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Abstract  

A fundamental challenge in experimental ecology is to capture nonlinearities of ecological responses 

to interacting environmental drivers. Here, we demonstrate that gradient designs outperform replicated 

designs for detecting and quantifying nonlinear responses. We report the results of (1) multiple 

computer simulations and (2) two purpose‐designed empirical experiments. The findings consistently 

revealed that unreplicated sampling at a maximum number of sampling locations maximised 

prediction success (i.e. the R ² to the known truth) irrespective of the amount of stochasticity and the 

underlying response surfaces, including combinations of two linear, unimodal or saturating drivers. 

For the two empirical experiments, the same pattern was found, with gradient designs outperforming 

replicated designs in revealing the response surfaces of underlying drivers. Our findings suggest that a 

move to gradient designs in ecological experiments could be a major step towards unravelling 

underlying response patterns to continuous and interacting environmental drivers in a feasible and 

statistically powerful way. 

 

https://onlinelibrary.wiley.com/doi/full/10.1111/ele.13134


Introduction 

Classically, many of the major questions being raised about ecological responses to 

environmental drivers (e.g. pollution, climate change, loss of diversity) have involved the 

experimental testing of a simple null hypothesis, that is, that there is no significant impact of 

the driver on a particular ecological response variable. One example has been the 

investigation of the field impacts of elevated CO2 on ecosystem processes, which initially 

exclusively involved experiments with CO2 concentrations set at two levels, typically current 

ambient (ca. 380 ppm) vs. future elevated (e.g. 650 ppm). The high costs of such 

investigations has resulted in typically conservative experimental designs, with both limited 

replication and levels of the driver, CO2 (see Pugh et al . 2016); this simple approach has also 

been widely applied for assessing potential ecological impacts of global change, for example, 

pollution, climate change, grazing pressure and species invasion. However, once a significant 

impact has been identified it then becomes important in developing mitigation or control 

strategies to determine the shape of any response pattern to determine if observed impacts are 

linear or follow nonlinear shapes.  

Focusing on response patterns along driver gradients rather than exploring differences among 

treatment groups has stimulated major advances in ecology (Curtis & McIntosh 1951; 

Whittaker 1967; ter Braak & Prentice 1988) and in many other disciplines such as, physics 

and chemistry (Stejskal & Tanner 1965; Grier 2003), socio‐economics (Moffitt et al . 2011), 

medicine (Helmlinger et al . 1997) and psychology (Hare 1965; Matthews & Power 2002). 

Controlled, manipulative experiments constitute a major tool to determine causality between 

observable ecological responses (e.g. species richness, biomass production, CO2 fluxes, etc.) 

and the explanatory variables of interest, that is, the putative environmental drivers (e.g. 

temperature, water availability, soil pH or nutrient content, etc.) (Hurlbert 1984; Beier et al . 

2012). However, ecological experiments still predominantly rely on replicated designs, with 

few sampling locations along the environmental drivers, although the underlying questions 

are often more about the nature of the response shapes, which are commonly nonlinear in 

ecology and evolution (Levin 1998; Gill et al . 2002; Scheffer & Carpenter 2003; Liu et al . 

2007) and frequently comprise non‐additive interactions of multiple environmental drivers 
(Shaw et al . 2002; Larsen et al . 2011; Dieleman et al . 2012; but see Yue et al . 2017). These 

questions may be more effectively achieved by devoting resources to sampling many levels 

along gradients of the environmental drivers, while accepting little to no replication, (see 

Table 1 for use of terms).  
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Table 1. Glossary of terms used  

Term used Explanation 

Experimental 

units 

The independent samples, that is, plots or other sampling units such as individual plants, pots, 

mesocosms, etc. 

Environmental 

driver 

The focal gradient, factor, independent variable or explanatory variable 

Locations Sampling positions along the gradient of environmental drivers. In the two‐factorial design we are 

dealing with the coordinates of each sampling location along those two gradients 

Replicates Experimental units at identical locations 

Experimental 

design 

The sampling scheme, that is, how the total number of experimental units is allocated to locations in 

the environmental driver space and replicates (with total number of experimental units = locations × 

replicates) 

Replicated 

design 

Classical replicated design with at least three true replicates at few locations 

Gradient design Experimental design with maximal number of locations without replication (n  = 1 per location)  

Hybrid design Designs with a low level of replication at a maximised number sampling locations 

 

Only if potential nonlinearity in ecological responses and interacting environmental drivers 

are considered, are experiments optimal for improving ecological models such as earth system 

models, or the terrestrial biosphere models (IPCC 2013) and predicting ecosystem responses 

and biosphere‐atmosphere feedbacks to environmental variability and extreme events (e.g. 
Zscheischler et al . 2014). To date, such complexity has rarely been acknowledged in the 

design of ecological experiments (Kreyling & Beier 2013). This means that we need to 

rethink experimental designs and impose more complex, multifactorial and multilevel 

experiments while still being limited by the total number of experimental units to designs 

which are logistically and financially feasible, while maintaining statistically sound analyses. 

