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Abstract—Disruption Tolerant Networks (DTNs) utilize the
mobility of nodes and the opportunistic contacts among nodes
for data communications. Due to the limitation in network
resources such as contact opportunity and buffer space, DTNs
are vulnerable to flood attacks in which attackers send as many
packets or packet replicas as possible to the network, in order to
deplete or overuse the limited network resources. In this paper,
we employ rate limiting to defend against flood attacks in DTNs,
such that each node has a limit over the number of packets
that it can generate in each time interval and a limit over the
number of replicas that it can generate for each packet. We
propose a distributed scheme to detect if a node has violated
its rate limits. To address the challenge that it is difficult to
count all the packets or replicas sent by a node due to lack of
communication infrastructure, our detection adopts claim-carry-
and-check: Each node itself counts the number of packets or
replicas that it has sent and claims the count to other nodes;
the receiving nodes carry the claims when they move, and cross-
check if their carried claims are inconsistent when they contact.
The claim structure uses the pigeonhole principle to guarantee
that an attacker will make inconsistent claims which may lead
to detection. We provide rigorous analysis on the probability of
detection, and evaluate the effectiveness and efficiency of our
scheme with extensive trace-driven simulations.

Index Terms—DTN, security, flood attack, detection

I. INTRODUCTION

Disruption Tolerant Networks (DTNs) [1] consist of mobile

nodes carried by human beings [2], [3], vehicles [4], [5],

etc. DTNs enable data transfer when mobile nodes are only

intermittently connected, making them appropriate for appli-

cations where no communication infrastructure is available

such as military scenarios and rural areas. Due to lack of

consistent connectivity, two nodes can only exchange data

when they move into the transmission range of each other

(which is called a contact between them). DTNs employ such

contact opportunity for data forwarding with “store-carry-and-

forward”; i.e., when a node receives some packets, it stores

these packets in its buffer, carries them around until it contacts

another node, and then forwards them. Since the contacts

between nodes are opportunistic and the duration of a contact

may be short because of mobility, the usable bandwidth which

is only available during the opportunistic contacts is a limited

resource. Also, mobile nodes may have limited buffer space.

Due to the limitation in bandwidth and buffer space, DTNs

are vulnerable to flood attacks. In flood attacks, maliciously

or selfishly motivated attackers inject as many packets as

possible into the network, or instead of injecting different

packets the attackers forward replicas of the same packet

to as many nodes as possible. For convenience, we call the

two types of attack packet flood attack and replica flood

attack, respectively. Flooded packets and replicas can waste

the precious bandwidth and buffer resources, prevent benign

packets from being forwarded and thus degrade the network

service provided to good nodes. Moreover, mobile nodes spend

much energy on transmitting/receiving flooded packets and

replicas which may shorten their battery life. Therefore, it is

urgent to secure DTNs against flood attacks.

Although many schemes have been proposed to defend

against flood attacks on the Internet [6] and in wireless

sensor networks [7], they assume persistent connectivity and

cannot be directly applied to DTNs that have intermittent

connectivity. In DTNs, little work has been done on flood

attacks, despite the many works on routing [8], [4], [9],

data dissemination [10], [11], blackhole attack [12], wormhole

attack [13] and selfish dropping behavior [14], [15]. We

noted that the packets flooded by outsider attackers (i.e., the

attackers without valid cryptographic credentials) can be easily

filtered with authentication techniques (e.g., [16]). However,

authentication alone does not work when insider attackers

(i.e., the attackers with valid cryptographic credentials) flood

packets and replicas with valid signatures. Thus, it is still an

open problem is to address flood attacks in DTNs.

In this paper, we employ rate limiting [17] to defend against

flood attacks in DTNs. In our approach, each node has a limit

over the number of packets that it, as a source node, can send

to the network in each time interval. Each node also has a limit

over the number of replicas that it can generate for each packet

(i.e., the number of nodes that it can forward each packet to).

The two limits are used to mitigate packet flood and replica

flood attacks respectively. If a node violates its rate limits, it

will be detected and its data traffic will be filtered. In this way,

the amount of flooded traffic can be controlled.

Our main contribution is a technique to detect if a node

has violated its rate limits. Although it is easy to detect the

violation of rate limit on the Internet and in telecommunication

networks where the egress router and base station can account

each user’s traffic, it is challenging in DTNs due to lack

of communication infrastructure and consistent connectivity.

Since a node moves around and may send data to any

contacted node, it is very difficult to count the number of

packets or replicas sent out by this node. Our basic idea of

detection is claim-carry-and-check. Each node itself counts

the number of packets or replicas that it has sent out, and

claims the count to other nodes; the receiving nodes carry the



claims around when they move, exchange some claims when

they contact, and cross-check if these claims are inconsistent.

If an attacker floods more packets or replicas than its limit, it

has to use the same count in more than one claim according to

the pigeonhole principle1, and this inconsistency may lead to

detection. Based on this idea, we use different cryptographic

constructions to detect packet flood and replica flood attacks.

Because the contacts in DTNs are opportunistic in nature,

our approach provides probabilistic detection. The more traffic

an attacker floods, the more likely it will be detected. The

detection probability can be flexibly adjusted by system pa-

rameters that control the amount of claims exchanged in a

contact. We provide a lower and upper bound of detection

probability and investigate the problem of parameter selection

to maximize detection probability under a certain amount of

exchanged claims. The effectiveness and efficiency of our

scheme are evaluated with extensive trace-driven simulations.

This paper is structured as follows. Section II motivates

our work. Section III presents our models and basic ideas.

Section IV and V present our scheme. Section VI presents

security and cost analysis. Section VII presents simulation

results. The last two sections present related work and con-

clusions, respectively.

II. MOTIVATION

A. The Potential Prevalence of Flood Attacks

Many nodes may launch flood attacks for malicious or

selfish purposes. Malicious nodes, which can be the nodes

deliberately deployed by the adversary or subverted by the

adversary via mobile phone worms [18], launch attacks to

congest the network and waste the resources of other nodes.

Selfish nodes may also exploit flood attacks to increase their

communication throughput. In DTNs, a single packet usually

can only be delivered to the destination with a probability

smaller than 1 due to the opportunistic connectivity. If a

selfish node floods many replicas of its own packet, it can

increase the likelihood of its packet being delivered, since the

delivery of any replica means successful delivery of the packet.

With packet flood attacks, selfish nodes can also increase their

throughput, albeit in a subtler manner. For example, suppose

Alice wants to send a packet to Bob. Alice can construct

100 variants of the original packet which only differ in one

unimportant padding byte, and send the 100 variants to Bob

independently. When Bob receives any one of the 100 variants,

he throws away the padding byte and gets the original packet.

B. The Effect of Flood Attacks

To study the effect of flood attacks on DTN routing and

motivate our work, we run simulations on the MIT Reality

trace [19] (see more details about this trace in Section VII).

We consider three general routing strategies in DTNs. 1)

Single-copy routing (e.g., [20], [8]): After forwarding a packet

out, a node deletes its own copy of the packet. Thus, each

packet only has one copy in the network. 2) Multi-copy routing

1The pigeonhole principle states that if α items are put into β pigeonholes
with α > β, then at least one pigeonhole must contain more than one item.

(e.g., [21]): The source node of a packet sprays a certain

number of copies of the packet to other nodes and each

copy is individually routed using the single-copy strategy. The

maximum number of copies that each packet can have is fixed.

3) Propagation routing (e.g., [19], [22], [23]): When a node

finds it appropriate (according to the routing algorithm) to

forward a packet to another encountered node, it replicates

that packet to the encountered node and keeps its own copy.

There is no preset limit over the number of copies a packet can

have. In our simulations, SimBet [8], Spray-and-Focus [21] (3

copies allowed for each packet) and Propagation are used as

representatives of the three routing strategies respectively. In

Propagation, a node replicates a packet to another encountered

node if the latter has more frequent contacts with the destina-

tion of the packet.

