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Abstract 
 

Increasingly, researchers and developers of knowledge based systems (KBS) have 
been attempting to incorporate the notion of context. For instance, Repertory Grids, 
Formal Concept Analysis (FCA) and Ripple-Down Rules (RDR) all integrate either 
implicit or explicit contextual information. However, these methodologies treat 
context as a static entity, neglecting many connectionists’ work in learning hidden 
and dynamic contexts. This thesis argues that the omission of these higher forms of 
context, which allow connectionist systems to generalise effectively, is one of the 
fundamental problems in the application and interpretation of symbolic knowledge.  

This thesis tackles the problems of KBSs by addressing these contextual 
inadequacies over a three stage approach: philosophically, methodologically and 
through the application of prudence analysis. Firstly, it challenges existing notions 
of knowledge by introducing a new philosophical view referred to as Intermediate 
Situation Cognition. This new position builds on the existing SC premise, that 
knowledge and memory is re-constructed at the moment required, by allowing for 
the inclusion of hidden and dynamic contexts in symbolic reasoning.  

This philosophical position has been incorporated into the development of a 
hybridised methodology, combining Multiple Classification Ripple-Down Rules 
(MCRDR) with a function-fitting technique. This approach, referred to as Rated 
MCRDR (RM), retains a symbolic core acting as a contextually static memory, 
while using a connection based approach to learn a deeper understanding of the 
knowledge captured. This analysis of the knowledge map is performed dynamically, 
providing constant online information. Results indicate that the method developed 
can learn the information that experts have difficulty providing. This supplies the 
information required to allow for generalisation of the knowledge captured. 

In order to show that hidden and dynamic contextual information can improve the 
robustness of a KBS, RM must reduce brittleness. Brittleness, which is widely 
recognised as the primary impediment in KBS performance, is caused by a system’s 
inability to realise when its knowledge base is inadequate for a particular situation. 
RM partly addresses this through providing better generalisation; however, 
brittleness can be more directly addressed by detecting when such inadequacies 
occur. This process is commonly referred to as prudence analysis. The final part of 
this thesis proves the methods philosophical and methodological approach by 
illustrating how RM’s use of hidden and dynamic contextual information, allows 
the system to perform this analysis. Results show how experts can confidently leave 
the verification of cases when not warned, reducing brittleness and the knowledge 
acquisition effort.  

This thesis shows that the idea of incorporating higher forms of context in symbolic 
reasoning domains is both possible and highly effective, vastly improving the 
robustness of the KBS approach. Not only does this facilitate improved 
classification through better generalisation, but also reduces the KA effort required 
by experts. Additionally, the methodology developed has further potential for many 
possible applications across numerous domains, such as Information Filtering, Data 
Mining, incremental induction and even reinforcement learning.  
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  11  
1 IInnttrroodduuccttiioonn  

It’s a funny thought that, if Bears were Bees,  
They’d build their nests at the bottom of trees.  
And that being so (if the Bees were Bears),  
We shouldn’t have to climb up all these stairs.  (Milne 1926, p6) 

Since the advent of the computer, people have been searching for ways to make 

these machines think, learn and acquire knowledge. There have been a number 

of methods applied to such tasks with varying degrees of success across many 

problem domains. For instance, artificial neural networks (ANNs) and other 

function fitting methods have shown great ability at being able to learn 

generalised solutions to problems. These systems can provide reasonable results 

to situations never previously seen. However, they generally require extensive 

and repeated training or calculation to form the required function.  

Another highly successful approach to AI is through encoding human 

knowledge directly, generally referred to as Knowledge Based Systems (KBS) 

or Expert Systems (ES)1. Systems using such knowledge can provide extremely 

accurate classification. Additionally, once knowledge has been added to them it 

can be used immediately without needing repeated training. However, unlike 

ANNs, KBSs generally fail completely when faced with previously unseen 

situations, especially when they require knowledge from outside the system’s 

domain. Moreover, unless a human expert is checking each conclusion there is 

no way for such a system to realise when it is arriving at incorrect conclusions.  

The differences between these dichotomous approaches were further 

investigated by Gaines (2000). He looked at where within the overall framework 

for human activity, each group of methods have been applied with the greatest 

success. Figure 1-1 shows a reproduction of Gaines’s (2000) Levels and Worlds 

of Being diagram, which attempts to capture the entire conceptual framework for 

human psychology, sociology, action and knowledge. The central region of this   

                                                 
1  Both Knowledge Based Systems (KBS) and Expert Systems (ES) refer to the same type of system.  
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Figure 1-1: Conceptual framework for human psychology, sociology, action and 
knowledge. The central region shows a three-layer model of human 
entities. The four outer worlds set human entities within the context of 
Popper’s (1968) worlds. The boxes on the left of the central core identify 
various models of knowledge transfer in relation to the three layers. The 
boxes to the right of the central core relate the three layers to various 
products of human entities. This model is a replication of the levels of 
worlds of being model (Gaines 2000, p 115).  

diagram presents a three layer model of human entities, such as people, 

companies or governments. Gaines (2000) claims that connectionist approaches 

have emulated the interaction level with increasing effectiveness, while digital 

computation has done similarly well with the top brain functions of reasoning.  

1.1 Conceptual Overview 

Gaines’s (2000) investigation into these different approaches found that the 

central area concerning the processes of practice is relatively untouched. 

Conceptually this thesis is interested in finding an approach that goes some way 

to filling this gap. This section will investigate the process of practise and how it 

relates to deeper forms of contextual representations of knowledge. This directly 

leads to this dissertation’s algorithmic inspiration. 
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1.1.1 Process of Practise 

In human psychology and sociology the process of practice is where the 

behaviour of people or organisations’ is not governed by logic or a reflexive 

response to an event. Rather, they are ruled by their cultural, mental or social 

state at the time. For instance, a person’s habitus, or predisposition to be 

effected by something (WordNet 2003), can significantly alter their response to 

a particular set of facts (Gaines 2000). One type of habitus, where behaviour is 

induced by normative rules, such as government codes or through business 

operations, has been successfully modelled by KBSs. However, these can still 

be problematic as normative rule sets are generally incomplete and require 

significant interpretation (Op cit). Gaines (2000) claims that the failure to 

adequately model the remaining process of practice is the “…greatest 

impediment to the development of expert systems” (Gaines 2000, p 115). 

Currently there are two approaches whittling away at the region of practice. 

Firstly, connectionist researchers have been investigating the emulation of 

higher brain functions. Generally, connectionist work has struggled to develop 

systems that model higher brain functions as they tend to be mostly reactive 

(Gaines 2000). Machine learning methods like temporal difference learning can 

be integrated with connectionist approaches providing the ability to spread 

rewards over temporally separated events in a generalised form (Sutton and 

Barto 1998). This offers the ability to learn some simple actions (Op cit). 

However, these systems struggle to learn the amount of knowledge required for 

complex higher brain functions, thereby, limiting their effectiveness. 

Simultaneously, approaches such as Lenat’s (1995) Cyc project, have attempted 

to extend the application of reason downward through the codification of 

general knowledge in a KBS. This approach is attempting to gain the 

connectionists’ ability to generalise through brute force.  

The most promising method for modelling the central region of practice 

though, as claimed by Gaines (2000), is through a system using multiple rule 

sets based on exceptions within a prioritized hierarchy. Furthermore, Gaines 

(2000) claims that Multiple Classification Ripple-Down Rules (MCRDR) (Kang 

and Compton 1992; 1994; Kang et al. 1995) goes some way to providing such a 

knowledge base structure. The multiple conclusions allow for a less rigid 
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outcome, which permits the resolution of conflicting constraints by providing a 

number of alternate possibilities. However, such a system still only provides 

specific alternate classifications rather than a general constraint, as Gaines 

(2000) claims is needed. Thus, a more general system of selecting admissible 

actions that satisfy the identified constraints, but are otherwise indeterminate, is 

more capable of realistically modelling human practice (Gaines 2000).  

1.1.2 Context 

The strength of Ripple-Down Rule (RDR) based methods in partially addressing 

the problem of modelling habitus, is based on their incremental nature, 

exception based knowledge structure and the ability to capture static contexts. 

Context can be thought of as the starting state or assumptions prior to 

inferencing. In the case of RDR, context is determined during inferencing. This 

allows simple maintenance within the context determined, through rule 

exceptions. This contextual based maintenance allows RDR based 

methodologies to capture more transient and tacit knowledge (Richards and 

Busch 2000; 2001). This is without the need to globalise knowledge to a general 

context, where no prior knowledge or assumptions are required before codifying, 

unlike many other KBS methodologies, such as KADS.  

This failure of most methodologies to consider context has significantly 

hampered their knowledge acquisition process. However, methods, including 

RDR based techniques, that do incorporate either implicit or explicit context, 

assume that it is a priori, and therefore, deductive. This assumption leads to 

static representations of contextual based knowledge. However, context in 

certain situations could be considered a posteriori, and therefore, inductive 

(Brezillon 1999). For instance, during a conversation the context or assumptions 

of the people involved is constantly altered as the interaction meanders through 

different topics. Each new topic requires a different set of assumptions. 

Situations such as this require a dynamic and changeable representation. 

Dynamic contexts require the ability to have multiple start states that result in 

the same or similar contexts. Alternatively, a number of similar starting 

assumptions can result in many different contexts. 
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1.1.3 Hidden Contexts 

Brezillon (1999) suggests that dynamic context can only be modelled during the 

solving of a problem or through interaction, and thus not directly coded in a 

static structure. A number of authors, such as Widmer and Kubat (1996) go 

further, suggesting that these new contexts are often differentiated by variables 

or facts that are hidden, even to those altering their contextual position. Such 

contexts are sometimes referred to as hidden contexts.  

In this thesis the idea of a hidden context is a one that is only identifiable 

through influences on a system that can not be captured, such as human emotion 

or intuition. These situations arise where aspects of a contextual situation are 

hidden from the current state and the path taken to reach that position. A hidden 

context differs from a dynamic context due to the reason for the contextual 

position is unknown, whereas dynamic contexts are changing over time. 

Furthermore, the cause of a dynamically changing context can potentially be due 

to the influence of a hidden context. 

The dynamic, and generally hidden, contextual nature of habitus, potentially 

prevents contextually static approaches from being able to encroach further into 

the central region of practice. It is common knowledge that different people 

react differently to particular events. Furthermore, the same person may react 

differently to the same event at different times. For instance, people will often 

wait to tell someone some news because they are ‘waiting for the right time’. 

This hidden and dynamic context of habitus means facts about a situation will be 

interpreted differently, resulting in a different response. Thus, the contextually 

static system’s inability to incorporate this contextual information hinders their 

ability to accurately model the process of practice. 

While proving the existence of such types of contexts is not the core of this 

thesis, the idea of these forms of contexts is one of the driving influences in the 

methodological design and in bridging the gap of the process of practise. The 

methodology developed in this thesis is designed at capturing these hidden 

contexts and goes some way to learning dynamic contexts. As shown in chapter 

6, the success of the system to improve on the performance of a static 

methodology in many domains, goes some way to justifying that some form of 

contextual information is present.   
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1.2 Thesis Objectives 

This thesis has been inspired philosophically, by the idea of finding a potential 

solution to the modelling of human practice by filling in the gap between the 

two opposing streams of research: ANNs and KBSs. Such a system would need 

to be able to handle hidden and dynamic contexts, as well as be able to 

generalise to some degree. This requires similar behaviour to the traditional 

strengths of connection based approaches. Yet in order to meet the higher brain 

function requirements of habitus, the system should also be able to acquire and 

retain knowledge quickly. This requires similar behaviour to the traditional 

symbolic approaches. In order to achieve such opposing goals, the core of this 

thesis is interested in developing a system capable of discovering hidden context 

and constantly adjusting for their dynamically shifting nature in a primarily 

symbolic based system.  

These ideas inspired the aim of this thesis to extend an RDR based method’s 

ability to represent knowledge in context, to also find relationships between 

those contexts. Such relationships represent a form of hidden context. If these 

relationships could be represented in a generalised form, which allowed for 

simple alterations then the methodology would also be capable of learning and 

adjusting these contextual relationships dynamically. The combination of these 

abilities would provide a form of a posteriori analysis that could provide 

reasonable classification when dealing with unique situations.  

This inspiration and the derived aims led to the notion of combining a KBS 

with an ANN. The KBS selected for use in this thesis was MCRDR, as this is 

currently one of the methodologies most capable of modelling the process of 

practice (Gaines 2000). If such an amalgamation is possible then this could 

incorporate the continuous learning and generalisation ability of the ANN, on 

top of the immediate incremental knowledge acquisition of MCRDR. Such a 

system would be trainable in any task for which both a reward structure could be 

developed and a source of expert knowledge was available. 

The second area of interest to this thesis considers the idea that if an 

algorithm could be developed that met the above criteria then: 

What possibilities would that offer?  
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While this is far too broad a question to be fully addressed by this thesis, 

potentially systems that incorporated higher forms of context could open up new 

and interesting areas for future research. For instance, a symbolic approach with 

a dynamic context based representation could be significantly more proactive 

during knowledge acquisition and develop its own meta-knowledge. 

Additionally, it could also be applied in application domains not normally 

associated with symbolic systems, such as knowledge discovery and 

reinforcement learning.  

In this work the aim is to address one major possibility in relation to how the 

project’s proposed algorithm could be applied. It aims to investigate how 

extracted hidden and dynamic contextual based knowledge could be used by a 

KBS for self analysis. By using this derived information, is it possible to detect 

the limits of its own knowledge? If the frontier of a rule base’s knowledge can 

be detected, then it would be possible to identify situations where knowledge, 

beyond what is currently known, is needed to correctly classify a particular case 

or situation.  

While not directly studied in this project, other areas of interest in the 

application of the proposed method is how its hidden and dynamic contextual 

information can aid in traditional domains, such as Information Filtering (IF), 

Knowledge Discovery in Databases (KDD), as well as interesting new avenues 

such as incremental induction. A second view of this work is how such an 

amalgamation could facilitate the use of expert knowledge within a neural 

network. Traditionally, such networks do not allow for an expert in the field to 

provide assistance to the network’s ability to learn. This could be significantly 

useful in a number of areas where there is some existing expert knowledge 

already and the network is required to build on that knowledge rather than to 

start learning from scratch. This would provide a much faster learning system 

than traditional networks, without losing generalisation. 

It should be noted, that while this thesis is inspired by developing a method 

capable of being applied to the process of practice, it is not feasible to directly 

prove the developed algorithm is suitable. This could only be determined 

through years of future development of applications requiring process of 

practice type solutions. Instead, prudence analysis is used as one example of its 

performance in an area requiring additional contextual meta-knowledge.  
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1.3 Thesis Hypothesis 

The above aims can be summarised into two hypotheses that this thesis will 

answer in relation to the hybrid system developed.  

Can careful hybridisation of two existing learning techniques, 
utilise the advantages of both by producing an improved 
learning system that is greater than the sum of its parts?  

This first hypothesis essentially addresses the methodology’s proof of 

concept. As previously discussed, fundamentally the advantages and 

disadvantages of ANNs and KBSs are essentially dichotomous. The advantage 

of ANNs is that they are good at generalisation corresponding to KBSs’ greatest 

weakness. Likewise, a KBS learns immediately upon a new rule being added to 

the system2, whereas ANNs require numerous viewings of the same or similar 

cases to successfully learn. The above hypothesis asks whether the combination 

of these techniques result in a methodology that is capable of immediate 

learning of a KBS, while also being able to generalise like traditional ANNs.  

In the general field of classification, and even in prediction tasks, such a 

capability is certainly of great value. Faster learning with maintained 

generalisation while incorporating expert knowledge into the training of a neural 

network, by itself, could be applied successfully in many potential applications. 

However, rather than exploring that avenue, this thesis will concentrate on the 

implications for KBS applications by addressing the second hypothesis: 

Does the discovery of hidden and dynamic relationships 
between multiple contexts within MCRDR offer significant and 
useful information? 

This second hypothesis asks whether the resulting methodology’s discovered 

meta-knowledge can be utilised to provide useful information. While the 

possibilities are really up to the imagination of those utilising it, this thesis will 

concentrate on the single application area of prudence analysis. The hypothesis 

is correct if the system can use the information learned to accurately produce 

warnings when further knowledge is required. 

                                                 
2  This ability is clearly visible in RDR based methodologies, however, it is hidden in more traditional 

KBSs. In these systems the effect of rules being added are not visible until the system as a whole is 
put online. Fundamentally though, the added rules still represent a form of immediate learning. 
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1.4 Thesis Overview 

The methodology developed in this thesis, builds upon an observed weakness in 

the Multiple Classification Ripple-Down Rules (MCRDR) methodology. The 

MCRDR inferencing process determines individual classifications, which are all 

uniquely derived without any consideration for what other paths may also have 

been followed. This represents a significant lack of cohesion between the 

multiple classifications found. This dissertation takes the position that because a 

case was classified in a particular set of classes, there must be either a conscious 

or subconscious relationship between those classes in the expert’s mind. This 

relationship essentially identifies a higher level of contextual meaning and could 

be considered to be a hidden context.  

1.4.1 Methodology 

The algorithm developed in this thesis, referred to as Rated MCRDR (RM), 

seeks to identify these hidden relationships. This involves online analysis of the 

actual MCRDR knowledge map during the inferencing and acquisition 

processes. The extraction of information about the structure of the knowledge 

stored in an MCRDR knowledge base (KB) is not unique. For instance, a 

significant body of work by Richards (1998a) investigated using Formal 

Concept Analysis (FCA) to find hidden concepts in a KB structure. However, 

this was a once off static analysis and was more useful as a user’s tool for 

knowledge reuse, rather than for actively improving learning or for handling 

dynamic contexts (3.4) (Op cit). 

Rated MCRDR, described in its simplest form (see chapter 5 for a full 

description), combines MCRDR with an artificial neural network. These 

methods are hybridised in such a way that the network is able to learn patterns 

of conclusions found from inferencing through the knowledge base. The 

position of rules within the MCRDR structure represents the context of the 

knowledge (Compton and Jansen 1988; Kang 1996) while the network’s ability 

to adjust its function over time provides a means of learning dynamically 

changing contextual patterns.  

This amalgamation, while appearing simplistic conceptually, is by no means 

trivial. The primary difficulty in the methodology is actually finding a way to 
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use the output from the tree structure as an input for an ANN. The difficulty 

arises from the MCRDR structure being an incrementally growing rule base. 

Thus, if we wish to attach a network to this growing structure then the network 

must also increase its input space in parallel with the tree. However, nowhere in 

the neural network literature, or any other function-fitting literature, has 

anybody attempted to use such a system in an environment where the input 

space is constantly growing. Therefore, there are no existing techniques that can 

be used to accomplish this task.  

Rather than inventing a new function-fitting algorithm from scratch, this 

project has looked at a range of methods and attempted to find ones that hold 

some form of extendable nature. Many very powerful techniques, however, had 

to be discounted, due to an inability to find a way of extending their input space 

successfully. The methods found with some form of growth potential, were then 

altered significantly allowing for their use in RM. As a result a number of 

techniques were developed for learning the output patterns. 

1.4.2 Classification and Prediction 

Each of the methods developed were tested in both classification and prediction 

based problem domains. In this thesis a classification task is one that tests a 

systems ability to identify individual groupings from a finite collection for each 

case. A prediction task, on the other hand, involves identifying a precise value or 

rating from an infinite range for each case.  

In this project two types of tests were conducted in both classification and 

prediction. The first experiment investigated the ability of the different methods 

at generalisation. This involved providing different amounts of training data and 

observing how accurately the methods were then able to classify or rate 

previously unseen cases. The second experiment investigated the ability of the 

various methods in an online domain. This involved showing cases in series 

without previous training. The level of accuracy in classification and rating were 

then recorded over time. These tests were designed to test the different methods’ 

performances so they could be compared against each other finding which the 

best performers were.  

The best performing method was then further compared against the neural 

network used in the selected method and MCRDR by themselves. These tests 



Chapter 1: Introduction  Richard Dazeley 

 

    
 11 

were carried out on the same tasks and datasets. The results from these 

experiments showed that the hybridisation performed in RM provided a vast 

improvement over the original individual methods, which answered the first of 

the dissertation’s hypotheses.  

1.4.3 Prudence Analysis 

 While this hybridised technique shows great promise in improving learning 

and generalisation, the possibility of using the information in more elaborate 

ways was further explored. This exploration was through its application in the 

field of prudence analysis. Prudence analysis is the process of self verification 

of the active knowledge base during inferencing. It involves the KBS 

determining whether the classification concluded is correct. When it believes it 

may be wrong it warns the expert allowing them to check its validity.  