This is a major challenge requiring analysis of the potential trade‐offs between scientific 
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output and the investments in experimental units (e.g. number of replicates, number of 

environmental drivers, total number of sampling units) and the supporting infrastructure (e.g. 

labour, instrumentation, technology and consumables).  

Gradient designs are posited as potentially overcoming this challenge while simultaneously 

detecting ecologically important thresholds and nonlinear relationships (Kreyling et al . 2014; 

see Figure 1), echoing early suggestions that sequential, unreplicated designs are necessary to 

locate maximum response values in multivariate, interactive systems (Box & Wilson 1951). 

However, despite the discussions of gradient designs (Cottingham et al . 2005; Steury & 

Murray 2005; Thompson et al . 2013; Kreyling et al . 2014) experiment designers still have 

very real and important questions about whether such designs are better suited for the 

detection of nonlinearities and interactions of environmental drivers than classical replicated 

designs, or if hybrids of both approaches (e.g. with minimal replication and maximal 

sampling locations; Cottingham et al . 2005; Steury & Murray 2005; Schweiger et al . 2016) 

are the superior solution. There is also the question of how such gradient designs should be 

analysed statistically, particularly if the responses are truly nonlinear, that is, they cannot be 

analysed by linear models (Cottingham et al . 2005).  

 

 
 
Figure 1: Conceptual visualisation of (a) replicated experiments with high local precision due to 

replication (indicated by dark grey error bars) but a low number of sampling locations (levels of the 

environmental driver) and (b) gradient experiments with lower local precision due to no replication but 

with maximum number of locations (light grey shapes represent probability distributions for random 

draws in both diagrams). While replicated experiments offer higher confidence in response estimates 

at the applied locations, the gradient experiments are better suited for characterising underlying 

nonlinear responses for a given total number of experimental units (10 in this example). 

 

In this study, we specifically addressed the question of how to best allocate a finite total 

number of experimental units to uncover two‐factorial, nonlinear response surfaces; a 
decision which has to be made frequently when designing any ecological experiment. We 
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hypothesised that, when constrained to a maximum total number of experimental units, 

gradient designs would outperform replicated experimental designs with regard to detecting 

the shape and interaction of underlying response surfaces of two environmental drivers. We 

tested this hypothesis in two ways: first, we performed a simulation study using artificial data 

containing stochastic variation in which were embedded known and interacting underlying 

response surfaces. We compared the ability of a number of different experimental approaches 

to reveal these known and embedded linear and nonlinear responses, as well as the 

interactions between the environmental drivers. In these simulations, we deliberately varied 

the number of replicates and number of sampling locations along each environmental driver, 

as well as the underlying response shapes (i.e. linear vs. nonlinear) and the amount of 

stochasticity (noise) in the data. In other words, we allocated a defined number of 

experimental units to the alternatives of being used to increase replicates or to provide 

additional points on the response surface to inform how best one should optimise the 

allocation of limited resources when designing ecological/environmental experiments. 

The second approach was to design and execute two very different ‘real‐world’ experiments, 
specifically constructed with unusually high experimental units and sufficient numbers of 

replicates and sampling locations, to enable comparison of various resampling strategies from 

the resulting data. Based on these findings, we hoped to be able to suggest rigorous options 

for optimising experimental design, together with sound analytical protocols for such designs. 

The aim was that our findings would help experimentalists optimise towards more appropriate 

and efficient designs of ecological experiments, providing broader coverage of the 

environmental driver space, improving potential for interpolation while enabling clearer 

detection and description of nonlinearities and interactive effects in, and between, different 

experimental drivers. 

