of retained genes became too small.

Filtering based on gene tree estimation error.—Filtering
based on GTEE typically increased the accuracy
of summary methods under the low/moderate ILS
condition but tended to reduce accuracy under higher
levels of ILS. Regardless of the ILS condition, the average
GTEE of the retained genes was substantially reduced
by filtering based on GTEE (Supplementary Fig. S8
available on Dryad); thus, even when filtering improved
the quality of the input gene trees, this did not always
offset the negative impact of reducing the total amount
of data via filtering.

Differences due to ILS level could be explained as
follows. When ILS is sufficiently low, a few highly
accurate gene trees are sufficient to estimate the true
species tree (e.g., one perfectly estimated gene tree is
identical to the species tree in the no-ILS condition).
However, a large sample of gene trees is necessary to
accurately estimate the species tree under higher levels
of ILS. Hence, filtering genes will be detrimental unless
a sufficiently large number of genes is retained after
filtering—and this number of genes will vary with the
level of ILS. This analysis is consistent with recent
mathematical results showing that the number of true
gene trees required for ASTRAL to recover the true
species tree with high probability grows in proportion
to the shortest branch in the true species tree and thus
ILS (Shekhar et al. 2017). Based on this explanation,
one would expect gene filtering to have a particularly
negative impact under high ILS conditions. Yet when the
level of GTEE was extremely high (mean > 80%), filtering
based on GTEE could improve summary methods,
including under the higher levels of ILS. However, the
number of replicates with extremely high GTEE was
relatively small (only 5 replicates with high ILS and 17
replicates with very high ILS), and further investigation
of this condition would be helpful.

Finally, filtering based on GTEE affected CA-ML and
SVDquartets quite differently: filtering decreased the
accuracy of CA-ML and SVDquartets, even when GTEE
was very high. Equivalently, CA-ML and SVDquartets
benefited from the additional loci, even when the
added loci had very low signal. In bypassing gene tree
estimation, CA-ML and SVDquartets are more robust to
the quality of the loci, and may reliably improve with
additional data regardless of the amount of phylogenetic
signal per locus.

To the best of our knowledge, only two prior
simulation studies (Lanier et al. 2014; Liu et al. 2015b)
have examined how filtering genes based on GTEE or
its proxies affects coalescent methods. Liu et al. (2015b)
performed a simulation on 6-taxon model trees with high
ILS (50% AD, Liang Liu, personal communication) in
which there were two types of genes: “strong genes”
(which had 1000 sites) and “weak genes” (which had 100
sites). Gene trees computed using maximum likelihood
on the weak genes had average bootstrap support below

40%, while maximum likelihood trees computed on the
strong genes had average bootstrap support greater than
80%, suggesting that there was low GTEE for the strong
genes and moderate/high GTEE for the weak genes.
Species tree were inferred from sets of the estimated
gene trees using MP-EST. Liu et al. (2015b) observed
that adding 60 weak genes (in increments of 10) to a set
of 30 strong genes increased the fraction of replicates
in which the true species tree was recovered from 33%
to 50%; however, the improvement was not monotone
(i.e., as weak genes were added the accuracy of MP-
EST sometimes decreased). Based on the ILS level and
number of genes, we would predict that accuracy would
improve by including the 30 weak genes, and so the
results in Liu et al. (2015b) are consistent with our
study. Lanier et al. (2014) performed a simulation on
8-taxon model trees with two levels of ILS. Although
Lanier et al. (2014) found that adding up to 50 low-
variation genes to a single variable gene had little impact
on STEM, each gene was represented by a majority-
rule consensus tree from MrBayes (Huelsenbeck and
Ronquist 2001) that may not have been fully resolved
due to insufficient phylogenetic signal. Our study used
fully resolved maximum likelihood gene trees, and so it
is difficult to compare our results to those of Lanier et al.
(2014).

Filtering based on missing data.—On average, filtering
based on missing data did not improve the accuracy of
any method under any model condition. Low amounts
of filtering generally did not affect method accuracy, but
large amounts of filtering resulted in increased species
tree estimation error for all methods. Unlike filtering
based on GTEE, filtering based on missing data did not
substantially lower the average GTEE in the retained
genes for most model conditions (Supplementary Fig.
S11 available on Dryad).