Through careful application of RM, the method is shown to be a powerful 

predictor of the knowledge base’s accuracy. Results show an improved 

performance, with much greater versatility, over previous attempts at prudence 

checking. Prudence analysis is potentially a very powerful tool. Primarily it 

frees an expert from the need to manually check every classified case, which 

previously has been a major problem with RDR based methodologies. It also is 

more useful than standard verification and validation techniques as they only 

indicate the completeness of a knowledge base with hypothetical, machine 

generated cases.  

The true power of RM is further shown by its ability to use prudence 

analysis in a real world environment, using human knowledge. RM is used in 

conjunction with the MonClassifier (Park et al. 2003; 2004a) utility. 

MonClassifier is a monitoring tool for the World Wide Web (WWW). After 

being assigned a number of sites to be monitored, such as news sites, it will 

categorise every new addition into its database. This categorisation has been 

traditionally performed through MCRDR. The system has been highly effective, 

however, like all RDR based systems the expert must check each new article to 

ensure it has been correctly classified. This task is time consuming and limits 

the power of having such a classification tool. RM has been used to analyse the 

process to see how accurately it is able to predict misclassifications. The results 

highlight how useful RM can be in such environments. 
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1.5 Thesis Organisation 

This thesis is presented in a simple and straight forward structure. At the 

highest level it has been broken up into three distinct parts. Each part is broken 

up further into a number of chapters, making a simple progression through the 

thesis. Finally, after the three parts chapter 9 provides a conclusion to the thesis. 

Following is a brief description of each part and chapter: 

Part 1: Philosophy and Literature 

The first part discusses the philosophical considerations, along with a detailed 

review of literature and background material, relevant to this thesis.  

Chapter 2: Knowledge Based Systems: Philosophy and Systems 

This chapter initially reviews current philosophically based ideas on ‘what is 

knowledge’ and how they apply to the field of symbolic learning. It explores 

both the historical perspectives and why new philosophies have been sought 

over the years. This chapter also discusses the more recent notions of situated 

cognition, along with this dissertation’s extension to these ideas. The aim of 

this chapter is to place the research carried out in this thesis within the 

contemporary philosophical thinking and to discuss how RM addresses some 

of these issues. 

Chapter 3: Ripple-Down Rules 

This chapter provides a review of the existing RDR based methodologies. 

Initially, it explains the base methodologies of RDR and MCRDR in detail 

and follows this with a very brief overview of some of the techniques 

developed beyond these original methods. Additionally, it will discuss in 

more detail other work that has previously been developed for finding hidden 

context through analysing KB structure. 

Chapter 4: Artificial Neural Networks 

The final literature review chapter is essentially provided to ensure the reader 

is sufficiently familiar with artificial neural network technology, in order to 

follow the later discussions on the development of RM. It briefly covers both 

the historical progression of ANNs, as well as an overview of the main 

methods considered in this thesis. Finally, the chapter also briefly discusses 

other function-fitting methodologies. 
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Part 2: Methodology and Initial Results 

The second part fully details the various possible implementations and presents 

the initial results. These results justify the implementation decisions made in 

developing the methodologies, along with addressing the first hypothesis.  

Chapter 5: Rated MCRDR (RM) Methodology 

This chapter describes the RM methodology in detail. There are seven 

variations of RM developed, each providing different abilities and 

weaknesses. This chapter explains why each variation was believed to have 

merit to warrant its implementation and why particular design decisions 

were made. Additionally, it formulates the mathematical equations used in 

various components. Finally, it also elaborates on why some function fitting 

methods could not be applied to RM. 

Chapter 6: Rated MCRDR (RM) Initial Results 

This initial results chapter has two main purposes. The first is to fully test 

each method developed in a small number of differing tasks and to use the 

results to identify which algorithms operated most successfully. The second 

is to compare the most successful techniques with MCRDR and the ANN 

method used in RM. These tests aim to both justify the methodology 

developed and to answer the first hypothesis. 

Part 3: Prudence Analysis 

Finally, the third part provides two chapters investigating the application of RM 

in the prudence analysis domain. This part of the thesis is aimed at showing how 

RM addresses the second hypothesis. 

Chapter 7: Discovering the Knowledge Frontier 

This is the first of this dissertation’s two prudence analysis chapters. It 

illustrates one area of great potential for RM in significantly improving 

knowledge acquisition. This chapter details two ways the algorithm can be 

easily used for prudence analysis and compares their effectiveness. 

Secondly, it identifies how the RM warning system compares to previous 

work in prudence checking and how the results can be altered to cater for 

different situations. Finally, it looks at how effective the system is when the 

user only checks cases for which they are warned, and what is the 

consequence on the final knowledge base developed. 
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Chapter 8: MonClassifierRM: Venturing into the Real World 

This second chapter on prudence analysis provides some key results 

identifying the methodology’s true power, by using it in a real world 

application. This chapter is built around the addition of RM to the 

MonClassifier utility developed by Sung Sik Park. It highlights how the 

algorithm performs extremely well when used with human expertise on a 

real knowledge acquisition task. This chapter also investigates the effect of 

using the warnings in a real world environment. 

Chapter 9: Conclusion 

The final chapter provides a review of the thesis as a whole, highlighting the 

important results and how they answer the two hypotheses. As this thesis 

develops a new methodology that has potential to be applied in numerous 

problem domains, this chapter will also discuss a number of other possible 

applications.  

1.6 Summary 

This introductory chapter has broadly discussed the underlying philosophical 

inspirations underpinning this thesis. Primarily, this revolves around finding a 

method for modelling the process of practice, through finding dynamic 

relationships between static contexts in an MCRDR knowledge base. This 

chapter also identified and discussed the two hypotheses that this thesis aims to 

address. Finally, this chapter very broadly described the algorithm developed in 

this project and the areas it may be applied, such as classification, prediction and 

prudence analysis tasks. 
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2 KKnnoowwlleeddggee  BBaasseedd  SSyysstteemmss::  PPhhiilloossoopphhyy  aanndd  

SSyysstteemmss  

‘It’s like this,’ he [Pooh] said, ‘When you go after honey with a 
balloon, the great thing is not to let the bees know you’re 
coming. Now, if you have a green balloon, they might think you 
were only part of the tree, and not notice you, and if you have a 
blue balloon, they might think you were only part of the sky, 
and not notice you, and the question is: Which is most likely?’  
  (Milne 1926, p11) 

A basic axiom of software development is that any completed system will need 

to be changed and updated throughout its life span. This is particularly important 

for knowledge based systems, as Buchanan and Smith (1989) outlines that one 

of the five desirable attributes of such systems is that they retain flexibility. 

Conceptually, these systems are designed for adding new knowledge easily, due 

to being made up of many individual atomic pieces of knowledge or symbols. 

However, generally each piece is finely woven together with many of the other 

pieces, making a complex structure of relationships that is, more often than not, 

impossible to add new components to without introducing errors. 

Difficulties can also arise during a system’s construction due to the major 

bottleneck in the deployment of expert systems, knowledge engineering 

(Feigenbaum 1977). Knowledge must be elicited from an expert and 

transformed into a form that is suitable for insertion into the knowledge base 

(KB), such that it adds to the overall knowledge and does not create 

contradictions. However, conflicting knowledge from different experts or even 

from only one expert renders this highly problematic. For instance, Shaw (1988) 

reports that experimental results show that two experts, at best, only agree on 

33.3% of the knowledge base constructed and, at worst, merely 8.3%. 

Additionally, communication problems between the experts and the knowledge 

engineers cause the knowledge engineers to have to transform the supplied 

knowledge into an appropriate form for the knowledge base.  
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One solution to these engineering and maintenance issues has been through 

using ideas from situation cognition (SC). SC rejects the notion, that knowledge 

is a static entity and once captured remains correct. Instead, it claims that 

knowledge is dependent on the context of its use and that knowledge is 

generated or, more accurately, reinterpreted at that point. There have been many 

methodologies developed that attempt to incorporate the context of knowledge. 

One such group of methodologies, which uses knowledge in context and directly 

targets the issues of KBS maintenance, is the Ripple-Down Rules (RDR) family 

of techniques, which are described fully in chapter 3. 

This work, however, has only latched onto ideas from weak SC, where 

context is viewed as static, and has chosen to ignore the concerns posed by 

advocates for strong SC. Strong SC researchers claim that the effect of context is 

so strong that any symbolic based representation is fundamentally flawed and 

such a system can never achieve any true understanding of the environment that 

it operates within (Menzies 1998). However, strong SC advocates do not 

recognise the symbolic approach’s success. Nor do they adequately define 

context and why it renders symbolic reasoning futile. 

This chapter will look at the philosophical and theoretical basis of 

Knowledge Based Systems (KBSs) from three perspectives: knowledge 

acquisition (KA), knowledge representation (KR) and knowledge maintenance 

(KM). It will also, briefly look at some of the important expert system (ES) 

methodologies and tools: Knowledge Acquisition and Design Structuring 

(KADS), Protégé, Cyc, Case Based Reasoning (CBR), and Data Mining. The 

second section will review the relatively new field of applying the ideas from 

situated cognition and briefly examining the effects they have had on knowledge 

engineering. This will be followed by a brief description of two utilities for 

aiding the KA of context-based knowledge, Formal Concept Analysis (FCA) 

and Repertory Grids. Finally, the last section will discuss the differences 

between weak and strong situation cognition and propose a reinterpretation of 

SC. Fundamentally, this new interpretation allows for the incorporation of 

hidden and dynamic contexts into the artificial intelligence interpretation of SC. 

This new perspective will be discussed along with its implications for symbolic 

learning. It is believed that adequately providing for all forms of context will 

allow such systems to more effectively cater for the process of practice. 
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2.1 Philosophy of Knowledge applied to Artificial Intelligence 

It has long been recognised that the two biggest problems in developing 

knowledge based systems is the knowledge engineering (KE) process and later 

the system’s knowledge maintenance (KM). The knowledge engineering process 

consisting of two primary components: knowledge acquisition (KA), and 

knowledge representation (KR). This section will look at the philosophical and 

theoretical basis of KBSs development from these three perspectives: 

Knowledge Acquisition, Knowledge Representation and Knowledge 

Maintenance. Additionally, it will briefly review four high profile 

methodologies and tools. 

2.1.1 Knowledge Acquisition 

Firstly, before the process of acquiring knowledge can be examined, the 

question of ‘what is knowledge?’ should be addressed. This section will look at 

the traditional view of knowledge (Newell and Simon 1976) and what effects it 

had on knowledge acquisition theory. These topics are extensively covered by 

other authors (Newell and Simon 1976; Russell and Norvig 1995); therefore, 

this section will only discuss it broadly, in order to sufficiently place the work in 

this thesis.  

The traditional expert systems’ view of knowledge was founded on the 

physical symbol hypothesis (Newell and Simon 1976), which takes the view that 

knowledge is comprised of symbols, and the connections between those symbols, 

representing pieces of reality. Furthermore, that intelligence comes from the 

appropriate manipulation of these symbols and relationships. This AI 

perspective of knowledge is not new and closely draws from the philosophies of 

Wittgenstein, Descartes, and ultimately Plato’s archetypes (Compton 1992; 

Compton and Jansen 1990).  

Expert System researchers, therefore, assumed that such symbols and 

relationships should be extractible and, thus, usable without the further need of 

the expert. This was fundamentally a reductionist strategy, the logical extension 

of which led to the knowledge principle (Feigenbaum 1977; Lenat and 

Feigenbaum 1988; 1991), essentially suggesting that the success of an expert 

system is dependent on the amount of information about symbols and their 
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relationships in the knowledge base and not the inferencing or reasoning 

strategy employed. Therefore, when difficulties arose, the common 

misconception was that this came about from ineffective knowledge acquisition, 

and furthermore, that experts do not “…communicate the underlying knowledge 

very well” (Compton and Jansen 1990, p 242). A closer investigation of these 

problems, however, reveals three primary areas of difficulty: 

• Knowledge base consistency.  

Each new piece of knowledge extracted from an expert, must be integrated 

so that no conclusions are changed that render other knowledge in the 

system invalid. Tools have been developed for validating and verifying 

KBSs that can provide some assistance in a few systems. However, once 

flagged, an inconsistency still must be corrected and hand tailored by the 

KE without changing the essence of what the expert claimed in their 

justification (Compton and Jansen 1988). 

• Inconsistent use of symbols by experts.  

Shaw (1988) identified that experts often disagree on ‘what is correct 

knowledge’ when presented with it in the form of a knowledge base. 

However, generally these same experts have no problem discussing ideas 

with each other, even though they apparently have conflicting views on the 

individual pieces (Compton and Jansen 1988). This disagreement, however, 

can significantly hamper knowledge acquisition. 

• Experts’ justifications can be affected by the knowledge engineer and the 

tool used.  

People, thus also experts, tend to explain concepts based on the listener’s 

level of knowledge. Additionally, Compton et al. (1991) suggests that not 

only do experts provide contextual knowledge instead of global knowledge, 

but the context often depends on the framework of the questioner. Thus, a 

KE may ask a question with certain expectations, such as they may expect 

the knowledge being provided to be casual. The anticipation of a relaxed 

and unstructured response is subtly conveyed to the expert and the expert 

tends to respond within that context. 
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The last two points challenge the original physical symbol hypothesis idea of 

knowledge as being a static entity that can be extracted. These two points 

suggest that the individual symbols can vary in meaning between experts and 

the connections between those symbols vary according to the context in which 

the knowledge is being used. This shows that any form of static extraction of 

symbols and connections ultimately is doomed to fail in all but the most rigid of 

knowledge domains. The problems in knowledge acquisition originate not so 

much from the extraction of the knowledge from the expert, but from the KE’s 

attempts to twist and warp the acquired knowledge into a form suitable for the 

KBS in which they were attempting to fit the knowledge. 

For example, an expert shows a knowledge based system a dog, which it 

mistakenly classifies as a bird. The expert will then offer a reason why the KBS 

is wrong. They do not explain from first principles why it is a dog, which is the 

form the KE requires to codify a rule set; instead, they simply offer an 

explanation that separates the dog from the suggested conclusion of a bird. For 

instance, the expert may simply claim it is a dog because it has four legs. The 

expert’s context assumes we are not talking about a table with four legs. 

Therefore, the knowledge provided is dependant on this context. Thus, when the 

KE must integrate the newly acquired knowledge into the existing KB they must 

transform it into a globalised form. Globalised knowledge assumes no prior 

assumptions. Therefore, apart from the new rule claiming a dog has four legs 

they must also provide facts that identify it as a domesticated carnivorous 

mammal from the genus Canis.  

2.1.2 Knowledge Representation 

Given that acquired knowledge is context dependent; there have been numerous 

methodologies developed attempting to either acquire already globalised 

knowledge or of representing knowledge so that it facilitates the easier inclusion 

of the gathered knowledge. These methods are primarily from what has been 

referred to as second-generation ES. Second-generation ES moved away from 

the more ad hoc KB structuring used in the earlier shell based systems, called 

knowledge transfer (Newell and Simon 1976), towards a knowledge-level 

modelling (Newell 1982) approach. These new model-based ES approaches 

were believed to provide a richer knowledge representation and, thus, the ability 
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of capturing deeper and different types of knowledge, such as tacit knowledge 

(Richards 2001).  

The majority of these methodologies, however, still view knowledge as 

static, which once captured remains correct. They are in fact just new 

approaches to facilitating the conversion of experts’ knowledge into a form that 

can be stored in the knowledge base. They generally do this by forcing the 

expert to provide their knowledge to the engineer in a more structured approach, 

causing them to globalise their knowledge at the point of extraction. This 

reduces the need for the engineer to extensively convert the knowledge. While 

this is a significant improvement over the ad hoc approach, the fundamental 

problem is that it transfers part of the difficulty of knowledge acquisition from 

the engineer to the expert, rather than actually solving the root issue of 

knowledge representation. It would be preferable to simply store the knowledge 

in the contextual form naturally gathered than requiring anyone having to 

globalise it first. 

2.1.3 Knowledge Maintenance 

While knowledge maintenance is presented here separately from KA and KR it 

is in fact a microcosm of the same issues already described. It requires both the 

ability to acquire new knowledge, as well as being able to insert it into the 

existing KB. However, it usually presents as a much more difficult problem for 

ES developers. There are three primary reasons for this added difficulty. First, 

the KE usually only wants to make the minimal amount of changes when 

performing maintenance and does not wish to restructure the entire KB. Second, 

often the original experts and engineers are no longer as intimately involved 

with the project, making updating problematic. Finally, the ES’s domain can 

often shift, including new areas not covered by the existing system, after its 

deployment. Without a complete redevelopment this can significantly increase 

maintenance problems, as found in the Xcon system (Bachant and McDermott 

1984). However, as the previous section briefly argued, KA, KR and KM are not 

necessarily separate tasks and if a more holistic approach is used then the 

difficulty created by these separate views can be resolved.  
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2.1.4 Knowledge Based Systems 

There are numerous methodologies and tools that have been developed to aid in 

the creation of KBSs, which attempt to address the KA problem discussed above. 

There are many books, papers and reviews (such as Gennari et al. 2002; Leake 

1996; Lenat and Guha 1990; Schreiber 1993; Schreiber et al. 1993) that 

investigate the issues associated with the problem in detail, and so this section 

will only very briefly introduce the more widely used or relevant approaches 

developed, so that readers can place the work in this thesis in the overall KBS 

field of research. The approaches discussed in this section are Knowledge 

Acquisition and Design Structuring (KADS), Protégé, Cyc, Case-Based 

Reasoning (CBR) and Data Mining. 

2.1.4.1 Knowledge Acquisition and Design Structuring (KADS) 

KADS (Knowledge Acquisition and Design Structuring) is the outcome of the 

European research project ESPRIT-I P1098 initiated in 1983 with the aim of 

developing a comprehensive, commercially viable methodology for knowledge-

based systems (Wielinga et al. 1992). KADS is recognised as one of the first 

true methodologies developed specifically for the development of KBSs and is 

still widely used today. It was developed in particular to address the problems 

found in the knowledge acquisition bottleneck. The researchers’ view of the 

problem was that knowledge acquisition failed in traditional systems through an 

inability to get to the deep-knowledge of the experts, primarily due to a lack of 

structural constraints on the experts during knowledge extraction. 

Rather than viewing KA as filling a container of knowledge, the KADS 

perspective is an operational model that displays a form of observed behaviour 

which is “…specified in terms of real world phenomena” (Wielinga et al. 1992, p 

6). Basically, KADS has an array of modelling techniques, where the expert and 

engineer work together to build up a set of tasks so that knowledge acquisition 

can be approached in a systematic way. This ensures, as best as possible, that 

nothing gets left out and the people concerned are aware of where they are up to 

in the process (Compton et al. 1993). This divide and conquer approach to KA is 

the basic underpinning of all task orientated methodologies.  



Chapter 2: Knowledge Based Systems: Philosophy and Systems Richard Dazeley 

 

    
 24 

The reason approaches, such as KADS, work reasonably effectively during 

development is because the expert themselves model a particular individual task. 

This forces the expert to step out of their current context into the global 

knowledge domain. This process of the expert now providing more globalised 

knowledge prevents the engineer from being required to extensively convert the 

knowledge further. However, the resulting knowledge base is still global in 

context and static in representation. Wielinga et al. (1992) even defines domain 

knowledge in KADS as being static knowledge.  

This static representation, however, leads to one of KADS greatest 

shortcomings: knowledge maintenance. Nowhere in the KADS methodology is 

the knowledge maintenance issue addressed directly. Instead it assumes that the 

spiral life cycle model will continue infinitum. This omission has resulted in 

alterations to the basic methodology, such as structure preserving design 

(Schreiber 1993), which preserves the information content and structure in the 

knowledge-level model, within the final artefact. Therefore, the system not only 

provides the static domain knowledge but also the relationships between the 

artefact and the original knowledge sources and/or meta-classes. This makes 

development a process of adding implementation detail to a knowledge-level 

model, which makes it more possible to trace omissions or inconsistencies in an 

artefact back to the relevant part of the model, considerably simplifying 

maintenance (Killin 1993; Schreiber 1993). This essentially, although only in a 

limited form, can be seen as an attempt to include some form of context within 

the symbols. 