 

Material and Methods 

Simulations and analyses of artificial data 

We performed simulations based on artificial data to validate the potential of gradient 

experiments to detect nonlinearities in ecological responses, and interactions, between 

underlying environmental drivers. We simulated several different response surfaces of an 

ecological response variable (y) resulting from the interactive effect of different combinations 

of two underlying drivers (x1 and x2). The response variable (y) could represent any kind of 

measured univariate biotic variable (e.g. biomass production, species richness or microbial 

activity) in response to the variation in two numeric environmental drivers (e.g. temperature, 

water availability, soil pH or nutrient availability) which were interactively affecting the 

studied response variable. For each of the two environmental drivers, we assumed a specific 



response of y, formulated as a linear or nonlinear function yi = fi(xi). The final response 

surface of y, resulting from the interacting effect of the two environmental drivers was 

modelled as a combined response function ytotal = f1(x1)+f2(x2), where the parameters of each of 

the two individual response functions were dependent on the other environmental driver, thus 

mimicking the interaction between the two drivers.  

The artificial data for our analyses was created (1) completely independent from any kind of 

empirically derived data and, in addition, (2) based on information taken from empirical data 

in order to bound the simulations within realistic data ranges. These two approaches yielded 

the same conclusions; methodological details and results for the second approach are 

presented in Supporting Information S4. Here, the first approach is described and its results 

are shown in the results section. Different response surfaces resulting from combinations of 

three individual response functions were tested: (1) the saturating Michaelis‐Menten 
equation (M), (2) linear (L) and (3) unimodal (U). These individual response functions are 

frequently used in ecological studies to describe empirical data and differ considerably in 

form and, hence, provide a good representation of typical and varied biological/ecological 

responses to environmental drivers. These individual response functions were then combined 

to provide two‐factorial response surfaces.  

Here, we present three completely artificial response surfaces with the different combinations 

of nonlinear and linear response functions (LL, LU and UU; see codes above) and another 

two response surfaces bounded by empirical data (LL and ML; see Supporting Information S1 

for all response surfaces and S4 for further details about the empirically bounded datasets). 

Completely artificial response surfaces allow for general conclusions, while empirically 

bounded response surfaces ensure realism. We furthermore tested one response surface (LL) 

with two different parameter settings, resulting in different absolute response values and, thus, 

very different levels of total variation in the response variable y (Supporting Information S1). 

As the simulation results and the consequent conclusions were very robust against this 

variation in parameter settings/differences in total variation in the response variable for the LL 

response surface, we did not conduct these additional simulations for the other response 

surfaces. Due to analytical reasoning, total variation in response values by different parameter 

settings can be assumed to have similar effects for all response surfaces.  

For each artificial response surface, we applied sub‐sampling strategies in order to generate 
artificial test data sets and to explore the ability of each generated sub‐data set to reveal the 
true and known embedded underlying response surface. The sampling strategies thereby 

varied in the number of total samples drawn from the underlying response surface (total 

number of experimental units), number of locations sampled along the gradients of the two 

environmental drivers (locations) and the number of replicates per location. We use the term 

replicates here for the number of samples taken at a single sampling location, that is, one 

https://onlinelibrary.wiley.com/doi/full/10.1111/ele.13134#support-information-section
https://onlinelibrary.wiley.com/doi/full/10.1111/ele.13134#support-information-section
https://onlinelibrary.wiley.com/doi/full/10.1111/ele.13134#support-information-section


point in the driver combinations (cf. Schweiger et al . 2016). To reflect different levels of 

stochasticity (white noise) in the sampled artificial data, we allowed the sampled values of the 

response variable y to scatter around the ‘true’ value of y at its specific location on the 
response surface with a normal distribution corresponding to 20% (i.e. c. 85% percentile) or 

100% (100% percentile) of the absolute value of y, at this specific location. Detailed 

investigations into stochastic variation in empirical environmental data is extremely rare, yet 

the few studies which explicitly quantify random (i.e. not mechanistically explainable 

variation) in ecological data estimated the amount of stochastic noise to a maximum of 23% 

of total variation in the response variable (Richardson et al . 2012; based on eddy flux 

measurements and Kelly et al . 2009 for the community composition of diatoms). Based on 

these empirical estimates, we are confident that the amount of random variation covered in 

our study covers the majority of situations regarding stochasticity in ecological data (cf. 

Schweiger et al . 2016).  

For each response surface, we varied the total number of experimental units sampled from the 

artificial data sets between 6 and 960, the number of sampled locations between 3 and 960 

and the number of sampled replicates per sampling location between 1 (no replication) and 

240, with the number of locations multiplied by the number of replicates equalling the total 

number of experimental units. Sampling for each combination of total number of 

experimental units, number of locations and number of replicates was repeated 100 times for 

each level of stochasticity in order to evaluate the success of revealing the known underlying 

response surface. 

