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I . INTRODUCTION

Both the brain and digital computers process information, but they do this

in completely different ways. Neurons in the brain transmit information

not through bits, but through spikes. Spikes are short voltage increases
[see inset in the figure above] that are generated near the cell body of a neuron,

with average spike rates below 10 Hz. These spikes are transmitted via fine

axonal fibers and synapses to about 10 000 other neurons. Neurons also differ

in another fundamental aspect from processors in a digital computer: they

produce spikes according to stochastic rather than deterministic rules. This

article discusses recent progress in understanding how complex computations

can be carried out with such stochastically spiking neurons. Other recent

developments suggest that spike-based neural networks can be emulated by
neuromorphic hardware at a fraction of the energy consumed by current digital

computing hardware [11]. Can both developments be merged to provide a

blueprint for substantially more energy-efficient computing devices?

II . HOW CAN ONE
COMPUTE WITH
STOCHASTICALLY
SPIKING NEURONS?

The human brain employs about
1011 spiking neurons, a number

which is in the same range as the

number of transistors in a modern

supercomputer. But whereas the

power consumption of supercompu-

ters lies in the range of megawatts

(for example, the K computer con-

sumes almost as much energy as
10 000 suburban homes), the brain

only consumes 30 W. Hence the brain

provides an intriguing paradigm for

energy-efficient computing. But in

order to benefit from this paradigm,

we need to understand how spike-

based computations are organized in

the brain.
A deterministic network of spiking

neurons can be theoretically as pow-

erful as a universal Turing machine

[9]: It can employ the lengths of

interspike intervals to encode and

transmit information. But biological

data suggest that brain computations

are nondetermistic: If one tries to
induce the brain to carry out the same

computation again and again, the

spiking activity varies substantially

from trial to trial, as shown, for

example, in Fig. 1(b). Stochastic
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stochastic local amplifiers (voltage-

dependent channels) in the dendrites

of neurons are assumed to be the

primary sources of this trial-to-trial

variability of neural responses. Obvi-
ously, a digital computer would be

judged as useless if it would exhibit

such intrinsic variability. Hence, this

trial-to-trial variability is a sign that

brain computations with spiking neu-

rons are organized differently than

computations in our current genera-

tion of digital computers.
Recent experimental [3] and the-

oretical work [5] suggests to view

networks of neurons in the brain as

Markov chains, rather than Turing

machines. Markov chains are finite

state machines that change their state

according to stochastic rules. For

example, if we view a network of N
spiking neurons as a Markov chain,
the state of this Markov chain at time

t can be defined as a binary vector of

length N that has a 1 for each neuron

that fires within some small time

window of length � around time t
[see Fig. 1(c)]. But many other

definitions of network states can

also be used to model networks of
stochastically spiking neurons as

Markov chains with a unique station-

ary distribution p of network states

[6]; see [10] for a review. This

stationary distribution p over network
states characterizes the long-term

fraction of time that the Markov

chain spends in each state (indepen-

dently from its initial state). It

provides the key for carrying out

computations with a Markov chain,

since its stationary distribution p can

be viewed as an analog of a ‘‘pro-
gram’’ for carrying out a particular

type of computation. For example, a

Markov chain can support probabilis-

tic inference for p by generating

samples from p, on which then

some simple computational opera-

tions are performed. This approach

is called Markov chain Monte Carlo
(MCMC) sampling in machine learn-

ing. But Markov chains can also be

used to generate heuristic solutions

to difficult computational tasks. In

particular, a realization of Markov

chains through stochastic artificial

neural networks, so-called Boltzmann

machines, is frequently used in deep
learning and for solving constraint

satisfaction problems [1]. Boltzmann

machines are networks of binary

units (‘‘artificial neurons’’) that are

connected by synaptic connections

with symmetric weights. Their units

are allowed to change their state (one

at a time) according to some global
switching schedule. When a unit is

allowed to change its state, it will

assume state 1 with a probability that

increases with the weighted sum of

bits from other units to which it is

synaptically connected. It will then

stay in this new state until the next

time when the global switching
schedule allows it to change its state.

One obvious difference between the

commonly studied type of Boltzman

machine and networks of neurons in

the brain is that the latter are not

subject to a global schedule that

would allow them to spike only at

specific times.
New theoretical results provide

further insights into similarities and

differences between Boltzmann ma-

chines and stochastically spiking neu-

ral networks, that I will sketch below.

As concrete examples I will describe

applications of spiking networks for

Fig. 1. Spiking activity of biological neurons. (a) Neurons collect input from other neurons in their

dendrites, generate spikes near their soma when the neuron ‘‘fires,’’ and transmit these spikes via

axonal branches and synapses of other neurons. Inset shows typical shape of a spike. (b) Generic

trial-to-trial variability of spike responses in the visual cortex, on the left for three presentations of

visual stimulus A, and on the right for three presentations of visual stimulus B (see [13] for details).

