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 2 

ABSTRACT 28 

Chromatin immunoprecipitation (IP) followed by sequencing (ChIP-seq) is the gold standard to 29 

detect genome-wide DNA-protein binding. The binding sites of transcription factors facilitate many 30 

biological studies. Of emerging concern is the abundance of spurious sites in ChIP-seq, which are mainly 31 

caused by uneven genomic sonication and nonspecific interactions between chromatin and antibody. A 32 

“mock” IP is designed to correct for both factors, whereas a DNA input control corrects only for uneven 33 

sonication. However, a mock IP is more susceptible to technical noise than a DNA input, and empirically, 34 

these two controls perform similarly for ChIP-seq. Therefore, DNA input is currently being used almost 35 

exclusively. With a large dataset, we demonstrate that using a DNA input control results in a definable set 36 

of spurious sites, and their abundance is tightly associated with the intrinsic properties of the ChIP-seq 37 

sample. For example, compared to human cell lines, samples such as human tissues and whole worm and 38 

fly have more accessible genomes, and thus have more spurious sites. The large and varying abundance of 39 

spurious sites may impede comparative studies across multiple samples. In contrast, using a mock IP as 40 

control substantially removes these spurious sites, resulting in high-quality binding sites and facilitating 41 

their comparability across samples. Although outperformed by mock IP, DNA input is still informative 42 

and has unique advantages. Therefore, we have developed a method to use both controls in combination 43 

to further improve binding site detection. 44 

 45 

 46 

 47 

 48 

 49 

 50 

 51 

 52 

 53 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 18, 2019. ; https://doi.org/10.1101/2019.12.17.880013doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.17.880013


 3 

INTRODUCTION 54 

ChIP-seq was developed to profile in vivo protein-DNA binding and histone modifications on a 55 

genomic scale (Barski et al. 2007; Johnson et al. 2007; Mikkelsen et al. 2007; Robertson et al. 2007). 56 

Compared to its predecessors, ChIP-seq has less noise and higher resolution (Schones and Zhao 2008; Ho 57 

et al. 2011), and thus is currently the standard technique to identify the binding sites of a transcription 58 

factor in the genome. ChIP-seq protocols typically begin with cross-linking DNA and its adjacent proteins 59 

using formaldehyde, followed by shearing DNA into small fragments by sonication. Next in the IP step, 60 

an antibody that binds specifically to the transcription factor (TF) of interest is used to enrich the TF-61 

DNA complexes. Finally, the precipitated DNA fragments are sequenced and mapped back to a reference 62 

genome for binding site detection. The genomic regions with significantly more reads than controls are 63 

likely to be TF binding sites. 64 

As with many high-throughput techniques, ChIP-seq is also susceptible to technical and 65 

biological biases (Park 2009; Kidder et al. 2011). In ChIP-seq, one bias arises during genome sonication, 66 

in which open chromatin regions are more easily sheared than other regions, and thus these open regions 67 

yield more protein-DNA complexes. Consequently, the IP step immunoprecipitates more complexes from 68 

the open chromatin regions, resulting in more sequencing reads. To correct this sonication bias, the 69 

fragmented genomes are divided into two portions. One portion goes through the IP step and then the 70 

sequencing step, whereas the other portion is sequenced directly to serve as input control. This direct 71 

sequencing result contains the shearing bias of sonication, and thus can be used to normalize the 72 

sequencing results from the IP protocol (Kharchenko et al. 2008). 73 

In addition to sonication, uneven regulatory binding in the genome may result in bias during the 74 

IP step. For example, even without sonication bias, genomic regions with abundant DNA binding proteins 75 

tend to have more protein-DNA complexes. Although the antibody in IP binds specifically to its antigens, 76 

i.e. the target TFs, it can also bind nonspecifically to other proteins. Consequently, the antibody captures 77 

more protein-DNA complexes from genomic regions with abundant regulatory proteins. To control for 78 

this bias, a mock IP can be generated using the IP protocol, with the mock IP lacking specific antibody-79 
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antigen interactions. To this end, the mock IP either uses an antibody that cannot recognize the TF of 80 

interest, e.g., IgG, or the TF is not tagged with the epitope for the antibody used in the IP, e.g., GFP. 81 

Consequently, the mock IP control mimics only the nonspecific interactions in the IP. In addition to the 82 

nonspecific interactions, note that the mock IP also controls for sonication bias (Park 2009; Kidder et al. 83 

2011; Landt et al. 2012). However, mock IP usually yields much less DNA material than DNA input and 84 

is thus more susceptible to technical noise (Kidder et al. 2011; Landt et al. 2012). Therefore, DNA input 85 

is recommended and used primarily in ChIP-seq (Park 2009; Meyer and Liu 2014). For example, in the 86 

ENCODE portal (Davis et al. 2018), almost all of the thousands of ChIP-seq data sets use DNA input as a 87 

control.  88 

Increasing evidence suggests that spurious sites in ChIP-seq data may be substantial. Teytelman 89 

et al. and Park et al. find that TFs often appear to bind genomic regions that are counterintuitive to their 90 

function (Park et al. 2013; Teytelman et al. 2013). For example, TUP1 is recognized as a repressor of 91 

gene expression, but ChIP-seq still identifies its binding sites in the promoters of expressed genes (Park et 92 

al. 2013). Moreover, Jain et al., observed that when ChIP-seq was performed in a knockout background 93 

for a targeted TF, ~3,000 binding sites from the mutant fly embryos were still detected (Jain et al. 2015). 94 

The unexpected sites from these studies suggest the existence of abundant spurious sites. These 95 

potentially spurious sites tend to appear in highly transcribed genomic regions (Teytelman et al. 2013; 96 

Jain et al. 2015). Since DNA input controls are used in these examples, the potentially spurious sites are 97 

likely due to nonspecific interactions between the antibodies and other DNA-binding proteins or DNA 98 

fragments.  99 

While these studies suggest the existence of spurious sites, interpretations of these results remain 100 

indefinite for two reasons. First, TF functionality is an ambiguous indicator of TF binding. Again, 101 

considering the TUP1 example - although generally considered as a repressor, TUP1 is also observed to 102 

activate genes (Zhang and Guarente 1994; Conlan et al. 1999). On the other hand, TF binding may not 103 

necessarily indicate biological function. Therefore, even though TUP1 usually acts as a repressor, when 104 

found in the promoters of transcribed genes, it may not be exerting any repressive functions. As a result, 105 
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the binding of TUP1 detected around expressed genes may not be spurious. Secondly, the spurious 106 

binding sites in the aforementioned results were not predicted using the current standards and robust 107 

computational pipelines (Landt et al. 2012), and thus the numbers of spurious sites were sensitive to 108 

parameter settings.  109 

Determining the abundance of spurious sites in ChIP-seq data is extremely important as the data 110 

are being widely used in numerous biological and medical studies. To this end, we generated and 111 

collected a large number of ChIP-seq datasets that have both mock IP and DNA input controls. We 112 

designed computational experiments that use these controls to estimate the abundance of spurious sites 113 

across different samples. Moreover, we proposed and validated that many spurious binding sites are 114 

potentially due to the intrinsic properties of samples. Such potential spurious sites can be removed using 115 

mock IP controls, but not using DNA input controls. Despite this result, our analyses indicate that DNA 116 

input controls are still informative for ChIP-seq. Therefore, we developed a novel method to utilize both 117 

mock IP and DNA input controls for improved binding site detection. This new tool can be used to tease 118 

apart biological binding sites from spurious ones to capture more accurate binding profiles of TFs. 119 