Prediction success was quantified as the deviation between the response surface obtained 

from the response values observed using the different sampling strategies (total number of 

experimental units, number of locations, number of replicates and amount of stochasticity) 

and the ‘true’, known underlying response surface. We therefore predicted response values for 
a given number of locations for both underlying drivers (x1 and x2) ranging from 1 to 100, 

with an interval of 1, using a local polynomial regression fitting based on the sampled 

response values obtained for the different sampling strategies by the ‘loess’ function 
implemented in R (v. 3.3.2, R Core Team 2016), setting span = 10. For the ML, LU and UU 

settings, we let the model choose the polynomial degree used for fitting, whereas we fixed 

degree = 1 for the LL setting. The predicted response values were subsequently tested using 

linear regression analysis against the ‘true’ response values at the same given number of 
locations (100) for all tested sampling strategies. Prediction success was then quantified by 

multiple R2 derived from this regression analysis. Prediction success for varying sampling 

strategies was visualised by plotting multiple R2 against total number of experimental units for 

different levels of replication by smoothing the curves using nonlinear/generalised additive 

and linear modelling.  
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Collection and analyses of ‘real‐world’ data 

Two experiments, the soil nitrous oxide (N2O) flux experiment and the ciliate experiment, 

were used to test the validity of the results which had been obtained by artificial simulation. 

These data sets stem from very different ecological disciplines and were specifically purpose‐
built for this study to uniquely contain high levels of replication at a large number of two‐way 
experimental and interacting driver gradients. The experiments had to be specifically 

established because no published data sets were found that allowed for adequate sub‐sampling 
from high to low replication while maximising the number of levels of two interacting 

ecological drivers; invariably, high numbers of replicates mean fewer levels of interacting 

ecological drivers in any actual controlled experimental setups.  

The soil study provided data for N2O fluxes from bare soil in response to five levels of carbon 

(C) and five levels of nitrogen (N) addition that were fully crossed (i.e. a total of 25 

treatments, replicated 5 times with a total n  = 125). The flux data were derived from field 

measurements conducted at the University of York SkyLine3D experimental site using an 

automated chamber system (SkyGas3D) ; N2O is a highly potent greenhouse gas and its 

response to changing environmental drivers is important for climate change projections. 

Experimental details are provided in Supporting Information S2A. All data from this 

experiment that were used to constrain the artificial response surfaces and conduct the ‘real‐
world’ validation of the artificial simulations are provided in Supporting Information S3.  

The ciliate experiment focused on Tetrahymena thermophila , an actively moving ciliate 

(unicellular eukaryotic protist), inhabiting fresh water in North America (Collins 2012) and 

often used as a model organism in laboratory microcosms to address ecological and 

evolutionary questions (e.g. Jacob et al . 2017). We submitted T. thermophila cells to a full 

factorial design of 9 temperatures × 9 levels of nutrients, each combination being replicated 9 

times, yielding an exceptionally high total of 729 experimental units. Using well‐established 
protocols based on spectrophotometry and image analysis (Pennekamp & Schtickzelle 2013; 

Pennekamp et al . 2015), we quantified a series of traits on each experimental culture: cell 

biomass produced after 44 h, average cell size, shape and speed of movement. Cells used 

were all from the same clonal strain, making this experimental design adequate to study the 

phenotypic plasticity according to two interacting environmental drivers, a topic of special 

interest in ecology and conservation biology as plasticity is expected to favour adaptation to 

changing environmental conditions due to human‐induced global change. Experimental 
details are provided in Supporting Information S2B. All data from this experiment used here 

are provided in Supporting Information S3.  

We applied the same procedures of resampling the data from these ‘real‐world’ experiments 
as described above and compared the results to those obtained from the artificial simulations. 