To the best of our knowledge, only one prior
simulation study (Huang and Knowles 2016) has
explicitly examined how gene filtering based on missing
data affects coalescent methods. Huang and Knowles
(2016) simulated 8-taxon data sets using a protocol where
gene trees differ from the species tree due to ILS and
where the pattern of missing data was similar to those
generated by RADtag protocols (Baird et al. 2008). This
simulation design resulted in a correlation between the
genes with missing data and the genes with higher rates
of evolution. Huang and Knowles (2016) noted that these
deleted genes were the ones that provided resolution at
difficult nodes, so that deleting these genes decreased
phylogenetic signal, and the species trees estimated
using the shallowest divergence method (a site-based
coalescent method) had higher error on the filtered data
sets than on the full data sets. A likely explanation for
why Huang and Knowles (2016) found gene filtering
based on missing data to substantially reduce accuracy is
that filtering decreased the amount of phylogenetic signal.
In other words, gene filtering based on missing data can
be doubly detrimental if it reduces the average signal
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per gene as well as reduces the total number of genes, an
observation that is consistent with our study.

Data quality versus data quantity.—By definition,
filtering reduces the amount of data available, and
hence should generally reduce species tree accuracy.
However, sometimes filtering based on GTEE improved
species tree estimation using summary methods. An
examination of the conditions when filtering improved
the accuracy of the summary methods shows that the
average gene tree accuracy also improved substantially
without removing too many genes. Hence, although
there was a reduction in data quantity (number of
genes), there was an increase in data quality (accuracy
of gene trees). Similarly, when filtering reduced accuracy,
either the gene tree quality did not improve by filtering
(e.g., when filtering is based on missing data) or the
gene tree quality improved but not by enough to offset
the reduction in quantity. In other words, the impact
of filtering is fundamentally a question of data quality
versus data quantity.

Local branch support.—Gene filtering also impacted the
local branch support (as estimated by ASTRAL-II);
however, these results are somewhat difficult to interpret
as the branches recovered in the estimated species trees
were also impacted by gene filtering. Overall, gene
filtering was either neutral or else decreased the mean
local support of true positive and false positive branches
in the ASTRAL-II species trees (Supplementary Figs. S6
and S9 available on Dryad).

When filtering was based on GTEE, the extent of
this decrease in accuracy depended on the level of
ILS. For example, it had very little impact on the
mean support of true positive branches when the level
of ILS was low/moderate (Supplementary Fig. S6a,b
available on Dryad) but decreased by nearly 10% under
very high ILS conditions (Supplementary Fig. S6e,f
available on Dryad). Conversely, when the level of ILS
was low/moderate, the mean local branch support of
false positive branches decreased by over 10% but was
not affected when the level of ILS was very high, an
observation that may be at least partially explained by
the recovery of fewer false branches.

Differences in local branch support due to filtering
based on missing data in general did not seem to
depend on the model conditions (Supplementary Figs.
S9 and S10 available on Dryad). The exception to
this was that the support of false branches increased
from ∼40% to ∼50% under high ILS and moderate
GTEE (Supplementary Fig. S10c available on Dryad).
In this case, the average local support of true positive
branches was still high (∼90%), suggesting that the local
support would still be useful in separating true and false
branches.

Prior Empirical Studies

Several recent studies evaluated the impact of filtering
on coalescent methods using empirical data sets: four

studies evaluated filtering based on missing data (Chen
et al. 2015; Hosner et al. 2016; Streicher et al. 2016; Longo
et al. 2017) and six evaluated filtering based on proxies
for GTEE or related criteria (Chen et al. 2015; Hosner et al.
2016; Meiklejohn et al. 2016; Simmons et al. 2016; Blom
et al. 2017; Longo et al. 2017). These studies differ in many
ways, including the type of data sets, the filtering criteria,
the methods used, and the evaluation of species tree
quality; however, all these studies used MLBS to estimate
branch support values for the species trees computed
using summary methods.