Two metrics are used, The first metric is packet delivery

ratio, which is defined as the fraction of packets delivered

to their destinations out of all the unique packets generated.

The second metric is the fraction of wasted transmissions (i.e.,

the transmissions made by good nodes for flooded packets).

The higher fraction of wasted transmissions, the more network

resources are wasted. We noticed that the effect of packet flood

attacks on packet delivery ratio has been studied by Burgess et

al [24] using a different trace [4]. Their simulations show that

packet flood attacks significantly reduce the packet delivery

ratio of single-copy routing but do not affect propagation

routing much. However, they do not study replica flood attacks

and the effect of packet flood attacks on wasted transmissions.

In our simulations, a packet flood attacker floods packets

destined to random good nodes in each contact until the

contact ends or the contacted node’s buffer is full. A replica

flood attacker replicates the packets it has generated to every

encountered node that does not have a copy. Each good node

generates thirty packets on the 121st day of the Reality trace,

and each attacker does the same in replica flood attacks. Each

packet expires in 60 days. The buffer size of each node is

5MB, bandwidth is 2Mbps and packet size is 10KB.

Figure 1 shows the effect of flood attacks on packet delivery

ratio. Packet flood attack can dramatically reduce the packet

delivery ratio of all three types of routing. When the fraction of

attackers is high, replica flood attack can significantly decrease

the packet delivery ratio of single-copy and multi-copy routing,

but it does not have much effect on propagation routing.

Figure 2 shows the effect of flood attacks on wasted

transmission. Packet flood attack can waste more than 80% of

the transmissions made by good nodes in all routing strategies

when the fraction of attackers is higher than 5%. When 20%

of nodes are attackers, replica flood attack can waste 68% and

44% of transmissions in single-copy and multi-copy routing

respectively. However, replica flood attack only wastes 17%

of transmissions in propagation routing. This is because each

good packet is also replicated many times.

Remarks. The results show that all the three types of

routing are vulnerable to packet flood attack. Single-copy and

multi-copy routing are also vulnerable to replica flood attack,

but propagation routing is much more resistant to replica flood.

Motivated by these results, this paper addresses packet flood

attack without assuming any specific routing strategy, and
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(c) Propagation Routing

Fig. 1. The effect of flood attacks on packet delivery ratio. In Absent Node, attackers are simply removed from the network. Attackers are selectively
deployed to high-connectivity nodes.
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(b) Replica Flood Attack

Fig. 2. The effect of flood attacks on wasted transmission. Attackers are
randomly deployed.

addresses replica flood attack for single-copy and multi-copy

routing only.

III. OVERVIEW

A. Problem Definition

1) Defense against Packet Flood Attacks: We consider a

scenario where each node has a rate limit L on the number of

unique packets that it as a source can generate and send into

the network within each time interval T . The time intervals

start from time 0, T , 2T , etc. The packets generated within

the rate limit are deemed legitimate, but the packets generated

beyond the limit are deemed flooded by this node. To defend

against packet flood attacks, our goal is to detect if a node as

a source has generated and sent more unique packets into the

network than its rate limit L per time interval.

A node’s rate limit L does not depend on any specific

routing protocol, but it can be determined by a service contract

between the node and the network operator as discussed in

Section III-A3. Different nodes can have different rate limits

and their rate limits can be dynamically adjusted.

The length of time interval should be set appropriately. If

the interval is too long, rate limiting may not be very effective

against packet flood attacks. If the interval is too short, the

number of contacts that each node has during one interval

may be too nondeterministic and thus it is difficult to set an

appropriate rate limit. Generally speaking, the interval should

be short under the condition that most nodes can have a

significant number of contacts with other nodes within one

interval, but the appropriate length depends on the contact

patterns between nodes in the specific deployment scenario.

2) Defense against Replica Flood Attacks: As motivated in

Section II, the defense against replica flood considers single-

copy and multi-copy routing protocols. These protocols require

that, for each packet that a node buffers no matter if this packet

has been generated by the node or forwarded to it, there is a

limit l on the number of times that the node can forward this

packet to other nodes. The values of l may be different for

different buffered packets. Our goal is to detect if a node has

violated the routing protocol and forwarded a packet more

times than its limit l for the packet.

A node’s limit l for a buffered packet is determined by the

routing protocol. In multi-copy routing, l = L′ (where L′ is a

parameter of routing) if the node is the source of the packet,

and l = 1 if the node is an intermediate hop (i.e., it received

the packet from another node). In single-copy routing, l = 1
no matter if the node is the source or an intermediate hop.

Note that the two limits L and l do not depend on each other.

We discuss how to defend against replica flood attacks for

quota-based routing [25], [21], [26] in Section IV-I.

3) Setting the Rate Limit L: One possible method is to set

L in a request-approve style. When a user joins the network,

she requests for a rate limit from a trusted authority which

acts as the network operator. In the request, this user specifies

an appropriate value of L based on prediction of her traffic

demand. If the trusted authority approves this request, it issues

a rate limit certificate to this user, which can be used by

the user to prove to other nodes the legitimacy of her rate

limit. To prevent users from requesting unreasonably large rate

limits, a user pays an appropriate amount of money or virtual

currency (e.g., the credits that she earns by forwarding data

for other users [27]) for her rate limit. When a user predicts an

increase (decrease) of her demand, she can request for a higher

(lower) rate limit. The request and approval of rate limit may

be done offline. The flexibility of rate limit leaves legitimate

users’ usage of the network unhindered. This process can

be similar to signing a contract between a smartphone user

and a 3G service provider: the user selects a data plan (e.g.,

200MB/month) and pays for it; she can upgrade or downgrade

the plan when needed.

B. Models and Assumptions

1) Network Model: In DTNs, since contact durations may

be short, a large data item is usually split into smaller packets

(or fragments) to facilitate data transfer. For simplicity, we

assume that all packets have the same predefined size. Al-

though in DTNs the allowed delay of packet delivery is usually

long, it is still impractical to allow unlimited delays. Thus, we

assume that each packet has a lifetime. The packet becomes

meaningless after its lifetime ends and will be discarded.

We assume that every packet generated by nodes is unique.

This can be implemented by including the source node ID and
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Fig. 3. The basic idea of flood attack detection. cp and ct are packet count and transmission count, respectively. The arrows mean the transmission of packet
or meta data which happens when the two end nodes contact.

a locally unique sequence number, which is assigned by the

source for this packet, in the packet header.

We also assume that time is loosely synchronized, such that

any two nodes are in the same time slot at any time. Since the

inter-contact time in DTNs is usually at the scale of minutes

or hours, the time slot can be at the scale of one minute. Such

loose time synchronization is not hard to achieve.

2) Adversary Model: There are a number of attackers in the

network. An attacker can flood packets and/or replicas. When

flooding packets, the attacker acts as a source node. It creates

and injects more packets into the network than its rate limit

L. When flooding replicas, the attacker forwards its buffered

packets (which can be generated by itself or received from

other nodes) more times than its limit l for them. The attackers

may be insiders with valid cryptographic keys. Some attackers

may collude and communicate via out-band channels.

3) Trust Model: We assume that a public-key cryptography

system is available. For example, Identity-Based Cryptography

(IBC) [28] has been shown to be practical for DTNs [29]. In

IBC, only an offline Key Generation Center (KGC) is needed.

KGC generates a private key for each node based on the node’s

id, and publishes a small set of public security parameters to

the node. Except the KGC, no party can generate the private

key for a node id. With such a system, an attacker cannot forge

a node id and private key pair. Also, attackers do not know

the private key of a good node (not attacker).