 120 

RESULTS 121 

ChIP-seq with multiple controls to illustrate the formation of spurious sites 122 

Experimental setting of ChIP-seq data in use 123 

Human ChIP-seq data were acquired from the ENCODE portal (Consortium 2012; Davis et al. 124 

2018). The data were generated from six different cell line samples. Each sample has comparable DNA 125 

input (d) and mock IP (m) as controls for the IP experiments (i), as shown in figure 1A. In the IP 126 

experiment, an antibody specific to the target TF is used, whereas the mock IP uses an IgG antibody that 127 

does not specifically interact with any DNA binding proteins. In contrast, the ChIP-seq data of worm and 128 

fly are generated from whole organisms at the embryo, L4 and young adult stages in worm and the 129 

embryo, L3 larva and prepupae stages in fly. As shown in figure 1A, each of the worm and fly TFs has an 130 

IP experiment (i) and its DNA input control (d) generated by our modERN consortium (Kudron et al. 131 
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2018). In addition, for each of the stages, we produced a mock IP control (m’) as shown in figure 1B. We 132 

also generated DNA input controls (d’) corresponding to these mock IP controls (fig. 1B and Methods). 133 

 134 

 135 

Figure 1.  Illustration of the ChIP-seq protocols in use and the generation of spurious sites. The ChIP-seq 

protocol (A) can consist of IP, DNA input and mock IP experiments. For simplicity, the three open 

chromatin regions are assumed to be equally sensitive to sonication, and thus have three similar peaks of 
reads in the DNA input sequencing result. In IP, the peak of reads at region 1 is mainly due to the 

antibody specifically binding to the antigen (triangle) of the target TF (in red). The peaks at region 2 and 

3 are due to nonspecific interactions between the antibody and regulatory proteins at the regions. In mock 
IP, to avoid the specific antigen-antibody reactions, we use another antibody, e.g. IgG, which does not 

bind specifically to any DNA binding proteins in the sample. Therefore, the resultant three peaks of reads 

are due to nonspecific interactions between the IgG and other DNA binding proteins. In this hypothetical 

example, a peak caller compares the three peaks of reads respectively from the IP and the DNA input, and 
then identifies binding peaks at region 1 and 2. Since there is no target TF binding at region 2, the 

detected binding peak is spurious due to strong nonspecific interactions at region 2. Using the mock IP as 

control, the peak caller identifies only the genuine binding peak at region 1. For worm and fly samples, 
due to the use of a GFP tag (see Methods), we can remove the antigen to avoid the specific reactions (B). 

Therefore, the mock IP for a worm or fly sample uses the same antibody (GFP antibody) as its IP. 

Because there is no antigen present in the sample for mock IP, the peaks of reads observed are also due to 
nonspecific interactions. A DNA input control is also generated for the worm or fly sample. The peak 

caller identifies binding peaks from the mock IP using the DNA input as control. However, due to lack of 

specific interactions, those binding peaks are all spurious. 
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Potential mechanism of spurious site generation due to nonspecific interactions 136 

We propose a potential mechanism on how the nonspecific interactions between an antibody and 137 

regulatory proteins cause spurious sites when only DNA input controls are used. This mechanism is 138 

illustrated using a hypothetical example in Figure 1. For this purpose, we create three open chromatin 139 

regions and let them be equally sensitive to sonication. As a result, these regions have peaks of 140 

sequencing reads with similar heights in the DNA input control (d, fig. 1A). We let region 1 contain 141 

regulatory proteins as well as the target TF of the antibody. Regions 2 and 3 have no target TFs but only 142 

other regulatory proteins (fig. 1A). Therefore, in the IP experiment (i, fig. 1A), the peak of reads at region 143 

1 is mainly due to the specific binding of the antibody to the target TF, whereas the peaks at regions 2 and 144 

3 are purely due to nonspecific binding. Because we let region 2 have many more regulatory proteins than 145 

region 3 (fig1A), more complexes of regulatory proteins and DNA are generated from region 2. 146 

Therefore, even with nonspecific binding to the complexes and same sonication between region 2 and 147 

region 3, the antibody enriches more DNA fragments from region 2 than from region 3 148 

With sufficient regulatory protein binding, the peak of reads at region 2 in the IP (i) can be higher 149 

than its counterpart in the DNA input (d), as we specified in figure 1. We postulate that this event may be 150 

further enhanced by physical and chemical factors at the molecular level. For example, the antibody used 151 

in the IP likely prefers to interact with the regulatory protein-DNA complexes from open chromatin rather 152 

than the histone-DNA complexes from closed chromatin. This preference may be due to the fact that 153 

regulatory proteins more likely resemble the target of the antibody than histones. Moreover, the histone-154 

DNA complexes tend to carry no charge, which may further reduce binding to the antibody. 155 

Consequently, the antibody likely enriches more DNA fragments from open chromatin than from closed 156 

chromatin. This preference renders the peak of reads at region 2 in the IP even higher than that in the 157 

DNA input, taking the respective closed chromatin regions as reference. Due to the higher peak of reads 158 

at region 2 in IP than in DNA input, using the DNA input as a control for the IP results in a spurious 159 

binding peak at region 2. 160 
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This proposed mechanism of generating spurious sites predicts that between genomes, the ones 161 

with more abundant open chromatin and/or more highly expressed genes have a larger number of 162 

spurious binding sites. Moreover, this proposed mechanism also indicates that within a genome, the 163 

spurious sites tend to be associated with highly expressed genes, which recruit many regulatory proteins 164 

for transcription. This prediction is consistent with other recent observations (Park et al. 2013; Teytelman 165 

et al. 2013; Jain et al. 2015). However, spurious sites due to nonspecific interactions are expected to be 166 

removed when mock IP controls are used. As illustrated in figure 1, because the mock IP control (m) 167 

captures the nonspecific binding between the antibody and other regulatory proteins (Landt et al. 2012; 168 

Flensburg et al. 2014), the resultant peak of reads at region 2 in the mock IP is as high as the 169 

corresponding peak in the IP. In figure 1, region 3 has only a few regulatory binding proteins, and thus 170 

using either DNA input or mock IP control results in no spurious binding peak.  171 

Spurious binding sites across various samples 172 

The abundance of spurious sites from nonspecific interactions between antibodies and regulatory 173 

proteins can be estimated by the sites detected from mock IP experiments compared to DNA input as 174 

control because mock IP experiments capture no specific interactions but only nonspecific ones (fig. 1B). 175 

