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To serve and protect: a new heart patrolling and

recycling role for macrophages
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Commentary on ‘A network of macrophages supports mito-

chondrial homeostasis in the heart’ by J.A. Nicolás-Ávila et al.

2020, Cell 183, 94–109.e23.

Genetic and acquired mitochondria dysfunction has a profound impact
on cardiac performance and contributes to cardiovascular ageing, cardio-
vascular diseases, and ischaemia/reperfusion injuries evoked by coronary
procedures. The pump function of the human adult heart requires enor-
mous amount of ATP daily. To ensure this supply, cardiac myocytes are
packed with mitochondria engaged with oxidation of fuels, such as fatty
acid. Mitochondria are also the primary source of reactive oxygen spe-
cies and regulate cell death and survival. Mitochondria homeostasis is en-
sured by the balance between the processes of mitochondrial fusion,
fission (fragmentation), biogenesis, and mitophagy. New evidences by
Nicolás-Ávila et al. suggest that the uptake of cardiomyocyte-released
dysfunctional mitochondria by macrophages (Macs) could ensure an ad-
ditional layer of control against the cardiac consequence of mitochon-
drial dysfunction.

In a stimulating study entitled ‘A network of macrophages supports
mitochondrial homeostasis in the heart’ and recently published in Cell,
the authors expand the list of skills and roles played by Macs in the heart.
The paper reveals a potentially novel mechanism by which Macs support
cardiac homeostasis by ensuring the clearance of dysfunctional mito-
chondria expelled from neighbouring cardiac myocytes into ‘cardiac exo-
pheres’, a potentially new type of extracellular vesicles (EVs).1 According
to the authors, ‘cardiac exopheres’ are ‘specifically’ taken up by cardiac
Macs (cMacs) using an active phagocytosis process mediated by Mertk
(Tyrosine-protein kinase Mer). Experiments using an inducible genetic
model of temporary Mac depletion (CD169DTR mice) have further char-
acterized the importance of Macs to maintain cardiac function by ensur-
ing cardiac mitochondrial fitness, proteostasis and ATP production, and
avoiding the activation of the inflammasome system. An impressive com-
bination of mouse models, including genetic models, bone marrow trans-
plantation, parabiosis and the use of isoproterenol to induce cardiac
stress, have been displayed to provide information on the cellular sour-
ces of mitochondria released by exopheres and the importance of the
lysosomal degradation pathway (autophagy) and Mertk in respectively,
triggering the newly proposed mitochondria shedding mechanism and
allowing exosphere incorporation by Macs under homeostatic

conditions and cardiac stress. Mitophagy enables the clearance of com-
promised mitochondria via their relocation into autophagosomes; this
mechanism is essential in cardiomyocytes to ensure cellular energy pro-
duction and optimal cardiac function. Several pathological stressors, in-
cluding ischaemic, oxidative, and cardiotoxic injuries, can impair
cardiomyocyte mitophagy, leading to the onset of cardiovascular disease,
as extensively reviewed in ref.2

The study by Nicolás-Ávila et al. is important to confirm and reinforce
the importance of multicellular communication within the cardiac tissue.
Indeed, this work described an additional role for Macs in interacting
with cardiovascular cells to further contribute to relevant homeostatic
and reparative mechanisms (Figure 1). This new set of discoveries adds
to other new and surprising Mac roles that have recently emerged, fuel-
ling the interest for the crosstalk between Macs and their cardiac cell
neighbours. On top of their established role in immunity, Macs have
been recently shown to contribute to cardiac electrical conduction3 and
produce collagen during scar formation in zebrafish and mouse heart in-
jury models.4 A groundbreaking paper published this year by the
Molkentin group has additionally shown that the temporal and regional
induction of CCR2þ and CX3CR1þ macrophages mediates and can
even replace adult stem cells-induced cardiac rejuvenation.5 Changes in
cMac activity might also help explain the reduced endogenous reparative
potential of the mammalian heart after the first days of post-natal life,
when the neonatal rodent heart responds to experimentally induced
myocardial infarct with a substantial activation of cardiomyocyte prolifer-
ation and angiogenesis.6

Beyond the heart, understanding the intimate signalling relationship
between Mac and tissue-resident cells could also be important to de-
velop new approaches against peripheral vascular disorders. As an exam-
ple, alteration in the secretory activity of Mac within the perivascular
adipose tissue has been recently linked to development of endothelial
lipids accumulation and obesity-associated hypertension,7 substantiating
the crucial influence of tissue-specific Macs as paracrine signalling hub to-
wards neighbouring cells.