Each node has a rate limit certificate obtained from a trusted

authority. The certificate includes the node’s ID, its approved

rate limit L, the validation time of this certificate and the

trusted authority’s signature. The rate limit certificate can be

merged into the public key certificate or stand alone.

C. Basic Idea: Claim-Carry-and-Check

1) Packet Flood Detection: To detect the attackers that

violate their rate limit L, we must count the number of unique

packets that each node as a source has generated and sent to

the network in the current interval. However, since the node

may send its packets to any node it contacts at any time and

place, no other node can monitor all of its sending activities.

To address this challenge, our idea is to let the node itself

count the number of unique packets that it, as a source, has

sent out, and claim the up-to-date packet count (together with

a little auxiliary information such as its ID and a timestamp) in

each packet sent out. The node’s rate limit certificate is also

attached to the packet, such that other nodes receiving the

packet can learn its authorized rate limit L. If an attacker is

flooding more packets than its rate limit, it has to dishonestly

claim a count smaller than the real value in the flooded packet,

since the real value is larger than its rate limit and thus a clear

indicator of attack. The claimed count must have been used

before by the attacker in another claim, which is guaranteed by

the pigeonhole principle, and these two claims are inconsistent.

The nodes which have received packets from the attacker

carry the claims included in those packets when they move

around. When two of them contact, they check if there is any

inconsistency between their collected claims. The attacker is

detected when an inconsistency is found.

Let us look at an example in Fig. 3(a). S is an attacker

that successively sends out four packets to A, B, C and D,

respectively. Since L = 3, if S claims the true count 4 in the

fourth packet m4, this packet will be discarded by D. Thus, S
dishonestly claims the count to be 3, which has already been

claimed in the third packet m3. m3 (including the claim) is

further forwarded to node E. When D and E contact, they

exchange the count claims included in m3 and m4, and check

that S has used the same count value in two different packets.

Thus, they detect that S as an attacker.

2) Replica Flood Detection: Claim-carry-and-check can

also be used to detect the attacker that forwards a buffered

packet more times than its limit l. Specifically, when the source

node of a packet or an intermediate hop transmits the packet

to its next hop, it claims a transmission count which means the

number of times it has transmitted this packet (including the

current transmission). Based on if the node is the source or an

intermediate node and which routing protocol is used, the next

hop can know the node’s limit l for the packet, and ensure that

the claimed count is within the correct range [1, l]. Thus, if an

attacker wants to transmit the packet more than l times, it must

claim a false count which has been used before. Similarly as

in packet flood attacks, the attacker can be detected. Examples

are given in Fig. 3(b) and 3(c).

IV. OUR SCHEME

Our scheme uses two different cryptographic constructions

to detect packet flood and replica flood attacks independently.

When our scheme is deployed to propagation routing proto-

cols, the detection of replica flood attacks is deactivated.

The detection of packet flood attacks works independently

for each time interval. Without loss of generality, we only

consider one time interval when describing our scheme. For

convenience, we first describe our scheme assuming that all

nodes have the same rate limit L, and relax this assumption

in Section IV-H. In the following, we use SIGi(∗) to denote

node i’s signature over the content in the brackets.
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A. Claim Construction

Two pieces of meta data are added to each packet (see

Fig. 4), Packet Count Claim (P-claim) and Transmission Count

Claim (T-claim). P-claim and T-claim are used to detect packet

flood and replica flood attacks, respectively.

P-claim is added by the source and transmitted to later hops

along with the packet. T-claim is generated and processed

hop-by-hop. Specifically, the source generates a T-claim and

appends it to the packet. When the first hop receives this

packet, it peels off the T-claim; when it forwards the packet

out, it appends a new T-claim to the packet. This process

continues in later hops. Each hop keeps the P-claim of the

source and the T-claim of its previous hop to detect attacks.

1) P-claim: When a source node S sends a new packet m
(which has been generated by S and not sent out before) to a

contacted node, it generates a P-claim as follows:

P-claim: S, cp, t,H(m), SIGS(H(H(m)|S|cp|t)) (1)

Here, t is the current time. cp (cp ∈ [1, L]) is the packet count

of S, which means that this is the cthp new packet S has created

and sent to the network in the current time interval. S increases

cp by one after sending m out.

The P-claim is attached to packet m as a header field, and

will always be forwarded along with the packet to later hops.

When the contacted node receives this packet, it verifies the

signature in the P-claim, and checks the value of cp. If cp is

larger than L, it discards this packet; otherwise, it stores this

packet and the P-claim.

2) T-claim: When node A transmits a packet m to node B,

it appends a T-claim to m. The T-claim includes A’s current

transmission count ct for m (i.e., the number of times it has

transmitted m out) and the current time t. The T-claim is:

T-claim: A,B,H(m), ct, t, SIGA(H(A|B|H(m)|ct|t)) (2)

B checks if ct is in the correct range based on if A is the

source of m. If ct has a valid value, B stores this T-claim.

In single-copy and multi-copy routing, after forwarding m
for enough times, A deletes its own copy of m and will not

forward m again.

B. Inconsistency Caused by Attack

In a dishonest P-claim, an attacker uses a smaller packet

count than the real value. (We do not consider the case where

the attacker uses a larger packet count than the real value, since

it makes no sense for the attacker.) However, this packet count

must have been used in another P-claim generated earlier. This

causes an inconsistency called count reuse, which means the

use of the same count in two different P-claims generated by

the same node. For example in Fig. 3(a) the count value 3 is

reused in the P-claims of packet m3 and m4. Similarly, count

reuse is also caused by dishonest T-claims.

C. Protocol

Suppose two nodes contact and they have a number of

packets to forward to each other. Then our protocol is sketched

in Algorithm 1.

When a node forwards a packet, it attaches a T-claim to the

packet. Since many packets may be forwarded in a contact

and it is expensive to sign each T-claim separately, an efficient

signature construction is proposed in Section IV-G. The node

also attaches a P-claim to the packets that are generated by

itself and have not been sent to other nodes before (called new

packet in line 3, Algorithm 1).

When a node receives a packet, it gets the P-claim and

T-claim included in the packet. It checks them against the

claims that it has already collected to detect if there is any

inconsistency (see Sec. IV-E). Only the P-claims generated in

the same time interval (which can be determined by the time

tag) are cross-checked. If no inconsistency is detected, this

node stores the P-claim and T-claim locally (see Sec. IV-D).

To better detect flood attacks, the two nodes also exchange a

small number of the recently collected P-claims and T-claims

and check them for inconsistency. This meta data exchange

process is separately presented in Sec. V.

When a node detects an attacker, it adds the attacker into

a blacklist and will not accept packets originated from or

forwarded by the attacker. The node also disseminates an alarm

against the attacker to other nodes (see Sec. IV-F).

Algorithm 1 : The protocol run by each node in a contact

1: Meta data (P-claim and T-claim) exchange and attack detection
2: if Have packets to send then

3: For each new packet, generate a P-claim;
4: For all packets, generate their T-claims and sign them with a hash tree;
5: Send every packet with the P-claim and T-claim attached;
6: end if
7: if Receive a packet then

8: if Signature verification fails or the count value in its P-claim or T-
claim is invalid then

9: Discard this packet;
10: end if

11: Check the P-claim against those locally collected and generated in the
same time interval to detect inconsistency;

12: Check the T-claim against those locally collected for inconsistency;
13: if Inconsistency is detected then
14: Tag the signer of the P-claim (T-claim, resp.) as an attacker and

add it into a blacklist;
15: Disseminate an alarm against the attacker to the network;
16: else

17: Store the new P-claim (T-claim, resp.);
18: end if

19: end if

D. Local Data Structures

Each node collects P-claims and T-claims from the packets

that it has received and stores them locally to detect flood

attacks. Let us look at a received packet m and the P-claim

and T-claim included in this packet. Initially, this pair of P-

claim and T-claim are stored in full with all the components

shown in Formula 1 and 2. When this node removes m from its

buffer (e.g., after m is delivered to the destination or dropped

due to expiration), it compacts this pair of claims to reduce the

storage cost. If this pair of claims have been sampled for meta



data exchange, they will be stored in full until the exchange

process ends and be compacted afterward.