Accordingly, we randomly resampled from the whole ‘real‐world’ (empirical) data sets using 
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different sampling strategies (total number of experimental units, number of locations in the 

driver space, number of replicates). For the soil N2O flux experiment, the total number of 

sampled experimental units thereby varied between 9 and 25, with an interval of 1, and with 

the number of replicates varying between 1 and 5, while the number of sampled locations 

varied between 3 and 25. For the ciliate experiment, the total number of sampled experimental 

units varied between 9 and 81, with an interval of 1, and with the number of replicates varying 

between 1 and 9, while the number of sampled locations varied between 3 and 81. These 

limits stem from sub‐sampling the total number of experimental units at locations to provide 
replicated and gradient designs contrasts and to result in numbers of total experimental units 

more commonly applied in ecological field and laboratory experiments. Again, the number of 

locations multiplied by the number of replicates equals the total number of experimental units 

for each sampled design. Similar to the procedure we applied on the artificial data sets, we 

quantified prediction success based on modelled, nonlinear reference response surfaces in 

comparison to the response surface derived from a local polynomial regression fitting based 

on the resampled data. Each sampling strategy was replicated 100 times for each of the 

response surfaces. The nonlinear reference response surfaces were constructed based on the 

full empirical data set of the two experiments by combining linear, saturation, unimodal and 

skewed unimodal relationships between the response variable (soil N2O flux and ciliate traits) 

and the two respective, interacting drivers (C and N addition for soil N2O flux study, while 

using respiration and temperature and nutrients variation for the ciliate experiment 

respectively). Detailed information on the mathematical description of the different reference 

response surfaces is given in Table S2.1.  

We furthermore compared the results obtained for prediction success based on these nonlinear 

response surfaces for soil N2O flux and ciliate shape to the prediction success obtained for 

linear (plane) reference response surfaces constructed from the same, respective empirical 

data. In addition, we quantified skewness and excess kurtosis of the residuals (absolute 

differences between predicted and ‘true’ response values). We did not conduct these 
additional tests for the other ciliate trait responses (biomass, size and movement) as very 

similar results were expected (see Fig. S2.2). Skewness and excess kurtosis provide 

information about the deviation of the observed residuals from a normal distribution, that is, 

the colour (reddening) of noise in the response variable, which cannot be explained by the 

mechanisms assumed to underlie the observed ecological response to interacting, 

environmental drivers. Positive values of skewness thereby indicate that the response values 

(N2O soil fluxes, ciliate shape) which were estimated based on the sampled data using local 

polynomial regression fitting were generally smaller than the ‘true’, modelled response 
values, whereas negative values for skewness indicate a general overestimation of the 

response values from the resampled data. Positive values for excess kurtosis indicate that the 

residuals were more narrowly distributed around the mean than expected for a normal 

distribution, whereas negative values of excess kurtosis indicated a flatter distribution. Thus, 



the observed higher variability in the observed residuals when compared to normally 

distributed residuals.  

We performed all simulations and calculations in R (v. 3.3.2, R Core Team 2016) with the 

add‐on packages minpack.lm (v. 1.2‐1), moments (v. 0.14) and MASS (v. 7.3‐45). Statistical 
relationships were tested with simple linear models with a level of significance of α = 0.05. 

The R script we used for the simulations can be found in the Supporting Information S3.  

 

Results 

At any given total number of experimental units, the prediction success in the simulated data 

generally increased with increasing number of sampling locations per environmental driver 

against decreasing number of replicates. The gradient designs were superior in detecting the 

underlying response surface as compared to replicated designs and were robust across all the 

different underlying response surfaces tested (Fig. 2, see also Supporting Information S4 for 

empirically bound response surfaces). Even in the absence of nonlinearity, that is, when the 

response surface along the two environmental drivers was a plane (LL, Fig. 2 a and b and 

Fig. S4.1 c and d), the gradient design generally outperformed the replicated designs for any 

given number of experimental units. This finding was also robust across the different levels of 

stochasticity (white noise) implemented in the sampled data (Fig. 2 and Fig. S4.1).  
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Figure 2: Prediction success at any given total number of experimental units (n  = 6–960) but with 

varying numbers of locations vs. local replicates (n  = locations × replicates). Results are based on 

artificial data sampled from three types of inferred response surfaces, that is, linear‐linear (panels a, b, 
with an arbitrarily chosen parameter setting and thus response values different to the empirically‐
bound linear – linear response surface in Supporting Information), a linear‐unimodal (panels c, d), and 

a unimodal‐unimodal (panels e, f), and with 20% (panels a, c, e) or 100% (panels b, d, f) stochasticity 
levels (white noise). The replicate = 1 lines (dark blue) represent unreplicated sampling design with 

maximum number of locations, whereas the replicates = 240 lines (brown) represent the most extreme 

replicated design (maximum replication with minimum number of locations). Solid lines show mean 

values whereas the dashed lines represent the 95% confidence intervals from 100 simulation runs.  