2.1.4.2 Protégé 

Protégé, a generalisation of the OPAL and ONCOCIN systems, is a knowledge-

based systems development environment that has been evolving since the mid 

1980s (Gennari et al. 2002; Musen 1987). Initially, it was a simple program 

designed for the medical domain, protocol-based therapy planning, but has since 

had many reimplementations, becoming a much more general-purpose set of 

tools. The original goal of Protégé, like the majority of new methodologies at 

the time, was to reduce the knowledge-acquisition bottleneck. This was 

accomplished through reducing the role of the KE in the construction of KBs 

(Gennari et al. 2002; Grosso et al. 1999).  
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Musen’s (1987) information-partitioning hypothesis, which asserts that there 

exists a qualitative division among the types of information a KBS requires, is 

the primary basis behind the Protégé methodology. This hypothesis proposes 

that the knowledge acquired in one stage is also meta-knowledge for the 

subsequent stage, and thus, can be used to determine what KA-tools should be 

used in that next stage (Grosso et al. 1999). It’s Protégé’s use of this 

information-partitioning hypothesis along with its utilization of task specific 

knowledge to generate customised KA-tools that allows for the simplification of 

KA (Gennari et al. 2002; Grosso et al. 1999).  

Later incarnations of Protégé worked towards making knowledge-bases 

more reusable. For instance:  

• Protégé-II removed knowledge concerning the problem-solving method 

(PSM) from the KB, by formally modelling the PSMs and then using the 

method ontologies to define mappings. This converted Protégé’s original 

informal model to a formal one (Grosso et al. 1999; Puerta et al. 1992).  

• Protégé/Win allowed for modularity of knowledge bases through the use 

of components (Gennari et al. 2002; Grosso et al. 1999). 

• Protégé-2000 adopted the Open Knowledge Base Connectivity (OKBC) 

(Chaudhri et al. 1998; Fikes and Farquhar 1997) knowledge protocol, 

allowing greater expressivity, a clean model-theoretic semantic and a 

greater possibility for maintenance and reuse (Gennari et al. 2002; Grosso 

et al. 1999). It was also rebuilt around a three layer model with fully 

replaceable and interchangeable components (Grosso et al. 1999). 

Protégé’s underlying methodology of building separate ontologies and then 

constructing knowledge bases from these components is not unique. This can be 

seen for example in LOOM (MacGregor 1991) and GKB (Karp et al. 1999). 

Like KADS, Protégé’s knowledge-level modelling of framework ontologies can 

be effective and help with knowledge reuse. These ontologies, however, are 

constructed prior to the knowledge-base, and therefore, the knowledge within is 

still global to the component. Theoretically though, individual ontologies may 

be created in context, however, this usually conflicts with the components’ 

potential for reuse. 
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2.1.4.3 Cyc 

Cyc, short for encyclopaedia, did not start out as an attempt to develop new 

methodologies for knowledge acquisition. Rather, its intention was primarily to 

solve the problem of brittleness, where a small amount of missing knowledge 

can be significantly detrimental to the system. However, as a result it has had 

implications for both KA and KR methods. A KB’s brittleness comes from its 

concentration of specialised knowledge within a single narrow domain. 

Therefore, when knowledge is required from just beyond this domain the KBS 

collapses. Fundamentally, this is part of the same problem the previous 

methodologies were attempting to fix. Their unarticulated view had been if we 

can extract deeper knowledge then the system will be less brittle. Lenat et al. 

(1990) however, argues that brittleness is the result of insufficient commonsense 

knowledge within the KB. It is this lack of commonsense knowledge that Cyc 

has been developed to address. The Cyc system is a universal schema with 

millions of directly entered and inferred commonsense axioms that make up 

hundreds of thousands of general concepts (Lenat 1995).  

While methodological development was not the driving force behind Cyc, it 

was one of the results. During the system’s development it was obvious that 

existing methodologies were woefully inadequate at scaling to the required size 

or at representing particular concepts. Cyc incrementally developed its own 

representation language then, to address repetition issues that eventuated, and 

periodically smoothed out the resulting structure (Lenat et al. 1990). It uses a 

frame-based language embedded in a first order predicate calculus framework 

with a series of second-order extensions that allow the representation of defaults, 

reification, and for reflection (Guha and Lenat 1994; Lenat 1995; Lenat et al. 

1990; Pittman and Lenat 1993). The inference engine used for Cyc was also 

incrementally constructed using more traditional computer science data-

structures and algorithms. 

Lenat (1995) argues that the majority of assertions could not be made 

correctly without the use of some form of context. For instance, the statement 

‘you cannot see a persons heart’ assumes that the person is not currently 

undergoing open heart surgery. Alternatively, the assertion could also represent 

a metaphorical meaning. Cyc’s solution was to place each assertion into one or 
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more explicit contexts, through the use of microtheories. Within each context, 

the assertion is then given its default conclusion. Each context is itself an 

individual KB. Additionally, the provision for being able to import assertions 

from other contexts was also included in Cyc allowing the combination of 

contexts and contradictory assertions to be resolved (Lenat 1995; Lenat et al. 

1990). 

The Cyc project’s brute force approach shows potential as a basis for domain 

specific KBs to be built upon. However, Cyc’s ad-hoc development 

methodology requires explicitly-stated knowledge that can often be dated or 

invalidated by the time it is eventually used in a real world system. This thesis 

asserts that: commonsense knowledge is one of the most a posteriori-

contextually dependent forms of knowledge, due to its high dependence on 

culture and time. For instance, individual axioms not only change conclusions 

between contexts, but they also can change within the same context between 

different culturally independent minority groups. Furthermore, the contexts 

themselves within these groups also change over time. One of Lenat et al’s 

(1990) own examples of knowledge in the Cyc system is:  

Payments of less than ten dollars are usually made with cash; those 

over fifty dollars are usually made via check or credit card (Lenat et 

al. 1990, p 43). 

 Such an assertion is highly cultural, location and time specific and, therefore, 

very susceptible to failing in a contextually-dynamic environment. For example, 

given such knowledge, one must ask ‘how relevant is this?’ to the following: a 

peasant farmer in central china, who has no concept of how much a dollar is 

worth; to people in a war zone that have no access to secure financial institutions; 

or, to someone living in 2010 where all transactions are made with smart cards. 

Therefore, even though various static-contexts are identified in Cyc, the absence 

of dynamic-contexts renders its approach as far too simplistic and highly 

susceptible to obsolescence, for the development of a (near) complete KB of 

commonsense knowledge. For instance, Clancey (1991) likens common sense 

knowledge to that of chaos theory, where projects such as Cyc attempt to collect 

it like “…so many butterflies” (Clancey 1991, p 245). 
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2.1.4.4 Case-Based Reasoning (CBR) 

Case-based reasoning (CBR) is not a single methodology but a field of research 

as diverse as KBSs. It originated initially to solve the KA bottleneck by 

attempting to capture the context of knowledge through the use of cases. The 

idea was to represent a concept through extension. That is, a concept is defined 

by a set of instances (cases). The basic idea behind CBR is two fold. Firstly, a 

CBR system attempts to solve a particular problem, in the form of a case, by 

searching and finding a similar, previously seen, case (or cases) and reusing that 

earlier case’s solution, or a modified version of the solution. Secondly, the CBR 

system attempts to incrementally learn by using the success or failure of a 

solution (Aamodt and Plaza 1994). For instance, if a solution is correct then the 

new case is added with the solution given so it can be used in future similar 

situations. However, if the solution is wrong, then the reason for the failure is 

ascertained, as best as possible, and stored to avoid the error in the future.  

The majority of research in CBR is around the problems of: 

• Knowledge representation – must allow for effective and efficient 

searching and the inclusion of new case knowledge. 

• Retrieval – using a partial problem description the CBR system must find 

the closest matching previous case(s) using an efficient method for case 

comparison. 

• Reuse – investigates which aspects of a case are useful for future problem 

solving, as well as finding the difference between the current and previous 

case. 

• Revision/Adaptation – if the solution was wrong then use domain-specific 

knowledge or user input to revise the solution. 

• Retainment – if the solution was correct then use an aspect of the case to 

expand the area of the systems solution space by integrating the new case 

into the memory structure (Aamodt and Plaza 1994). 

CBR methods are effective to some extent because experts are significantly 

more open to discussing details of a case and the associated solution than 

abstract general rules (Leake 1996). Additionally, their effectiveness also stems 
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from the provision of contextually relevant information being provided 

regarding the solution, improving maintenance issues and significantly reducing 

the KA bottleneck (Leake 1996). However, the development of effective CBR 

based systems is highly dependant on effective retrieval and adaptation 

functions (Khan 2003), which generally require domain dependant knowledge.  

Fundamentally, CBR fits within a more situated cognitive (2.2) view of 

knowledge. However, most of the current research has overlooked that dynamic 

knowledge does not only relate to the domain knowledge held within the 

individual cases, but also in the control and problem solving knowledge of the 

domain. The problem in CBR is that the majority of systems rely on static 

predefined rules or procedures for their retrieval and adaptation functions. CBR 

system developers struggle, however, to anticipate all the difficulties that may 

be encountered in a domain during development, thus, causing a major 

bottleneck (Khan and Hoffmann 2003). Yet the nature of learning in CBR is 

implicitly incremental (Aamodt and Plaza 1994; Leake 1996), and thus, should 

be capable of handling such difficulties. Khan (2003) proposes that the process 

of acquiring and using both case specific knowledge and general domain 

knowledge should also be made within the context of the problem solving 

process and monitored by an expert. 

2.1.4.5 Data Mining  

The world is becoming more like the infinite library from The Library of Babel 

(Borges 1956) every day, overflowing with data from which people are unable 

to extract meaningful information. Knowledge discovery in databases (KDD) is 

a field of research attempting to solve this dilemma and is seen as the process of 

extracting “…implicit, previously unknown and potentially useful knowledge 

from data” (Frawley et al. 1992).  

Data mining is not a single methodology but a field of research as diverse as 

KBSs, nor is it specifically related to Machine Learning techniques. It also 

crosses into statistical analysis and database systems. One area of research 

within KDD is concerned with the ability to find meaningful classifications and 

predictions of values for the tuples contained within a database.  

Expert Systems in data mining generally use knowledge extraction methods 

to form a classifier or predictor. These have the advantage of forming high 
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quality results due to the inclusion of expert knowledge. The problem, however, 

is that they do not allow for autonomous knowledge discovery. Therefore, such 

systems will only find results that the expert is capable of giving examples about 

and will not find unknown patterns. Thus, Knowledge Discovery in Database 

(KDD) generally relies on other machine learning tools, forgoing the advantage 

of expert knowledge. 

One method that is highly effective at automatically generating rule bases, 

capable of classifying and predicting values from smaller data sets is decision 

trees. However, while in theory decision trees could scale effectively to larger 

databases, due to only having n(log n) complexity, they suffer from requiring 

the training set to be resident in memory (Han and Kamber 2001). More recent 

systems such as SLIQ and SPRINT have attempted to address this issue. 

However, they require pre-sorting of data sets as well as complex and expensive 

data structures that reduce their effectiveness with large training sets (Han and 

Kamber 2001). 

Another application of rule based approaches in data mining is in 

combination with other classifiers. In these methods a number of classifiers can 

be trained or built separately then their various guesses combined to find the 

ultimate classification. Alternatively, classifiers can be chained as in stacking 

(Wolpert 1992) and cascading (Gama 1998) methods. These methods have 

multiple layers of classifiers where the results from the first layer classifiers are 

fed in as input to the second layer of classifiers (Estruch et al. 2003). It should 

be noted that the method developed in this thesis is a form of stacked classifier 

with the exception that the input into the second layer comes solely from the 

output of a single classifier in the first layer, rather than from multiple 

classifiers.  

One of the primary drawbacks of stacking and cascading is that 

comprehensibility is generally lost. This is due to the subsequent layers only 

receiving attributes that are in terms of the previous layers conclusions (Estruch 

et al. 2003). This is potentially not the case in the method developed in this 

thesis due to their being a direct continuity between layers through the use of 

only a single classifier in the first layer. However, to prevent the scope of this 

thesis from expanding this is not explored further. 
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2.2 Situated Cognition applied to Artificial Intelligence 

Problems such as inconsistent use of symbols and experts’ justifications being 

affected by the context of the listener, oppose the original physical symbol 

hypothesis idea of knowledge as being a static entity that can be extracted. This 

returns us to the original question of ‘what is knowledge?’ Situation Cognition 

moves away from these traditional definitions of knowledge and instead argues 

that knowledge is generated at the time of use and that context-independent 

assertions cannot accurately model human cognition (Menzies 1996; 1998). The 

proponents of Situated Cognition tend to fall into one of two camps.  

• Weak Situated Cognition argues that when the human agent uses a 

particular description of knowledge that they use the context of the current 

problem or situation to continually reinterpret that description. 

• Strong Situated Cognition takes a significant step further, claiming that 

context has such a potent influence on the human agent that systems 

should be purely reactive and that we should discard symbolic 

representations altogether (Menzies 1996; 1998). 

Therefore, Situated Cognition (SC), in its weak and most common 

interpretation, views knowledge instead as being mostly context based (Menzies 

1996). SC and its subfields, situated automata (Maes 1990; Waldrop 1990) and 

situated action (Agre 1990; Suchman 1987), are philosophically justifiable 

through work such as Bartlett (1932), Piaget (1970), Jenkins (1974) and 

Bransford et al (1977). SC attacks the Platonic3 view of knowledge and memory 

and instead claims that knowledge is re-constructed each time it is needed (Agre 

1990; Clancey 1991; Compton and Kang 1993; Maes 1990).  

This dynamic re-construction of knowledge involves the combining of two 

factors: firstly, where the agent has come from to reach this particular point, and 

the location of the agent’s eventual goal. For instance, Clancey provides the 

example that “…at a base level a person is always like a dancer balancing 

[his/]her next steps against the inertia of past movements and [his/]her view of 

where s[/]he is going” (Clancey 1991, p 244).  
                                                 
3  Plato’s archetypes are often regarded as a major influence to the origins of the physical symbol 

hypothesis (Compton, P. (1992). Insight and Knowledge. AAAI Spring Symposium: Cognitive 
aspect of knowledge acquisition, Stanford University. 
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2.2.1 Knowledge Acquisition in Context 

A new perspective on knowledge does not necessarily imply that the method by 

which knowledge is acquired needs to be reconsidered. Essentially, all that SC 

does is allow a knowledge engineer (KE) to view the knowledge they gather 

differently. The problems identified for knowledge acquisition in section 2.1.1 

did not originate from the extraction of knowledge from the expert, but from the 

KE attempts to globalise the acquired knowledge into a form suitable for the 

KBS. Therefore, the key to improved KBS development is not so much in how 

knowledge is acquired, but how that knowledge should be represented. 

2.2.2 Representing Knowledge in Context 

As discussed earlier the traditional physical symbol hypothesis (2.1.1) views 

extracted knowledge as unchanging. Therefore, ES methodologies can only 

build knowledge bases (KB) with a static knowledge representation (KR). The 

situated cognition view of knowledge, however, indicates that knowledge is 

relative to the context it was re-constructed, and therefore, changeable. Thus, to 

truly reduce the problem of KA, a representation that incorporates context 

should be used. It follows then that a KR methodology that intends to 

incorporate context, must be able to assimilate change. This does not negate the 

possibility of specifying a KB prior to its application, but it does mean that the 

previously specified store of knowledge should be dynamically alterable. 

Ideally a system should have a knowledge representation technique that is 

sufficiently flexible that it could change knowledge or include the context of the 

supplied knowledge. This would allow knowledge extracted from an expert to 

be significantly more easily included within the KB and, thereby, preventing the 

need for either the KE or expert to interweave knowledge into a global 

perspective. This would significantly simplify the problems associated with 

knowledge acquisition, as the conversion from context knowledge to global 

knowledge would no longer be required. 

2.2.3 Maintaining Knowledge in Context 

Menzies (1998) identifies one of the primary changes in knowledge engineering 

brought about due to the situated cognition view as a new emphasis on 
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maintenance rather than design. This is due to the context in which knowledge 

can be located is often only identifiable in an online environment during the 

maintenance phase. This directly challenges the approach of second generation 

KBS methodologies like KADS, which focus on design and don’t even discuss 

maintenance in the core set of tasks. Menzies (1998) suggests that one approach 

to situated knowledge engineering is to build two knowledge bases. The first 

captures system knowledge like any other KB, while the second models the 

impact of the first KB on its environment and vice versa. For example, the 

BRAHMS system by Clancey et al. (1998) and REMAP by Ramesh and Dhar 

(1992) both attempt to model the environment around a KB.  

Another approach is to directly represent the context of the knowledge being 

stored within the KB itself. This context can either be stored implicitly or 

explicitly. For instance, the Cyc ad hoc approach uses microtheories, which 

allows for a form of explicit contextual information to be included in the KB. 

Ripple-Down Rules (RDR), discussed in Chapter 3, implicitly includes context 

within the structure itself.. 

2.2.4 Contextual Knowledge-Based Systems 

There are only a limited number of tools and methodologies that have been 

developed to aid in the creation of KBS through the incorporation of context. 

This section will briefly introduce some widely used approaches so that readers 

can place this dissertation’s work in the overall KBS field of research. The two 

tools used for identifying contextual information discussed in this section are 

Formal Concept Analysis (FCA) and Repertory Grids. A third methodological 

approach, Ripple-Down Rules (RDR), is discussed in chapter 3. 

2.2.4.1 Formal Concept Analysis (FCA) in Contextual Knowledge Acquisition 

Formal Concept Analysis (FCA), originally developed by Wille (1981), is based 

on lattice theory. FCA is not a KA methodology, rather it is mathematical tool 

used for the discovery of concepts. It was designed to provide a basic answer to 

two fundamental questions in relation to a concept; how to appropriately classify 

objects within a particular context, and what the dependencies are between 

attributes (Wille 1981). Its relevance to KBS comes from its representation 

theory and how that can be used in knowledge representation.  
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FCA is rooted in the philosophical idea of a concept as a single unit of 

thought that is made up of two components: extent, which covers all objects 

(entities) belonging to a particular concept; and intent, which comprises the 

attributes (properties) that are valid for all those objects (Wille 1981). Put 

another way, a formal context, K, is a triple K(G, M, I) containing the set of 

objects G4 forming the extension of the concept, and a set of attributes M5 

represent the intention of the concept, which are linked together by the binary 

relation I (Richards 1998a; Wille 1981).  

The advantage in the FCA approach is that lattice theory provides a simple 

mathematical vocabulary for discussing order, and especially when used in 

systems where there is a natural sense of hierarchies (Birkhoff 1938), due to its 

theory of substructures (Wille 1981). This advantage results in the ability of a 

complete lattice, called a concept lattice or semantic net, providing a conceptual 

clustering of objects via the extents as well as a representation of the 

implications between the attributes via the intents (Wille 1992). It is this ability 

to express all relationships between attributes, describe objects in terms of the 

concepts contained and to show the relationships between those concepts, which 

makes FCA a powerful representation for knowledge (Richards 1998a).  

Generally, FCA has not been used as a knowledge representation 

methodology by itself. Instead it has been used for knowledge acquisition (Wille 

1989; 1992) in many KBS based areas, such as CBR (Diaz-Agudo and 

Gonzalez-Calero 2001) and ontology construction and maintenance (Stumme et 

al. 2000), as a means for discovering knowledge embedded in cases through 

these identified relationships. Within these areas FCA has been highly effective 

at extracting contextual knowledge. 

Clancey (1991) mentions, however, that although semantic network based 

approaches can embody a cognitive model that show human-like behaviour, 

they are limited to a “… grammatical model of cognition” (Clancey 1991, p 

251). Therefore, they fail to capture non-verbal concepts or to “…model the 

perceptual-conceptual learning…” (Richards 1998a, p 155) evident in humans’ 

attachment of meaning to a grammar (Richards 1998a). Clancey (1991) 

continues by pointing out that concepts are being regarded as things rather than 

                                                 
4  G stands for Gegenstande in German. 
5  M stands for Merkmale in German. 
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the “…processes of perceiving and processes of behaving” (Clancey 1991, p 

252). Additionally, Wille (1981) himself identifies the method’s lack of 

scalability for the inclusion of all relevant attributes and relationships with large 

contexts, potentially limiting its use.  

2.2.4.2 Personal Construct Psychology and Repertory Grids  

Kelly’s (1955) book ‘Psychology of Personal Constructs’ introduces his 

personal construct theory (also referred to as Personal Construct Psychology 

(PCP)), where he postulates that “A person’s processes are psychologically 

channelled by the way in which he anticipates events” (Kelly 1955, p 46). 