Each row shows for one of the neurons the times (marked by vertical bars) when it fires. (c) The

principle for encoding the state of a network of spiking neurons at any time t as a bit vector that

records which neuron has fired within the preceding time window of length � . The parameter � is a

time constant that is often chosen to be in the same range as the standard length of a postsynaptic

potential (e.g., 10 ms).
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solving constraint satisfaction pro-
blems and probabilistic inference.

Box 1: A Simple Mathemat-

ical Model for a Network of

Stochastically Spiking Neuron

A spike of neuron j causesV
with some probabilityVat a
synaptic connection to another

neuron i a transient voltage

change wij�ijðtÞ (called postsyn-

aptic potential) in a dendritic

branch of neuron i, that is

scaled by the strength or weight

wij of this synaptic connection.

The sign of the function �ijðtÞ
can be positive or negative,

depending on the type (excit-

atory or inhibitory) of neuron j.
It typically has a hill-like shape,

whose exact form and duration

depends on several factors,

especially the location of the

synapse on the dendritic tree
of neuron i. The sum uiðtÞ ¼P

j wij�ijðtÞ þ bi of these post-

synaptic potentials approxi-

mates in a simplified model

the membrane potential of

neuron i at time t, where bi

denotes the bias (excitability) of

neuron i. An instantaneous firing
probability of the form �iðtÞ ¼
ð1=aÞ expððuiðtÞ � bÞ=cÞ works

quite well for approximatingV
by fitting the parameters a; b; cV
the experimentally observed

stochastic spike generation of a

biological neuron.

III . SOLVING CONSTRAINT
SATISFACTION PROBLEMS

In order to illustrate how spiking

networks can produce heuristic solu-

tions even for difficult constraint satis-

faction problems, I will sketch an
application to the famous traveling

salesman problem (TSP). An instance

of the TSP consists in the simplest case

of a set of N ‘‘cities’’ in a 2-D plane [see

leftmost panel denoted ‘‘start’’ in

Fig. 2(b)]. The task is to design a tour

of minimal length that visits each city

exactly once and returns to its origin.
This task is inherently difficult; in fact,

it is NP hard. In particular, it is not
known how good local solutions could

be efficiently expanded to provide good

global solutions.

A neural network that produces

approximate solutions for the TSP can

be constructed as follows: One ded-

icates one winner-take-all (WTA)

circuit or module Xs to each time
step s of the tour. This WTA module

consists of N neurons, one for each of

the N cities that could possibly be

visited at step s. Interconnections

with strong negative weights between

the N neurons in each WTA module

ensure that usually at most one of its

N neuron fires at any moment in time.
The index i of the neuron in WTA

module Xs that has most recently fired

can be interpreted as its current

proposition to visit city i at step s of

the tour [using the same translation

from spikes to bits as in Fig. 1(c)].

Thus, by recording for each WTA

module which neuron has fired most
recently, one can decode at any time t
the firing activity of the whole

network as a proposed TSP solution.

The black links between adjacent

WTA modules in Fig. 2(a) (that select

cities for adjacent steps of the tour)

denote excitatory synaptic connec-

tions, whose strength (weight) en-
codes the distance matrix between

the N cities. These weights are large

for synaptic connections between

neurons that encode cities i and j
that have a small distance. This

increases the probability that if one

of them fires, the other one also fires,

thereby proposing to go from city i
directly to city j (or vice versa).

Strongly negative weights on synaptic

connections [red arcs in Fig. 2(a)]

between neurons with the same index i
in different WTA modules reduce the

probability that a tour is proposed

where city i is visited repeatedly.

Designing these weights in such a
way that the best tours have the

highest probability of being produced

is nontrivial. But Buesing et al. [5]

have provided for the case of networks

of spiking neurons with symmetric

weights a transparent relationship

between the weights and biases of

the neurons and the probability that a
particular TSP tour, i.e., a particular

network state hx1; . . . ; xni [viewed as a

bit vector like in Fig. 1(c)], is

produced at an arbitrary time point t

p hx1; . . . ; xmið Þ¼1

z
e
�
P

iGj

wijxixj�
P

i

bixi

� �
=T

:

This formula makes it easy to

define weights wij and biases bi in a

spiking network in such a way that
those TSP tours that satisfy all con-

straints and require the smallest

total length have the lowest energy,

and hence the highest probability

under the stationary distribution

of this Markov chain. The term

Eðhx1; . . . ; xmiÞ¼
P

iGj wijxixj�
P

i bixi

in the exponent is commonly referred to
as the ‘‘energy’’ of this state. This

terminology is motivated by the ten-

dency of the network to move to states

where this term is smaller (but it is not

related to the physical energy consumed

by an implementation of the network).