1) Compact P-claim Storage: Suppose node W stores a P-

claim CP = {S, cp, t,H(m), SIGS}. It compacts the P-claim

as follows. Using the timestamp t, W gets the index i of the

time interval that t belongs to. The signature is discarded since

it has been verified. The compacted P-claim is:

S, i, cp, H̃8 (3)

where H̃8 is a 8-bit string called hash remainder. It is obtained

by concatenating 8 random bits of the packet hash H(m). The

indices of these 8 bits in the hash are determined by 8 locators.

The locators are randomly and independently generated by W
for S at the beginning of the ith interval, and are shared by

all the P-claims issued by S in the ith interval. Each locator

only has log2 h bits where h denotes the size of a hash (e.g.,

256 for SHA-256). W keeps these locators secret.

Suppose node W has collected n P-claims generated by S
in interval i. For all these claims, only one source node ID and

interval index is stored. Also, instead of directly storing the

packet count values cp included in these P-claims, the compact

structure uses a L-bit long bit vector to store them. If value c
appears in these P-claims, the cth bit of the vector is set. Let

Ci
S denote the compact structure of these P-claims. Then:

Ci
S = S, i, bit-vector, locators, [H̃81 , H̃82 , ..., H̃8n ] (4)

2) Compact T-claim Storage: Suppose node W stores a

T-claim CT = {R,W,H(m), ct, t, SIGR} issued by node

R. The signature is discarded since it has been verified. W
does not need to store its own ID and t is not useful for

inconsistency check. Then the compacted T-claim is:

R, ct, H̃32 (5)

where H̃32 is a 32-bit hash remainder defined similarly as H̃8.

Suppose W has collected n T-claims generated by R. Then

the compact structure of these T-claims is:

CR = R, locators, [H̃321 , ct1 ], ..., [H̃32n , ctn ] (6)

The locators are randomly and independently generated by W
for R, and are shared by all the T-claims issued by R.

E. Inconsistency Check

Suppose node W wants to check a pair of P-claim and

T-claim against its local collections to detect if there is any

inconsistency. The inconsistency check against full claims is

trivial: W simply compares the pair of claims with those

collected. In the following, we describe the inconsistency

check against compactly stored claims.

1) Inconsistency Check with P-claim: From the P-claim n-

ode W gets: the source node ID S, packet count cp, timestamp

t and packet hash H . To check inconsistency, W first uses S
and t to map the P-claim to the structure Ci

S (see Eq. 4). Then

it reconstructs the hash remainder of H using the locators in

Ci
S . If the bit indexed by the packet count cp is set in the

bit-vector but the hash remainder is not included in Ci
S , count

reuse is detected and S is an attacker.

The inconsistency check based on compact P-claims does

not cause false positive, since a good node never reuses any

count value in different packets generated in the same interval.

The inconsistency check may cause false negative if the two

inconsistent P-claims have the same hash remainder. However,

since the attacker does not know which bits constitute the hash

remainder, the probability of false negative is only 2−8. Thus,

it has minimal effect on the overall detection probability.

2) Inconsistency Check with T-claim: From the T-claim

node W gets: the sender ID R, receiver ID Q and transmission

count ct. If Q is W itself (which is possible if the T-claim has

been sent out by W but returned by an attacker), W takes no

action. Otherwise, it uses R to map the T-claim to the structure

CR (see Eq. 6). If there is a 2-tuple [H̃ ′

32, c
′

t] in CR that satisfies

1) H̃ ′

32 is the same as the remainder of H , and 2) c′t = ct,
then the issuer of the T-claim (i.e., R) is an attacker.

The inconsistency check based on compact T-claims does

not cause extra false negative. False positive is possible but it

can be kept low as follows. Node W may falsely detect a good

node R as an attacker if it has received two T-claims generated

by R that satisfy two conditions: (i) they are generated for two

different packets, and (ii) they have the same hash remainder.

For 32-bit hash remainder, the probability that each pair of T-

claims lead to false detection is 2−32. In most cases, we expect

that the number of T-claims generated by R and received by

W is not large due to the opportunistic contacts of DTNs, and

thus the probability of false detection is low. As W receives

more T-claims generated by R, it can use a longer (e.g., 64-bit)

hash remainder for R to keep the probability of false detection

low. Moreover, such false detection is limited to W only, since

W cannot convince other nodes to accept the detection with

compact T-claim.

F. Alarm

Suppose in a contact a node receives a claim Cr from a

forwarded data packet or from the meta data exchange process

(see Sec. V-C) and it detects inconsistency between Cr and a

local claim Cl that the node has collected. Cr is a full claim

as shown in Formula 1 (or 2), but Cl may be stored as a full

claim or just a compact structure shown in Formula 3 (or 5).

If Cl is a full claim, the node can broadcast (via Epidemic

routing [30]) a global alarm to all the other nodes to speed up

the attacker detection process. The alarm includes the two full

claims Cl and Cr. When a node receives an alarm, it verifies

the inconsistency between the two included claims and their

signatures. If the verification succeeds, it adds the attacker

into its blacklist and broadcasts the alarm further; otherwise,

it discards the alarm. The node also discards the alarm if it

has broadcast another alarm against the same attacker.

If the detecting node stores Cl as a compact structure,

it cannot convince other nodes to trust the detection since

the compact structure does not have the attacker’s signature.

Thus it cannot broadcast a global alarm. However, since the

attacker may have reused the count value of Cr to other

claims besides Cl, the detecting node can disseminate a local

alarm that only contains Cr to its contacted nodes who have

received those claims. These contacted nodes can verify the

inconsistency between Cr and their collected claims, and also

detect the attacker. If any of these nodes still stores a full

claim inconsistent with Cr, it can broadcast a global alarm as

done in the previous case; otherwise, it disseminates a local
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alarm. As this iterative process proceeds, the attacker can be

quickly detected by many nodes. Each node only disseminates

one local alarm for each detected attacker.

A local alarm and a global alarm against the same attacker

may be disseminated in parallel. If a node receives the global

alarm first and then receives the local alarm, it discards the

local alarm. If it receives the local alarm first, when it receives

the global alarm later, it discards the local alarm and keeps

the global alarm.

An attacker may falsify an alarm against a good node.

However, since it does not have the node’s private key (as

our assumption), it cannot forge the node’s signatures for the

claims included in the alarm. Thus, the alarm will be discarded

by other nodes and this attack fails.

G. Efficient T-claim Authentication

The T-claims of all the packets transmitted in a contact

should be signed by the transmitting node. Since the contact

may end at any unpredictable time, each received T-claim must

be individually authenticated. A naive approach is to protect

each T-claim with a separate public-key signature, but it has

high computation cost in signature operations.

Our scheme uses Merkle hash tree [31] to amortize the

computation cost of public-key based signature on all the T-

claims that the node sends out in a contact. Specifically, after

a node generates the T-claims (without signature) for all the

packets it want to send, it constructs a hash tree upon these

partial T-claims, and signs the root of the tree with a public-key

based signature. Then the signature of a T-claim includes this

root signature and a few elements of the tree. Fig. 5 shows

the hash tree constructed upon eight T-claims and the tree

elements included in the signature of the first T-claim. We

refer to the original paper [31] for details. In this way, for all

the T-claims sent by the sender in a contact, only one public-

key based signature is generated by the sender and verified by

the receiver.