Basically, he viewed all people as their own personal scientist at anticipation, 

where an anticipatory model of the environment was reflexively applied to the 

self (Shaw and Gaines 1992). Shaw and Gaines saw PCP as a “…constructivist 

position in modelling human knowledge…that characterizes conceptual 

structures in axiomatic terms” (Shaw and Gaines 1992).  

Kelly’s (1955) emphasis is on the space created by the process of making 

distinctions rather than being defined by the elements identified. Within this 

psychological space a construct is like a single plane that slices through a large 

collection of events (Kelly 1970). Fundamentally, a construct contains a triple of 

two disjoint distinctions that are mutually subsumed by the third, referred to as 

the range of convenience or the subsuming concept (Richards 1998a; 1998b). 

Essentially, the disjoint pair bound the extremes of the range of convenience or 

concepts. Therefore, this provides a means for bounding concepts, allowing 

knowledge acquisition to start with a more encompassing view and acquire 

knowledge inwardly; rather than the traditional approach, of starting at the 

centre and acquiring knowledge outwardly.  

In order to actually acquire the relevant constructs and elements for a 

domain, Kelly also developed the repertory grid technique (Richards 1998a; 

1998b). It is designed to bypass a person’s cognitive defence and provide an 

avenue to their underlying construction system by asking them to compare and 

contrast various examples. Thus, repertory grids use the idea that people are 

more able to offer context based examples than defining globally based rules. 

Essentially, the repertory grid is a method of finding concepts, the structures 

within those concepts and the relationships between those structures without 
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eliciting them directly. This can be more effective than the conventionally based 

methodologies that directly extracted models (Richards 1998a). 

Kelly’s repertory grid technique has had widespread success in a number of 

domains and continues to be applied in both manual and computerised 

applications. Some systems that use the repertory grid are the Knowledge 

Support System Zero (KSS0), Expertise Transfer System (ETS) and AQUINAS 

(Boose et al. 1989). Gaines and Shaw (1993) also have provided a general 

framework to assist users in the elicitation of the conceptual structures when 

using repertory grids (Richards 1998a).  

PCP is similarly simple in its acquisition of knowledge to RDR. Both view 

the concept of model derivation as being difficult and problematic, preferring 

the simpler technique of eliciting knowledge directly from an expert without the 

need of a knowledge engineer. However, the captured knowledge is different, in 

that RDR develops an assertional KBS, while PCP captures a conceptual model 

from which a terminological KBS can be extrapolated (Richards 1998a). As 

discussed in section 3.4.1, Richards (1998a; 1998b) developed a combination of 

RDR and FCA in order to create a terminological KBS with RDR. 

2.3 Hidden and Dynamic Context 

The application of ideas from weak situation cognition has already shown great 

potential to significantly improve Knowledge Acquisition and maintenance in 

many domains. However, in its weak form SC assumes context is static and 

once found can be codified. This is once again falling into the same trap that 

KBS developers did when using the physical symbol hypothesis. This 

assumption simplifies the problem domain allowing KBS developers to ignore 

more difficult unsolved situations. This is fine when used in situations where 

context is for the most part static, such as well defined areas like medical 

diagnostics. However, in many real world situations, such as general knowledge, 

this abstraction reduces the potential of such methodologies being successfully 

applied. 

The more radical view of strong SC agrees that the process of abstraction 

and representation simplifies the environment too much. Brooks (1991) claims 
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that giving a computer a human Merkwelt6 is flawed because it is based on our 

own introspection. There is no evidence that what we perceive as our Merkwelt 

is in fact what occurs internally and “…it could just as easily be an output 

coding for communication purposes” (Brooks 1991, p 141). Brooks identifies 

two primary problems with the use of the human Merkwelt. The computer, robot, 

or software agent does not perceive the world in the same way a human does. 

Furthermore, even if it did, there is no guarantee the human introspectively 

derived Merkwelt is correct. 

While these arguments for strong SC are legitimate, the conclusion to reject 

all symbolic representation is flawed. As noted by various authors (Anderson 

1990; Menzies 1996; 1998; Patel and Ramoni 1997; Vera and Simon 1993a; 

1993b; 1993c) there are numerous examples showing that the symbolic based 

descriptions of experts are richer and more abstract than those of novices 

(Menzies 1998). Therefore, these descriptions must represent some interpretable 

meaning. However, what the strong SC argument shows is that weak SC based 

KBSs still suffer from an over simplification of the environment being 

represented.  

It can, however, be argued that a middle ground could be taken. Given the 

weak SC argument that knowledge is constantly reinterpreted in the context of 

the problem, then it is possible to expand upon this notion by elaborating on 

‘what is context?’ Context in the Cyc, PCP, FCA and RDR have all assumed 

context to be a priori known and, therefore, identifiable, codifiable and static. 

For instance, when driving a car in Australia you should give way at an 

intersection to cars coming from the right. Likewise, cars to your left will give-

way to you. However, if one of the cars to your left is an emergency vehicle 

with its siren blaring then you also give-way. Therefore, the different context in 

this case is the presence of the emergency vehicle. These two contexts are static, 

because the knowledge used in each is constant and does not change. 

Strong SC, however, claims that the effect of context is overpowering, 

rendering such work as futile. For instance, long term weather prediction is 

inaccurate due to the existence of so many factors making up the forecast. Each 

                                                 
6  Merkwelt is the term used by Jakob von Uexkull in his 1934 paper 'A Stroll through the Worlds of 

Animals and Men: A Picture Book of Invisible Worlds', to refer to the complete set of environmental 
factors that have an affect on a species regardless of whether they are perceptible or not.  
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combination of these factors represents a different context. Strong SC does not, 

however, alter the underlying notion that context is an influence; just that it has 

a greater affect than weak SC claims. Nor does it adequately define context or 

detail why some form of symbolic representation does not aid learning to some 

degree. Thus, a middle ground reinterpretation of SC, referred to as Intermediate 

Situated Cognition in this thesis, should provide an elaboration on the types of 

context possible. Building on from the weak SC claim: 

Intermediate Situated Cognition suggests that humans continually 
reinterpret a particular description of knowledge based on their 
current situation, which is dynamically alterable due to hidden 
contexts from within their Merkwelt. 

An interpretation of SC such as Intermediate Situation Cognition still allows 

for symbolic reasoning but indicates that it should be able to handle different 

reinterpretations of the same knowledge in the same context. For instance, a 

blackjack player’s decision to draw a card when on seventeen is only partly 

based on the mathematical odds. Numerous factors from within their Merkwelt 

could also be affecting their choice. For example, they may think there are many 

smaller cards than usual left in the deck or they may simply have a feeling. In 

this situation the Merkwelt is being influenced by hidden emotional or 

subconscious states or contexts, which alters their response from previous times 

they have had the same hand. This outwardly produces what appears to be a 

dynamic contextual response, because a different action was taken for the same 

context, the hand dealt. 

 Some may claim, however, that dynamic context is represented in the 

contextually-static methodologies, through breaking down a drifting context into 

a series of discrete static representations. However, this is abstracting a level of 

complexity from a domain that could contain important information. It is also 

turning a domain into a ‘blocks world’ type of toy problem. It is this over 

simplification that Strong SC truly opposes. 

Furthermore, recognition of hidden and dynamic contexts is certainly not 

new. For instance, Arbib (1993) alludes to the existence of hidden contexts in 

schema theory, in that “… no single, central, logical representation of the world 

need link perception and action” (Arbib 1993, p 273). Widmer and Kubat’s 
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(1996) FLORA system was designed with the idea that contexts may be hidden 

and unrealised.  

One of the most widely researched areas of dynamic context is in the 

Information Filtering (IF) research stream, dealing with the issue of concept drift. 

Fundamentally, there is little difference between a user’s concept and the 

context of their behaviour. The concept is the idea behind a user’s action, 

whereas, the context represents the circumstances of an event. Thus, the user’s 

concept governs the circumstances of the event, and therefore, the current 

context. Consequently, as the user’s concept drifts, often dynamically, so does 

the context.  

While proving the existence of such types of contexts is not the core of this 

thesis, the idea of these forms of contexts is one of the driving influences in the 

methodological design and in bridging the gap of the process of practise 

(chapter 1). The methodology developed in this thesis is designed at capturing 

these hidden contexts and goes some way to learning dynamic contexts. As 

shown in chapter 6, the success of the system to improve on the performance of 

a static methodology in many domains, goes some way to justifying that some 

form of contextual information is present.   

2.3.1 Implications for Knowledge Engineering and Maintenance 

The idea of introducing hidden and dynamic contexts into KBS research 

could potentially aid in understanding many of the historical and current 

problems in knowledge engineering and the maintenance of such systems. The 

fundamental issue, however, is how does a symbolic representation capture such 

information. Once a symbol is captured as a piece of knowledge, we not only are 

required to store a contextual relationship in parallel with that knowledge, we 

must also be able to alter it dynamically. Additionally, we should be able to find 

new contexts not expressed by an expert.  

This thesis solves this problem by hybridising the symbolic representation 

with a function-fitting algorithm. The function-fitting algorithm learns the 

patterns of relationships between the partial symbolic representations of 

knowledge. Essentially working on Arbib’s idea that “…the representation of 

the world is the pattern of relationships between all its partial representations” 

(Arbib 1993, p 273).  
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2.4 Summary  

This chapter briefly outlined two philosophies of knowledge. The first, physical 

symbol hypothesis and its later, less ad hoc, form of knowledge-level modelling 

were discussed. The primary difficulty in these views was the conversion from 

contextually based to globally based knowledge and that these methodologies 

are inherently static in nature. Also discussed were a number of methodologies 

that use this interpretation of knowledge and how this presented further 

difficulties during knowledge acquisition and especially maintenance.  

The emergence situated cognition (SC) view of knowledge addressed these 

issues, which was the second philosophy applied to AI discussed in this chapter. 

It was identified that knowledge representation methodologies need to be used 

that allow for dynamically changing knowledge. Ripple-Down Rules (chapter 3) 

is one methodology that has attempted to meet this SC view. Other 

methodologies that also use SC as their underlying philosophy, such as Personal 

Construct Psychology (PCP) and Formal Concept Analysis (FCA) were 

discussed.  

These systems have performed exceptionally well in many areas where 

knowledge-level systems have repeatedly failed. Nevertheless, strong SC 

literature argues that such systems will not achieve true robustness and 

intelligence as context is too problematic to be represented symbolically. Finally, 

this thesis has suggested a clarification to what forms context can appear and 

suggest that for symbolic systems to succeed they must embrace all these 

contextual forms and that this meets the concerns of Strong SC. This 

redefinition of SC as it applies to AI, referred to as Intermediate SC is the 

primary philosophical influence behind the methodology in this thesis. 
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3 RRiippppllee--DDoowwnn  RRuulleess  

If there’s a buzzing-noise, somebody’s making a buzzing-noise, 
and the only reason for making a buzzing-noise that I know of 
is because you’re a bee. … And the only reason for being a bee 
that I know of is making honey. … And the only reason for 
making honey is so I can eat it. (Milne 1926, p 4) 

Discussed in the previous chapter was a small selection of methodologies, both 

mainstream and context-based approaches to solving the knowledge acquisition 

bottleneck and maintenance issues prevalent in knowledge based systems. 

Generally, the mainstream approaches have become fixated on the development 

of knowledge-level models with a knowledge engineer. So much so, that they 

have lost sight of the observed and frequently reported fact that users want 

ownership of their knowledge (Freidson 1994; Ignizio 1991; Kidd and Sharpe 

1987; Richards 1998a; 2000a). RDR, FCA (2.2.4.1) and PCP (2.2.4.2), on the 

other hand, represent a paradigm shift in the approach to KA and KM through 

the development of new context-sensitive representations for knowledge.  

Compton et al. (1988) extended Popper’s (1963) theory of hypothetico 

deductive reasoning to the application of knowledge engineering. He suggested 

that experts do not provide information on their insight or how they reached a 

particular conclusion; but instead, they provide a justification for excluding the 

other possible hypotheses from within a particular context (Compton et al. 1988; 

1989; Compton and Jansen 1988; Compton and Jansen 1990). It was suggested 

that these dichotomies between insight and justification (Compton et al. 1988; 

1989) arise from a traditional misinterpretation of the form of knowledge 

provided by experts. This new hypothesis for knowledge engineering has 

resulted in the development and deployment of a new collection of 

methodologies and applications based on the knowledge acquisition and 

inferencing philosophy of Ripple-Down Rules (RDR). 

After a discussion of the GARVAN-ES1 case study, which directly led to 

the development of RDR, this chapter will present a detailed description of the 
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basic RDR approach. Additionally, it will compare RDR with other 

methodologies and identify some of the recognised failings of RDR. Secondly, 

due to this thesis using Multiple Classification Ripple-Down Rules (MCRDR) 

as one of its base methodologies, it will discuss this primary adaptation of the 

basic philosophical ideas to the development of a multiple classification domain. 

These two KR structures are the basis for all RDR research and all the extension 

work presented in the final section of this chapter build on these fundamental 

methodologies. 

3.1 Ripple-Down Rules Background 

The original impetus for the development of Ripple-Down Rules came from 

Compton et al’s (Compton et al. 1988; 1989) work on the GARVAN-ES1 expert 

system and the maintenance issues that arose. This section will discuss some 

issues with knowledge maintenance (KM) by briefly reviewing the GARVAN-

ES1 system as a maintenance case study.   

3.1.1 GARVAN-ES1: A Maintenance Case-Study 

The traditionally developed GARVAN-ES1 medical expert system first came 

into regular use during 1984, providing clinical interpretations for thyroid 

hormone assay diagnostic reports. The domain for this system was ideal for an 

expert system to be applied, due to: 

• The knowledge domain was bounded due to the expert using the same 

diagnostic test results that were also provided to the system.  

• It did not require cooperation from an expert beyond what the expert 

would normally perform. 

While these issues made it a viable expert system application in a real world 

domain, its true contribution to the further development of RDR, came from the 

system’s idyllic maintenance requirements.  

• All interpretations made by the system were checked by the expert – per 

their normal duties. Therefore, allowing the system to incrementally 

improve its knowledge base without increasing the burden on the experts. 

• The system was never required to encompass new additional tasks. 
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• Changes tended to be only minor corrections or small additions to the 

knowledge base. 

This system provided an example of the perfect maintenance situation for an 

expert system. It was shown, however, that it was still very difficult, 

highlighting how expert systems struggle with maintenance issues, even though 

maintenance is widely regarded as one of the most important aspects of expert 

systems. For instance, the GARVAN-ES1 knowledge base increased in size by 

approximately 80% in four years, improving its performance from 96% to 

99.7% accuracy (Compton et al. 1988; 1989). Furthermore, many rules 

increased dramatically in complexity, as illustrated in the overall change, over 

three years, of rule 22310.01, shown in Figure 3-1. This highlights the difficulty 

a knowledge engineer would have in being able to comprehend and continue 

making adjustments to such a rule base in the future (for further information on 

the GARVAN-ES1 system, see (Compton et al. 1988; 1989; Horn et al. 1985). 

More importantly though, was the realisation that the experts tended to 

provide justifications for changes by only identifying data that distinguishes the 

case presented from a small set of similarly likely concluding hypotheses 

(Compton et al. 1991; Compton et al. 1988; 1989; Compton and Jansen 1988; 

Compton and Jansen 1990). The primary difficulty for the knowledge engineer 

is then to fit the expert’s justifications into the expert system, such that: 

• The resulting rules can distinguish between all the possible hypotheses. 

• The resulting rules maintain consistency for all the previously correctly 

classified cases.  
 

RULE(22310.01) 

IF (bhthy or utsh_bhft4 or vhthy) 

 and not on_t4 

 and not surgery 

 and (antithroid or hyperthyroid) 

THEN DIAGNOSIS(“…thyrotoxicosis”) 

RULE(22310.01) 

IF ((((T3 is missing) 

 or(T3 is low and T3_BORD is low) 

 and TSH is missing 

 and vhthy 

 and not (query_t4 or on_t4 or surgery or tumour 

 or antithyroid or hypothyroid or hyperthyroid)) 

 or( 

 (((utsh_bhft4 or 

 (hithy and T3 is missing and TSH is missing)) 

 and (antithyroid or hyperthyroid)) 

 or 

 utsh_vhft4 

 or 

 ((hithy or borthy) 

 and T3 is missing 

 and (TSH is undetect or TSH is low))) 

 and 

 not on_t4 and not (tumour or surgery))) 

 and (TT4 isnt low or T4U isn’t low) 

THEN DIAGNOSIS(“…thyrotoxicosis”) 

1984 1987 

 

Figure 3-1: Shows the change in rule 22310.01 over a three year period, from 1984 when 
the system first went on-line, to 1987 (Compton et al. 1989). 
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As identified in chapter 2 it is this conversion between contextual knowledge 

and global knowledge, paralleled, with maintaining consistency that renders 

long term maintainability next to impossible in traditional expert systems. 

Therefore, in order to create maintainable ES through dialogue with domain 

experts, the system should build into its methodology a means for incorporating 

an expert’s justification of a hypothesis within a particular context. The 

conclusions identified for both KA and KM are essentially identical, both have 

the potential to be significantly reduced through the inclusion of context within 

the KR used by the system. 

3.1.2 Implications 

Compton et al. (1988; 1989), through this maintenance experience, found that in 

order to create a maintainable ES through dialogue with domain experts, then 

the system should build into its methodology a means for incorporating an 

expert’s justification of a hypothesis within a particular context. Based on these 

observations, Compton et al. (1988; 1989), identified three approaches to 

developing context sensitive knowledge bases: 

• To set up an ES, such that, the context of a provided justification forms 

part of the knowledge base. 

• To incorporate the notion of debate or argument, following from Popper’s 

hypothesis of knowledge, within the ES.  

• Finally, is to use inductive techniques to learn from datasets. 

A KR that incorporates some or all of these techniques is attractive because 

they implicitly recognise that an expert provides the best source of knowledge. 

Inductive learning methods find features in a dataset which best distinguish 

between hypotheses, which have a strong correlation with an expert’s 

justification of a hypothesis within a context (Compton et al. 1988; 1989). While 

many systems have been developed for inductive learning, such as C4.5 

(Quinlan 1993), concepts for incorporating context, are not central components. 
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3.2 Ripple-Down Rules Methodology 

Ripple-Down Rules7 was first proposed by Compton and Jansen (1988). It uses 

a simple exception structure aimed at partially capturing the context that 

knowledge is obtained from an expert. It was assumed that the context was the 

sequence of rules that had evaluated to provide the given conclusion (Beydoun 

2000; Compton et al. 1991; Compton and Jansen 1988; Compton et al. 1993; 

Preston et al. 1993; Preston et al. 1994). Therefore, if the expert disagrees with a 

conclusion made by the system they can change it by adding a new rule with 

whichever level of generality was required by the expert. However, the new rule 

will only fire if the same path of rules is evaluated with the same outcomes as 

previously (Compton et al. 1993). Fundamentally, since its development it has 

accurately been described as knowledge acquisition through fault patching 

(Menzies and Debenham 2000). Ripple-Down Rules was so named to capture 

this notion of appending fix-up rules to the bottom of a knowledge base, thereby, 

rippling the formula for a conclusion down over many rules, rather than 

attempting to fix existing rules (Jansen and Compton 1989).  

The context of a new rule is its position within the RDR structure. A rule can 

only fire when the rules that led to it, before its creation, have fired. Therefore, 

the rules context is the previous path of rules and their outcomes. This is 

effectively capturing the rules context implicitly within the structure itself. This 

corresponds to how a human expert, explaining the justification of their 

conclusion to a trainee, will start from where they believe the trainee deviated 

from the correct solution, providing the justifications required from that point to 

the expert’s correct conclusion. Furthermore, it also corresponds to a person’s 

method of debate or argument. When debating an issue each person presents 

their view but they start their justifications from the current context of their 

opponents.  

                                                 
7  Since the advent of Multiple Classification RDR (3.3), RDR has sometimes been referred to as 

Single Classification RDR (or SCRDR) or Simple RDR (XRDR) (Le Gia et al., 1997) to 
differentiate it from MCRDR. RDR is often used to refer to the whole collection of RDR-based 
methodologies, which can cause some confusion. It is also commonly regarded in the RDR 
community that RDR refers to the single classification version. Thus, throughout this thesis, the 
acronym RDR will always be used to refer to the single classification version and when a reference 
to the collection of RDR-based methodologies is made, it will be clear from the context of the 
sentence. 
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RDR’s very simple no-model approach to KA has revealed many advantages. 

For instance, because a rule can only fire within a particular context, then when 

it is being created it only requires validation within that context (3.2.1). 