Two empirical studies observed that deleting genes
based on the degree of missing data typically did not
improve the quality of estimated species trees, and
sometimes even reduced quality, as measured using
appearance of unlikely clades (Chen et al. 2015; Hosner
et al. 2016). The other two studies evaluating this type
of filtering (Streicher et al. 2016; Longo et al. 2017)
observed that deleting genes with missing data could
increase branch support—provided that the correct
filtering threshold (i.e., degree of missing data) was
used. However, the best threshold differed between the
studies, and selecting the wrong threshold could reduce
branch support in the estimated species tree, indicating
not only that selecting the threshold is important but
also that the optimal filtering threshold based on missing
data may depend on the species tree estimation method
and the data set properties in ways that are difficult to
ascertain. Given the difficulties in interpreting branch
support in species trees computed using coalescent-
based methods (especially when based on MLBS, which
is how these studies computed branch support) and
given the lack of evidence that filtering this way
improves accuracy (Chen et al. 2015; Hosner et al. 2016),
filtering genes because many species are missing seems
to be undesirable. An interesting counterpart to this line
of analysis is the observation in Hosner et al. (2016)
that filtering genes that have fragmentary sequences
(a different kind of missing data situation that they
refer to as “type-II” missing data) can improve accuracy.
The explanation is likely that type-II missing data
increased GTEE, which in turn impacted the summary
methods.

Five empirical studies have examined how species
trees computed using summary methods are impacted
by gene filtering based on proxies for GTEE; three of
these (Hosner et al. 2016; Meiklejohn et al. 2016; Longo
et al. 2017) recommended filtering and two (Chen et al.
2015; Blom et al. 2017) did not recommend filtering. A
sixth study (Simmons et al. 2016) explored a related
filtering strategy that identified and removed outlier
genes (i.e., genes whose gene trees are topologically very
distant from other gene trees) but did not recommend
this type of filtering as a way to improve species
tree estimation. The five studies that used proxies for
GTEE to evaluate species tree quality did so in similar
ways (usually evaluating the similarity to a CA-ML
tree, the appearance of unlikely clades, or the branch
support of the estimated species tree) and yet came to
different conclusions. In particular, Meiklejohn et al.
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(2016) noted that different summary methods were
not all impacted identically by genes with potentially
high GTEE (resulting from, for example, low numbers
of parsimony informative sites), and so filtering may
benefit some methods substantially and not benefit
others as much (or at all). Thus, the impact of filtering
based on proxies for GTEE depends on the specific
method for estimating species trees, and most likely also
depends on properties of the data set.

It is worth examining in some detail the study
that showed the largest favorable impact of filtering
(Meiklejohn et al. 2016) as the authors provided
fairly convincing evidence that filtering reduced the
appearance of unlikely clades in trees computed by
MP-EST. Meiklejohn et al. (2016) noted that many of
the gene trees in their data set—especially ones with
few informative sites—had highly supported GTEE.
Their evidence for this assertion is that these gene
trees had strong support for clades that conflicted with
an established clade in the species tree and that this
established clade was separated from the rest of the
species by a long branch. Since ILS is unlikely to occur
on long branches, this means that most true gene trees
would be expected to display this established clade.
Therefore, the condition in which Meiklejohn et al. (2016)
observed that gene filtering based on GTEE provided
an improvement in species tree accuracy (by reducing
the frequency of unlikely clades) is characterized by
a particular kind of GTEE—strong support for a false
branch, rather than low support on the false branches
(which is what we would expect if given a sequence
alignment without any phylogenetically informative
sites). Meiklejohn et al. (2016) note that removing genes
with few informative sites simultaneously removed
many of these genes that had highly supported
GTEE.

Even though the empirical studies did not come to
any clear agreement regarding the impact of filtering,
several conclusions can be drawn. First, as noted, not
all methods responded identically, so improvements
resulting from filtering for one method do not imply that
other methods—even of the same type—will respond in
the same way. Second, when there was improvement,
it was often because the genes that were deleted had
high GTEE—with potentially the biggest improvement
occurring when the GTEE was highly supported. Third,
interpreting increased similarity to a CA-ML tree as an
improvement in accuracy is a bit tricky, as it depends on
the accuracy of CA-ML. However, our study showed that
CA-ML was frequently the most accurate of the species
trees estimation methods, even under conditions with
localized regions of high ILS (so that overall the AD value
was not too high). We also showed that filtering genes
based on GTEE reduced species tree error when species
trees have a mixture of long and short branches (so that
overall ILS is not large) or when the level of GTEE is
extremely high. These two conditions seem likely to be
true of many empirical studies, and in particular high
GTEE seems to be a very general problem for modern
phylogenomic data sets (Table 1).