H. Dealing with Different Rate Limits

Previously we have assumed that all nodes have the same

rate limit L. When nodes have different rate limits, for our

detection scheme to work properly, each intermediate node

that receives a packet needs to know the rate limit L of the

source of the packet, such that it can check if the packet count

is in the correct range 1, 2, ..., L. To do so, when a source node

sends out a packet, it attaches its rate limit certificate to the

packet. The intermediate nodes receiving this packet can learn

the node’s authorized rate limit from the attached certificate.

I. Replica Flood Attacks in Quota-based Routing Protocols

Our scheme to detect replica flood attacks can also be

adapted to quota-based routing protocols [25], [21], [26].

Quota-based routing works as follows. Each node has a

quota for each packet that it buffers, and the quota specifies the

number of replicas into which the current packet is allowed to

be split. When a source node creates a packet, its quota for the

packet is L′ replicas, where L′ is a system parameter. When

the source contacts a relay node, it can split multiple replicas

to the relay according to the quality of the relay. After the

split, the relay’s quota for the packet is the number of replicas

split to it, and the source node’s quota is reduced by the same

amount. This procedure continues recursively, and each node

carrying the packet can split out a number of replicas less than

its current quota for the packet. It can be seen that each packet

can simultaneously have at most L′ replicas in the network.

In quota-based routing, replica flood attacks (where an

attacker sends out more replicas of a packet than its quota)

can be detected by our approach as follows.

First, we observe that quota-based routing (with the total

quota determined at the source) can be emulated by single-

copy routing if different replicas of the same packet appear

different to intermediate nodes and each replica is forwarded in

a similar way as single-copy routing. A node can split multiple

replicas of a packet to another node, but it can only send each

replica out once. For instance, if a node has forwarded Replica

1 to one relay, it must remove Replica 1 from its local buffer,

and it cannot forward this replica again to another relay.

To differentiate replicas, the source assigns a unique index to

each replica as a header field, and signs the replica to prevent

intermediate nodes from modifying the index. The index value

should be in range [1, L′], and replicas with invalid index will

be discarded. In this way, a node’s local quota for a packet is

represented by the number of replicas (with different indices)

that it buffers. Note that an intermediate node cannot increase

its quota by forging replicas since it does not have the source

node’s key to generate a valid signature.

To prevent a node from abusing its quota, we need to ensure

that the node only forwards each replica once. T-claim can

be used to achieve this goal. Particularly, when a node splits

multiple replicas of a packet to another node, it generates a

T-claim for each replica. The inconsistency check (see Section

IV.E) can be applied here to detect the attackers that transmit

the same replica more than once.

V. META DATA EXCHANGE

When two nodes contact they exchange their collected P-

claims and T-claims to detect flood attacks. If all claims are

exchanged, the communication cost will be too high. Thus, our

scheme uses sampling techniques to keep the communication

cost low. To increase the probability of attack detection, one

node also stores a small portion of claims exchanged from its

contacted node, and exchanges them to its own future contacts.

This is called redirection.

A. Sampling

Since P-claims and T-claims are sampled together (i.e.,

when a P-claim is sampled the T-claim of the same packet
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is also sampled), in the following we only consider P-claims.

A node may receive a number of packets (each with a P-

claim) in a contact. It randomly samples Z (a system param-

eter) of the received P-claims, and exchanges the sampled P-

claims to the next K (a system parameter) different nodes it

will contact, excluding the sources of the P-claims and the

previous hop from which these P-claims are received.

However, a vulnerability to tailgating attack should be

addressed. In tailgating attack, one or more attackers tailgate

a good node to create a large number (say, d) of frequent

contacts with this node, and send Z packets (not necessarily

generated by the attackers) to it in each contact. If this good

node sends the Zd P-claims of these contacts to the next K
good nodes it contacts, much effective bandwidth between

these good nodes will be wasted, especially in a large network

where K is not small.

To address this attack, the node uses an inter-contact

sampling technique to determine which P-claims sampled in

historical contacts should be exchanged in the current contact.

Let SK denote a set of contacts. This set includes the minimum

number of most recent contacts between this node and at least

K other different nodes. Within this set, all the contacts with

the same node are taken as one single contact and a total of

Z P-claims are sampled out of these contacts. This technique

is not vulnerable to the tailgating attack since the number of

claims exchanged in each contact is bounded by a constant.

B. Redirection

There is a stealthy attack to flood attack detection. For

replica flood attacks, the condition of detection is that at

least two nodes carrying inconsistent T-claims can contact.

However, suppose the attacker knows that two nodes A and

B never contact. Then, it can send some packets to A, and

invalidly replicate these packets to B. In this scenario, this

attacker cannot be detected since A and B never contact.

Similarly, the stealthy attack is also harmful for some routing

protocols like Spray-and-Wait [21] in which each packet

is forwarded from the source to a relay and then directly

delivered from the relay to the destination.

To address the stealthy attack, our idea is to add one level

of indirection. A node redirects the Z P-claims and T-claims

sampled in the current contact to one of the next K nodes it

will contact, and this contacted node will exchange (but not

redirect again) these redirected claims in its own subsequent

contacts. Look at the example in Fig. 6. Suppose attacker S
sends mutually inconsistent packets to two nodes A and B

which will never contact. Suppose A and B redirect their

sampled P-claims to node C and D, respectively. Then so

long as C and B or D and A or C and D can contact, the

attack has a chance to be detected. Thus, the successful chance

of stealthy attack is significantly reduced.

C. The Exchange Process

Each node maintains two separate sets of P-claims (T-

claims, resp. in the following) for meta data exchange, a

sampled set which includes the P-claims sampled from the

most recent contacts with K different nodes (i.e., SK in

Section V-A), and a redirected set which includes the P-claims

redirected from those contacts. Both sets include Z P-claims

obtained in each of those contacts.

When two nodes A and B contact, they first select KZ P-

claims from each set with the inter-contact sampling technique

(see Sec. V-A), and then send these P-claims to each other.

When A receives a P-claim, it checks if this P-claim is in-

consistent with any of its collected P-claims using the method

described in Sec IV-E. If the received P-claim is inconsistent

with a locally collected one and the signature of the received

P-claim is valid, A detects that the issuer (or signer) of the

received P-claim is an attacker.

Out of all the P-claims received from B, A randomly selects

Z of the P-claims from the sampled set of B, and stores them

to A’s redirected set. All other P-claims received from B are

discarded after inconsistency check.

D. Meta Data Deletion

A node stores the P-claims and T-claims collected from

received data packets for a certain time denoted by τ and

deletes them afterward. It deletes the claims redirected from

other nodes immediately after it has exchanged them to K
different nodes.

VI. ANALYSIS

This section presents rigorous analysis over the security and

cost of our scheme, and discusses the optimal parameter to

maximize the effectiveness of flood attack detection under a

certain amount of exchanged meta data per contact.

A. Detection Probability

The following analysis assumes uniform and independent

contacts between nodes, i.e., at any time each node’s next con-

tacted node can be any other node with the same probability.

This assumption holds for mobility models such as Random

Waypoint where the contacts between all node pairs can be

modeled as i.i.d. Poisson processes [32]. When analyzing the

detection probability, we assume that each attacker acts alone.

The case of collusion is analyzed separately in Section VI-D.

1) The Basic Attack: First we consider a basic attack (see

Fig. 7(a)) in which an attacker S floods two sets of mutually

inconsistent packets to two good nodes A and B, respectively.

Each flooded packet received by A is inconsistent with one of

the flooded packets received by B. In the contacts with A
and B, S also forwards some normal, not flooded, packets to



S

A

Flo
od
ed
&

no
rm
al
pk
t.

B

Flooded &
normal pkt.

C

DRedirected claims

Redirected claims

(a) Considered basic attack

A

C

B

D

time

detection window

(b) Lower bound scenario

A

C

B

D

time

detection window and its i
th
contact

1 2 K

1 2 K

2 3 K1

i

1 2 K

(c) Upper bound scenario.

