
To Teach or not to Teach?
Decision Making Under Uncertainty in Ad Hoc Teams

Supplemental Material

Peter Stone and Sarit Kraus

ABSTRACT
This file complains supplementary material, consisting of a
proof and the details of an algorithm, to accompany a paper
that appears in the proceedings of AAMAS 2010. The main
paper is available at http://www.cs.utexas.edu/~pstone/

Papers/bib2html/b2hd-AAMAS2010-adhoc.html

3. PROOF OF THEORM 3.1
Theorem 3.1. It is never optimal for the teacher to pull

Arm2.
Proof. By induction on the number of rounds left, r.

Base case: r = 1. If the teacher starts by pulling Arm2, the
best expected value the team can achieve is µ2 + µ1. Mean-
while, if it starts with Arm∗, the worst the team expects is
µ∗ + µ2. This expectation is higher since µ∗ > µ1.
Inductive step: Assume that the teacher should never pull
Arm2 with r− 1 rounds left. Let π∗ be the optimal teacher
action policy that maps the states of the arms (their µi,
ni, and x̄i) and the number of rounds left to the optimal ac-
tion: the policy that leads to the highest long-term expected
value. Consider the sequence, S, that begins with Arm2 and
subsequently results from the teacher following π∗. To show:
there exists a teacher action policy π′ starting with Arm∗
(or Arm1) that leads to a sequence T with expected value
greater than that of S. That is, the initial pull of Arm2 in
S does not follow π∗.

In order to define such a policy π′, we define S1(n) and
S2(n) as the number of pulls of Arm1 and Arm2 respectively
after n total steps of S. As shorthand, we denote S(n) =
(S1(n), S2(n)).

Similarly, define the number of pulls of Arm1 and Arm2 af-
ter n steps of T (e.g. when using π′) as T (n) = (T1(n), T2(n)).

Next, define the relation > such that T (n) > S(m) iff
T1(n) ≥ S1(m) and T2(n) ≥ S2(m) where at least one of the
inequalities is strict. That is T (n) > S(m) if at least one of
the arms has pulled more times after n steps in T than after
m steps in S, and neither arm has been pulled fewer times.

Finally, we define the concept of the teacher simulating
sequence S based on the knowledge of what values would
have resulted from each of the actions, starting with the
teacher’s pull of Arm2 at step 1.1 It can only do that as

1Such simulation relies on an assumption that the payoffs

long as it has already seen the necessary values — otherwise
it does not know what the state of the sample averages would
be when it is the learner’s turn to act. After n steps of the
sequence T , let the number of steps that it can simulate in
the S sequence be Sim(n). Specifically, Sim(n) is the largest
value m such that T (n) ≥ S(m).

By way of illustration, let the values that will be ob-
tained from the first pulls of Arm2 be u0, u1, u2, . . . and let
those that will be obtained from the first pulls of Arm1 be
v0, v1, v2, . . .. Consider the following possible beginning of
sequence S where pulls of Arm∗ are marked with a∗, n is
the step number, the teacher’s actions are in the row marked
“Teacher” and the learner’s actions are in the row marked
“Learner”(note that by the induction hypothesis, the teacher
never pulls Arm2 after the first step).

n: 1 2 3 4 5 6 7 8 9 10 . . .
Teacher: u0 v1 a∗ a∗ v4 . . .
Learner: v0 v2 u1 v3 v5 . . .

In this sequence, S(0) = (0, 0), S(1) = (0, 1), S(2) = (1, 1), S(3) =
(2, 1), S(4) = S(5) = (3, 1), etc.
Meanwhile, suppose that the teacher’s first action in se-
quence T is Arm∗ and the learner’s first action is Arm1,
leading to v0. Then T (0) = T (1) = (0, 0) and T (2) = T (3) =
(1, 0).
Until the learner sees a pull from Arm2 in sequence T , it
cannot simulate any steps of S: Sim(1) =Sim(2) =Sim(3) =
0. If the teacher’s second action in T is Arm∗ and learner’s
2nd action is Arm2, then in the example sequence above,
Sim(4) = 2.