CONCLUSIONS

Method Selection

Methods should be chosen based on how each method
responds to data quality (per locus) and data quantity
(number of loci). Therefore, given a collection of loci,
many of which have only a few informative sites, we
may prefer to use CA-ML over a summary method, as
CA-ML is likely to be at least as accurate as the summary
methods we examined under model conditions with
high GTEE. However, given a collection of loci, many
of which appear to produce high quality gene trees, we
may prefer to use one of the summary methods over
CA-ML. Whether we trust the results of the summary
method over CA-ML and whether we decide to use gene
filtering in conjunction with the summary method both
depend on the level of ILS and GTEE. Similarly, although
SVDquartets was not generally among the most accurate
methods, this study showed that SVDquartets could be
more accurate than summary methods when GTEE was
sufficiently high but was not generally better than CA-
ML. However, the conditions for which SVDquartets
may be more accurate than summary methods and/or
CA-ML (e.g., high to very high ILS and very large
number of loci) require further exploration. Regardless,
method selection depends on the data set and in
particular on the levels of ILS and GTEE, making the
estimation of these quantities important methodological
issues in phylogenomics.

The computational cost of each method is also an
important consideration. While it is certainly true
that some approaches to coalescent-based species tree
estimation are substantially more expensive than CA-ML
(e.g., Bayesian coestimation methods), many coalescent
methods can be faster than CA-ML for large multilocus
data sets. For example, the main computational effort
in using (most) summary methods is the estimation
of the individual gene trees; however, this step is
embarrassingly parallel, enabling the estimation of
gene trees under more complex statistical models that
(for computational reasons) cannot be applied to long
concatenated alignments. In contrast, the running time
for CA-ML is significantly impacted by the number of
loci, and only some maximum likelihood methods (e.g.,
ExaML; Kozlov et al. 2015) are fast enough to be used
on very long concatenated alignments. However, even
ExaML is expensive to use when the number of species
is large; the concatenated analysis using ExaML for
48 species and approximately 14,000 loci in the Avian
Phylogenomics Project (Jarvis et al. 2014) took more than
250 CPU years and 1 TB of shared memory. In contrast,
MP-EST took only 5 CPU years to analyze the same
data set, and most of that time was spent estimating
the gene trees with bootstrapping; hence, the same data
set could be analyzed using single best ML gene trees
and a faster summary method, and still use only a small
fraction of the time. SVDquartets and other site-based
methods are also very efficient for large numbers of loci,
and improved versions of these methods may scale to
very large numbers of species.
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Marker Selection

With respect to marker selection, perhaps the most
significant outcome of this study is the general
observation that GTEE (resulting from low phylogenetic
signal per locus) has a substantial negative impact on
summary methods. This impact on summary methods
can be so great that they may not be appropriate methods
for analyzing UCEs and other commonly used types of
phylogenomic data where the loci have few informative
sites. In contrast, CA-ML seems to do well with these low-
signal loci, as long as there are enough of them. Thus, this
study and other empirical studies suggest that the type
of marker that works well for CA-ML may not be the type
that works well for summary methods; more concretely,
the optimal markers for species tree estimation using
summary methods may have higher rates of evolution
than the optimal markers for CA-ML. We would
recommend therefore that prior to collecting data,
researchers should consider whether the expected level
of ILS is high enough that a summary method would
be beneficial, and then select markers based on this
assessment.

Moving Forward

The trends in this study support the conclusion that
ILS and GTEE affect method selection and use of gene
filtering based on GTEE (if summary methods are used).
This emphasizes the need to accurately predict ILS and
GTEE (or, alternatively, how to modify the gene trees to
reduce estimation error) in empirical data sets. However,
both ILS and GTEE are very challenging to estimate.
One way to estimate ILS is to examine the species tree
for rapid radiations (i.e., successions of short branches),
but this may depend on having a very good estimate of
the species tree, which is not always available. Another
way is to examine the heterogeneity between estimated
gene trees; however, GTEE itself adds to the observed
heterogeneity, and it can be difficult to distinguish
between heterogeneity due to GTEE and heterogeneity
due to ILS. Hence, estimating ILS generally also
depends on the ability to evaluate error in estimated
gene trees.