This probability pðhx1; . . . ; xmiÞ of

a network state hx1; . . . ; xmi is the
same as for a commonly used artificial

(i.e., nonspiking) stochastic neural

network, the Boltzmann machine.

Their close relation to spiking net-

works is somewhat surprising since

they areVin contrast to spiking

networksVreversible Markov chains:

Transitions between pairs of network
states occur with equal probability in

either direction. In contrast, spiking

networks are nonreversible because a

spike causes subsequent changes in

the postsynaptic potential for some

duration � in other neurons, and this

causal chain is nonreversable. But on

the basis of our new theoretical
understanding of stochastically spik-

ing neurons one can now design a

network of spiking neurons for solving

a given constraint satisfaction problem

through stochastic approximation as

easily as a Boltzmann machine [1].

One would think that spiking

neural networks and Boltzmann
machines that have the same station-

ary distribution pðhx1; . . . ; xmiÞ solve

Point of View
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constraint satisfaction problems

equally fast. But Fig. 2(c) and (d)
shows that their stochastic search

strategies differ. Since they have the

same stationary distribution, both net-

works have to spend in the long run

the same fraction of time in network

states with high probability (that

encode in this example good TSP

solutions). But whereas a Boltzmann
machine tends to stay on each visit for

a longer duration in such a state, the

spiking network visits such a state

more often, each time for a shorter

period. The source of this difference
lies in the transient nature of state

changes that are caused by a spike: A

spike of neuron i sets a corresponding

component xi of the state vector for a

duration � to ‘‘1’’ [see Fig. 1(c)]. After

that, the value of xi is automatically set

back to 0, no matter how large the

energy difference is that is caused by
this second switch [this explains the

large fraction of state changes that

cross large energy barriers in the

upper panel of Fig. 2(d); the four

distinct modes arise from the partic-
ular distribution of energies in this

stationary distribution]. In contrast, a

Boltzmann machine lets every state

change depend on the energy difference

between the two states. Therefore, it

avoids switches that would increase the

energy of the network state [lower panel

of Fig. 2(d)]. Therefore, a Boltzmann
machine crosses energy barriers (that

typically separate a suboptimal TSP

solution from a substantially better TSP

Fig. 2. (a) Composition of the spiking network from WTA modules (gray oval boxes). (b) Top row: TSP instance on the far left and an optimal TSP tour on

the far right. TSP tours shown in between result from interpreting network states [that are defined as in Fig. 1(c)] at some arbitrarily chosen time points t

as proposed TSP tours. Middle row: Temporal evolution of the quality of TSP tours S generated by the network [performance measured by the quotient

(optimal tour length)/(length of tour S)]. Dark blue: for a single trial run. Cyan: average over 100 trial runs. Bottom row: Spiking activity of neurons in

three sample WTA modules of the network, where, e.g., WTA module 16 proposes which cities to visit at step 16 of the tour. (c) Comparison of the number

of state changes needed until tours are found with path cost at most 10 000 (8500) by a spiking network (SN) and a Boltzmann machine (BM). Both are

Markov chains that have exactly the same stationary distribution. (d) (top) Histograms of energy differences for state changes in the spiking network and

(bottom) Boltzmann machine. These are markedly different, in spite of the fact that both Markov chains have the same stationary distribution, and can

therefore solve the same constraint satisfaction problem. The spike-based implementation of the network is of additional interest because it is amenable

to more energy-efficient hardware implementations.
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solution) more rarely. This feature ex-
plains why a spiking network needs

substantially fewer state changes for

finding a TSP solution of a given maximal

cost [Fig. 2(c)]; see [8] for details.

With regard to the consumption of

physical energy, these results suggest

that the TSP can be solved (at least

heuristically) in a very efficient
manner by spike-based hardware,

hence at a fraction of the energy

consumption consumed by traditional

digital hardware [11]. An additional

energy savings may result from the

faster stochastic search, compared

with Boltzmann machines, that

emerges in a spike-based approach.
Very recent design ideas for

spike-based neuromorphic hardware

that is able to solve constraint

satisfaction problems can be found

in [19] and [20].