https://onlinelibrary.wiley.com/cms/asset/b6e232c8-2022-4d5e-8906-96f2f0a22f53/ele13134-fig-0002-m.jpg


For the empirical experiments (the soil N2O flux and ciliate experiments), we reached the 

same conclusion as for the simulated response surfaces (Fig. 3 and Figure S2.2), namely, the 

gradient sampling showed the strongest increase in R ² with total number of experimental 

units, while also generally outperforming the replicated designs at each given total number of 

experimental units. Interestingly, differences among the nonlinear reference response surfaces 

(Fig. 3) and fitting a plane reference response surface (Fig. S2.3) were negligible for soil N2O 

flux but were more pronounced for ciliate shape, with higher predictive success for the 

nonlinear reference surface.  

 

 

Figure 3: Prediction success for empirical data on soil N2O fluxes (a, c, e) and Tetrahymena 

thermophila ciliate cell shape (b, d, f) at any given number of experimental units (n  = 9–25 and 9–81 
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respectively) but with varying numbers of locations vs. local replicates (n  = locations × replicates). 

(panels a, b), skewness (panels c and d), and excess kurtosis of the residuals (panels e and f). Results 

are based on a comparison of response surfaces created from ‘real world’ experimental data on soil 
N2O fluxes to carbon and nitrogen additions and on Tetrahymena thermophila ciliate cell shape in 

response to temperature and nutrients variation assuming nonlinear, underlying reference response 

surfaces created from well‐known mechanistic relationships between microbial activity and resource 
addition (see Table S2.1 for details). The replicate =1 lines (dark blue) represent the gradient design 

with maximum number of locations, whereas the replicates = 5 lines (red) represent the replicated 

design (maximum replication with minimum number of locations). Solid lines show mean values 

whereas the dashed lines represent the 95% confidence intervals from 100 model runs.  

The analysis of the residuals between the modelled ‘true’ reference response surface and the 
response surface obtained from resampling the empirical data sets by each respective 

experimental design resulted in similar findings: despite generally smaller differentiation 

among sampling designs, the variation in skewness (shown as the confidence lines in Fig. 3c 

and d) decreased with increasing number of locations for any given total number of 

experimental units. For the gradient design (rep = 1), the number of locations was most 

strongly increased with increasing number of total samples, thus the decrease in variation in 

skewness was most pronounced here. This holds true for the nonlinear reference response 

surfaces (Fig. 3c and d) and to a lesser degree also for the plane reference surfaces (Fig. S2.3 

c and d). These findings indicate that increasing the number of locations sampled at the cost 

of replication robustly decreases the skewness of the residuals and, thus, decreases the risk of 

systematic over‐ or under‐estimation of the chosen model response surface.  

Variance of excess kurtosis decreased with increasing number of locations for both empirical 

data sets, although there seemed to be a trend towards an increasingly flattened distribution of 

the residuals with increasing number of locations for soil N2O flux (Fig. 3e and f). 

Accordingly, the number of locations along the environmental drivers, and not the level of 

replication, drove the amount of mechanistically explainable variance, thereby also leaving 

less non‐stochastic pattern in the unexplained variance, resulting in a whitening (i.e. more 
normally distribution) of the unexplainable noise (Fig. 3 and S2.3). 

 

Discussion 

Analysing patterns along natural and experimental gradients has advanced science in the past 

and presence across disciplines as disparate as physics and chemistry (Stejskal & Tanner 

1965; Grier 2003), socio‐economics (Moffitt et al . 2011), medicine (Helmlinger et al . 1997) 

and psychology (Hare 1965; Matthews & Power 2002). Likewise, ecological theory has 

benefitted immensely from the analysis of natural gradients as exemplified by the niche 

concept (Grinnell 1917), the Intermediate Disturbance Hypothesis (Connell 1978), or the 

Stress‐Gradient Hypothesis (Bertness & Callaway 1994). Ecological experiments, however, 
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predominantly test for differences among groups in replicated experiments rather than 

exploiting response patterns along experimental gradients of the environmental drivers of 

interest.  