Therefore, new knowledge can easily be validated during the moment of 

acquisition. Furthermore, the expert does not need to know anything about the 

actual underlying structure of the knowledge they are constructing. This is a 

marked difference from model based approaches where the KE needs to 

consider and validate each new piece of knowledge across the entire knowledge 

base. In this system the normal KB development phases of requirements 

definition, analysis, design, implementation and maintenance can be eliminated. 

RDR omits the design stage completely and merges the implementation and 

maintenance phases seamlessly (Beydoun 2000), effectively providing a holistic 

approach to KA and KM where there is little or no difference between the tasks. 

3.2.1 Structure and Inference 

The basic underlying structure of RDR8 is a binary tree; each node contains 

a rule and a conclusion (or classification). Each node has two possible branches, 

representing whether the rule was satisfied or not by the data provided in the 

presented case. If a rule is found to be ‘true’ then the successful branch9, is 

followed to the next rule and visa versa for the unsatisfied branch 10 . This 

process continues until either a leaf node is reached or until a node has no 

appropriate branch to follow 11 . The conclusion returned by RDR is the 

conclusion from the last successful rule. That is, if the last node tested was true 

then its conclusion is returned. However, if it was false then its parent-node’s 

conclusion (if its rule was satisfied) is returned. This process of checking the 

parents, is continued until a satisfied rule is found, thereby returning that rule’s 

                                                 
8  RDR has evolved into a general representation since its initial years with the GARVAN-ES1 

system where it was first applied with alternative representation strategies. It is this generalised 
form that will be presented in this chapter rather than the earlier incarnations, as this is the 
generally-accepted basic methodology that all other work has been based upon. 

9  The ‘true branch’ or ‘successful branch’, is also sometimes referred to as the ‘except branch’, as 
the child rule can be thought of as an exception to the parent rule. 

10  The ‘false branch’ or ‘unsuccessful branch’, is also sometimes referred to as the ‘if-not branch’. 
11  The majority of the current literature states that inference terminates only at a leaf node. This is 

inferring that RDR is using ‘dummy’ leaf-nodes that are added at the alternate branch when the user 
corrects a conclusion. Yet no diagrams or explanations explicitly represent or state any such type of 
node as being part of the methodology. Thus, this thesis is correcting this anomaly in stating that 
inferencing is concluded at a leaf node or when no branch exists to follow, and therefore, there is no 
need for the inclusion of ‘dummy’ leaf nodes.  
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conclusion. The root node is a special case, of the form ‘If true then – default 

conclusion’, which is always satisfied. Therefore, if no other rule is satisfied 

then the default conclusion is returned, guaranteeing a conclusion will always be 

found.  

For example, a case with the attributes {a, b, c, g, h} is presented to the RDR 

KB shown in Figure 3-2. In this tree it can be seen that: rules 1 and 3 have both 

true and false branches leading to further rules; rule 2 only has a false path; rules 

4 and 6 (and obviously the root node) only have a true path; and, rules 5, 7 and 8 

are leaf nodes. When the case is presented it ripples down the tree using the path 

{0 – 1 – 3 – 6} where, because there is no attribute ‘f’ and no false branch, the 

inferencing process completes. The conclusion returned is 1 from rule 1, due to 

this being the last rule to be satisfied. 

Case attributes 

a, b, c, g, h 

Rule 1: 
If ‘a’ then  
Conclusion - 1 

Rule 2: 
If ‘b’ then 
Conclusion - 2 

Rule 6: 
If ‘f’ then 
Conclusion - 5 

Rule 5: 
If ‘g’ then 
Conclusion - 2 

Rule 3: 
If ‘c’ and ‘d’ then 
Conclusion - 3 

Rule 8: 
If ‘f’ and ‘h’ then 
Conclusion - 3 

Rule 7: 
If ‘e’ then 
Conclusion - 6 

Rule 4: 
If ‘d’ and ‘e’ then 
Conclusion - 4 

Rule 0: 
If true then  
Conclusion - default 

TRUE TRUE TRUE 

TRUE 

TRUE 

FALSE 

FALSE 

FALSE 

 

Figure 3-2: Example of the RDR binary tree structure. The rectangle nodes of the tree 
contain a rule and a classification. The branches of the tree are either 'true' or 
'false'. The straight arrows indicate the direction of inference. The empty block 
arrow and the document shape indicate a case being presented to the KB for 
inferencing. The grey filled boxes show the rules that are tested during the 
inferencing process for the example case. The curved arrows show the 
direction taken when searching for the last satisfied rule and the bold outline 
rectangle shows that last satisfied rule. Thus, the final conclusion of the 
inferencing process is class ‘1’. 
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It should be observed in the above example that even though our case had 

the attributes ‘b’, ‘g’ and ‘h’ and that the RDR tree has rules 2, 5 and 8 that test 

for these attributes, they were never used, because the context that those 

attributes are required in, never occurs. It should also be noted that the rule 

numbers have no meaning in the inferencing process and if used in 

implementation generally indicate the order rules are created. They are shown 

here only so particular rules can be identified and discussed. Also, it can also be 

seen that some conclusions are repeated at different locations. This is usually the 

case as most classifications have multiple possible definitions.  

3.2.2 Learning 

As mentioned previously, the primary advantage of RDR is the ease that new 

knowledge can be added and the method of adding knowledge is the same, 

regardless of whether the system is in the development or maintenance stages. 

The inclusion of new knowledge is simple because of the context based 

structure of the rules. When a new rule is being added it is merely appended to 

the tree as a leaf node and it only needs to be validated within this narrow 

contextual domain. 

RDR learns through the acquisition of rules, increasing the size of the KB. 

The process consists of first passing the case to the inferencing system (3.2.1) 

which classifies the case. If the expert disagrees with the conclusion then they 

simply provide a justification for why it was wrong, which is used as the new 

rule. The justification is determined by first comparing the current case with the 

previous case that had originally created the parent rule, referred to as the 

cornerstone case. A list of differences, in the form of attributes, between these 

two cases is generated from which the expert selects one or more. Those 

attributes selected justify the new rule. The new rule created is unable to 

mistakenly classify the old cornerstone case with the new rule because only 

differences were used in creating the rule. This concept of using differences is 

not new and has been used in KA methodologies based on PCP. It’s a useful 

acquisition technique as people are good at identifying differences (Compton et 

al. 1991; Gaines and Shaw 1990; Shaw and Gaines 1992). The RDR approach 

contrasts these other PCP based methods, because, rather than asking the expert 
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to think of differences, RDR simply asks them to select the relevant differences 

(Compton et al. 1991). 

For example, continuing from the previous example in Figure 3-2, Figure 

3-3 illustrates how a new rule is created and added to the RDR structure. It is 

assumed that the above inference has occurred and the expert has decided the 

conclusion of class 1 is incorrect. Firstly, the cornerstone case that was used in 

the creation of rule 6 (this rule is used as it was the last one visited during the 

inference process) is loaded and compared with our new case identified as 

having been misclassified. The two cases are merged and the unique attributes 

extracted, as identified in the difference list. The expert then selects the relevant 

differences that best describes the difference between the documents, for 

instance ‘h’ and ‘!i’ has been selected in this example. The new node is then 

created by writing a rule with the attributes selected, the correct class given by 

the expert and our current case. The current case will become the cornerstone 

case for this new rule ready for future corrections. The new rule is then attached 

as a child node to rule 6 on the false branch. 

 Difference List
 

b, c, h, 

!f, !i 

Rule 9: 
If ‘h’ and ‘!i’ then 
Conclusion - 3 

Rule 6: 
If ‘f’ then 
Conclusion - 5 

Rule 3: 
If ‘c’ and ‘d’ then 
Conclusion - 3 

Rule 7: 
If ‘e’ then 
Conclusion - 6 

TRUE 

FALSE 

FALSE 

Classification 3Expert 

Current case  
attributes 

 

a, b, c, g, h 

Cornerstone case 
attributes 

 

a, f, g, i 

 

Figure 3-3: Example of creating and incorporating new knowledge in RDR. The grey 
triangle represents the merging of the cornerstone case (extracted from the 
terminating rule during inferencing) and the current case, producing a list of 
attributes that differentiate the two cases, shown in the grey box with a bold 
border. The expert selects from this list the attributes that best identifies the 
reason for the conclusion. A new leaf node is created incorporating a rule, 
compiled from the expert’s selections, the classification identified by the 
expert, and the current case which will become the new node’s cornerstone 
case. This node is then added to the tree at the point where the inferencing 
process was halted. 
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As this example shows, through the inclusion of context within the structure 

of the KB, two major advantages are achieved. Firstly, the cause of the failure 

by the KBS during inferencing is automatically determined. This significantly 

improves on existing KA paradigms where a KE will have to study the rule base 

to locate the cause of an error even before looking at how it is to be corrected. 

Secondly, when creating the new rule it is guaranteed to be consistent with the 

existing KB without the need of extensive testing of the new rule (Beydoun 

2000).  

Another advantage to this approach to incremental rule creation is that the 

task remains the same regardless of the size of the KB. Each KA step has the 

same simplistic process of selecting differences (Mansuri et al. 1991b) whether 

it is the first rule or the ten thousandth rule created. Finally, it should also be 

noted that this method of fault patching means there is no need to delete or 

change rules once entered. In fact such changes are explicitly excluded from the 

methodology as they can hamper the contextual validation of the system. Instead, 

errors in the KB can simply be corrected by adding a new rule rectifying the 

earlier incorrect assertion. 

3.2.3 Comparison of RDR with Other KBS Methodologies 

The fundamental difference between RDR and the vast majority of other KBSs 

is its philosophical approach. Menzies (1998), when considering a conceived 

KB to be built and used, puts it rather simply: 

If most of the changes to that knowledge base occur before its usage, 
then we would look to optimizing the design process: i.e. conception 
to construction. … [However,] if most of the changes to that 
knowledge base occur once it is being used, [then] we should look to 
optimizing the maintenance process: usage to reconception to 
reconstruction (Menzies 1998, p 867). 

It is this different situated cogitative view adopted by RDR which separates 

it from the mainstream systems. As discussed in section 2.1.4.5, it is SC’s view 

that knowledge is created at the moment it is articulated, thus, it is highly 

contextually dependant and constantly changing. Therefore, the design-time 

modelling methodologies (such as KADS) cannot easily update their knowledge 

in this changing environment. RDR concentrates on optimising the maintenance 
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process rather than attempting to design and model solutions prior to KB 

development. 

In achieving a maintenance oriented technique, RDR had to be designed to 

perform validation of knowledge at the moment of acquisition. As mentioned 

previously, this is achieved by limiting the expert to only identify domain 

knowledge within the context of the previous error. This removal of structural 

and control knowledge from the knowledge base, traditionally hidden within the 

KB, means that only domain expertise is still required. A traditional KE task is 

to incorporate knowledge into a KB by making structural and control decisions. 

KADS and numerous other methodologies directly refer to these knowledge 

types and offer methods of extracting and modelling such knowledge. Yet RDR 

is able to remove the need for such knowledge entirely, effectively eliminating 

the need for the KE. One interesting observation, resulting from the removal of 

the KE in KBS development, is that RDR can be applied in a significantly more 

diverse range of classification based applications. As will be discussed in 

section 3.4, while RDR can be applied in traditional KBS domains like medical 

diagnosis, it can also be used in domains such as personalisation tools, 

monitoring and management. 

It is argued that one advantage of knowledge level methodologies is the 

opportunity for knowledge reuse through the use of problem solving methods or 

ontologies. Systems such as Protégé have targeted such knowledge reuse 

(Gennari et al. 2002). Knowledge reuse, however, was not an aim of the RDR 

methodology and its use of raw contextually based, often specialised, 

knowledge is a major draw back in the RDR technique from a reuse perspective. 

However, extension work to RDR, by Richards (1998a), has opened up the 

possibilities of knowledge reuse. It is this specialised, non-generalised, 

knowledge that makes RDR a powerful tool. The generalisation of knowledge in 

traditional approaches, by definition, is removing knowledge. This removed 

knowledge is in the form of contextual knowledge and some degree of domain 

knowledge. However, this lack of generalisation leads to the greatest criticism of 

the RDR approach by the proponents of the knowledge level methodologies. 
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3.2.4 Problems with RDR 

Without a doubt, the greatest criticism of RDR is the very use of specialised 

contextual knowledge that gives RDR much of its strength. The obvious 

problem is that knowledge can easily be repeated in many places throughout the 

RDR structure (Compton et al. 1993; Kang et al. 1995; Mansuri et al. 1991b; 

Preston et al. 1994). This repeated knowledge is not only in the form of 

individual rules but potentially entire sections of a tree. A second problem is due 

to the lack of control over the structure of the knowledge. Tests have shown that 

the RDR tree can become extremely unbalanced (Compton et al. 1991; Preston 

et al. 1993; Preston et al. 1994).  

By observing expert behaviour when creating rules, it has become clear that 

neither of these are major problems and certainly do not vitiate the method 

(Compton et al. 1993). For instance, when the GARVAN system was rebuilt 

using RDR it was found that only 13% of the knowledge was repeated and 

because KA is significantly faster than in traditional systems the small amount 

of repetitive KA required is not seen as being a major problem (Op cit). 

Comparisons with induction methods such as Quinlan’s C4.5 (1993) and 

Gaines’s InductRDR (1989a) suggest that the manually constructed RDR tree 

only has approximately twice as many rules, which is remarkably good against 

the highly optimised induction trees (Compton et al. 1993).  

The reason repeated knowledge does not occur in large quantities is believed 

to be related to the second problem. Experts appear to mainly create rules when 

the system fails to give a conclusion (other than the default conclusion), rather 

than to correct inconsistencies (Compton et al. 1991; Compton et al. 1994; 

Mansuri et al. 1991a; Mansuri et al. 1991b). This is believed to be due to experts 

tending to provide fairly accurate rules for a particular case, leaving a range of 

possible cases not covered (Compton et al. 1991; Mansuri et al. 1991b). This 

causes the unbalanced tree but also means that there is less chance of the expert 

needing to repeat knowledge. Work has been carried out to attempt to address 

these issues: such as Chellen’s (1995) system for reducing the size of a manually 

developed RDR system; Richards’s (1998a) use of rough sets and induction; and, 

most recently Suryanto and Compton’s (2003) use of predicate logic. For further 

details on methods used to reduce repetition see section 3.4.3. 
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A third significant problem with the basic RDR methodology is its inability 

to handle multiple classification domains. This is not unique to RDR as it is 

shared with many induction methods, such as Quinlan’s C4.5 (1993). There are 

two possible work arounds with the basic RDR structure as it stands. The first is 

through the use of combinatorial classifications with each single classification 

provided, which vastly exacerbates the repetition problem (Compton et al. 1993), 

as has been found in the PEIRS KBS (Edwards et al. 1995a). A second 

possibility is using multiple KBs, which require a predetermination of how 

many KBs are required and can also result in significant repetition depending on 

the domain and runs contrary to the RDR philosophy. This later approach was 

trialled successfully by Shiraz and Sammut (1998) with a system referred to as 

Dynamic RDR (DRDR) applied to learning a flight control task. The alternative 

to these approaches is to redesign the structure to allow for multiple 

classifications, discussed in detail in the following section. 

3.3 Multiple Classification Ripple-Down Rules Methodology  

Ripple-Down Rules has been shown to be a highly effective tool for KA and 

KM. However, its lack of ability to handle tasks with multiple possible 

conclusions significantly limits the method’s ability to be applied in many 

domains. The aim of Multiple Classification Ripple-Down Rules (MCRDR) was 

to redevelop the RDR methodology to provide a general approach to building 

and maintaining a KB for multiple classification domains, with all the 

advantages found in RDR. Such a system would be able to add fully validated 

knowledge in a simple incremental contextually dependant manner without the 

need of a KE (Kang 1996; Kang et al. 1995). 

3.3.1 Structure and Inference 

The new methodology developed by Kang (1996) is based on the proposed 

solution by Compton et al (Compton et al. 1991; Compton et al. 1993). The 

primary shift was to switch from the binary tree to an n-ary tree representation. 

The context is still captured within the structure of the KB and explanation can 

still be derived from the path followed to the concluding node. The main 

difference between the systems is that RDR has both an exception (true) branch 
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and an if-not (false) branch, whereas MCRDR only has exception branches. The 

false branch instead simply cancels a path of evaluation. Like with RDR, 

MCRDR nodes each contain a rule and a conclusion if the rule is satisfied. Each, 

however, can have any number of child branches and each one represents an 

exception branch.  

Inference occurs by first evaluating the root and then moving down level by 

level. This continues until either a leaf node is reached or until none of the child 

rules evaluate to true. Each node tests the given case against its rule. If false it 

simply returns, X (no classification). This is essentially the same as following 

the false branch in RDR. However, if this node’s rule evaluates to true then it 

will pass the case to all the child nodes. Each child, if true, will then return a list 

of classifications. Each list of classifications is then collated with those sent 

back from the other children and returned. However, if none of the children 

evaluate to true, and thus they all return X, then this node will instead return its 

classification. Like with RDR the root node’s rule always evaluates to true, 

ensuring that if no other classification is found then a default classification will 

be returned. 

For example, a case with the attributes {a, c, d, e, g, i} is presented to the 

MCRDR KB shown in Figure 3-4. The case ripples down through two child 

Rule 1: 
If ‘a’ then  
Conclusion - A 

Rule 2: 
If ‘b’ then 
Conclusion - B 

Rule 0: 
If true then  
Conclusion - default

Rule 3: 
If ‘d’ and ‘f’ then 
Conclusion - C 

Rule 4: 
If ‘c’ and ‘d’ then 
Conclusion - C 

Rule 8: 
If ‘h’ then 
Conclusion - D 

Rule 5: 
If ‘g’ then 
Conclusion - A 

Rule 9: 
If ‘e’ then 
Conclusion - F 

Rule 6: 
If ‘f’ and ‘h’ then 
Conclusion - E 

Rule 7: 
If ‘h’ then 
Conclusion - F 

Rule 10: 
If ‘i’ then 
Conclusion - B 

Case attributes
a, c, d, e, g, i 

 

Figure 3-4: Example of the MCRDR n-ary tree structure. The rectangle nodes of the tree 
contain a rule and a classification. All branches are essentially exception (true) 
branches. The straight arrows indicate the direction of possible inference. The 
grey filled boxes show the rules that are tested and evaluate to true for the 
identified case. The rectangles with bold borders are the terminating rules. 
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rules, 1 and 4, from the root node as these were the only nodes with rules 

evaluating to true. The path followed to rule 1 is, however, immediately halted 

as all its children return, X.   The path continuing from rule 4 passes through rule 

5 and concludes at rules 9 and 10. These three concluding rules, 1, 9 and 10 

return our conclusions A, F and B. The conclusion of A, in this example, 

however, is redundant because the inference process for classifications F and B 

had the rule paths {0 – 4 – 5 – 9} and {0 – 4 – 5 – 10}. Both paths past through 

rule 5, and due to rule 5 having the same classification as rule 1, and because an 

exception was found to rule 5, then that exception is also an exception to rule 1. 

Thus, the final conclusion is F and B. 

3.3.2 Learning 

Knowledge acquisition in MCRDR occurs for the same situations as with RDR, 

when a case is misclassified or when no classification other than the default is 

found. Once an error is found the MCRDR procedure for refinement is mildly 

more complicated than the approach used in RDR. This complexity comes from 

enforcing the need for validation during the KA task. Kang et al (1995) describe 

a three step process: 

1. The expert supplies the correct classification. This is a trivial step and was 

also required in RDR. It is simply the process of the expert informing the 

system of the correct classification for the case presented 

2. The system identifies the new rule’s location. This is a new step and will 

be discussed in the following section (3.3.2.1) 

3. The expert defines the new rule from a series of difference lists. This step 

was also in RDR but has been expanded (3.3.2.2). 

3.3.2.1 Locating Rules 

In the RDR methodology each new node was simply attached to the appropriate 

node at the bottom of the tree where inference had halted. However, in MCRDR 

there can be multiple nodes attached to a parent node, thus a new node should be 

able to be attached at any location in the tree hierarchy, between the root and the 

terminating inference node. Kang et al. (1995) identifies three reasons for 
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Wrong Classification Method to Correct the KB 

A new independent 
classification 

Add the new rule at an appropriate higher 
level so that it does not cancel the already 

correct classification. 