Therefore, we used the standard ENCODE ChIP-seq pipeline to analyze the six pairs of mock IP (m) and 176 

DNA input (d) from the human cell lines, and the six pairs (m’ and d’) from the worm and fly 177 

developmental stages. As a result, we observed that human cell lines on average have 9 spurious sites per 178 

100 million base pairs (Mb) in genome, whereas this number increases to 551 and 3,931, respectively, for 179 

worm and fly samples. According to the mechanism we proposed, these numbers of spurious sites are 180 

expected to be correlated with the transcriptome activity and the genome accessibility of the samples.  181 

In order to measure transcriptome activity, we used the RNA-seq data from the ENCODE portal 182 

(Davis et al. 2018) and our published data (Gerstein et al. 2014). However, the RPKMs from RNA-seq 183 

indicate the relative transcription levels of the genes within a sample, rendering across-sample 184 

comparisons impossible. For example, a cell type with all genes highly expressed has the same RPKMs as 185 

another cell type with all genes lowly expressed. To this end, we assume that the most highly transcribed 186 
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genes of different eukaryote cell types have similar transcription activities, which are the limit of the 187 

transcription machinery. In a sample containing multiple cell types, the genes with the highest RPKMs 188 

are very likely the most transcribed genes in the majority cells. Taken together, we normalized the 189 

RPKMs of coding genes in each sample so that the five most highly expressed genes from the different 190 

samples had the same average, and then used the median of the normalized coding gene expression to 191 

indicate the transcriptome activity of the sample.  192 

Note that for a sample with multiple cell types, the high median after normalization may be also 193 

because the many cell types express quite different genes from each other in the genome, indicating that 194 

on average a large fraction of the genome in the sample are actively transcribed. We also expect many 195 

spurious sites from such genomes. As a result, we used the medians of the normalized transcriptomes to 196 

roughly suggest their activities. These activities of the different samples are indeed highly correlated with 197 

the numbers of spurious sites per 100 Mb identified from the samples (Spearman’s ρ = 0.89, P < 9.2e-5). 198 

With linear regression, the transcriptome activity accounts for a large fraction of the variance in spurious 199 

site abundance (r2 = 0.92, P < 6.5e-7; fig. 2A). These results suggest that the large number of spurious 200 

sites seen in fly are due at least in part to its high transcriptome activity compared to worm and human 201 

cell lines.  202 

In addition, we tested the correlation between genome accessibility and spurious site abundance. 203 

The genome accessibilities of the six human cell lines were calculated from the DNase-seq data generated 204 

by the ENCODE consortium and processed uniformly by the ENCODE pipeline (Davis et al. 2018). The 205 

genome accessibility also explains a substantial fraction of the variance in spurious site abundance (r2 = 206 

0.79, P = 0.01; fig. 2B). As expected, given their high growth rates, the five cancer cell lines have higher 207 

genome accessibilities than GM12878 cell line, and thus have more spurious binding sites (fig. 2B). For 208 

worm samples, Daugherty et al. generated ATAC-seq data and determined accessible regions from the 209 

data (Daugherty et al. 2017). The linear regression of these data again confirms the strong influence of 210 

genome accessibility on spurious site abundance as predicted (r2 = 0.99, P = 0.007; fig. 2C). Note that we 211 

paired the genome accessibility of L3 with the spurious site abundance of L4, due to lack of ATAC-seq 212 
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data at the L4 stage. This mismatch renders the observed strong correlation between genome accessibility 213 

and spurious site abundance more conservative. 214 

 215 

 216 

Our proposed mechanism of spurious site generation predicts that highly expressed genes tend to 217 

enrich more spurious sites than lowly expressed genes. To test this, we first classified coding genes as 218 

expressed and unexpressed (< 1 RPKM). The expressed genes were further split evenly into highly and 219 
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Figure 2. Associations between spurious site abundance and genome activities. The number of spurious 

sites per 100 million base pairs (Mb) in genome is linearly regressed with the transcriptome activity. For 

display purposes, the number of spurious sites is transformed into log space (A). The number of spurious 

binding sites is linearly regressed with genomic accessibility respectively for human samples (B) and 

worm samples (C). The number of spurious sites per 1 Mb is respectively calculated for promoter regions 

of highly expressed, lowly expressed and unexpressed genes in K562, worm embryo and fly embryo (D). 
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lowly expressed genes. Gene-associated genomic regions were defined as 2kb regions both upstream and 220 

downstream of the transcription starting site(s). Within each of the three groups, overlapping associated 221 

regions were merged to avoid redundancy. Genomic regions that fell into multiple groups were 222 

reclassified into the highest expression group. For each of the three expression groups, the number of 223 

spurious sites whose summits lay within its genomic region was normalized by the total length of the 224 

region. For all the samples, we consistently observed that the promoter regions of highly expressed genes 225 

expression enriched with more spurious sites than other promoter regions (fig. 2D & S1). The GM12878, 226 

HepG2 and HeLa-S3 samples are excluded from this analysis due to insufficient spurious sites. 227 

The human mock IP controls utilized IgG antibodies, while the fly and worm mock IP controls 228 

used the same GFP antibody. If the IgG antibody had a much higher specificity, i.e. less nonspecific 229 

interactions, than the GFP antibody, this higher specificity would result in the observed fewer spurious 230 

sites in the human cell lines than in the worm and fly samples. Although this difference in specificity is 231 

unlikely because both antibodies have been subject to quality control, we still tested this possibility by 232 

generating a mock IP in fly embryos using the IgG antibody. As expected, using IgG antibody leads to 233 

6,059 spurious sites, which is similar to the 6,110 sites using the GFP antibody. This result supports that 234 

the difference in spurious site generation among human cell lines, worm and fly is not due to antibody 235 

specificity. In addition, the worm and fly samples used very similar ChIP-seq protocols and used the same 236 

library and sequencing protocols. Taken together, these results support that the observed differences in 237 

spurious site abundance across the species are due to the biological properties of the samples.  238 

Removing spurious binding sites from ChIP-seq using mock IP 239 

Many spurious sites presumably due to the nonspecific interactions have been identified from 240 

mock IP using DNA input as control and these spurious sites may persist in IP experiments when DNA 241 

input controls are used. However, using mock IP as control may remove the spurious sites that persist in 242 

the IP (fig. 1A). To test this, we used the IPs of 113 ChIP-seq datasets across six human cell lines and 499 243 

ChIP-seq datasets from the three stages each in worm and fly. These ChIP-seq data have matched mock 244 

IP and DNA input controls. Consistent with our prediction, using mock IP controls for binding site 245 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 18, 2019. ; https://doi.org/10.1101/2019.12.17.880013doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.17.880013