We are now ready to define the teacher’s policy π′ for
generating T . Let n be the total number of actions taken so
far. Then:

1. If n = 0, T (n) > S(Sim(n)) or Sim(n) is odd, then
select Arm∗;

2. Else (T (n) = S(Sim(n)) and Sim(n) is even), se-
lect the next action of S (i.e. the action π would select

if there were r − Sim(n)
2

rounds left).
Note that by the definition of Sim, it is always the case
that T (n) ≥ S(Sim(n)). Further, note that at the beginning
we are in step 1 of the strategy: T (2) = (1, 0) > (0, 0) =

from an arm are queued up and will come out the same no
matter when the arm is pulled: they are not a function of
the times at which the arm is pulled, or the payoffs from
any other arms. However, our argument still holds if the
payoffs are time-dependent and/or dependent on other arms
as long as the teacher has no knowledge of the nature of this
dependency.



S(Sim(2)). It remains to show that the sequence T resulting
from using this policy π′ has an expected value greater than
that of S. We prove this in two cases.

Case 1: There is a least n, call it n′, such that T (n) =
S(Sim(n)) and Sim(n) is even.

Until that point, the teacher keeps pulling Arm∗. We can
thus show that Sim(n′) < n′ as follows. After n′ steps,

there are exactly n′

2
u’s and v’s in the T sequence (T1(n′) +

T2(n′) = n′

2
). But after n′ steps, there are at least n′

2
+1 u’s

and v’s in the S sequence (S1(n′)+S2(n′) ≥ n′

2
+1) because

the first value is a u and all the learner’s actions are u’s or
v’s. Thus the simulation of S always lags behind T in terms
of number of steps simulated: Sim(n′) < n′.

Note that if it is ever the case that T (n) = S(Sim(n))
and Sim(n) is odd (it is the learner’s turn to act in S),
then the teacher will pull Arm∗ once more after which the
learner will do what it would have done in sequence S after
Sim(n) steps. That will cause both T (n) and S(Sim(n))
to increment by the same amount, and Sim(n) to be even.
Thus in the subsequent round, the teacher will switch to
step 2 of its strategy.

Once the teacher has switched to step 2 of its strategy,
then it will continue using that step: sequence T will follow
S exactly for its remaining 2r−n′ steps. To see that, observe
that in each round, T (n) and S(n) will increment by the
same amount, and Sim(n) will increment by exactly 2, thus
remaining even.

Now compare the sequences T and S. Up until the point of
step n′ in T and Sim(n′) in S, the only difference between the
sequences is that there are n′− Sim(n′) extra pulls of Arm∗
in T . There then follow 2r − n′ steps in the two sequences
that are identical. The final n′ − Sim(n′) steps in S include
at least one pull of Arm1 or Arm2 (the learner’s first action).
Thus the expected value of T − S (the difference between
the sum of their expected values) is at least µ∗ − µ1 > 0.

Case 2: It is never the case that T (n) = S(Sim(n)) and
Sim(n) is even. Then the teacher continues playing Arm∗
throughout the T sequence (r times).

First, by the same argument as above, since the teacher
always pulls Arm∗, it is always the case that Sim(n′) < n′.

Next, we argue that T2(2r) = S2(Sim(2r)). That is, after
Sim(2r) steps, the next step in S is a pull of Arm2 (because
x̄2 > x̄1). Otherwise, S could be simulated another step
further by consuming another v value from T . We show this
by induction on the number of steps in the T sequence i,
showing that it is always the case that T2(i) = S2(Sim(i)).

This equation holds at the beginning (e.g. when i = 2):
T (2) = (1, 0), S(Sim(2)) = (0, 0), so T2(2) = S2(Sim(2)) =
0.