A classification is wrong and 
should be replaced by another 

classification 

Add a rule at the end of the path to give 
the new classification. This cancels the 

old incorrect classification 

Classification is wrong and 
should simply be stopped 

Add a new stopping rule at the end of the 
path to prevent the classification 

Table 3-1: Three ways for adding new rules when correcting an MCRDR KB (Kang et al. 
1995). 

wishing to correct the knowledge base and identifies recommendations for what 

types of rules should be created and where they should be placed, shown in 

Table 3-1. The middle situation is identical to RDR’s reason for creating a new 

rule. However, the other two are unique to MCRDR. The first circumstance 

allows for the possibility of increasing the number of classifications of a case. 

The final situation introduces a special rule, referred to as a stopping rule, which 

is used to halt and cancel a particular path of evaluation. The stopping rule plays 

an important role in MCRDR by preventing incorrect classifications being given 

for a presented case.  

It can be seen here that a decision must be made as to whether the new rule 

being created is a refinement (or exception) to an existing rule, or whether it is 

an entirely new classification. If it is new then it should be added further up the 

tree, after the last relevant node. The last relevant node is the final one in the 

original evaluation path that the new rule could be considered to be offering a 

refinement. However, in some ways it does not matter as any location between 

the root and the terminating node will still work regardless of the expert’s view 

of the new rule. The primary effect of location is on the evolution and 

maintenance of the KB. If the chosen rule creation strategy tends to place new 

rules towards the end of inference paths, then the domain coverage will be slow 

but each rule will generate fewer errors because they are seen less frequently. If 

the strategy used tends to position new rules higher in the path then the KB 

structure will be flatter and broader, meaning more rules are in context at any 
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time. This will result in the faster coverage of the entire domain but each rule 

will generate more errors, because the use of context is not as great (Kang 1996). 

While these added decisions may imply the need to return to employing a 

KE, research has shown that through using various interface strategies, the RDR 

philosophy of the expert having no knowledge of the underlying structure, can 

remain. For instance, Kang et al (1995) offers a number of possible interaction 

methods that can lead towards either a more general wide ranging KB or a more 

highly specified KB. These outcomes can be achieved by asking the expert to 

select the important data used to reach the new conclusion, or alternatively, to 

delete the irrelevant data. Then the selected or remaining data is used to create a 

mini-case12, which is processed by the tree to find how far down the identified 

path the new rule should be placed. This process is effectively searching for the 

correct context to place the rule. 

3.3.2.2 Rule Creation 

The idea in incremental validation is that the new rule does not cause any 

previously seen correctly-classified cases to now be misclassified after the new 

rule is added. Generally, validation is performed by maintaining a database of 

previous cases. In RDR this is simply done by testing the new case against the 

cornerstone case that was stored at the time of the parent rules creation, thus 

there is only the one previous case stored in the database. In MCRDR this notion 

of a cornerstone case is retained, however, it has been extended due to the 

possibility of relevant rules being created elsewhere in the tree. Each node in the 

MCRDR tree can contain a number of cornerstone cases. There are two 

situations when a case can be added as a cornerstone case: 

• Firstly, as in RDR, when a new rule is created, the case that was 

incorrectly classified and caused the new rule is added as the first 

cornerstone case of the new node. 

• Secondly, if a case is correctly classified at a particular node but 

incorrectly classified simultaneously at another node causing a new rule to 

                                                 
12  A mini-case is a case that only has a selection of attributes of the actual case that caused a 

misclassification. Thus, if a mini-case is represented by ‘c’, then c ⊆ C. 
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be created elsewhere in the tree. The case is added to the newly created 

rule, (per the first point) and also to the node that classified it correctly.  

The second point is performed because it is known that this is a correctly 

represented case by the KB. The system knows this because the expert has taken 

the time to correct a rule. Cases that the expert has simply accepted as correctly 

classified are not stored, because they could be wrong. This would occur when 

the expert had little concern about the error and had not taken the time to correct 

them. Thus, they are never used for validation.  

A second complexity in the multiple classification knowledge acquisition 

methodology, is that with the possibility of multiple children, the system would 

be required to also validate any rule being created against not only all the 

cornerstone cases at the parent node, but also all the cornerstone cases at all the 

sub branches from the parent node. Figure 3-5, illustrates which nodes’ 

cornerstone cases would need to be checked for validation. It can be seen that 

the higher up the tree a correction is being made the more cornerstone cases 

from which the current case will be required to be differentiated.  

To create a new rule a difference list will need to be generated between the 

current case and all the relevant cornerstone cases. Equation (3-1) shows an 

example of what needs to be accomplished. In this example, case A is the 

Rule 1: 
If ‘a’ then  
Conclusion - A 

Rule 2:
If ‘b’ then 
Conclusion - B 

Rule 0: 
If true then  
Conclusion - default

Rule 3: 
If ‘d’ and ‘f’ then 
Conclusion - C 

Rule 8:
If ‘h’ then 
Conclusion - D 

Rule 7: 
If ‘h’ then 
Conclusion - F 

New Node to be 

created 

Rule 5:
If ‘g’ then 
Conclusion - A 

Rule 9: 
If ‘e’ then 
Conclusion - F 

Rule 6:
If ‘f’ and ‘h’ then 
Conclusion - E 

Rule 10: 
If ‘i’ then 
Conclusion - B 

Rule 4:
If ‘c’ and ‘d’ then 
Conclusion - C 

 

Figure 3-5: MCRDR tree showing the nodes that cornerstone cases should be taken from 
when a new node is added to the node containing Rule 4. This is the same tree 
as in Figure 3-4. The new node to be created, when added, will have the rule 4 
node as a parent. Cornerstone cases should be drawn from all the nodes below 
the parent node in the tree, shown in the grey section. Thus, they will be taken 
from the nodes with rules 4, 5, 6, 9 and 10. 
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current case needing to be differentiated from two cornerstone cases, case B and 

case C. 

( )
( )( ) A case C case B case from conditions negated
or

 C case B caseA case

−∩

∪−
 (3-1)

 

However, finding an attribute in the new case that is not in any of the 

cornerstone cases is often not possible, as illustrated in Figure 3-6. Kang (1996; 

Kang et al. 1995) argues that the exclusivity of the attributes themselves is, 

however, not what is important, only the uniqueness of the attribute 

combination is required. To extract such a combination, Kang suggests a simple 

incremental approach to rule construction, where a series of difference lists are  

(a)  

Difference List 
between 

A and (B and C) 

a 
not f 

(b) 

Difference List 
between 

A and (B and C) 
empty 

Difference List 
between 
A and B 

d 
not c 

Difference List 
between 

(A and C) 

b 
not g 

  

Figure 3-6: Comparison of two rule selection methods using two similar situations. In both 
situations: case A is the current case requiring a new rule; and, cases B and C 
are both cornerstone cases. In situation (a) the simple method is able to find 
the attributes {a, !f} separating the new case from the two cornerstone cases, 
identified by the light grey areas. In situation (b) there are no attributes in the 
locations used in situation (a), therefore, the simple method fails to find any 
attributes separating A from B and C. However, the second method finds {d, !c} 
differentiating A from B, identified by the light grey areas, and {b, !c} 
separating A from C, shown in dark grey. Thus, case A can be uniquely 
identified through the attribute combination of {b, d, !c, !g}. Note: in this 
example all possible attributes were selected, the expert, however, would only 
need to select a minimum of 1 from each difference list (taken from Kang et al. 
1995). 
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generated. Therefore, in the example of Equation (3-1, A is first compared 

against B, and then compared against C. Figure 3-6, shows how, in certain 

situations, this can find a rule where the simpler approach could not. 

This method appears rather time consuming for the expert, as they 

potentially would have to select differences in hundreds of comparisons. 

However, in practice this is not the case. When the expert selects an attribute 

from the first difference list all the other cornerstone cases are checked against 

this partial rule. All cornerstone cases not satisfied are removed from the list of 

cornerstone cases. Then the case is compared against one of the remaining cases. 

This process of eliminating cornerstone cases significantly reduces the amount 

of comparisons required and only very rarely does an expert need to make more 

than 3 or 4 comparisons (Kang 1996; Kang et al. 1995; Kang et al. 1998).  

3.4 Refinements and Extensions 

The methodologies described were previously covered in detail due to their 

importance as the two central algorithms at the core of all RDR based research. 

There have been a number of attempts to enhance these original RDR 

methodologies. These enhancements, however, rarely can be applied universally, 

as they usually only have a narrow field of application. One of the main areas of 

research has been in the development of methods for improving knowledge 

acquisition through using induction or machine learning algorithms usually with 

significant success. Other areas that have also been investigated are methods to 

reuse knowledge already captured and the development of methods to create 

fuzzy rules. There has also been some work on finding ways of reducing the 

problems of knowledge repetition in RDR and how to resolve conflicting 

knowledge when acquiring knowledge from multiple experts.  

This section aims to briefly review two of the major extensions: Richards’s 

MCRDR/FCA and Suryanto’s GENICA. These extensions are related to the 

work in this thesis as they both, through different approaches, attempted to 

extract information from the RDR based structure. Additionally, a very brief 

survey of a number of refinements and extensions are described. Further details 

on RDR research into prudence analysis will be reviewed in chapter 7. 
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3.4.1 MCRDR/FCA 

A purely automated approach to the extraction of concepts for the 

development of a concept hierarchy is taken by Richards and Compton (1997b; 

1999) in the MCRDR/FCA system. This is the first major body of work to 

investigate the extraction of information from the MCRDR KB structure itself. 

The primary focus of this work is the discovery of generalised concepts for 

knowledge reuse. However, it has also been used as a means to develop a 

concept model, improving RDR explanation, as a tool for construction tasks and 

for building Problem Solving Methods (PSMs) and Ontologies. 

MCRDR/FCA is one of the most significant contributions to knowledge 

reuse with an RDR based philosophy. It stemmed from Richards’s (1998a) PhD 

thesis, with various other papers by Richards (1998b; 1999), Richards and 

Compton (1997a; 1997b; 1999), Richards and Busch (2000; 2001) and Richards 

and Simoff (2001). Richards used FCA to create a formal method for identifying 

the concepts and the relationships between those concepts, captured by MCRDR. 

It accomplished this through the construction of abstraction hierarchies from the 

raw production rules. This information was then used to extract further concepts 

with minimal additional effort for the expert (Richards 1998a; Richards and 

Compton 1997a). This valuable contribution showed that the complex modelling 

of domain and problem solving knowledge of main stream KBSs prior to KA 

commencing, is not required. Later research into MCRDR/FCAs application 

into modelling tacit knowledge (Busch and Richards 2004; Richards and Busch 

2000; 2001) has also shown the method’s conceptualisation power and ability to 

capture knowledge that other KBSs cannot accomplish.  

Other uses for MCRDR/FCA have also been explored. For instance, the 

natural opportunity for explanation within the RDR methodology was extended 

(Richards 1998a; 2001) to include the retrospective analysis of the domain 

knowledge that has been captured in the RDR rules. This is achieved through 

the use of FCA (2.2.4.1), which produces a retrospective model allowing the 

expert to easily peruse the interlinked concept lattice generated from the rule 

base. The combination of this feature with the ability to review the rule traces 

and case differences allows for a much deeper contextually based explanation. 

The use of FCA line diagrams in Richards’s work is similar to the connected 
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graphs which Clancey (1986) refers to as a casual model. Additionally, Richards 

(1998a), Richards and Compton (1999), Richards and Simoff (2001), and more 

recently Richards (2004) have used MCRDR/FCA for both PSM and 

ontological construction through incremental retrospective reverse engineering.  

3.4.2 GENICA 

More recent work deriving and restructuring knowledge in RDR is by 

Suryanto and Compton (2002; 2003; 2004) and in Suryanto’s PhD thesis (2004). 

This work stems from first flattening the MC/RDR trees into a set of disjunctive 

normal form rules (DNF rules), which can then be run in any order. These DNF 

rules are then used through three phases, reorganization of RDR, generalization 

on RDR and discovery from RDR. The first process of reorganisation of RDR 

rules is performed during the rebuilding of the tree, by removing flat rules that 

have been subsumed by other flat rules. This is effectively removing any 

duplicated sections of the tree. The generalisation on RDR is performed using 

GENICA (GENeralization using Intra Construction and Absorption), based on 

Duce (Muggleton 1987), which generates generalised rules through invented 

predicates from expert created rules. This has the advantage of reducing KA 

effort in certain situations by up to 50% (Suryanto 2004; Suryanto and Compton 

2003; 2004). 

Suryanto’s discovery from RDR investigates the detection of ontologies, 

referred to as ontology learning (OL). Relevant sections of this work have also 

been published by Suryanto and Compton (2000a; 2000b; 2001; 2002). The goal 

of OL is to discover relations between classes from the multiple conclusions of 

MCRDR, which is similar conceptually to the work in this thesis. Suryanto’s 

system will find one of three possible relationships, which are mutual-

exclusivity, similarity and subsumption. These relationships are found by 

observing commonalities and differences between the conditions used in rules in 

the rule path (Suryanto 2004). These relations are then used to construct 

compound relations, which are used to extract matching relations from all the 

basic relations. Finally these matched compound relations are used to create a 

class model, which Suryanto asserts, “…then enables possible ontologies to be 

explored on a reasonable scale” (Suryanto 2004, p 136). 
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3.4.3 Other RDR Research 

There has been a significant amount of research in RDR based systems, thus this 

section will only very briefly mention the more important bodies of work. 

Validation and Verification research, along with work on prudence analysis is 

covered separately in chapter 7. 

3.4.3.1 Enhancements 

In section 3.1.2 it was mentioned that one way of developing context sensitive 

knowledge bases was to use induction, such as Quinlan’s C4.5 (1987; 1993). 

Induction, the process of automatically deriving knowledge through statistical 

analyses or machine learning, however, is not part of the basic RDR 

methodologies. Compton et al (1988; 1989) originally claimed that the merging 

of an RDR-like system with induction techniques could be advantageous. There 

have been two fully inductive methods developed for RDR. The first, and most 

widely used, is InductRDR (Gaines and Compton 1992; 1993) based on the 

Induct algorithm by Gaines (1989b; 1991), which used induction with 

exceptions. Induct, is similar to C4.5, except it derives rules directly using an 

extension of the Prism algorithm proposed by Cendrowska (1987), in order to 

extract knowledge from noisy data. The second full induction algorithm is 

Scheffer’s (1996) Cut95, which has shown good empirical results.  

There have also been a number of methods developed to merge inductive 

learning and knowledge acquisition from a human expert. These partially 

inductive techniques move closer to a complete solution for context sensitive 

knowledge bases as they incorporate all of Compton et al’s (1989) three possible 

approaches. One of the early attempts was by Catlett (1992). Catlett’s approach 

was to simply develop a methodology for converting an existing KB from an 

RDR structure to a decision tree structure and vice-versa. Another method 

developed by Wada et al. (2000; 2001b), took an approach similar to Scheffer’s 

Cut95. Wada et al’s (2000; 2001b) system first used RDR as a knowledge 

acquisition tool in the usual fashion, but once sufficient cases are available it 

then uses the minimum description length principle, proposed by Rissanen 

(1978), as a complement to a lack of expert knowledge.  
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Other machine learning techniques have also been developed for aiding rule 

development or extraction, usually however, for a specific application. One 

method was Learning Dynamic RDR (LDRDR), developed by Shiraz and 

Sammut (1998; 1995; 1997) as an adjunct of Dynamic RDR (DRDR). DRDR 

was used for a control task and uses multiple RDR trees to learn different 

aspects of the task at hand, forming a kind of multiple classification method.  

Recall (3.2), one of the original philosophical foundations of RDR was the 

no-model-approach for KA. It was argued that the domain specific modelling 

prior to any KA taking place was problematic and time consuming, and simply 

transferred the KA bottleneck to a modelling bottleneck. However, the model-

based approach is not without its own significant advantages. For instance, the 

development of a model is seen as highly desirable, if not essential, in areas 

such as knowledge reuse, problem solving methods and ontologies. Thus, a few 

researchers have investigated methods of crossing the gap between the RDR ‘no 

model’ approach and the knowledge-level idea that the ‘model is core’.  

One approach to developing a model for RDR, called RDR-Oriented 

Conceptual Hierarchies (ROCHs) was developed by Martinez-Bejar et al (1998a; 

1997). In this approach it is argued that an expert accomplishes the mental 

processes, such as abstraction, required for the development of conceptual 

models in a better way than automatic concept extraction techniques such as 

Richards and Compton’s MCRDR/FCA (Martinez-Bejar et al. 1998a). Another 

major body of work has been carried out by Beydoun (2000; 2002a), Beydoun 

and Hoffman (1997a; 1997b; 1998a; 1998b; 1998c; 1999a; 1999b; 1999c; 2000a; 

2000b; 2000c; 2001) and Beydoun et al (2000) in the development and use of 

Nested RDR (NRDR). NRDR builds a conceptual knowledge base from smaller 

simple KBs. The upper layer is an RDR tree; however, each node contains an 

expert defined concept rather than a rule. The concept is then made up of its own 

knowledge base establishing its definition and gives a Boolean conclusion, 

which is used by the upper conceptual KB during its inferencing process. More 

recently NRDR has been redeveloped using an object oriented database 

management system (OODBMS) for improved performance (Al-Jadir and 

Beydoun 2002; Beydoun 2002b; Beydoun and Al-Jadir 2002). 

Knowledge Reuse, like software engineering, aims to reduce the effort of 

repeating a development task through carefully crafting the original solution in a 
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generalised and extendable manner. Thus, successful reuse of knowledge should 

reduce the KA bottleneck for later KB developments. The RDR KE approach is 

to capture behavioural knowledge which is validated simultaneously with the 

cases. The earliest work in knowledge reuse with RDR was carried out at the 

outset of the RDR methodological development with GARVAN-ES1 by Jansen 

and Compton (1988; 1989). The initial work stemmed from the notion of the 

reuse of data for the purposes of data warehousing and data mining. However, 

instead of storing data Jansen and Compton stored decomposed production rules, 

or knowledge. The constituent components of each production rule were stored 

in relation tables, forming a knowledge dictionary that could be easily browsed 

with any starting point, knowledge was automatically cross referenced to other 

concepts in the domain and the knowledge could be accessed independently of 

the KR language. The ROCH approach for developing a concept model is an 

effective tool for knowledge reuse and ontology construction. This work was 

also extended to incorporating the reuse of knowledge into MCRDR specifically 

(Martinez-Bejar et al. 1998a; Martinez-Bejar et al. 1999a). The authors, however, 

note that this work shifts marginally from the RDR philosophy as additional 

conceptualisation work, through abstraction of concepts and their relationships, 

is required by the expert, increasing the KA burden (Martinez-Bejar et al. 

1999a). 

All RDR based methods discussed so far have dealt with crisp knowledge. 

However, there has been a move to further adapt RDR to handle fuzzy logic, 

while retaining the context based incremental nature of RDR. Fuzzy logic, based 

on mathematical fuzzy set theory (Zadeh 1965), is basically a method for 

representing partial membership to a class or likeness between two objects. The 

ability to include the use of fuzzy rules within RDR allows for a more natural 

expression of concepts by experts than the crisp systems used in RDR.  

Initial work done in this area is by Martinez-Bejar et al. (1998b) and Shiraz 

et al. (1998) on the adaptation of ROCH into Fuzzy ROCH, or FROCH. This 

work looks at a theoretical framework for defining a model that allows experts 

to use fuzzy modifiers as well as fuzzy frequency quantifiers when constructing 

new cases used in further processing by the system (Martinez-Bejar et al. 1998b). 

A second approach to fuzzification, which extends the theoretical framework of 

the earlier work on FROCH, has been done by Martinez-Bejar et al. (Martinez-
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Bejar et al. 1999b) and Cao et al. (1999), called FMR and FRDR respectively. 

These systems investigated the use of fuzzy rules in MCRDR. One interesting 

aspect of this work was the method of generating fuzzy rules through the 

generation of a certainty factor value for a given condition from the uncertainty 

underlying the context of a particular rule. A second feature, was the system’s 

ability to infer conclusions that are not in the KB through the use of the 

Generalised Modus Ponens approach (Martinez-Bejar et al. 1999b). 

In section 3.2.4 the problem of repetition in RDR was discussed. It was also 

claimed that the problem is not as great as might be expected. This is partly 

because of the tree structure generally created by domain experts and partly 

because experts often tend to provide fairly general rules earlier on in a KB’s 

development (Mansuri et al. 1991a; Mansuri et al. 1991b). Regardless of this, 

work has been carried out by a number of researchers to attempt to reduce 

repetition through reorganising, restructuring and generalisation of components.  