Fig. 7. (a) The basic attack considered for detection probability analysis. Attacker S floods packets to A and then to B. (b) The scenario when the lower
bound detection probability can be obtained. (c) The scenario when the upper bound detection probability can be obtained.

TABLE I
VARIABLES USED IN THE ANALYSIS

Si The K nodes that node i (i ∈ {A,B,C,D}) exchanges its
sampled or redirected claims to.

ei A boolean event which means if node i (i ∈ {A,B}) has sampled
at least one flooded packet (ei = TRUE) or not (ei = FALSE)

êAB A boolean event which means if node A and B have sampled at
least one pair of inconsistent packets (êAB = TRUE) or not

Ps The probability that event eA = TRUE (or eB = TRUE, resp.)
Povp The conditional probability that if eA = eB = TRUE then

êAB = TRUE.
Pd The probability that S is detected.

P l
d

The lower-bound of Pd.

Pu
d

The upper-bound of Pd.

N The number of nodes in the network.
M The number of attackers in the network.

r The proportion of good nodes, i.e., r =
N−M

N
.

K The number of nodes that a claim is exchanged to. K ≪ N .
a The number of flooded packets sent to A and B.
n The total number of packets sent to A and B.
y The proportion of flooded packets sent to A and B, i.e., y =

a
n

.

A and B to make the attack harder to detect. Let y denote

the proportion of flooded packets among those sent by S. For

simplicity, we assume y is the same in both contacts. Suppose

A and B redirect the claims sampled in the contact with S to

C and D, respectively.

To consider the worst-case performance, suppose the flood-

ed packets are not forwarded from A and B to other nodes

(which is the case in Spray-and-Wait [21]), i.e., only A and

B have the inconsistent claims. Note that the analysis also

applies to the detection of replica flood attacks.

For convenience, we define node A’s (or B’s) detection

window as from the time it receives the flooded packets to the

time it exchanges the sampled claims to K nodes, and node

C’s (or D’s) detection window as from the time it receives the

redirected claims to the time it exchanges them to K nodes.

The attacker has a chance to be detected if node pairs ⟨A,B⟩,
⟨A,D⟩, ⟨C,B⟩ and ⟨C,D⟩ can contact within their detection

windows. Table I shows the variables used in the analysis.

Lower Bound The lower bound of detection probability

is obtained in the following scenario (see Fig. 7(b)): When B
receives the packets from S, both A and C have finished their

detection window. Due to the effect of sampling, the attacker

can be detected 1) by A if A ∈ SB and eB = TRUE; or 2)

by A if D is a good node, A ∈ SD and eB = TRUE; or

3) by C if C is a good node, C ∈ SB and êAB = TRUE;

or 4) by C if both C and D are good nodes, C ∈ SD and

êAB = TRUE.

Since each of A and B exchanges the sampled claims to K
nodes other than itself, and C (D) exchanges the redirected

claims to K nodes other than A (B), according to the uniform

contact assumption, we have:

Pd =Ps[1− (1−
K

N − 1
) · (1− r

K

N − 2
)·

(1− r
K

N − 1
PsPovp) · (1− r2

K

N − 2
PsPovp)]

(7)

The expected number of flooded packets that A or B can

sample is yZ. Since Z is typically small while a is not

that small (which we believe realistic), Povp is negligible.

Considering that K ≪ N , Pd is approximated as follows:

Pd ≈ Ps[1− (1−
K

N − 1
)(1− r

K

N − 2
)] ≈ Ps

1 + r

N
K

Since random sampling is used, it is trivial to get:

Ps =1−
n− a

n

n− a− 1

n− 1
· · ·

n− a− Z + 1

n− Z + 1

≥ 1− (1− a/n)Z = 1− (1− y)Z

Thus, we have Pd ≥ K 1+r
N

(1− (1− y)Z), and a lower bound

of the detection probability is:

P l
d = K

1 + r

N
(1− (1− y)Z) (8)

Upper Bound The upper bound of detection probability is

obtained in the following scenario (see Fig. 7(c)): D receives

the redirected claims from B not later than the time C receives

the redirected claims from A, and they are the first node that

A and B encounter after the contact with S. Besides the four

cases that we discussed when deriving the lower bound, the

attacker can also be detected 1) by B if B ∈ SA and eA =
TRUE; or 2) by B if C is a good node, B ∈ SC and eA =
TRUE; or 3) by D if D is a good node, D ∈ SA and êAB =
TRUE; or 4) by D if both C and D are good nodes, D ∈ SC

and êAB = TRUE.

Similarly as in the lower bound case, we can obtain that

the detection probability is Pd ≈ 2K 1+r
N

Ps. Since Ps ≤ 1, an

upper bound of the detection probability is:

Pu
d =

2K(1 + r)

N
(9)

2) Stronger Attacks: We use the number of times that a

count value is reused to represent the strength of an attack.

Intuitively, if each count value is used many times, the attacker

floods a lot of packets or replicas. Let X denote the number

of times a count value is reused. We want to derive the

relation between X and the probability that the attacker will

be detected.

The stronger attacks we consider extends the basic attack

(see Sec. VI-A1) as follows. Suppose the attacker has sent a set



of packets to a good node G0, and then it successively sends

the same number of packets (reusing the count values of the

packets sent to G0) to X good nodes G1, ..., GX . All other

parameters in the basic analysis apply here. From a global

point of view, a total of
X(X+1)

2 node pairs have inconsistent

packets, and each pair can detect the attacker independently

as analyzed in Sec. VI-A1. Then the attacker will be detected

by at least one node pair with a probability:

PX
d = 1− (1− Pd)

X(X+1)
2 (10)

We can see that the stronger the attack is, the more likely the

attacker will be detected.

B. Cost Analysis

1) Communication: The communication cost mainly has

two parts. One part is the P-claim and T-claim transmitted with

each packet, and the other part is the partial claims transmitted

during meta data exchange. As to the latter, at most 4ZK P-

claims and 4ZK T-claims are exchanged in each contact, with

one half for sampled and the other half for redirected claims.

2) Computation: As to signature generation, a node gen-

erates one signature for each newly generated packet. It also

generates one signature for all its T-claims as a whole sent

in a contact. As to signature verification, a node verifies the

signature of each received packet. It also verifies one signature

for all the T-claims as a whole received in one contact.

3) Storage: Most P-claims and T-claims are compacted

when the packets are forwarded. The Z sampled P-claims and

T-claims are stored in full until the packets are forwarded or

have been exchanged to K nodes, whichever is later, and then

compacted. For each received packet, less than 20 bytes of

compact claims are stored for time duration τ .

C. Parameter Selection with Fixed Cost of Meta Data Ex-

change

We study the following question: If we fix the commu-

nication cost of meta data exchange (note that little can be

done with the transmission of claims within packets), then how

should we set parameter K and Z to maximize the detection

probability? Note that the communication cost of meta data

exchange is proportional to ZK. As to detection probability,

we consider the lower-bound detection probability for the basic

attack which can be written as Pd = cK(1− (1− y)Z).
Lemma 1: If the communication cost of meta data ex-

change is fixed at ZK = C, then Pd is maximized at K = C
and Z = 1.

Proof: Pd can be rewritten as Pd = cC 1−(1−y)Z

Z
. The

derivative of Pd over Z is:

P ′

d(Z) =
cC

Z2
[(1− y)Z(1− ln (1− y)Z)− 1] (11)

Let u = (1−y)Z (0 < u ≤ 1), then P ′

d(Z) = cC
Z2 (u−u lnu−

1). Let g(u) = u − u lnu − 1. Then g′(u) = − lnu ≥ 0,

which means g(u) monotonically increases. Since g(1) = 0,

g(u) ≤ 0 when 0 < u ≤ 1. Therefore, P ′

d(Z) ≤ 0, which

means Pd monotonically decreases with Z. Thus, to maximize

Pd, Z should be set the minimum value 1.