Thus, the estimation of GTEE is a fundamental
problem in phylogenomics that impacts method
selection and the interpretation of estimated species
trees. Closely related to estimating GTEE is the
estimation of the probability that a given branch in
an estimated gene tree is correct (Anisimova et al.
2011). The most popular such technique for this is
probably non-parametric bootstrapping (Felsenstein
1985), which can be reasonably reliable when performed
correctly and the tree estimation method is statistically
consistent (Efron et al. 1996; Holmes 2003, 2005; Susko
2009). Fortunately, other mathematical and statistical
approaches for computing the probability of a branch
in a tree (or even the entire tree) being correct have
also been developed (Holmes 2005; Fischer and Steel
2009; Townsend et al. 2012; Susko and Roger 2012;

Salichos et al. 2014), and may provide better indicators
of GTEE than the usual non-parametric bootstrapping
approach.

Empirical arguments can also be used to provide
evidence of GTEE. For example, Meiklejohn et al. (2016)
provided an argument for GTEE in their data set by
demonstrating that a large number of the estimated gene
trees had strongly supported branches that conflicted
with an established clade in the species tree that was
separated by a long branch from all the remaining
species. Other evidence for GTEE can be provided by
demonstrating model misspecification or by showing
that the tree topology is not stable. Another approach is
to identify gene trees that are topologically very distant
to the other gene trees; such an approach was explored by
Simmons et al. (2016), who found it useful for potentially
identifying GTEE as well as other types of errors in
phylogenomic data sets. Finally, very short sequences
with low phylogenetic signal are inherently likely to
produce high GTEE, and can even produce highly
supported GTEE, which may be the most problematic
of all conditions.

Finally, Chen et al. (2015) make an interesting point
about gene selection strategies that is relevant to the
question of gene filtering. They argue that node-specific
strategies (Salichos and Rokas 2013) should be used
to select genes, rather than “nonspecific” strategies
that select genes based on overall phylogenetic signal
and/or assessment of gene tree accuracy. Chen et al.
(2015) showed that the selection of genes to help
resolve specific phylogenetic questions (e.g., Is Amborella
the sister of land plants?) is more likely to result in
an answer with high support than selecting genes
based on generic signal. For example, Chen et al.
(2015) wrote, “In some extreme cases, these nonspecific
data sets can correctly resolve some difficult nodes
but result in high support for erroneous relationships
for other nodes.” They concluded that “One possible
explanation for this phenomenon is that each gene has
a different resolving power on different time scales
and on different evolutionary scenarios... Nonspecific
data sets may produce a well-resolved relationship for
an ancient divergence event but do not have enough
phylogenetic signal to recover accurate phylogeny for a
recent radiation or vice versa.” The observations by Chen
et al. (2015) are very similar to earlier observations made
by Townsend and Leuenberger (2011), who noted that
“characters that are highly informative early in history
rapidly become sources of phylogenetic noise due to
multiple hits for deeper divergences.” Thus, Townsend
and Leuenberger (2011) and Chen et al. (2015) support the
hypothesis that phylogenomic species tree estimation is
likely to benefit from a mixture of genes aiming to resolve
different parts of the tree, rather than selecting genes on
the basis of overall high signal, and potentially suggest
the possibility that adding genes rather than deleting
genes may be the most promising direction.

This study also has consequences for method
developers. In particular, because many phylogenomic
data sets are based on UCEs and other markers that are
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highly conserved, the performance of methods should
be explored under conditions where individual genes
have low phylogenetic signal and so gene trees have
high estimation error. We also note that the published
species trees for many phylogenomic data sets have a
combination of short and long branches, and so fall into
the “low/moderate” ILS condition that we explored.
Thus, a common type of phylogenomic data set is one
where the individual markers have low phylogenetic
signal and the level of ILS, even if high enough to
be in the anomaly zone, is not too high. However,
many key evolutionary questions remain unanswered
because the current coalescent-based approaches do not
exceed the accuracy of CA-ML on these data sets. In
particular, this study suggests that GTEE seems to be
at least as influential as ILS in terms of its impact on
species tree estimation, at least when using summary
methods. Therefore, this study suggests that future
research should carefully examine conditions where
many of the loci tend to have low phylogenetic signal,
and also suggests that method developers should design
species tree estimation methods that can provide high
accuracy under high GTEE conditions.