Some of the earliest work in reducing the problem of repetition originated 

from the use of induction. InductRDR (Gaines and Compton 1992) could 

produce a KB which would have no repetition. However, this did not 

incorporate expert knowledge. Chellen (1995) reimplemented the InductRDR 

method to develop the Vinduct compaction method, which is aimed at reducing 

the size of manually built KBs. Richards et al. (1996) and Richards (1998a) also 

investigated the repetition problem as a precursor to work on MCRDR/FCA. In 

this study Richards followed a suggestion proposed by Gaines and Compton 

(1992), that repetition would be best solved through first building a KB 

manually and only after it has collected enough cases is ML techniques applied 

to reduce repetition for the remainder of the KB construction.  

Richards’s work is similar to Wada et al’s (2000; 2001b) work using the 

minimum description length principle (MDLP) for rule encoding and earlier 

work, by the same team, on refined selection of the default classification (Wada 

et al. 1999; 2001a). Both of these help in reducing the repetition problems in 

RDR. Further work by Wada et al (2002a; 2002b) has also been used to 

reorganise an RDR knowledge base so that it can adapt to environmental 

changes. This is particularly interesting as it is one of the few attempts in RDR 

to address dynamic context. It combines the previous two areas of research by 
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the team, using MDLP for rule encoding and finding the best default conclusion 

along with rule deletion and pruning strategies (Wada et al. 2002a; 2002b). 

Rather than trying to induct a KB based on information learned from the 

expert, Beydoun’s NRDR minimises the inclusion of repetition in the first place. 

This is more of a by-product of the NRDR methodology than a deliberate 

attempt to solve the problem. Basically, because the expert can create mini KBs 

that represent some concept, it is straightforward for them to use the already 

created concept as an attribute in the higher order tree. This of course, does not 

negate repetition entirely but certainly does aid in its reduction (Beydoun 2000). 

This work has also been extended further into using parameterised NRDR 

concepts through allowing the expert to form predicates incrementally instead of 

the usual RDR approach of only using propositional rules. Drake and Beydoun 

(2000) argue that allowing for predicate logic may be essential in applying RDR 

to domains suffering from combinatorial explosion (Drake and Beydoun 2000), 

a major cause of repeated knowledge in RDR, thus reducing the size of a KB. 

It was mentioned during chapter 2 that one of the problems with current KA 

methodologies is that, according to Shaw (1988), experts frequently disagree 

with each other on the knowledge captured in a KB. Yet this has since been 

ignored by all the current work in RDR. In fact the RDR methodologies show no 

reason to suspect they would improve KA in this regard at all. It may even be 

arguable that they could hinder KA through each expert having a different 

contextual position. This area of research into RDR is still very young and 

definitely still requires further work (Richards 1998a).  

The only major body of work that investigates this is by Richards (1998a; 

2000b; 2000c; 2000d; 2000e), Richards and Zowghi (1999) and Richards and 

Menzies (1998). Richards’s method, rather than trying to develop a KB that 

captured everybody’s viewpoint, was to allow each knowledge source to 

construct their own unique KB. Each KB is then combined into one shared 

knowledge base using a reconciliation process that relies on FCA. The only 

other work that is investigating this issue is by Kildare et al (2004) and Kildare 

(2004). The basic idea is to use MCRDR as a tool to facilitate team interaction 

and conflict resolution. This work is not interested so much in resolving the 

problems caused by multiple experts, instead it is attempting to exploit these 

problems (Kildare 2004; Kildare et al. 2004).  
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3.4.3.2 Information Extraction and Tools 

Not all research in RDR has been concerned with simply improving the 

methodology in some way. A number of papers have been published that have 

instead investigated ways of using RDR based methods to extract or elicit meta-

knowledge, or to be able to provide additional aid to an expert through derived 

information. For instance, the ability of an expert system to be able to offer an 

explanation for its derived conclusion is fundamental and sets them apart from 

most other machine learning techniques. Explanation can take many forms from 

a simple and fairly unnatural rule trace to explanations focusing on context, 

goals methods and justification (Swartout and Moore 1993). Casual 

explanations are a form of explanation providing a justification between a user’s 

input and the system’s output and are primarily used in KBSs built with 

production rules.  Casual explanations are generally derived from casual models, 

which provide interconnections between various component behaviours (Lee 

and Compton 1995; Richards 1998a).  

According to Swartout and Moore (1993), a rule trace in a production rule 

system usually does not provide the deeper knowledge required, as it is 

compiled out during the development process. Richards (1998a; 2001), however, 

claims that RDR, represents a paradigm shift to the traditional explanation based 

systems. It is argued that because RDR retains the history of the development in 

the exception structure and in the storage of cornerstone cases, that it retains this 

deeper knowledge. Another advantage in explanation with RDR is the 

differences between cornerstone cases along the way. 

Earlier work on the development of a casual model for explanation from an 

RDR rule base was done by Lee and Compton (1994; 1995; 1996) and Lee 

(1996), called Causal MODelling (CMOD). This work aimed to integrate both 

rules and casual models, in order to provide a method for cross validation and 

improving acquisition for each, thereby, providing both good performance and 

good explanation. This work also offers support for knowledge acquisition, 

verification and validation, and knowledge maintenance (Lee 1996; Lee and 

Compton 1995). Webster’s (1995) honours thesis extended this work by 

investigating whether the casual links that Lee derived with the occasional aid of 

expert knowledge could instead be found purely through machine learning.  
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3.4.3.3 Research Domains 

Rather than attempting to improve the general methodologies or to extract 

useful information from the knowledge base, significant work has also been 

carried out on applying various methods on traditional expert system based tasks. 

The method’s successful application in these domains is crucial to the further 

acceptance of RDR based methodologies. Firstly, the configuration problem can 

be thought of as the construction of a complex product from a set of pre-defined 

components, while considering a set of well-defined restrictions on how the 

components may be combined (Soininen and Stumptner 2003). Essentially, a 

configuration methodology is one that can perform an inference on a case and 

then use the results from that process as additional input for another pass 

through the same or a different inferencing process. It is, broadly speaking, a 

particular type of classification problem that generally requires unique solutions. 

Like KBS research in standard classification, configuration tasks suffer from 

difficulties in KA and especially KM. Therefore, a system directly targeting 

issues, such as RDR techniques, could be particularly useful. However, the 

difficulty with a configuration task is that each conclusion must provide an 

attribute-value pair instead of the usual classification. This is required as the 

attribute-value pair may be needed as input in the next pass and so must be in 

the same form as expected by the system (Compton and Richards 1999). 

One of the earliest attempts to use an RDR based system, called IONICS 

(Iterative Organisation of Novel Ion Chromatography Solutions), for a 

configuration task was by Mulholland et al. (1993a; 1993b; 1993c; 1993d). This 

work developed a technique for configuring the various machine settings for an 

ion chromatograph. This was accomplished by extracting rules from a large 

database of published methods to build eight separate classifiers. Once 

constructed, inferencing was performed by Recursive RDR (RRDR), which was 

developed to provide a mechanism for consulting the individual RDR trees 

(Mulholland et al. 1993d). The RRDR solution was to traverse both the true and 

false branches when an attribute was unknown, rather than only following the 

false branch. A second method used, called Possible RDR (PRDR) (Mulholland 

et al. 1993a; Mulholland et al. 1993b; Mulholland et al. 1993c; Mulholland et al. 

1993d) only continued inferencing on the true branch.  
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A later development by Compton et al (1998), referred to as Configuration 

RDR, redeveloped the machine learning based IONICS system, into an 

incremental knowledge acquisition method. First, the system was changed to use 

MCRDR due to it being more adaptable to finding the multiple plausible 

conclusions required. Second, a new inferencing process was devised that could 

operate during multiple passes through the KB. Each pass the expert would 

resolve conflicting suggestions and add non conflicting suggestions for unused 

single values and then re-inference the case. This process was repeated until 

either a complete configuration was found or until no more single values could 

be found for the remaining attributes (Compton et al. 1998; Compton and 

Richards 1999). 

3.5 Summary 

This chapter reviewed the historical and current RDR based research. It looked 

at how the philosophies, discussed in the previous chapter, related to the original 

advent of RDR. It did this by reviewing the GARVAN-ES1 expert system case 

study. This case study represented the perfect ES environment yet still required 

difficult and extensive maintenance. It was found that experts tended to offer 

their justifications, when correcting a misclassification, within the context of the 

error, by identifying where the system went wrong. RDR was, therefore, 

designed specifically to represent this contextually based justification directly 

within the structure. 

This chapter fully described both the RDR and the MCRDR methodologies. 

This was important as the work in this thesis builds upon the MCRDR 

methodology and a solid understanding is required by the reader in order to 

appreciate components of the RM methodology. Finally, a very brief review of 

the RDR based research was surveyed. Particular attention was paid to two 

studies in particular: MCRDR/FCA and GENICA. These are two major previous 

projects that have investigated the use of the MCRDR knowledge base structure 

for the purpose of discovering interesting new information. In both cases, like in 

this thesis, they are using the idea that there is information hidden in the 

MCRDR KB that in the base methodology is not being extracted. 
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4 AArrttiiffiicciiaall  NNeeuurraall  NNeettwwoorrkkss  

‘If people jump out at you suddenly, that’s an ambush,’ said Owl.  
‘It’s an ambush, Pooh, when people jump at you suddenly,’ 
explained Piglet.  (Milne 1926, p108) 

Artificial Neural Networks (ANNs), also referred to as Parallel Distributed 

Processing Systems (PDPs) and connectionist systems are methods for 

modelling the organisational qualities of the biological central nervous system. 

The idea is that if nature constructed such a superbly compact and versatile 

system capable of intelligent thought and reason, then our best opportunity for 

duplicating such results in a computer is to base our solution on what we know 

works. The hope is that such biologically inspired systems could allow cognitive 

and sensory tasks to be performed more easily than with serial processing.  

The ANN structures can be loosely classified into two groups: recurrent and 

non-recurrent, based on whether they involve feedback. Each network has a 

number of individual processing elements, also referred to as neurons, neurodes, 

nodes, units or cells. Each neuron also has connections to other neurons. These 

connections can be either: interlayer connection between nodes in different 

layers; intralayer connections or lateral connections between nodes in the same 

layer; or, self-connections joining the input and output of the same neuron. 

Networks can be further distinguished by topology and learning methods. 

The aim of this chapter is not to provide a full and comprehensive survey of 

ANN technology. This is not a neural networks thesis; it simply uses them as a 

learning tool. Instead, this chapter will provide a sufficient overview of the 

research stream so that a reader that is unfamiliar with ANNs can attain an 

understanding of the methodology developed in the next chapter. This chapter 

reviews the biological influences behind ANNs and very briefly look at the 

history of neural computing. It also details the backpropagation and radial basis 

function methods, as these are used in this thesis. Lastly, the chapter will 

overview a number of other algorithms that were considered. 
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4.1 Neural Biology 

The human brain is a vastly complicated biological entity which contains around 

one hundred billion cells, where approximately ninety billion are glial cells and 

the remaining ten billion are neurons. Glial cells are essentially responsible for 

supplying nutrients, removing debris, holding neurons in place and providing 

insulation (myelin) for neurons. The cells that have been traditionally of interest 

to neural computing researchers, however, are the ten billion neurons. Each 

neuron is connected to approximately ten thousand to one hundred thousand 

other neurons, creating a vast network (Bose and Liang 1996).  

The neuron is considered to be the basic building block of the human brain. 

There are two main types of neurons: the local processing inter-neuron cells 

connecting neurons together within a local region, and output cells which 

connect neurons across brain regions. Neurons, however, differ in various 

characteristics from each other (Beale and Jackson 1990). In this section though, 

only the general and most common form of neuron will be described.  

A neuron’s body (Figure 4-1), called the soma, has many fine branches, 

referred to as dendrites, forming a tree like structure. These dendrites conduct 

input signals to the cell body. Output neurons also contain a single axon 

(interneurons don’t have axons – instead they produce output via their dendrites), 

connected to the soma via the axon hillock. The axon carries the electrical output 

pulse, which splits the signal into numerous axonal arborizations. The tips of 

these axon branches connect to the dendrites, soma and axons of other cells via 

what is called a synapse. The connection is actually a small gap, called the 

synaptic cleft, which allows a small chemical transmission of neurotransmitters 

(Bose and Liang 1996). 

 

Figure 4-1: Schematic diagram of a single neuron (Zurada 1992). 
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The neuron operates by receiving either excitatory or inhibitory activations 

from other neurons via its dendrites. These inputs are aggregated (not always 

simply a summation) and if they exceed the neuron’s threshold at the axon 

hillock then the neuron fires an electrical charge through the axon. However, the 

inputs must achieve the threshold within a narrow period of time, called the 

period of latent summation. Each neuron always produces the same action 

potential when firing regardless of the degree the threshold was exceeded, thus it 

is an all or none process. After a neuron has fired it cannot be excited again by 

any stimuli for a period of time, called the absolute refractory period. This is 

subsequently followed by a period where the threshold is much higher than 

usual, called the relative refractory period. Therefore, the neuron can now fire, 

but only if it receives a much larger spike of excitatory inputs. Therefore, it is 

not the actual strength of the firing neuron that indicates the weight of its inputs, 

but the length of the interval since it last fired (Bose and Liang 1996). 

Learning is believed to be achieved by modifications to the coupling 

between neurons at the synaptic junction. This is most likely achieved through 

the release of varying amounts of neurotransmitters. This effectively opens more 

gates on the dendrite, thus, increasing the joining of the two cells (Bose and 

Liang 1996). For instance, variations in mood can affect serotonin levels, which 

are a type of neurotransmitter, while changes in dopamine receptors can cause 

desensitization. 

4.2 History 

There are numerous artificial neural networks which represent various methods 

for simplifying the biological system. Even so called neurobiological models 

make many assumptions and make numerous simplifications. Yet, if we had the 

computing power to accurately simulate the biological system, many 

assumptions would still be required due to an incomplete understanding of the 

human brain. However, there have been many types of networks that have been 

developed that have captured different aspects of this natural example (Zurada 

1992). The vast multitude of methods nevertheless, cannot possibly be discussed 

in this thesis.  
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The first formal model of an individual computing neuron by McCulloch 

and Pitts (1943), referred to as a perceptron, contained all basic elements to 

perform logic operations. This work was parallelled by the development of the 

first learning rule by Donald Hebb (1949), referred to as the Hebbian learning 

rule. This was further elaborated by Frank Rosenblatt in 1958, which allowed 

for multiple preset layers of perceptrons (Zurada 1992).  

One of the most well known approaches in the early years was the 

ADALINE (ADAptive LINEar combiner) and the later extension MADALINE 

(Many ADALINEs) which were developed in the early 1960s. These approaches 

employed a new learning rule referred to as the Widrow-Hoff learning rule 

(Widrow and Hoff 1960). These devices were used in a number of applications 

such as pattern recognition, weather forecasting and control systems (Zurada 

1992). 

The late sixties saw the end of most neural network research until the mid-

eighties, due to the publication of the book Perceptrons (Minsky and Papert 

1969). In this book the authors revealed the inability of the perceptron based 

models to learn linearly inseparable problems like the XOR problem without 

preset interneurons. This difficulty prevailed until Rumelhart and McClelland13 

(1986) introduced the new perceptron using a continuous activation function and 

a new learning rule (Zurada 1992), discussed in the following section. This has 

resulted in a multitude of network methodologies subsequently appearing in the 

literature. 

4.3 Backpropagation 

The standard backpropagation algorithm, due to its topological use of a directed 

acyclic graph, is classed as a type of feed forward network. Figure 4-2a shows 

the most common backpropagation network topology. It consists of many 

directed edges representing weighted connections between nodes with signals 

travelling along the direction of the arrows. A network consists of a set of: 

source nodes, called input nodes, where the network receives its perceptions of 

the environment; sink nodes, also called output nodes, where the network 

                                                 
13  It became evident, after Rumelhart and McClelland’s work that similar results had been published 

by Parker (1982) and even earlier in a PhD thesis by Werbos (1974). 
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provides processed interactions with its environment; and sometimes, hidden 

nodes, which are not directly accessible to the outside environment and are used 

for additional processing. The basic elements can be combined into many 

possible topologies, which fall into one of two categories: layered and not 

layered. Two types of three14 layered networks are shown in Figure 4-2a and b. 

The first is a fully connected multilayer network while the second is only a 

partially connected. Figure 4-2c shows a type of non-layered network15, where 

connections are possible from input to hidden and/or output nodes. These 

jumping connections are generally referred to as shortcut connections and are 

occasionally used for faster learning. 

(a)  

(c)  

(b)  

Output 
layers 

Input 
layers 

Hidden 
layers 

Shortcut 
Connections 

 

Figure 4-2: Example topologies for feed forward networks. (a) shows a three layer fully 
connected network. (b) shows a 3 layer partially connected network. (c) shows 
a non-layered network with shortcut connections.  

                                                 
14  Generally, the input layer is not counted as a layer when referring to the network topology.  
15  While Figure 4-2c is drawn as if the nodes are in layers, this is only done to simplify its appearance. 

The connections between nodes do not follow the layering. 
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4.3.1 Perceptron 

Rosenblatt’s perceptron (1958) was capable of learning numerous functions 

provided the first layer of threshold logic units (TLUs) , referred to as the retina 

layer, were correctly handcrafted (Bose and Liang 1996). This layer had to be 

setup by hand to adjust the input function so that the problem to be learned was 

linearly separable. A second output layer, consisting of a single Rosenblatt 

perceptron, which could learn based on the first layer’s altered perception of the 

input. This was performed through the use of error minimisation in the least 

means square function through methods like gradient descent. However, 

without the first layer the perceptron was unable to learn linearly non-separable 

functions. This was the key difficulty with the original perceptron.  

The fundamental problem with the Rosenblatt perceptron was the use of the 

step function for the threshold. This prevented the propagation of an error to the 

previous layer, because it was impossible to know which inputs to the previous 

layer were on or off. Therefore, there was no method possible for determining 

which weights to reinforce. The solution is to smooth out the thresholding 

function, so rather than simply switching the neuron on or off it gradually 

switches on and off. This allows information about that node’s inputs to be 

derived from the node’s output strength. This smoothing function can be any 

continuously differentiable monotonic function, such as the sigmoid, tansigmoid 

or logsigmoid thresholding functions (Bose and Liang 1996). 

The resulting network, which can incorporate any number of hidden layers, 

can still be trained using gradient descent. The backpropagation algorithm 

(BPA), often referred to as the generalised-∆-rule, when applied to the output 

layer’s gradient of error using the chain rule of differentiation can be propagated 

back layer by layer. Interestingly, Bose and Liang (1996) note that the 

generalised-∆-rule is not restricted to only layered networks but can also be 

applied to non-layered networks using shortcut connections, as seen in Figure 

4-2c. 
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4.3.2 Mathematics for Backpropagation 

Each perceptron sums a set of input sources (can either be an input or hidden 

neuron), using Equation 4-1, to find the total amount of stimulation received, net. 

Each node’s input, xj, received from the jth input source is multiplied by the 

associated weight, wj, where there are n input sources to the neuron. Generally, 

there is no difference between the hidden and output nodes. 

∑
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0

 (4-1)

Additionally, it is common practice to also include a trainable bias term, 

effectively allowing the threshold location to be dynamic. This is usually 

implemented by having a ‘fake’ input neuron which is always on. The associated 

weight is trained in the same manner as the other connections. 

The resulting value is passed through a smoothed thresholding function such 

as the sigmoid function shown in Equation 4-2, where 0 < f(net) < 1 and k is a 

positive constant that controls the spread of the function: as k→∞ then f(net)→ 

the step function. Therefore, generally it still turns on and off as before if there is 

a large difference between the threshold and the summation of inputs, but if they 

are nearly identical then it will give a value in between the two extremes. 
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Some researchers (Han and Moraga 1995; Vamplew 1996) have reported 

that improved training times can be attained by using the symmetric sigmoid, 

shown in Equation 4-3, rather than the above asymmetric sigmoid. For these 

reasons this thesis has used the symmetric sigmoid throughout. 
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= − net  ke

netf  (4-3)

After the network has given a value for an input pattern, p, the correct 

answer according to the dataset is then shown to the output nodes. The error for 

a particular set of inputs can then be calculated using Equation 4-4 for each 

output node, o, where: vr
po represents the value of the reward16; vc

po is the value 

of the output node’s original conclusion; and, δpo is the amount of error. The 

                                                 
16  In the majority of ANN literature the reward is referred to as the target, which is then represented 

by the letter t. However, to avoid conflict with the time variable, which also uses t, in later 
equations, this thesis will use the reinforcement learning term reward with the notation r. 