 12 

prediction results in fewer binding sites than using DNA input controls (fig. 3A). The reduction is 246 

marginal for human cell lines, but is substantial for worm and fly samples. As expected, this reduction is 247 

highly correlated with the ratio between the numbers of the spurious sites detected from mock IP and the 248 

total sites detected from IP, respectively using DNA input as control (fig. S2A). Expectedly, compared to 249 

the sites detected using the mock IP control, the sites obtained with the DNA input control are indeed 250 

more similar to the spurious sites (fig. S2B). Taken together, these results support the proposition that 251 

many spurious sites persist in IP experiments when DNA input controls are used, and mock IP controls 252 

remove a large number of such spurious sites. 253 
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Figure 3. Reducing spurious sites from IP experiments using mock IP as controls. Compared to DNA 

input controls, the mock IP controls lead to fewer binding sites detected from IP experiments (A). And 

the binding peaks using mock IP controls also have higher motif enrichments in the fly samples (B), 

worm samples (C) and human cell lines (D). This higher enrichment is robust to different peak calling 

methods, e.g. SPP and our probability score. TF binding motifs of fly, human and worm have different 

entropies, depending on binding promiscuity and/or techincal ambiguity in determining the motifs (E).   
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Motif enrichment in binding sites predicted using mock IP 257 

Compared to using DNA input control, the mock IP control removes many potentially spurious 258 

sites. Therefore, the binding peaks detected using mock IP as control are expected to have higher motif 259 

enrichments than those using DNA input. To test this prediction, we examined 191 TFs in human, worm 260 

and fly with known binding motifs discovered by in vitro experiments such as protein-binding microarray   261 

(PBM) (Weirauch et al. 2014). As predicted, mock IP control substantially outperforms DNA input 262 

control in motif enrichment for fly and worm binding peaks (fig. 3B&C). The improvements are 37% and 263 

18%, respectively, in the top 50 peaks ranked by the SPP signal (Kharchenko et al. 2008). As for human 264 

cell lines, the spurious site abundances are quite low, and thus the improvement in motif enrichment using 265 

mock IP as control is also small (P = 0.01; fig. 3D). To examine any GC-content effect, we shuffled the 266 

nucleotides of the predicted binding peaks to scramble motifs, but maintained the GC content of the 267 

motifs. We observed no difference in motif enrichment between using mock IP and DNA input controls 268 

(fig. 3B, C&D). This indicates that the observed improvements are not due to GC content differences 269 

between the sets of binding peaks in comparison. 270 

Even using the mock IP control to normalize the IP samples, the predicted binding peaks of worm 271 

and fly TFs still have lower motif enrichments than those of human TFs (fig. 3B, C&D). However, we 272 

postulate that this comparison between TFs of different species is not informative for two reasons. First, 273 

the human, fly and worm motifs are generated using different techniques such as bacterial one-hybrid 274 

(B1H), systematic evolution of ligand by exponential enrichment (SELEX) and PBM (Tuerk and Gold 275 

1990; Bulyk et al. 1999; Mukherjee et al. 2004; Meng et al. 2005). These high-throughput experiments 276 

may have quite different accuracies. Obviously, low accuracy diminishes the actual motif enrichment in 277 

binding peaks. Second, it may be that some TFs are more permissive than others and bind to a large 278 

number of various DNA sequences. As a result, for permissive TFs, even spurious sites tend to have 279 

binding motifs enriched, rendering the motif enrichment comparison between TFs not informative. Note 280 

that the existence of a motif does not necessarily indicate a TF binding event, which usually requires 281 

favorable chromatin states.  282 
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Both low motif accuracy and high TF promiscuity increase motif entropies, but the former 283 

artificially reduces motif enrichments in binding peaks, whereas the latter may artificially increase motif 284 

enrichments. We calculated the entropies of the motifs in worm, fly and human (fig. 3E; see Methods). A 285 

high entropy indicates that the DNA sequences of a motif are very diverse. Compared to fly motifs, the 286 

human ones have higher entropies (fig. 3E), and their enrichments are higher even in the peaks with low 287 

SPP binding signals, which are more likely to be spurious peaks (fig. 3D). Therefore, these results 288 

together suggest that the high entropies of human motifs may be in part due to TF promiscuity. This high 289 

promiscuity in human can be attributed to the lower constraint imposed by the smaller effective 290 

population size of human (~104) (Rogers and Harpending 1992; Takahata 1993; Sherry et al. 1994; Erlich 291 

et al. 1996; Tenesa et al. 2007), compared to that of fly (~106) (Hawks et al. 2000). As for worm, its 292 

effective population size (~104) is comparable to that of human (Sivasundar and Hey 2003; Barriere and 293 

Felix 2005). However, compared to the human motifs, the worm motifs have much higher entropies (fig. 294 

3E), but lower enrichments in the peaks with low SPP binding signals (fig. 3C&D). These results suggest 295 

that the extremely high entropy of worm is likely due to low motif accuracy. Taken together, TF 296 

promiscuity and motif accuracy may contribute to the different motif enrichments of the binding peaks 297 

among human, worm and fly. 298 

Predicting potential spurious site abundance in human tissues 299 

We observed that spurious site abundance increases with sample complexity, i.e. from 300 

homogeneous human cell lines to worm and fly whole organisms. This increase is presumably because in 301 

each cell type, only certain genomic regions are open chromatin; however, aggregating multiple cell types 302 

creates more open chromatin, and thus more spurious sites. Consistent with this supposition, the human 303 

tissue/organ samples in the ENCODE portal have substantially more accessible chromatin than human 304 

cell lines/primary cells (fig. 4A). Unfortunately, there is a lack of comparable DNA input and mock IP 305 

controls for human tissues in the ENCODE portal, rendering direct estimation of spurious site abundance 306 

impossible.  Instead, we used genome accessibilities of human tissues/organs to estimate their spurious 307 

site numbers. Extrapolating from the regression (fig. 2B), the median of spurious sites in human tissues 308 
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and organs is 9,819, which is about 10-fold larger than the 849 predicted for all the available human cell 309 

lines and primary cells (fig. 4B). These rough estimations for human organs are especially important 310 

because ChIP-seq data on organs are widely used for studies of human diseases. 311 

 312 

The high spurious site abundance predicted in tissues/organs indicates low motif enrichment. As 313 

we discussed above, the motifs of different TFs are likely incomparable. Therefore, we focused on seven 314 

human TFs, i.e. RXRA, EGR1, SP1, MAX, GABPA, YY1 and HNF4A in the ENCODE portal. Each of 315 

the TFs has ChIP-seq data generated in both a human cell line/primary cell and a human tissue/organ. 316 

These TFs also have binding motifs determined by in vitro experiments in the Cis-bp database. With 317 

DNA input as control, the binding sites of these TFs in tissues indeed enrich fewer motifs than those in 318 

Figure 4. Inferring spurious site abundance in human tissues and organs. The human tissues and organs 

have much higher genome accessibilities than the human cell lines and primary cells (A). From the 

regression between genome accessibility and the number of spurious sites, the spurious site abudances 

are predicted from genome accessibilities for cell lines, primary cells, tissues and organs (B). Note that 

the number of spurious sites is defined as the sites detected from mock IP using DNA input as control. 