Now assume T2(i− 1) = S2(Sim(i− 1)). There are three
possibilities for the next action in T . If it is a pull of Arm∗
or Arm1, then T2(i) = T2(i − 1) and Sim(i) = Sim(i −
1) =⇒ S2(Sim(i)) = S2(Sim(i − 1)), so the condition still
holds. If it is a pull of Arm2, then T2(i) = T2(i− 1) + 1 and
S2(Sim(i)) = S2(Sim(i−1))+1 because the new u value can
be used to continue the simulation of S by at least one step,
and there are no additional u’s in T to increase S2(Sim(i))
any further. Therefore T2(i) = S2(Sim(i)).

Note that in general, S1(Sim(i)) could be much greater
than S1(Sim(i − 1)): there could be several v values from
T that are then able to be used for simulating S. But if
all of the available v’s from T are used, we get that T (i) =

S(Sim(i)), which violates the Case 2 assumption and puts
us into Case 1 above (or will put us there one round later if
Sim(i) is odd).

Thus we have shown that after all 2r steps of T , the next
action in the simulated version of S (step Sim(2r) + 1) must
be Arm2.

Finally, we compare the expected values of T and S. As
above, there are several values in common between the two
sequences, namely exactly the u’s and v’s from T that were
used to simulate the first Sim(2r) steps of S (as well as
possibly some pulls of Arm∗). Let the sum of these u and v
values be called common.

Now consider the values of T and of S that are not in
common: those values from T that were not used to simulate
S, and those values in S that come after the simulation
ended (after step Sim(2r)), plus all of the pulls of Arm∗.
All of these “uncommon” values in T are from Arm∗ and
Arm1. In fact, exactly r of the values are from Arm∗ and
exactly T1(2r) − S1(Sim(2r)) of them are from Arm1. The
uncommon values from S include at most r − 1 from Arm∗
(because the first teacher action was Arm2), and at least one
from Arm2 (step Sim(2r) + 1).

Thus the expected values of the two sequences satisfy the
following inequalities.
EV(T ) ≥ r ∗ µ∗ + [T1(2r)− S1(Sim(2r))] ∗ µ1+ common
EV(S) ≤ (r − 1) ∗ µ∗ + [T1(2r) − T1(Sim(2r))] ∗ µ1 + µ2+
common
Thus EV(T )-EV(S) ≥ µ∗ − µ2 > 0.

Therefore in both cases, the expected value of sequence T
exceeds that of sequence S. Since S is the best the teacher
can do if it starts with Arm2, and T is a lower bound on
how well it can do otherwise, the teacher should never pull
Arm2.

4. ALGORITHM FROM SECTION 4
The dynamic programming algorithm is detailed as pseu-

docode in Algorithm 1 and explained below. For every
reachable combination of values, the algorithm computes
the optimal action for the teacher (Arm1 or Arm∗), denoted
Act[·]; and the expected long-term value of taking that ac-
tion, denoted Val[·]: the expected sum of payoffs for the
optimal action and all future actions by both the teacher
and the learner.

First, in Line 1, the expected value with zero rounds re-
maining is defined to be 0 since there are no more actions
to be taken. Then, in the body of the nested for loops
(Lines 7–49), the expected values of both teaching by pulling
Arm1 (EVt) and not teaching by pulling Arm∗ (EVnt) with
r rounds remaining are computed based on the stored values
for the possible resulting states with r−1 rounds remaining.

The values of these possible resulting states are denoted as
EVabcd where a, b, c, and d denote the increments tom1, n1,m2,
and n2 respectively between rounds r and r − 1 (Lines 7–
18). For example, Line 27 computes the expected value for
not teaching when n1, n2 > 0 and m1

n1
> m2

n2
. In the current

round, the teacher exploits (does not teach) by pulling Arm∗
and the learner pulls Arm1, leading to an expected return
of p∗+p1. This value is then added to the expected value of
the resulting state with r− 1 rounds remaining. Due to the
learner’s action, the value of n1 is incremented by 1. With
a probability of p1, this action returns a payoff of 1, causing
m1 to be incremented as well. With a probability of 1− p1,
m1 is not incremented. Thus the expected value after the



current round is p1EV1100 +(1−p1)EV0100. Note that there
are special cases for the situations in which n1 and/or n2 are
0 corresponding to the assumed learner behavior as specified
in Section 2 of the main paper.