Nicolás-Ávila et al. have reported exciting findings. It is therefore un-
derstandable that some of them call for additional investigation in future
studies. It would be particularly important to characterize the Macs con-
tribution to the ‘cardiac exosphere’ elimination and how Mac subsets con-
tribute to the different cardioprotective activities showed in the paper.
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The identification and targeting of the Macs present in the heart is still
cumbersome. Authors have used a CX3CR1-GFP mouse model to im-
age Macs in the heart and to study the contacts between cardiomyocytes
and Macs. Then, they have globally depleted CD169-positive cells to
study the functional roles of Mac in the heart. However, neither
CX3CR1 nor CD169 is specific to cMacs. Indeed, CD169-positive cells
are enriched in secondary lymph organs, such as lymph nodes and
spleen, and reportedly contribute to adaptive immunity via interacting
with B cells, T cells, and dendritic cells (DCs). This is stimulating because
both Macs and DCs exert Mertk-mediated phagocytotic actions and use
the autophagy–lysosomal pathway to degrade proteins and produce
short peptides that are loaded and presented on major histocompatibil-
ity complex class I of cells, thus regulating T-cell activity. It would be
therefore interesting to investigate the systemic immunological conse-
quences of CD169 depletion and Mertk inhibition used by Nicolás-Ávila
et al. This potential line of exploration is amplifed by a recent publication,
where Forte et al reported that DCs respond to myocardial injury fuel-
ling autoimmunity within the heart.8 The Mertk-mediated phagocytosis
used by Macs to incorporate exosphere may enlighten the correlation of
genetic deficiency of with the increased accumulation of apoptotic car-
diac cells and cardiac dysfunction, following cardiac injury. Likewise,
Mertk activity has been associated with regulation of inflammatory re-
sponse and efferocytosis with infarct size reduction.9 Such evidence
prompts additional mechanistic investigations on the putative cardiopro-
tective function of Macs.

Nicolás-Ávila et al. have defined cardiac exopheres as sub-cellular par-
ticles released by cardiomyocytes. It would be important to attempt clas-
sifying cardiac exopheres complying with the guidelines defined by the
International Society for Extracellular Vesicle (EV).10 In particular, a
more comprehensive analysis on cardiac exopheres structural organiza-
tion and molecular signature under health and disease would help to fully
appreciate their putative role in intercellular communication.
Noteworthy, EVs have already been shown to transport functional mito-
chondria between cells; the EV-mediated transfer of mitochondria from
progenitor cells to cardiomyocytes has been associated with therapeutic
effects in the ischaemic myocardium, where it restored bioenergetic lev-
els.11 Mitochondria and mitochondria components are also transferred
between cardiomyocytes using different EVs type and molecular nano-
tubes, dynamically contributing to continuous intercellular networking.12

Cardiac exopheres resemble apoptotic bodies in dimensions. Of note, the
apoptotic metabolite secretome has been reported to exert relevant
beneficial effects by modulating inflammatory process and Mac functional
phenotype in an inflammatory disease mouse model.13 It is therefore im-
portant to integrate the cardiac exosphere uptake by Macs as part of a
wider cell-to-cell communication system.

Overall, the study by Nicolás-Ávila et al. have provided new insights
on the peculiar role of immune cells in pairing up with cardiomyocytes
to preserve organ function under homeostatic conditions. The new find-
ing candidates Macs as putative therapeutic targets to correct cardio-
myocyte mitochondrial dysfunction. Future work should include

Figure 1 Schematic of different roles of macrophages within the cardiac tissue, in homeostatic vs. injured conditions, and in adulthood reparative models
vs. neonatal regenerative ones. Macs, macrophages; MI, myocardial infarction/injury; P1, post-natal day 1. Schematic has been produced using Smart—
Servier Medical Art (https://smart.servier.com).
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.comprehensive investigations on the Mac behaviour using models of car-
diac chronic disease, ischaemia/reperfusion myocardial injury, and car-
diac rejuvenation.
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Lázaro-Ibá~nez E, Le Lay S, Lee M-S, Lee YXF, Lemos DS, Lenassi M, Leszczynska A,
Li IT, Liao K, Libregts SF, Ligeti E, Lim R, Lim SK, Lin�e A, Linnemannstöns K, Llorente
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