With more spurious sites in tissues and organs, their binding peaks detected from IP experiments using 

DNA input controls enrich less motifs than those of cell lines and primary cells (C). 
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the cell lines (fig. 4C). This reduction is 17% for the top 50 binding peaks ranked by SPP binding signal. 319 

These results confirm the higher spurious site abundance in tissues/organs we predicted. Note that we 320 

used only genome accessibility for spurious site prediction, because adding transcriptome activity as 321 

another variable does not significantly improve the regression in figure 2B (P = 0.75), probably because 322 

transcriptome activity is merely an indirect measure of regulatory protein binding in the genome, 323 

compared to genome accessibility.  324 

Prevalence of potentially spurious sites in ChIP-seq using DNA input as control 325 

We have detected spurious sites in mock IP experiments with DNA input controls. However, they 326 

do not necessarily all appear as spurious because of the interactions between antibodies and their target 327 

TFs in the IP experiments. Such specific interactions in IP may deplete non-specific interactions that 328 

cause spurious sites. Due to this depletion, the IPs are expected to have less spurious sites than the mock 329 

IP experiments. Particularly, the locus predicted as a spurious site in mock IP may also have strong 330 

binding of target TFs, and thus is identified as a bona fide site in IP. However, estimating the prevalence 331 

of persisting spurious sites in IP experiments is extremely difficult, if not possible, because the bona fide 332 

sites are unknown. To have a rough estimation, for each TF we first detect binding sites from its IP 333 

experiment, respectively with DNA input and mock IP as control, and then take the sites using mock IP as 334 

control as bona fide sites approximately. In the sites detected using DNA input control, the ones not 335 

overlapped with the approximate bona fide sites are the potentially spurious sites that remain. 336 

This rough estimation demonstrates that on average a large fraction of predicted binding sites is 337 

potentially spurious in worm (60%) and fly (88%) samples, whereas this fraction is 10% in human cell 338 

lines (fig. 5A). This trend is consistent with the spurious site abundances observed across the samples. In 339 

addition to this sample-specific effect, we also found that canonically activating TFs annotated by the 340 

Gene Ontology (GO) database (Carbon et al. 2009) tend to have more binding sites detected by mock IP 341 

as compared to repressive TFs (fig. 5B); thus, activating TFs also have fewer spurious sites even when 342 

DNA input controls are used (fig. 5C). This trend is statistically significant for fly embryos, which have 343 

115 assayed TFs annotated by GO (fig. 5C). In contrast, the trend is not significant for the samples of 344 
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other developmental stages, presumably due to the small numbers of available TFs at those other stages 345 

(from 19 to 28 TFs). Note that the prevalence of the spurious sites depends on the accuracy of the 346 

reference sites taken as bona fide, which is largely unknown. 347 

 348 

Combining mock IP and DNA input to predict TF binding sites 349 

Although the mock IP control removes spurious sites more efficiently than the DNA input 350 

control, the mock IP control usually acquires much less DNA material from a sample, and thus has a large 351 

variation in library preparation and sequencing. As a result, the mock IP controls are more prone to 352 

technical noise than DNA input controls. Therefore, we next tested whether combining the mock IP and 353 

DNA input controls together may further improve binding site quality. In addition, different scoring 354 

metrics have been developed for TF binding site detection. For example, the signal score in SPP depends 355 

directly on the enrichment of sequencing reads in the IP, compared to its control. Another metric, such as 356 

MACS, calculates the statistical significance of the read enrichment (Zhang et al. 2008). Combining these 357 

two scoring metrics may also improve binding site detection. To this end, we developed a simple 358 

Figure 5. Spurious site prevalence is both sample specific (A) and TF specific (B, C). A large fraction of 

binding sites detected using DNA input as controls are potentially spurious in worm and fly samples, but 

not in the human cell lines (A). The activating TFs in fly embryo have more binding sites detected using 

mock IP controls than the repressing TFs (B).  The activating TFs also have fewer spurious sites than the 

repressing TFs (C). 
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framework that takes advantage of using both mock IP and DNA input controls as well as multiple 359 

scoring metrics in order to better detect binding sites. We focused on the ChIP-seq data of worm and fly 360 

TFs. Each of the TFs has an IP (i) and its DNA input control (d) as shown in figure 1A. The TF also has a 361 

mock IP (m’) with its own corresponding DNA input (d’) as shown in figure 1B. 362 

First, we developed a Bayesian model to integrate the IP (i) and mock IP (m’) as well as their 363 

respective DNA input experiments (d and d’). These experiments were scaled to the same sequencing 364 

depth. For each TF, we used SPP to identify the peak regions in the genome using the IP (i) and the mock 365 

IP (m’). For each peak region, 𝑛", 𝑛#, 𝑛$%, and 𝑛#% are the numbers of reads in the four experiments 366 

uniquely mappable to the region. The probability for the region being a binding site is indicated by  367 

𝑃(𝜃) > 0.5, 𝜃) > 𝜃/), where 𝜃) = 𝑛" (𝑛" + 𝑛#)⁄  and 𝜃/ = 𝑛$% (𝑛$% + 𝑛#%)⁄ . We assume 𝑛" following a 368 

binomial distribution, i.e. 𝑛"~Bin(𝑛), 𝜃)), where 𝜃)~𝑈(0,1) = Beta(1,1) and 𝑛) is the number of total 369 

reads from the region in i and d. Because Beta(1,1) is an uninformative conjugate prior of the 370 

Bin(𝑛), 𝜃)), the posterior distribution of 𝜃) is 𝑃(𝜃)|𝑛" , 𝑛)) = Beta(𝜃)|𝑛" + 1, 𝑛# + 1). With the same 371 

assumptions, we have 𝑃(𝜃/|𝑛$%, 𝑛/) = Beta(𝜃/|𝑛$% + 1, 𝑛#% + 1), where 𝑛/ is the number of total reads 372 

from the region in m’ and d’. With this setting, 𝑃(𝜃) > 0.5, 𝜃) > 𝜃/)	can be expressed as in equation 1. 373 

𝑃(𝜃) > 0.5	&	𝜃) > 𝜃/) = @ @ Beta(𝜃)|𝑛" + 1, 𝑛# + 1)Beta(𝜃/|𝑛$% + 1, 𝑛#% + 1)
)

ABCD.E

AB
AFCD

𝑑𝜃)𝑑𝜃/ 374 

eq.1 375 

Due to lack of an analytical solution, we estimate the integral by simulation.  376 

The higher probability indicates the genomic region is more likely to be a TF binding site. The 377 

genomic regions, as binding peaks, are ranked by this probability, and then passed to the tool of 378 

irreproducible discovery rate (IDR) (Li et al. 2011) in the ENCODE pipeline to determine binding sites. 379 

When DNA input is the only control, the probability is simply 𝑃(𝜃) > 0.5). With the same derivation, the 380 

probability of using only mock IP as control is also calculated as described in the Methods section. As 381 

expected, multiple controls substantially outperform respectively DNA input or mock IP alone (fig. S3). 382 