The gradient design consistently outperformed replicated designs with respect to the 

prediction success of the underlying response surface for any given total number of 

experimental units in our analyses. The generality of this finding is emphasised because it was 

found to consistently hold true across (1) a variety of different response surface structures of 

two interacting environmental drivers in (2) simulated data and very different empirical 

examples. Our analyses of model residuals furthermore implied that increasing the number of 

sampling locations, and not the number of replicates per location, was the primary way to 

reduce unexplained, non‐stochastic variance (i.e. skewness and excess kurtosis of the 
variation). In other words, increased coverage of the underlying environmental gradients 

generally caused a whitening of the unexplained variance and resulted in models which were 

more robust to noise. Noise whitening was strongest for the gradient design and weakest for 

the highly replicated designs. The assumption of normally distributed residuals underlies all 

parametric statistical tests (e.g. regression or ANOVA ) but is often violated when analysing 

empirical ecological data. We here showed that this basic statistical assumption about white‐
noise residuals is best met when maximising number of sampling locations for any given 

number of experimental units available.  

Interestingly, we found gradient designs to outperform replicated designs even for linear 

relationships. This appears counter‐intuitive as one would assume the differences among 
designs to level out in such an underlying pattern and explain this as a probable trade‐off 
between the local precision of prediction and the overall precision of prediction. Higher 

replication at a certain point on the response surface increases the local precision of predicting 

the ‘true’ value. However, if noise in the data is not completely white, sampling a larger area 

with the same number of total samples instead of local replication reduces the risk of 

estimating wrong response values from the drawn samples. A structured noise in the response 

surface space was observed especially for our empirical data set on soil N2O flux as the 

residuals got closer to normality with increasing number of sampling locations, being 

strongest for the unreplicated gradient design.  

Sampling locations were randomly assigned in our simulations, based on the logic that the 

shape of the response surface and the position of nonlinearities and thresholds is usually 

unknown in ecological experiments. If knowledge on the assumed shape were available, for 

example, based on literature or pre‐trials, one could easily design the sampling strategy in a 

way to ideally cover the response surface by concentrating sampling in regions with stronger 

gradients or nonlinearities between drivers and response or identify such regions by sequential 



experiments (Box & Wilson 1951). Still, our results imply that gradient designs would allow 

for a more precise detection of such thresholds than replicated designs.  

Hybrid designs, which are a compromise between gradient and replicated designs with some 

minimal replication and maximal locations have been suggested (Cottingham et al . 2005; 

Steury & Murray 2005; Schweiger et al . 2016) or have been applied (Piepho & Bahn 2017). 

Our data consistently suggest that even such designs are outperformed by gradient designs in 

terms of both prediction success and whitening of residuals.  

Replicated experiments remain the method of choice whenever testing binary environmental 

drivers such as presence or absence of specific species or functional groups (Table 2). 

Replicated designs further make sense if a study aims at testing differences among groups 

(Table 2), for example, comparing sites or management schemes, which differ non‐
continuously or along unknown gradients. For such replicated experimental designs, analysis 

of variance (ANOVA ) is routinely applied to detect statistical differences between the mean 

values across treatment groups, but ANOVA does not allow for inter‐ or extrapolation or the 
characterisation of the actual shape of response along the considered environmental gradient 

(response curve, Fig. 1), since experimental units are used to optimise replication and the 

detection of significant effects rather than determination of response shapes. Note that 

regression‐techniques have been suggested as the statistically more powerful approach even in 

replicates designs (if the ecological driver of interest was continuous), because they estimate 

fewer parameters than ANOVA (Cottingham et al . 2005). Another example calling for 

replicated designs is if one is specifically interested in high local precision at one or few 

sampling locations or in stochastic variation (white noise) rather than means (Table 2).  
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Table 2. When to use gradient and replicated designs in ecological experiments  

Interest in Statistical method Recommended 

experimental design 

Differences in a numeric response among treatment 

groups (mainly for factorial drivers) 

Analysis of variance Replicated 

Patterns of a numeric response variable along continuous 

drivers (e.g. detection of nonlinearity, thresholds, 

interpolation, extrapolation) 

Regression Gradient 

High local precision Mean Replicated 

Quantification of local variation Variance, Standard 

deviation, Confidence 

Intervals 

Replicated 

Based on our results, we recommend gradient designs for experiments dealing with ecological 

responses to continuous environmental drivers (e.g. temperature, precipitation, nutrients, 

species richness, CO2‐level, physical disturbance, etc.), because the response surface is what 
is really needed here (Table 2). For example, in the case of research into ecosystem responses 

to elevated concentrations of atmospheric CO2, two treatment levels are invariably used, even 

though the changes in atmospheric CO2 levels are increasing in a steady upward fashion; we 

know little of the intermediate parts of the response curves, even though these shapes are 

needed for developing realistic coupled General Circulation Models (see Pugh et al . 2016). 