Once the expected values of teaching and not teaching
have been computed, they are compared in Line 43, and
the Act[·] and Val[·] entries are set according to the result.
Finally, the appropriate action with R rounds remaining is
returned (Line 55). Note that by storing the optimal actions
along the way (Act[·]), the algorithm eliminates the need to
do any additional computations in the future as the number
of rounds remaining (r) decreases to 1: for all possible results
of the teacher’s and learner’s actions, the optimal teacher
action in all future rounds is already stored.

Algorithm 1 TeachOrExploit(M1, N1, M2, N2, R)
Require: p1, p2, p∗
1: Define Val[m1, n1, m2, n2, 0] = 0, ∀m1, n1, m2, n2

2: for r = 1 to R do
3: for n1 = N1 to N1 + 2(R− r) do
4: for m1 = M1 to M1 + (n1 −N1) do
5: for n2 = N2 + max(0, R− r − (n1 −N1)) to

N2 + (R− r)−max(0, n1 −N1 − (R− r)) do
6: for m2 = M2 to M2 + (n2 −N2) do
7: EV1100 = Val[m1 + 1, n1 + 1, m2, n2, r − 1]
8: EV0100 = Val[m1, n1 + 1, m2, n2, r − 1]
9: EV0011 = Val[m1, n1, m2 + 1, n2 + 1, r − 1]

10: EV0001 = Val[m1, n1, m2, n2 + 1, r − 1]
11: EV2200 = Val[m1 + 2, n1 + 2, m2, n2, r − 1]
12: EV1200 = Val[m1 + 1, n1 + 2, m2, n2, r − 1]
13: EV0200 = Val[m1, n1 + 2, m2, n2, r − 1]
14: EV1111 = Val[m1+1, n1+1, m2+1, n2+1, r−

1]
15: EV1101 = Val[m1 +1, n1 +1, m2, n2 +1, r−1]
16: EV0111 = Val[m1, n1 +1, m2 +1, n2 +1, r−1]
17: EV0101 = Val[m1, n1 + 1, m2, n2 + 1, r − 1]
18: if n1 = 0 and n2 = 0 then
19: EVnt = p∗ + .5(p1(1+EV1100) + (1 −

p1)EV0100) + .5(p2(1+EV0011)+
20: (1− p2)EV0001)
21: else if n1 = 0 then
22: EVnt = p∗+p1(1+EV1100)+(1−p1)EV0100

23: else if n2 = 0 then
24: EVnt = p∗+p2(1+EV0011)+(1−p2)EV0001

25: else if m1
n1

> m2
n2

then

26: EVnt = p∗+p1+p1EV1100+(1−p1)EV0100

27: else
28: EVnt = p∗+p2+p2EV0011+(1−p2)EV0001

29: end if
30: if n2 = 0 then
31: EVt = p1 + p2 + p1p2EV1111 + p1(1 −

p2)EV1101 + (1− p1)p2EV0111+
32: (1− p1)(1− p2)EV0101

33: else if m1
n1+1

> m2
n2

then

34: EVt = 2p1 + p1p1EV2200 + 2p1(1 −
p1)EV1200 + (1− p1)(1− p1)EV0200

35: else if m1+1
n1+1

< m2
n2

then

36: EVt = p1 + p2 + p1p2EV1111 + p1(1 −
p2)EV1101 + (1− p1)p2EV0111+

37: (1− p1)(1− p2)EV0101

38: else
39: EVt = p1(1 + p1(1+EV2200) + (1 −

p1)EV1200) + (1− p1)(p2(1+EV0111)+
40: (1− p2)EV0101)
41: end if
42: if EVnt >EVt then
43: Act[m1, n1, m2, n2, r] =Arm∗
44: Val[m1, n1, m2, n2, r] =EVnt

45: else
46: Act[m1, n1, m2, n2, r] =Arm1

47: Val[m1, n1, m2, n2, r] =EVt

48: end if
49: end for
50: end for
51: end for
52: end for
53: end for
54: Return Act[M1, N1, M2, N2, R]