Remarks In this parameter setting, the lower-bound de-

tection probability can be written as Pd = yK 1+r
N

. Suppose

the attacker launches attacks independently. Then it can be

detected after N
yK(1+r) attacks. If the attacker wants to stay

undetected for a longer time, it should maintain a smaller y,

which means the attack effect is weaker; if it wants to make a

big attack impact, it should maintain a high y, but this means

it will be detected in a shorter time. From another point of

view, since the attacker only uses y proportion its capacity for

flood attack, it is equivalent that the attacker can attack at full

capacity for only N
K(1+r) contacts. Thus, the attacks can be

effectively mitigated.

D. Collusion Analysis

1) Packet Flood Attack: One attacker may send a packet

with a dishonest packet count to its colluder, which will

forward the packet to the network. Certainly, the colluder will

not exchange the dishonest P-claim with its contacted nodes.

However, so long as the colluder forwards this packet to a

good node, this good node has a chance to detect the dishonest

claim as well as the attacker. Thus, the detection probability

is not affected by this type of collusion.

2) Replica Flood Attack: When attackers collude, they can

inject invalid replicas of a packet without being detected, but

the number of flooded replicas is effectively limited in our

scheme. More specifically, in our scheme for a unique packet

all the M colluders as a whole can flood a total of M − 1
invalid replicas without being detected. To the contrast, when

there is no defense, a total of N − M invalid replicas can

be injected by the colluders for each unique packet. Since

the number of colluders is not very large, our scheme can

still effectively mitigate the replica flood attack. This will be

further evaluated in Sec. VII.

VII. PERFORMANCE EVALUATIONS

A. Experiment Setup

To evaluate the performance and cost of our scheme, we

run simulations on a synthetic trace generated by the Random

Waypoint (RWP) [32] mobility model and on the MIT Reality

trace [19] collected from the real world.

In our synthetic trace, 97 nodes move in a 500×500 square

area with the RWP model. The moving speed is randomly

selected from [1, 1.6] to simulate the speed of walking, and

the transmission range of each node is 10 to simulate that of

Bluetooth. Each simulation lasts 5× 105 time units.

The Reality trace has been shown [33], [34] to have social

community structures. 97 smartphones are carried by students

and staff at MIT over 10 months. These phones run Bluetooth

device discovery every five minutes and log about 110 thou-

sand contacts. Each contact includes the two contact parties,

the start time and duration of the contact.

In the simulations, 20% of nodes are deployed as attackers.

They are randomly deployed or selectively deployed to high-

connectivity nodes. The buffer size of each node is 5MB, the

Drop Tail policy is used when buffer overflows. The bandwidth

is 2Mbps. Each node generates packets of 10KB with random

destinations at a uniform rate. Parameter Z = 1.



B. Routing Algorithms and Metrics

We use the following routing protocols in evaluations:

• Forward A single-copy routing protocol where a packet

is forwarded to a relay if the relay has more frequent

contacts with the destination.

• SimBet [8] A single-copy routing protocol where a pack-

et is forwarded to a relay if the relay has a higher simbet

metric, which is calculated from two social measures

(similarity and betweenness).

• Spray-and-Wait [21] A multi-copy protocol, where the

source replicates a packet to L′ = 3 relays and each

relay directly delivers its copy to the destination when

they contact.

• Spray-and-Focus [21] It is similar to Spray-and-Wait,

but each packet copy is individually routed to the desti-

nation with Forward.

• Propagation A packet is replicated to a relay if the relay

has more frequent contacts with the destination.

We use the following performance evaluation metrics:

• Detection rate The proportion of attackers that are

detected out of all the attackers.
• Detection delay From the time the first invalid packet

is sent to the time the attacker is detected.
• Computation cost The average number of signature

generations and verifications per contact.

• Communication cost The number of P-claim/T-claim

pairs transmitted into the air, normalized by the number

of packets transmitted.
• Storage cost The time-averaged kilobytes stored for P-

claims and T-claims per node.

C. Analysis Verification

We use the synthetic trace to verify our analysis results

given in Section VI, since in this trace the contacts between

node pairs are i.i.d. [32] which conforms to our assumption for

the analysis. We divide the trace into 10 segments, each with

5×104 time units, and run simulations on each of the 3rd−7th

segments 3 times with different random seeds. Each data point

is averaged over the individual runs. Spray-and-Wait is used

as the routing protocol to consider the worst case of packet

flood detection (see Sec. VI-A1). Here we only verify the

detection probability for the basic attack, since the detection

probability for the strong attack can be derived from it in a

straightforward way. In this group of simulations, each attacker

launches the basic attack once. It sends out two sets of packets

to two good nodes with 10 packets in each set (i.e., n = 10),

and these two sets contain mutually inconsistent packets. We

first fix parameter y = 1.0 (see Table I) but change parameter

K from 0 to 10, and then we fix parameter K = 10 but

change y from 0 to 1.0. The results are shown in Fig. 8(a) and

8(b), respectively. It can be seen that the simulation results are

between the analytical lower bound and upper bound, which

verifies the correctness of our analysis.

D. Detection Rate

The Reality trace is used. We divide the trace into segments

of one month, and run simulations on each of the 3rd − 7th
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Fig. 8. Verification of analysis results on the synthetic trace. Spray-and-Wait
is used as the routing protocol. Each attacker launches the basic attack once.

segments 3 times with different random seeds. Each data point

is averaged over the individual runs. By default, each attacker

launches the basic attack once, and it floods one packet out

(i.e., n = 1, y = 1.0). By default, attackers are selectively

deployed to high-connectivity nodes.

Fig. 9(a) shows the effect of parameter K in different

routing protocols. Generally speaking, when K increases, the

detection rate also increases because the inconsistent packets

are exchanged to more nodes and have more chances to be

detected. When K = 0, no attacker is detected in Spray-and-

Wait, since no meta data is exchanged for detection. However,

attackers can still be detected in the other three algorithms,

because the inconsistent packets are forwarded to multiple

nodes and the node that receives two inconsistent packets

can detect the attacker. Among these protocols, Propagation

achieves the highest detection rate since it replicates incon-

sistent packets the most number of times. Between the two

single-copy routing protocols, SimBet has a higher detection

rate than Forward. This is because SimBet tends to forward

packets to the more socially connected nodes and thus these

nodes are more likely to collect inconsistent packets.

Fig. 9(b) shows the results when each attacker launches the

basic attack independently for a varying number of times. As

the attackers launch more attacks, the detection rate quickly

increases for obvious reasons.

Fig. 9(c) shows the effect of the number of packets that

an attacker floods in each contact (i.e., parameter n). As an

attacker floods more packets in each contact, the detection

rate decreases in Spray-and-Wait and SimBet, increases in

Forward and does not change much in Spray-and-focus and

Propagation. The opposite trends are due to two factors that

affect the detection rate reversely. On the one hand, sampling

decreases detection rate. To explain this more clearly, let us

look at the basic attack scenario in Fig. 7(a) for Spray-and-

Wait. Since Z = 1, A (B, resp.) only samples one packet out

of all the packets received from the attacker and redirects it

to C (D, resp.). When n = 1, C and D will receive mutually

inconsistent claims, which means in Equation 7 Povp = 1.0.

However, when n is larger than 1, C and D may not receive a

pair of inconsistent claims due to the independent sampling by

A and B. As n increases, Povp decreases and thus the detection

rate also decreases. On the other hand, for the routing protocols

where each packet is forwarded in multiple hops, when an

attacker sends more attack packets in each contact, it is more

likely that one pair of inconsistent packets are forwarded to

the same intermediate node and lead to detection.
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Fig. 9. The detection rate under different conditions. In (d), Forward is used as the routing protocol.
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Fig. 10. The detection delay compared with the routing delay of Propagation.