However, the probability with both controls performs similar to, but not always better than, the SPP score 383 
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using only mock IP as control (fig. 3B&C). This observation is probably due to the fact that compared to 384 

the probability, the SPP score is more informative by considering not only the read enrichment but also 385 

the distribution of the reads at a genomic region. 386 

Second, to take advantage of using both the SPP score and the probability calculated from both 387 

the mock IP and DNA input controls, we rank the peaks of a TF with the two scoring metrics 388 

respectively, resulting in two rankings for the one set of peaks. For each of the peaks, we sum its ranks in 389 

the two rankings and sort all the peaks again according to their summed ranks. This new ranking is then 390 

subject to IDR for binding site detection. This strategy is reasonable because IDR is a robust model that 391 

uses only the rank of each peak for binding site detection. This novel method increases motif enrichments 392 

by 21% and 8% in the top 50 binding sites, compared to the SPP method with mock IP control (fig. 393 

3B&C). Currently, summing up the ranks of a peak implicitly assigns equal weights to the rankings by the 394 

two metrics. Using equal weights is appropriate in this case because the two metrics perform similarly in 395 

binding site detection (fig. 3B&C). In the case where one metric is substantially better than the other, the 396 

peak ranking by the more accurate metric can be multiplied by a large weight. The value of the weight 397 

reflects the credibility of one metric compared to the other. This strategy can be extended to multiple 398 

metrics with different weights since so many controls and scoring metrics have been generated during the 399 

past decade. 400 

Comparing the respective non-specific interactions of GFP and IgG antibodies 401 

 As aforementioned, using DNA input as controls, the mock IP experiments with the GFP 402 

antibody and the IgG antibody generate the similar numbers of spurious sites in fly embryos, suggesting 403 

that the two antibodies have the same amount of non-specific interactions. The interactions are non-404 

specific because the interactants are not the specific antigens. However, the two antibodies may still 405 

prefer different interactants, resulting in different spurious sites. To this end, we compared the spurious 406 

sites of the IgG mock IP and GFP mock IP with DNA input as controls. Only 39% of the total spurious 407 

sites have overlaps in both of the mock IPs (fig. 6A). We generated another mock IP using GFP antibody 408 

for the fly embryo. Between the two GFP mock IPs, the overlapped spurious sites increase to 74% (fig. 409 
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6A). Due to the inconsistency between IgG and GFP antibodies and the fact that the IP experiments in 410 

ChIP-seq use GFP antibodies, the IgG mock IP is expected to have low efficiencies in removing spurious 411 

sites from the IPs. Indeed, using the IgG mock IP as control results in more sites and lower motif 412 

enrichments than using either of the two GFP mock IPs (fig. 6B&C). The two GFP mock IPs produce 413 

essentially the same numbers of binding sites and motif enrichments (fig. 6B&C).  414 

 415 

 416 

DISCUSSION 417 

Our results indicate that many spurious sites exist in binding data generated by ChIP-seq 418 

experiments when DNA input is used as a control. Very roughly, we estimate that the fraction of spurious 419 

site ranges from 10% to 88% in our data sets (fig. 5), and our evidence indicates that the fraction depends 420 

on the genome accessibility and transcriptional activity of the sample (fig. 2). For example, samples such 421 

as tissues, organs, and whole organisms have much higher genome accessibility and transcriptional 422 

activity compared to cell lines and primary cells, and thus tend to have more spurious sites (fig. 2&4). 423 

Furthermore, with the same mechanism, cancer cell lines may have more spurious binding sites than 424 

normal cell lines (fig. 2B). Spurious binding sites tend to be enriched within the highly expressed 425 
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Figure 6. Comparing IgG mock IP and GFP mock IP in binding site detection for fly embryo. Two sets of 

spurious binding sites are detected from the IgG mock IP and the GFP mock IP, respectively using DNA 

input controls. A concurred spurious site in a set is the one that has an overlapping site in the other set. The 

fraction of concurred spurious sites between the IgG and GFP mock IPs is substantially smaller than that 

between the two GFP mock IPs (A). Using the IgG mock IP as control leads to much more sites from IP 

experiments than using the GFP mock IPs (B), and the resultant peaks have less motif enrichments (C). 
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genomic regions of a sample (fig. 2D). In essence, the uneven genome activity creates biases in IP 426 

experiments, and such biases cannot be fully controlled by DNA input experiments alone. 427 

DNA input has been primarily used as controls in ChIP-seq experiments in various cell lines, 428 

tissues, and organs. The large fraction of spurious binding sites may impose various negative effects on 429 

applications of these ChIP-seq data. For example, including spurious binding sites with real TF binding 430 

sites, gene regulatory networks may artificially appear to be more connected than they are in reality. This 431 

‘overconnected’ effect is expected to be more severe in tissues and organs than in cell lines. Moreover, 432 

the varying pervasiveness of spurious sites across samples reduces the comparability of ChIP-seq data. 433 

For instance, our results suggest that cancer cell lines may have more spurious sites than normal cell lines, 434 

rendering the TFs in cancer cell lines may artificially have more binding targets than in normal cell lines. 435 

In addition, the widely observed association between spurious sites and highly expressed genes further 436 

exacerbates the comparability of ChIP-seq data. Nevertheless, even with spurious sites, the sites predicted 437 

using DNA input controls still have substantial binding motif enrichments, which is especially true for the 438 

most confidently predicted sites. Moreover, our analyses suggest that strong TF binding depletes spurious 439 

sites. Intriguingly, for example, if the TFs in a cancer cell have higher expression levels than those in a 440 

normal cell, the binding of these TFs might be enhanced in the cancer cell. As a result, the predicted sites 441 

from cancer cells may have more bona fide sites and less spurious sites, compared to those from normal 442 

cells. 443 

To address these issues, we used mock IP as controls to detect binding sites of many TFs in 444 

human cell lines, worm and fly. Because mock IP closely mimics the systematic biases caused by genome 445 

activity, the mock IP control reduces spurious sites substantially. This removal increases the quality of 446 

predicted binding sites. In the samples with many spurious sites, we found that mock IP control increases 447 

the motif enrichment of top binding sites by 18-37%, compared to DNA input control (fig. 3B&C). 448 

Besides the systematic bias, ChIP-seq, especially the mock IP, suffers from random technical noise. 449 

Therefore, we developed a novel framework that utilizes both mock IP and DNA input controls as well as 450 

multiple scoring metrics for binding site detections. This combination further improves binding site 451 
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quality by 8-21% (fig. 3B&C). By reducing spurious sites, using mock IP controls increases the 452 

comparability of predicted binding sites across different samples. This novel method and the large set of 453 

binding sites we generated are valuable assets for ChIP-seq applications. 454 

We have demonstrated that the mock IP control can remove spurious sites because it captures the 455 

systematic biases in ChIP-seq. In theory, the biases can be removed by optimizing many other factors in 456 

ChIP-seq, such as antibody quality, library preparation, the buffers used, fragment size selection, 457 

sequencing depth and cross-linking time, etc (Kidder et al. 2011; Gilfillan et al. 2012; Landt et al. 2012; 458 