The need for independent devices at each sampling locations such as climate chambers in 

temperature manipulation studies is basically the same as in classical replicated designs if 

avoidance of pseudo‐replication (Hurlbert 1984) is taken seriously. For continuous 

environmental drivers, gradient designs further allow for better extrapolation, characterisation 

of (nonlinear) response functions, and, consequently, quantitative outputs better suited for 

ecological models than replicated designs (Cottingham et al . 2005). Confidence bands of 

regressions further provide sound estimation of uncertainties.  

Unreplicated experimental designs to uncover response functions and response surfaces 

require different analytical strategies to those traditionally used in experimental ecology. 

Regression focuses directly on the response function (James et al . 2017). Linear and multiple 
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linear regression may serve as null models, while a priori knowledge and hypotheses on the 

likely relationships from existing empirical or theoretical models may be used to set up 

potentially better, nonlinear candidate models to be tested against the linear model(s). Model 

indices, such as corrected AIC, BIC, R 
2
 and Root Mean Square Error and others, may be used 

to infer the overall better model (Janssen & Heuberger 1995; Burnham & Anderson 2010). A 

case example testing a range of different models on the empirical soil N2O flux data set used 

here is shown in the Supporting Information S5.  

Power of regression analyses depends upon the gradient length considered, suggesting that 

gradient length of the focal environmental drivers in such a gradient design should be 

maximised. Incorporating very broad ranges in the environmental drivers, potentially 

including also highly rare levels (Kreyling et al . 2014) (i.e. extreme events with low return‐
time), will add to the power of regression and help advancing our understanding of important 

ecological processes, specifically those that show a nonlinear response behaviour. Effects of 

extreme events, which are considered to be of disproportionate ecological importance (Jentsch 

et al . 2007) and not well captured in monitoring networks (Mahecha et al . 2017), may 

therefore also be better captured by gradient experiments.  

In ecological experiments, experimental units are rarely identical (differences between 

individuals, spatial variability, legacies, etc.). Interspersion and replication are basic principles 

to deal with such random or spatially structured variation (Hurlbert 1984). Gradient designs 

do not allow for such a quantification of variance, as they lack groups of identical treatments. 

Of course, interspersion of treatment level combinations, that is, random assignment of 

experimental units to treatment levels, remains a prerequisite in order to avoid natural 

variation getting confounded with the focal environmental drivers. Still, pre‐treatment 
observations can inform about spatial variability (compare to Before‐After Control‐Impact 
(BACI) designs, e.g. Green 1979). In case of high spatial variability among experimental 

units, our results concerning different noise levels imply that increasing total number of 

experimental units rather than increasing replication will improve overall prediction success. 

Generally, the basis of controlled experiments to keep all conditions constant except for the 

environmental driver(s) of interest, ideally resulting in only white noise left for true replicates, 

is also crucial in gradient designs. Here, any other driver potentially affecting the response in 

the given setting should therefore be kept constant, or specifically be analysed as another 

gradient.  

Beyond the allocation of sampling units discussed here, sound detection of nonlinearities will 

require higher total sample sizes due to increased degrees of freedom than needed for simpler, 

linear relationships (see e.g. Babyak 2004). While gradient experiments outperformed 

replicated experiments in our simulations, prediction success and confidence always increased 

with total sample size. Consequently, a shift towards gradient designs will generally not lead 
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to reduced total numbers of samples needed, but an optimised use of available experimental 

units.  

We conclude that gradient designs are a powerful tool for detecting patterns in ecological 

responses to continuous and interacting environmental drivers as they generally outperform 

replicated designs in terms of prediction success of known response surfaces independently of 

noise level and shape of the underlying response surface (linear, saturating, hump‐shaped) for 
given, realistic total numbers of experimental units (total sample size). Improved mechanistic 

understanding of the underlying processes appear to be a reasonable expectation, because 

such designs allow for testing for the most probable relationship among the response variable 

and the environmental drivers by (multiple) hierarchical regression analysis. Gradient 

experiments should thereby improve the value of the experimental output for process‐based 
modelling. Replicated designs remain the solution to test for differences among (categorical) 

groups, optimising local precision, or quantification of (stochastic) variation. However, for 

approaching nonlinearity and interacting environmental drivers in ecological responses, a 

paradigm shift to unreplicated multilevel gradient designs of experiments would be a major 

step forward. 
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