Fig. 9(d) shows the effect of attacker deployment. The

detection rate is lower when attackers are selectively deployed

to high-connectivity nodes. This is because when attackers are

selectively deployed they have more contacts with good nodes.

The probability that a good node exchanges its sampled claims

to attackers rather than to other good nodes is higher, but

attackers do not run detection against each other.

E. Detection delay

Fig. 10 shows the CDF of detection delay when Propagation

is used as the routing protocol on the Reality trace. For

comparison, the CDF of routing delay (i.e., from the time a

packet is generated to the time it is delivered) is also plotted.

Here, no lifetime is set for packets. It can be seen that 90% of

the attacks can be detected by our scheme within 10 days. On

the contrary, within 10 days only 60% of data packets can be

delivered by the routing protocol. Hence, the detection delay

of our scheme is much lower than the routing delay.

F. Flooded Replicas under Collusion

As mentioned in Sec. VI-D2, colluders can flood a small

number of replicas without being detected. To evaluate their

effect, we run simulations on the Reality trace when all attack-

ers collude. The simulation settings are the same as in Section

II-B. We compare our scheme with the case of no defense. As

shown in Fig. 11, even when 20% of nodes are attackers and

collude, our scheme can still limit the percentage of wasted

transmissions to 14% in single-copy routing (SimBet) and 6%

in multi-copy routing (Spray-and-Focus), which is only 1/7-

1/5 of the wasted transmissions when there is no defense.

G. Cost

To evaluate the cost of our scheme in a steady state (i.e.,

all attackers have been detected), no attackers are deployed in
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Fig. 11. The effect of undetected replicas on wasted transmissions when
attackers collude to launch replica flood attacks.

this group of simulations. The Reality trace is used. Packets

are generated between the 61st and 120th day of the trace, and

statistics are collected from the 91th day. By default, each node

generates 2 packets per day, parameter τ (i.e., the time a claim

is stored) is 30 days and K is 10. In a contact, a node may

receive some packets but then immediately drop them due to

buffer overflow. In such cases, the transmission of the claims

attached to these packets is counted into the communication

overhead, and the signature generations for these claims are

counted into the computation overhead. Since the receiver does

not buffer these packets, it does not store these claims or verify

their signatures.

We first evaluate the computation cost of our scheme, and

Fig. 12 shows the results. When Forward is used as the

routing protocol (see Fig. 12(a)), as the packet generation

rate increases, the computation cost also increases since more

packets need to be signed and verified. But the cost is still low,

less than 20 signature generations and verifications, when each

node generates 10 packets per day. Also, it can be seen that

there are less signature generations than verifications. This is

because in each contact our scheme only signs P-claims for the

newly generated packets (which constitute a very small portion

of the packets transmitted), and it generates only one signature

in total for the T-claims of all forwarded packets due to the use

of authentication tree. When Propagation is used as the routing

protocol (see Fig. 12(b)), similar trends hold. When the packet

generation rates crosses 1, the signature verification cost turns

to decrease. This is because when the traffic load is high many

received packets are dropped due to buffer overflow.

Then we evaluate the communication cost. The communi-

cation overhead mainly comes from two sources, the transmis-

sion of claims attached to data packets, and the transmission

of claims in meta data exchange. The total communication

cost and the two components are shown in Fig. 13. When K
increases from 2 to 10 (see Fig. 13(a)), the cost caused by meta
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Fig. 12. The computation cost of our scheme.
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Fig. 13. The communication cost of our scheme.

data exchange increases linearly since each sampled claim is

transmitted more times. The cost caused by the transmission of

claims attached to packets is always 1 due to the normalization.

In total, less than 2 pairs of P-claim/T-claim are transmitted per

transmission of data packet. When the packet generation rate

increases (see Fig. 13(b)), the total normalized communication

cost decreases, because more data packets are transmitted

in each contact but the number of claims transmitted for

meta data exchange in each contact does not change with the

traffic load. When the packet generation rate is larger than 1,

the communication cost is smaller than 3. When the packet

generation rate is 0.5, the communication cost is higher (i.e.,

10). However, at this point the number of packet transmissions

is very small, and hence the communication overhead is not

an issue. Moreover, since the claims are small in size, they can

be attached to and transmitted with data packets and will not

incur extra transmissions. Thus, the communication overhead

is low.

Finally, we evaluate the storage cost of our scheme against

two factors, the time a claim is stored (parameter τ ) and the

packet generation rate. The results are shown in Table II.

We can see that the storage space used for claims is low,

only less than 150 kilobytes per node. This is due to the

compact structures we use to store P-claims and T-claims.

We noticed that the storage cost does not increase after the

packet generation rate reaches 2 packets per node per day,

because when the traffic load is high many received packets

are dropped due to buffer overflow.

VIII. RELATED WORK

Our scheme bears some similarity with previous approaches

(e.g., [35]) that detect node clone attacks in sensor networks.

Both rely on the identification of some kind of inconsistency

to detect the attacker. However, their approaches assumes

consistent connectivity between nodes which is unavailable in

DTNs. Also, they do not handle the long delays of detection.

TABLE II
THE STORAGE (KB) USED FOR CLAIMS AND DATA PACKETS

τ (days) 10 20 30 40 50 -

Claims 67 101 125 139 145 -
Packets 3330 3301 3321 3336 3316 -

Pkt. Generation Rate 0.1 0.5 1 2 5 10
(pkt/node/day)

Claims 65 93 113 125 124 114
Packets 334 1572 2596 3321 3716 3808

A few recent works [12], [27], [14], [13], [15] also address

security issues in DTNs. Li et al. [12] studied the blackhole

attack in which malicious nodes forge routing metrics to attract

packets and drop all received packets. Their approach uses

a primitive called encounter ticket to prove the existence

of contacts and prevent the forgery of routing metrics, but

encounter ticket cannot be used to address flood attacks. Li

and Cao [15] also proposed a distributed scheme to mitigate

packet drop attacks, which works no matter if the attackers

forge routing metrics or not. Ren et al. [13] studied wormhole

attacks in DTNs. Chen and Choon [27] proposed a credit-

based approach and Shevade et al. proposed a gaming-based

approach [14] to provide incentives for packet forwarding.

Privacy issues have also be addressed [36], [37]. However,

these work do not address flood attacks. Other works (e.g.,

Sprite [38]) deter abuse by correlating the amount of network

resources that a node can use with the node’s contributions to

the network in terms of forwarding. This approach has been

proposed for mobile ad hoc networks, but it is still not clear

how the approach can be applied to DTNs, where nodes are

disconnected most of the time. Zhu et al. [16] proposed a

batch authentication protocol which verifies multiple packet

signatures in an aggregated way. Their work is complementary

to ours, and their protocol can be used in our scheme to further

reduce the cost of authentication.

Parallel to our work, Natarajan et al. [39] also proposed a

scheme to detect resource misuse in DTNs. In their scheme,

the gateway of a DTN monitors the activities of nodes and

detects an attack if there is deviation from expected behavior.

Different from their work, our scheme works in a totally

distributed manner and requires no special gateway.

IX. CONCLUSIONS

In this paper, we employed rate limiting to mitigate flood

attacks in DTNs, and proposed a scheme which exploits claim-

carry-and-check to probabilistically detect the violation of

rate limit in DTN environments. Our scheme uses efficient

constructions to keep the computation, communication and

storage cost low. Also, we analyzed the lower bound and

upper bound of detection probability. Extensive trace-driven

simulations showed that our scheme is effective to detect flood

attacks and it achieves such effectiveness in an efficient way.

Our scheme works in a distributed manner, not relying on any

online central authority or infrastructure, which well fits the

environment of DTNs. Besides, it can tolerate a small number

of attackers to collude.
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