Meyer and Liu 2014; Baranello et al. 2016). However, in practice, these multiple factors may be 459 

antagonistic, and may require independent optimization for different samples and TFs. Therefore, 460 

optimizing these factors for each sample and TF is not practical for determining the binding sites of a 461 

large number of TFs in various samples. This is particularly true for our modERN project which aims to 462 

detect the binding sites of all TFs in different developmental stages of both worm and fly. In contrast, 463 

incorporating a mock IP control requires much less effort, and improves binding site accuracy. 464 

Our discoveries also provide potential insight for highly occupied targeted (HOT) regions, which 465 

have previously been identified in ChIP-seq data across many species (Moorman et al. 2006; Gerstein et 466 

al. 2010). A HOT region is a genomic region with binding sites of more TFs than expected. Intriguingly, 467 

some HOT regions function as developmental enhancers and have distinct regulatory signatures (Kvon et 468 

al. 2012). However, increasing evidence hints that some HOT regions may be artificial due to the false 469 

binding signals from ChIP-seq (Wreczycka et al. 2019). Our results confirm the existence of abundant 470 

spurious sites in ChIP-seq, and thus the potential influence on HOT regions. Quantitatively, spurious sites 471 

are expected to artificially inflate the numbers of TFs in some HOT regions. However, our results suggest 472 

that spurious sites are unlikely to influence HOT regions qualitatively because the existence of spurious 473 

sites in a genomic region indicates abundant regulatory protein binding in that region, and thus the region 474 

is likely to have more TF binding than expected. 475 

The three species, human, worm, and fly, have similar numbers of coding genes as potential 476 

targets of TFs. However, using mock IP controls, TFs in human cell lines tend to have substantially more 477 
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binding sites than TFs assayed in whole worm or fly, and the fly TFs have slightly more binding sites 478 

than the worm TFs (fig. 3A). These numbers of binding sites across the three species are proportional to 479 

their genome sizes. This proportion to the genome size may be due to the fact that the larger genome 480 

contains more motifs for TF binding. The more motifs in the larger genome may be favored by natural 481 

selection to attract TFs around the chromosomes, which increases the utility of TFs. Moreover, a larger 482 

genome may have more “TF reservoirs”, which are DNA sequences containing weak binding affinities to 483 

TFs and might be used to buffer the system and maintain an optimal amount of available TFs in the 484 

nucleus (Lin and Riggs 1975; MacQuarrie et al. 2011). 485 

In summary, we provide evidence for a potential mechanism and a corrective approach to address 486 

the issue of spurious site abundance in ChIP-seq data. The abundance of spurious sites in a sample is 487 

strongly associated with its genome accessibility. Early ChIP-seq studies in humans have focused mainly 488 

on cell lines, which have short accessible regions, and thus small numbers of spurious sites. For these 489 

samples, using DNA input and mock IP controls perform similarly, which might have led to the widely 490 

believed notion that a DNA input control is sufficient for ChIP-seq. However, in samples such as tissues 491 

and whole organisms like worm and fly, the abundance of spurious sites is substantial and increases with 492 

overall genome accessibility. We have demonstrated that these spurious sites can be removed using mock 493 

IP controls, with the resulting binding sites becoming more accurate and comparable across samples. For 494 

further improvement, we developed a novel method that incorporates both DNA input and mock IP 495 

controls as well as scoring metrics for binding site detection. The enhanced binding site detection method 496 

will better capture the true binding sites of TFs to gain a better understanding of their roles in 497 

development and physiology. 498 

 499 

METHODS 500 

ENCODE pipeline for peak calling and binding site detection 501 

The ChIP-seq data for each TF includes at least two IP experiments as biological replicates and a 502 

control. The high-quality reads of each set are uniquely aligned to a reference genome using BWA (Li 503 
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and Durbin 2009) And the mapped reads of the two IP replicates are pooled together first, and then the 504 

pooled reads are randomly divided into two sets, which are pseudo-replicates. These biological replicates, 505 

pseudo-replicates, and the control set are used by the established ENCODE pipeline for peak calling and 506 

then binding site prediction (Landt et al. 2012). In the pipeline, SPP is used to detect TF binding peaks by 507 

comparing an IP experiment to its control experiment (Kharchenko et al. 2008). As a result, for each of 508 

the IP sets and pseudo-replicate sets, a list of TF binding peaks is detected and ranked by the SPP score. 509 

These multiple lists of ranked binding peaks are passed to the irreproducible discovery rate (IDR) tool to 510 

determine binding sites (Li et al. 2011). To estimate spurious sites, we replace IP experiments by mock IP 511 

experiments. 512 

ChIP-seq data of human, worm and fly from ENCODE and modERN 513 

ChIP-seq data of human cell lines, tissues, and organs from ENCODE 514 

We acquired ChIP-seq data of human TFs from the ENCODE portal (Davis et al. 2018) and 515 

focused on six cell lines, namely GM12878, K562, HepG2, A549, HeLa-S3, and MCF-7 because both 516 

mock IPs and DNA input controls are available for each of these cell lines. Each pair of the mock IP and 517 

DNA input experiments is assigned as controls to an IP experiment of the corresponding cell line. Across 518 

the six cell lines, we utilized 113 ChIP-seq data with an IP experiment, a DNA input and a mock IP paired 519 

with the input (Table S1). We excluded the ChIP-seq data for histone marks, polymerases and CTCF 520 

from our analyses. In addition, we found seven human TFs with ChIP-seq data and DNA input controls 521 

from both cell lines or primary cells, and tissue or organ samples (Table S2). These ChIP-seq data were 522 

used to compare the spurious site abundances between simple and complex samples.  523 

ChIP-seq data of worm and fly from modERN 524 

We used 317 and 182 ChIP-seq data generated by our modERN consortium for the whole 525 

organisms of worm and fly respectively (Tables S3&4). In detail, the worm ChIP-seq data are from 526 

developmental stages of embryo, L4 and young adult. As for fly, the ChIP-seq data are from embryo, 527 

W3L and WPP developmental stages. The modERN ChIP-seq protocol tags the target TF with the green 528 

fluorescent protein (GFP), generating a transgenic fly or worm. The same GFP antibody is used in both 529 
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organisms during the IP process. A detailed protocol for strain generation and ChIP-seq is described in 530 

(Kudron et al. 2018). The ChIP-seq data for each TF consists of 2 replicate IP experiments along with a 531 

DNA input control. For each of the 3 developmental stages in worm and fly, we generated mock IP and 532 

DNA input control samples. The mock IP was performed using the GFP antibody in wild type animals 533 

that did not contain a tagged TF, thus the GFP antibody has no specific antigen in these samples (Table 534 

S5). 535 

Comparable transcriptome activities across human, worm and fly samples 536 

         The gene expression levels of the six human cell lines were measured by RNA-seq in the 537 

ENCODE portal (Table S6) (Davis et al. 2018). As for the developmental stages of worm and fly, the 538 