Fortunately, species tree estimation is a fast moving
field with many new theoretical results established and
methods created in just the last few years (e.g., Boussau
et al. 2013; Roch and Snir 2013; Yu et al. 2014; Solís-
Lemus and Ané 2016; Solís-Lemus et al. 2016; Wen et al.
2016; Dasarathy et al. 2017; Shekhar et al. 2017; Zhu et al.
2017). With the increased attention that species tree (and
phylogenetic network) estimation is receiving, we are
optimistic that, over the next few years, new methods
may be developed that will provide even better accuracy
and scalability to large data sets.
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Data available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.km24v.
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APPENDIX

We present an example of a summary method
(suggested by Mike Steel) that actually improves in
accuracy when enough data are missing. Consider a set
of unrooted gene trees leaf-labelled by the same set S
of species. For each possible subset A of four or more
species in S, an unrooted tree tA (called the “dominant
tree” on A) is constructed as follows. From all gene
trees that contain all species in A, the most frequently
observed induced tree on A becomes the dominant
tree tA. If the set of dominant trees {tA :A⊆S,|A|≥4}

is compatible, then a compatibility tree (i.e., the tree
that agrees with all the dominant trees) is returned by
the summary method; otherwise, a star tree (i.e., the
tree with all leaves adjacent to a single central vertex)
is returned by the summary method. If the species tree
is in the anomaly zone (Degnan and Rosenberg 2006),
then by definition the dominant tree tS will be different
from the true species tree on S with probability going
to 1 as the number of genes increases. But because
there are no anomalous unrooted quartet trees, the
dominant tree tA for |A|=4 will be identical to the
species tree on A with probability converging to 1 as the
number of genes increases (Allman et al. 2011). Hence,
whenever a species tree with |S|>4 is in the anomaly
zone, the set of dominant trees will be incompatible,
and the summary method will return a star
tree.

Now suppose |S|=5 but a single species is selected
at random for each gene and deleted. As every gene
tree has only four remaining species, only subsets with
|A|=4 can be defined, and the set of dominant trees will
contain only unrooted quartet trees. Because there are no
anomalous unrooted quartet trees, the dominant trees
will match the species tree with probability converging
to 1 as the number of genes increases (Allman et al.
2011). As the number of genes increases with probability
converging to 1, the set of dominant trees will be
compatible with each other, and the species tree will
be a compatibility tree for the set of dominant trees.
Finally, every quartet tree induced by the species tree will
appear as a dominant tree with probability converging
to 1 as the number of genes increases; hence, the species
tree will be the unique compatibility tree for the set of
dominant tree, and the summary method will return the
true species tree. In other words, this summary method is
statistically consistent under the MSC model when there
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is enough missing data so that each gene has at most four
species; however, this summary method is statistically
inconsistent otherwise, including the case when no data
are missing.

REFERENCES

Allman E.S., Degnan J.H., Rhodes J.A. 2011. Identifying the rooted
species tree from the distribution of unrooted gene trees under the
coalescent. J. Math. Biol. 62:833–862.

Anisimova M., Gil M., Dufayard J.-F., Dessimoz C., Gascuel O. 2011.
Survey of branch support methods demonstrates accuracy, power,
and robustness of fast likelihood-based approximation schemes.
Syst. Biol. 60:685–699.

Baird N.A., Etter P.D., Atwood T.S., Currey M.C. Shiver A.L., Lewis
Z.A., Selker W.A., Cresko E.U., Johnson E.A. 2008. Rapid SNP
discovery and genetic mapping using sequenced RAD markers.
PLoS ONE 3:e3376.

Bayzid M.S., Hunt T., Warnow T. 2014. Disk covering methods improve
phylogenomic analyses. BMC Genomics 15:S7.

Bayzid M.S., Mirarab S., Boussau B., Warnow T. 2015. Weighted
statistical binning: enabling statistically consistent genome-scale
phylogenetic analyses. PLoS ONE 10:30129183.

Bayzid M.S., Warnow T. 2013. Naive binning improves phylogenomic
analyses. Bioinformatics 29:2277–2284.

Betancur-R R., Naylor G.J., Ortí G. 2014. Conserved genes, sampling
error, and phylogenomic inference. Syst. Biol. 63:257–262.

Blom M.P.K., Bragg J.G., Potter S., Moritz C. 2017. Accounting for
uncertainty in gene tree estimation: summary-coalescent species
tree inference in a challenging radiation of Australian lizards. Syst.
Biol. 66:352–366.
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