IV. PROBABILISTIC
INFERENCE

Another application range of spike-

based stochastic networks is proba-

bilistic inference through MCMC

sampling. One creates here a network

of spiking neurons whose stationary

distribution of network states is a

given distribution pðz1; . . . ; zKÞ over
many binary random variables zk for

which one wants to carry out proba-

bilistic inference, e.g., estimate a

posterior marginal

pðz1jeÞ¼
X

v2;...;vm

pðz1; v2; . . . ; vmjeÞ:

(1)

The vector e represents here

concrete values (‘‘evidence’’) that

are plugged in for the variables

zmþ1; . . . ; zK . The sum ranges over all
possible values vj of those random

variables zj that are not relevant for

this inference, and are therefore

marginalized out. Such probabilistic

inference is in general NP-hard, but if

p is realized (‘‘embodied’’) as station-

ary distribution of a network of

spiking neurons, one can estimate
the value of (1) by observing the firing

rate of the neuron that represents the
variable z1 (while forcing the neurons

that represent the variables zmþ1; . . . ;
zK to fire at a high rate or not to fire,

in dependence of the evidence e).

This method is quite general, since

theoretical results imply that any given

distribution pðz1; . . . ; zKÞ over discrete

random variables can be embodied by
some network of spiking neurons [14].

In fact, networks of spiking neurons

can even learn through synaptic plas-

ticity to approximate any such distri-

bution p from examples that are

produced by the target distribution p
[15]. An interesting open question is

whether the biologically inspired spike-
based synaptic plasticity rule that is

used here [it is called spike-timing-

dependent plasticity (STDP)] supports

further advantages of spiking networks.

In contrast to covariance-based rules

for plasticity in artificial neural net-

works such as the famous Hebb rule,

STDP tracks and strengthens causal
chains of spiking events, thereby em-

phasizing the nonreversible aspects of

the underlying Markov chain of a

spiking network.

As in the case of solving constraint

satisfaction problems, an implementa-

tion of probabilistic inference in spike-

based hardware could substantially
reduce the energy that it consumes.

V. DEEP LEARNING

Another interesting application of

STDP has recently been found in the

context of spike-based implementa-

tions of deep learning [12], [16]. A
large class of deep learning applica-

tions, especially those that require

experience-based clever completion

of partial input patterns, rather than

just pattern classification, employ

Boltzmann machines. The previously

sketched link between Boltzmann

machines and spiking neural net-
works has opened the door to poten-

tially more energy-efficient hardware

implementations of deep learning

through spiking neurons. The work

of [12] shows that STDP works very

well in the resulting spike-based deep

learning implementation.

These and other new results sug-
gest that deep learning is moving

closer to capturing the way how

networks of neurons in the brain

learn and represent complex patterns.

But one fundamental difference be-

comes obvious when one compares

the architecture of a typical deep

learning network with that of neural
networks in the brain. Both types of

networks are hierarchical, where

more abstract features are repre-

sented (and learned) on higher levels

of the hierarchy. But whereas lateral

connections between neurons on the

same level of the hierarchy are

forbidden in most types of deep
learning models (because they disturb

currently applied learning algo-

rithms), biological networks of neu-

rons have a very large number of

synaptic connections within each

level of a hierarchy of brain areas,

say in the visual cortex. The previous-

ly sketched paradigm for solving
constraint satisfaction problems in

recurrent networks of spiking neu-

rons suggests one possible use of these

lateral connections in the brain: They

can constrain resulting patterns of

input representations on each level of

the hierarchy in the light of hardwired

(‘‘innate’’) or learned prior knowl-
edge. The use of such prior knowledge

is likely to reduce the number of

examples that are needed for learning.

VI. NEW HARDWARE
IMPLEMENTATIONS
OF STOCHASTICALLY
SPIKING NEURAL
NETWORKS

Numerous developments in the emer-

gent area of neurally inspired stochas-

tic electronics are reviewed in [7]. A

key question is, of course, how the

required stochasticity can be generat-

ed efficiently in dedicated hardware.
A natural idea is to exploit and modify

intrinsic noise at the microscale.

Among other currently considered

approaches are ring oscillators [18],

chaotic neural networks [17], and

stochastic memristors [2]. The prima-

ry source of stochasticity in networks

Point of View
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of neurons in the brain is closest to
the approach via stochastic memris-

tors: Biological synapses are stochas-

tic, with random transmission failures

ranging from less than 10% to more

than 90%, depending on the brain

area and species [4]. In addition,

biological synapses trigger postsynap-

tic potentials also spontaneously,
without a presynaptic spike.

VII. TO SPIKE OR NOT
TO SPIKE

I have sketched new paradigms for
spike-based computation that employ

a stochastic neuron model: in order to

decide whether to spike, the neuron

tosses a coin whose bias depends on

the current input to the neuron.

Theoretical insight and clever hard-

ware implementations are showing

promise for energy-efficient solutions
of important computing and learning

tasks by networks of such neurons. But
the question whether this approach

will provide the key for substantially

more energy-efficient computing

hardware is still open at present. h
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