RNA-seq data were generated by (Gerstein et al. 2014). The fly and worm embryonic stage gene 539 

expression levels were measured across many time points. Therefore, we averaged the gene expression 540 

levels over the time points to estimate the gene expression level of the embryonic stages as a whole. We 541 

then focused on the coding genes of each species, because their annotations are more accurate across the 542 

three species. While RNA-seq measures relative gene expression within a sample, the gene expression 543 

values are not comparable across samples. To address this, we multiplied the gene expressions of each 544 

sample by a specific number so that the top 5 highly expressed coding genes of all the samples have the 545 

same average. The median of the scaled expressions of a sample was used to indicate the transcriptome 546 

activity of the sample. 547 

Genome accessibilities of human and worm samples 548 

We used DNase-seq data and ATAC-seq data respectively to measure the accessibilities of 549 

human and worm samples. The DNase-seq data of the six cell lines were collected from the ENCODE 550 

portal (Davis et al. 2018) and were generated by the ENCODE consortium and processed uniformly by 551 

the DNase-seq pipeline of ENCODE to detect accessible regions in the genomes of the samples (Table 552 

S7). The total length of the accessible regions was used to indicate the genome accessibility of a human 553 

sample. As for worm, we used ATAC-seq data generated and processed uniformly by (Daugherty et al. 554 

2017). They assayed worm samples at embryo, L3 and young adult stages. These stages match our ChIP-555 
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seq stages, except for the L4 stage. Therefore, we used the L3 ATAC-seq for the L4 stage ChIP-seq. This 556 

slight mismatch renders our hypothesis testing more conservative. Similar to the DNase-seq data, we used 557 

the total length of accessible regions to indicate the genome accessibility of a worm sample. We also 558 

acquired 60 DNase-seq datasets from human tissues and organs (Table S7). This number is 150 from all 559 

human cell lines and primary cells (Table S7). From their genome accessibilities, we predicted the 560 

numbers of spurious binding sites in the samples.  561 

Binding site detection using posterior probability as a scoring metric 562 

For a given TF, we focus on the IP (i), DNA input (d) and mock IP (m) experiments. These 563 

experiments are all scaled to the same sequencing depth. With the DNA input control (d) for the IP (i), we 564 

use the SPP in the ENCODE pipeline to identify the binding peak regions in genome. For each peak 565 

region, 𝑛" and 𝑛# are the numbers of reads in the respective experiments mapped to the region. The 566 

likelihood for the region being a binding site is indicated by 𝑃(𝜃 > 0.5), where 𝜃 = 𝑛" (𝑛" + 𝑛#)⁄ . We 567 

assume 𝑛"~Bin(𝑛, 𝜃), where 𝜃~Beta(1,1) and 𝑛 is the number of total reads from the region in i and d. 568 

And thus the posterior distribution of 𝜃 is 𝑃(𝜃|𝑛" , 𝑛) = Beta(𝜃|𝑛" + 1, 𝑛# + 1). Instead of the DNA 569 

input (d), we also use the mock IP as control (m). The same model setting results in 𝑃(𝜃%|𝑛" , 𝑛%) =570 

Beta(𝜃%|𝑛" + 1, 𝑛$ + 1), where 𝑛% is the number of total reads from the region in i and m. These two 571 

probabilities are used respectively for binding site detections. 572 

Motif enrichment in TF binding regions 573 

From the Cis-BP database (Weirauch et al. 2014), we collected the position weight matrix files 574 

(PWM) of motifs determined by in vitro methods such as systematic evolution of ligands by exponential 575 

enrichment (SELEX) (Tuerk and Gold 1990), protein-binding microarray (PBM) (Bulyk et al. 1999; 576 

Mukherjee et al. 2004) and bacterial one-hybrid (B1H) (Meng et al. 2005). Occasionally, some TFs have 577 

multiple PWMs, which are often determined in different research publications. For such a TF, we 578 

randomly selected one of the multiple motifs for analysis. For the 127 fly ChIP-seq data, the TFs have 579 

known motifs (Table S8). For worm and human respectively, the numbers are 29 and 44 (Table S8).  580 
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We used FIMO to search for motif hits (P < 10-4) in the reference genomes (Grant et al. 2011). 581 

For a binding site detected by the ChIP-seq pipeline, we define its core region as 100 bp around the 582 

summit as determined by SPP, and thus each binding site is considered as a 200 bp region. For binding 583 

sites of a TF, its motif enrichment is defined as the fraction of the binding sites containing the known TF 584 

motifs. Using this fraction renders motif enrichments comparable across different TFs and different 585 

species, whose binding sites may have quite different numbers of motifs. To generate a control for GC 586 

content, we divide a reference genome into 10 bp bins, and then shuffled the sequence within each bin. 587 

Such shuffling breaks the motifs, if any, in a binding site, while preserving the GC contents of the motifs. 588 

Motif entropy calculation 589 

The entropy of a motif is calculated from its position weight matrix (PWM). Each element in the 590 

matrix is denoted as Pk,j, which is the frequency of the nucleotide k at the jth position of the motif. The k 591 

represents one of the four nucleotides. Therefore, the entropy of a motif is calculated as in equation 2, 592 

 𝐻 = −B
J∑ ∑ 𝑃L,ML∈(A,T,G,C) log/V𝑃L,MWXMC)    eq.2  593 

where L is the length of the motif. 594 

 595 

DATA ACCESS 596 

All raw and processed sequencing data generated in this study have been submitted to the 597 

ENCODE portal. In case the data has not been released by the portal, they are also provided in the 598 

supporting information. The supplementary figures and tables are also in the supporting information. 599 

 600 

 601 

 602 

 603 

 604 
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SUPPORT INFORMATION 606 

Supplementary figures 607 
http://archive2.gersteinlab.org/proj/MockOrNot/SupportInformation/Supplementary_Figures.docx 608 
 609 
Supplementary tables 610 
http://archive2.gersteinlab.org/proj/MockOrNot/SupportInformation/Supplementary_Tables.xlsx 611 
 612 
Supplementary data 613 
For the manuscript, we generated seven sets of mock IP data. These data have been submitted to the 614 
ENCODE portal (Table S5). The fastq files also can be accessed at our website: 615 
http://archive2.gersteinlab.org/proj/MockOrNot/Data/Raw/fastq/ 616 
 617 
 618 
In this manuscript, the TF binding sites in worm and fly whole organisms are detected respectively using 619 
DNA input, mock IP and combined controls. 620 
These sites are deposited in http://archive2.gersteinlab.org/proj/MockOrNot/Data/Processed/ 621 
The corresponding directories are ChIP-seq_wDNAInput, ChIP-seq_wMockIP and ChIP-seq_Combo. 622 
 623 
Particularly, for human cell lines, the TF binding sites are only detected using DNA input and mock IP 624 
controls, respectively. 625 
These binding sites are in ChIP-seq_wDNAInput and ChIP-seq_wMockIP, respectively. 626 
 627 
The other IP experiments and DNA input controls are downloaded from the ENCODE portal. 628 
These experiments of human, worm and fly TFs are listed in the supplementary tables. 629 
 630 
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