Chapter 4: Artificial Neural Networks  Richard Dazeley 

    
 78 

function f′(netpo) is the derivative of the thresholding function, applied to the 

activation at node o, which is simply the weighted sum of the inputs to that node.  

( )( )c
po

r
popopo vvnetf −′=δ  (4-4)

 

This function, however, does not work for hidden nodes because the correct 

output required is unknown. Therefore, the error at each of the output nodes is 

propagated back to the hidden nodes, h, and used in Equation 4-5 instead. 
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The most commonly used thresholding function is the sigmoid mainly 

because its derivative, as required in the above equations, is simple, making 

implementation easier (Beale and Jackson 1990). Equation 4-6 shows the 

derivative of the earlier defined sigmoid function (4-2).  

( ) ( )c
p

c
pp vkvnetf −=′ 1  (4-6)

However, all the networks used throughout this thesis are using the 

symmetric sigmoid function (4-3). The derivative for this function is given in 

Equation 4-7. 

( ) ( )[ ]2
250 c
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Equation 4-8 gives the error calculation for the output nodes (4-4) again with 

the asymmetric sigmoid threshold function’s derivative (4-6) incorporated. 
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Equation 4-9 gives the error calculation for the output nodes (4-4) again with 

the symmetric sigmoid threshold function’s derivative (4-7) incorporated. 
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Equation 4-10 gives the error calculation for the hidden nodes (4-5) again 

with the asymmetric sigmoid threshold function’s derivative (4-6) incorporated. 

( )∑
=

−=
n

o
hopo

c
ph

c
phph wvkv

0

1 δδ  (4-10)

 



Chapter 4: Artificial Neural Networks  Richard Dazeley 

    
 79 

Equation 4-11 gives the error calculation for the hidden nodes (4-5) again 

with the symmetric sigmoid threshold function’s derivative (4-7) incorporated. 
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Finally, once we have the amount of error to be applied the weights for each 

of the connections leading to the nodes can be adjusted using Equation 4-12, 

where η is a gain term, and wjl is the weight from node j to node l17 at time t. 

( ) ( ) c
pjpljljl vtwtw ηδ+=+1  (4-12)

 

4.3.3 Classification, Generalisation and Fault Tolerance 

The original perceptron was limited to only linearly separable problems or at 

least situations where the developer could reduce the dimensionality to one that 

was linearly separable. The development of the multiple layer perceptron 

overcame this, through the use of trainable hidden layers. Now each new 

perceptron hidden layer increases the complexity of entities that can be learned. 

For instance, zero hidden layers only solve linearly separable problems, while 

one hidden layer allows open and closed convex hulls to be learned. Adding a 

second hidden layer allows the learning of arbitrary regions (Beale and Jackson 

1990). Thus, there is no reason to move beyond two hidden layers.  Generally, 

however, most real world problem spaces only require a single hidden layer. 

The power of the multilayer perceptron comes from its ability to generalise. 

After having seen a number of examples the network will find a series of 

equations that separate the classes within that group of training examples. Then, 

if a previously never seen input pattern appears it is still able to identify in 

which classification in the problem space this new example is most likely to sit. 

ANNs are surprisingly accurate at this, as it chooses the distinguishing features.  

This is particularly prevalent in situations where a number of inputs are 

affected by noise. The noise perturbs the input but the network will still find an 

approximate answer, whereas other pattern recognition systems and especially 

expert systems tend to collapse very ungracefully (Beale and Jackson 1990). 

Additionally, the multiple layer perceptron is very robust when neurons are lost 

                                                 
17  In equation 4-12 node l is being used as a general representation for either a hidden node or output 

node. Likewise, node j simply represents an input source to node l not an input node specifically.   
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or damaged. Sudden changes in a single or small group of neurons not only 

don’t cause huge adverse affects but the network can generally recover quite 

rapidly (Beale and Jackson 1990). This is particularly appealing to the work in 

this thesis as the number of neurons needs to be altered constantly, thus a robust 

system for handling this is required. 

4.3.4 Problems 

There are two primary problems with the backpropagation algorithm. The first is 

that there is no guarantee of convergence. Occasionally, a network trained with 

the generalised-∆-rule will settle into a local minimum. A local minimum is a 

stable solution, where changes to the network’s weights will produce a worse 

result, which is incorrect. Sometimes in such a situation there may only be a 

small ‘lip’ that needs to be over-come in order to get a much deeper solution. 

However, the network has no method for determining this and so stays in what it 

believes to be its best solution.  

The second issue with backpropagation is simply the amount of training 

required to learn a solution. The algorithm’s approach of gradient descent is 

inherently a slow creeping towards a solution. Therefore, the method cannot 

easily be applied in online environments. This has led to many methods being 

developed to overcome local minima as well as speeding up learning. One 

collection of methods has utilised the second order effects in the gradient 

descent algorithm, significantly reducing the number of iterations that training 

cases need to be seen. However, they tend to be computationally excessive.  

Four of the most common approaches to solving these two issues are:  

adjusting the learning rate, also referred to as the gain; increasing the number of 

hidden nodes; the addition of noise; or, the use of momentum (Beale and 

Jackson 1990). At first increasing the gain during the early stage of training can 

significantly speed learning. Slowly reducing the gain later will allow the 

network to settle into one of the deeper minima. However, this approach can 

also increase the time to fully converge to its final stable solution. The second 

approach is to train the network with more hidden nodes. This is because local 

minima are considered to occur when two or more disjoint classes are 

categorised as being identical. Through increasing the number of hidden nodes 

an improved recording of the input patterns is possible. 
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One seemingly unlikely approach is the addition of noise. This can be 

effective in helping avoid local minima by perturbing an input case so that it can 

jump over the lip and move onto a deeper minima. Similarly, the addition of a 

momentum term can also help push the system over a lip. Momentum involves 

adding an additional term into the weight adaptation equation that produces a 

large change in the weight if the changes are currently large, and will decrease 

as the changes become smaller. Equation 4-13 shows the momentum term as 

described by Beale and Jackson (1990), where α represents the momentum 

factor, 0 < α < 1. 

( ) ( ))1()()(1 −−++=+ twtwvtwtw jljl
c
pjpljljl αηδ  (4-13)

4.4 Radial Basis Function 

The Radial Basis Function (RBF) was originally proposed by Broomhead and 

Lowe (1988) and has been expanded by many other researchers. RBF networks 

traditionally fall into a class of networks called regularised networks, which also 

contain methods such as Counterpropagation Networks (CPNs) and the more 

generalised form, Hyper Basis Functions (HBF). RBF networks also have many 

similarities to the above backpropagation network such as a similar topography, 

as in Figure (4-2a) except using only a single hidden layer. The main difference 

is the method used for partitioning the pattern space. Backpropagation uses 

hyperplanes, whereas, RBFs instead construct hyperellipsoids.  

The basic RBF method looks at cutting up the input space by defining a 

series of multi-dimensional ellipses, or basis functions, φ . The ellipsoid’s 

arguments are related to the distance from the centre, y. This can be seen in 

Equation 4-14, where the function s in k-dimensional space, has elements sk 

(Beale and Jackson 1990). Additionally, a positive valued width term or shaping 

parameter, σh, is occasionally used to maintain control over the acceptable 

distance from the centre of the basis function that can be used. 
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The advantage of the RBF network is that once the basis functions have been 

selected the network is only required to learn the respective coefficients, λ. 

These coefficients are the weights on the arcs from the hidden nodes to the 
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output nodes, similar to who, in the BPA. Effectively, the basis functions have 

expanded the inputs into a higher dimensional space where the problem is now 

linearly separable. This significantly speeds learning over the BPA (Beale and 

Jackson 1990).  

Providing there is a basis function for each input to be classified, then the 

RBF network is guaranteed to converge. However, this over-fitting of the 

problem space reduces the network’s ability to generalise. Therefore, cases not 

exactly the same as those seen in the training sets or noisy inputs can cause 

unintended results. The general solution to this problem is to reduce the amount 

of basis functions, thereby, smoothing the classification surface between the data 

points.  However, this also makes training a process of linear optimisation 

instead of the exact guaranteed convergence situation. 

The main difficulty of the RBF method is in the selection of appropriate 

basis functions. There are two main approaches to basis function selection. The 

first is to create basis functions such that they evenly distribute throughout the 

possible data points. This method is commonly performed in situations where 

there is little or no knowledge about the data distribution. The second approach 

is used when the developer has some knowledge of the overall structure of the 

inputs. In this situation the known structure should be modelled in the 

configuration of the basis functions. 

4.4.1 Mathematics for RBFs 

The most common function used for the basis function, φ , is the Gaussian 

function shown in Equation 4-15. 

( ) ( )2ded −=φ  (4-15)

Usually the distance measure is performed using the Euclidean distance 

shown in Equation 4-16. The centre of the hyperellipse, yih, represents the 

‘weight’ of the connection between the input and hidden nodes, where xi is the 

input at node i, and h is the hidden node. 
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The output layer is then usually trained using standard perceptron based 

training to learn the λ values for each basis function in the hidden layer. 
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4.5 Growth Algorithms  

The fundamental issue in the attachment of a neural network to the output 

attained from MCRDR is how to handle the changing size of the input space. As 

the input space to the neural network increases the network structure will also 

need to be constantly growing. Potential was seen to be most likely found in the 

work done in growth based neural networks algorithms. These are a group of 

algorithms that not only learn weights on connections (such as backpropagation 

and the basic RBF algorithm) but simultaneously can also learn the structure.  

Growth algorithms were developed as a means of addressing the 

inadequacies of the more standard algorithms. They have been found to 

converge quickly and overcome problems of local minima (Bose and Liang 

1996). The primary difficulty with growth algorithms is the risk of over fitting, 

resulting in poor generalisation. Growth algorithms generally take a ‘divide and 

conquer’ approach to learning a solution to a problem. For instance, such a 

system will start with only a single threshold logic unit (TLU) and then 

progressively add additional nodes as they are required. Over fitting occurs 

when a new node is added to capture the difference between cases for every case, 

thereby, providing no generalisation.  

4.5.1 Upstart Algorithm 

The Upstart algorithm, suggested by Frean (1990), starts with a 

single TLU, u0. The system is then trained for a given length of 

time using a perceptron style of algorithm. After training, u0, it 

may be linked to two possible errors: wrongly ON, or wrongly 

OFF. When this occurs new TLUs are added to capture the 

errors. For instance, another TLU could be added, u1n, which 

only activates for exemplars that turned u0 ON incorrectly. This new node will 

send a large inhibitory signal to u0, thereby, turning u0 OFF. This new node is 

trained using a reduced form of the original dataset, where the nodes that 

correctly turned u0 OFF are removed. Similarly, wrongly OFF is corrected by 

adding another node, u1p. If the new nodes cannot learn a correct solution within 

a given training period, then additional nodes are added in the same way.  

 

u0 

u1n u1p 
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4.5.2 Divide and Conquer 

The basic ‘divide and conquer’ algorithm, proposed by Liang (1990; 1991), is 

simple in its approach. The network can be either a single or two layer network 

shown in Figure (4-2a), which instead of growing deeper like the upstart 

algorithm, grows wider. It begins with a single hidden TLU, which will attempt 

to learn the best linear separation between classes within a certain training 

period. If the problem is not linearly separable then this first node is treated as if 

it has effectively broken the input patterns into two subsets. At this stage a new 

neuron can be added to attempt to further divide the input patterns into two 

smaller subsets. This process continues while the system cannot classify all 

cases correctly. This will always solve any problem with a finite input pattern 

space, because at some stage a subset will only contain two cases needing 

separation which can always be divided giving the correct answer for each. 

While this method is very effective it is susceptible to generating too many 

hidden nodes causing a lack of generalisation. One solution is to include a 

merging phase, where, after dividing the system successfully the system then 

removes redundant nodes, improving generalisation.  

4.5.3 Tiling Algorithm 

The Tiling algorithm, developed by Mezard and Nadal (1990), grows a 

multilayer network, Figure (4-2a). It once again starts with a single TLU, called 

the master unit, which is trained for a period of time. Should this node be unable 

to learn a separation between the classes then a TLU is introduced for each of 

the two subsets that contain exemplars from both classes. These new TLUs, 

referred to as ancillary units, are then trained with a subset of exemplars. Once 

again, if the ancillary units are unable to separate their subset into single class 

exemplars then more ancillary units are added. Eventually, ancillary units will 

be found that separate the inputs correctly. When this is accomplished a new 

layer is created with a single new master unit. This new layer takes input from 

the previously just fully trained layer, which will then follow the same 

procedure, possibly adding additional ancillary units. Once a new layer is 

created that can correctly classify all inputs without adding any ancillary units, 

this becomes the output node of the network.  
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4.5.4 Cascade Correlation (CC) 

The popular Cascade Correlation (CC) network, by Fahlman 

and Lebiere (1990), starts with only an input and output layer. 

Over time, hidden nodes are then added to the network, one at 

a time, as they are needed. The total number of hidden nodes 

added is dependant on the error bound set in the network, using supervised 

learning. As each hidden node is added it receives inputs from all the input 

nodes plus any previously created hidden nodes. Initially, it is not connected to 

the output of the system. It is then trained, usually using a gradient descent type 

algorithm. Once the training results in a stable local minimum the inputs to the 

hidden node are frozen and it is connected to the output. If the result of the 

network over all is not satisfactory then additional hidden nodes are added and 

trained in the same way. The resulting structure is not a layered network but 

instead a cascading of hidden nodes between the inputs and outputs.  

4.5.5 Resource Allocating Network (RAN) 

One of the problems associated with the RBF function, described earlier in 

section 4.4, is that the hyperellipsoids need to be defined prior to learning, either 

from some previous knowledge or from the use of a heuristics. One popular 

extension to the RBF algorithm is to provide a means of allocating new 

hyperellipse dynamically during the training process. This was first proposed by 

Moody and Darken (1988; 1989) and later extended by (Moody 1989) where the 

hyperellipses learn their centres and widths during training. Platt’s (1991) 

Resource Allocating Network (RAN) extended this further by also adding new 

nodes as well as learning the appropriate centres, which effectively turned the 

RBF network into a growth based algorithm. One interesting aspect to the work 

in this thesis is that the RAN based RBF network allocates units in such a way 

that they only respond to a narrow region of the input space, therefore, newly 

allocated units do not interfere with previously allocated units.  

Unlike many other growth algorithms it starts with no hidden nodes. The 

network will select particular input patterns as they are presented and allocate a 

hidden node to capture the pattern. Input patterns are selected when there is 

sufficient distance from the previously seen cases. In other words a hidden node 
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is created when a deficiency is found in a particular area of the input space. 

Generally, the method allocates neurons that are quite coarse initially. However, 

over time the widths of the basis functions are reduced, producing a much finer 

representation.  

4.5.5.1 Adaptive Response Function Neurons (ARFNs) 

In situations where there is only a small error, the RAN method can move the 

centres of the basis functions. However, there is no ability to adjust the widths 

of the functions during online learning. A recent alternative to the RAN method 

is Ollington and Vamplew’s (2003; 2004) Adaptive Response Function Neurons 

(ARFN). This method was of particular interest to this thesis as it is the only 

method currently developed that can be applied to the idea of learning inputs.  

The ARFN, shown in Figure 4-3, is based on the biological cortical neuron 

and receives inputs from both an excitatory and an inhibitory interneuron. Each 

interneuron is excited by the common cortical input and inhibited by a standard 

bias. An appropriate threshold will allow the output neuron to produce a 

Gaussian like response to the original cortical input. This forms a selective 

neuron response rather than more common monotonic function.  

 

Interneurons 

Bias Input 

Input Output 
(ARFN)

 

Figure 4-3:  ARFN: A neuron for implementing a Guassian-like response function .White 
neurons are excitory and grey neurons are inhibitory. This diagram is based 
on the ARFN model in Ollington (2004, p 42). 

Training of the interneurons is based on the inputs received rather than the 

propagated error from the output. For instance, if the response from the excitory 

interneuron is high then the threshold is trained up, alternatively, if it is low it 

should be trained down. Similarly, the opposite should occur for the inhibitory 

interneuron. Effectively, this system is building an asymmetric function which 

tightly fits the input pattern. The advantage of this approach is that it allows the 

neuron to reshape its hyperellipsoid centre and widths while training by only 

looking at the inputs and not at the returning error from backpropagation.  
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4.6 ANNs Finding Missing Variables 

The primary issue in the development of RM is the growth of the input space. 

This is a problem that neural network techniques do not traditionally handle 

because usually the input space of a problem is well defined. The only research 

stream studied in ANNs that really touches on any form of a changing input 

space is the area of how to handle missing values. These occur when some 

attributes are occasionally missing from the dataset in particular input patterns.  

There have been a number of techniques used for resolving this problem in 

ANNs. Two of the main approaches used are value substitution and system 

reduction (Vamplew 1996). Value substitution involves determining some value 

to use in place of the missing value. For instance, the simplest approach may be 

to train additional ANNs to predict the missing value. Alternately, the missing 

value could simply be replaced by an innocuous input that does not affect the 

output of the network. One of the most computationally expensive approaches is 

multiple-substitution, where the network is evaluated several times with 

different values substituted for the missing value. The results are then combined 

in some way to produce the final output (Vamplew and Adams 1992).  

System reduction looks at methods for restructuring the network so that the 

system can recognise missing values and be able to learn to handle them without 

being told directly. For example, the flagged network provides two inputs per 

attribute, where the second indicates the attribute’s value and the first indicates 

whether the value was missing. A second approach is to use shadow weights, 

where missing inputs are given a special value which indicates to the network to 

use a special weight for that attribute instead (Vamplew et al. 1996). 

 The problem of a missing value differs significantly from the problem faced 

in this thesis. Missing value researchers generally deal with situations where 

they at least know how many attributes there are normally. They usually also see 

the attribute numerous times before it is missing, giving them the opportunity to 

learn an estimation before hand. Whereas in RM, there is no way to determine 

how many inputs will be required, therefore, the network cannot be initialised 

with all the nodes at the start. Nor are there any examples of an attribute’s value 

prior to needing the estimation, thus, no training is possible. Therefore, the 

systems used in this stream were found inadequate for adaptation for RM. 
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4.7 Other Classifiers 

There are thousands of classification techniques available. It is not plausible for 

any thesis to consider them all. The aim of this thesis was to find a means for 

extracting hidden and dynamic contexts from the MCRDR structure. Initially, 

this was not limited to artificial neural networks specifically, instead many other 

techniques were also considered, although universally discounted as being 

unsuitable. For instance: clustering methods such as K nearest neighbour; kernel 

classifiers such as Support Vector Machines; and, statistical based methods such 

as Bayesian classification. However, all methods investigated were found to be 

significantly more restrictive in regards to their ability to learn online and to 

have their input space changed. For these reasons investigations into general 

classification methods were dropped in favour of concentrating on forming a 

new technique based on previous ANN methods.  

4.8 Summary 

This chapter reviewed the biological and historical background of artificial 

neural network (ANN) techniques. It investigated in detail the two main 

algorithms used throughout this thesis: the backpropagation and radial basis 

function algorithms. The aim of this chapter was not to fully review the ANN 

research stream, but to simply ensure the material required for the reader to 

follow the later material in this thesis was provided.  

This chapter also reviewed a number of other methods that have been 

considered during the development of RM. Most of these methods have been 

rejected, due to various difficulties in extending them for online learning in a 

growing input space. However, they are still presented here because in some 

cases they have provided inspiration to the method developed in the following 

chapter, especially methods such as the resource allocating network (RAN). 

These were also highlighted to show the difficulties in developing the RM 

technique, which will be discussed further in chapter 5. Finally, this chapter 

briefly mentioned methods for finding missing values in the input space, as this 

is the closest related work to that carried out in this thesis.  
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5 RRaatteedd  MMCCRRDDRR  ((RRMM))::  MMeetthhooddoollooggyy  

‘What does the North Pole look like?’…‘I suppose it’s just a 
pole in the ground?’ [asked Christopher Robin]. ‘Sure to be a 
pole,’ said Rabbit, ‘because of calling it a pole, and if it’s a 
pole, well, I should think it would be sticking in the ground, 
shouldn’t you, because there’d be nowhere else to stick it.’   
  (Milne 1926, p110). 

As stated in the introduction the original inspiration for this thesis was the 

notion of finding a plausible solution to the process of practice. Furthermore, it 

was argued that this could best be solved through a redefinition of the situated 

cognition view of context. The proposed definition suggests that context could 

be considered to be a posteriori in particular situations. Therefore, a system that 

meets the requirements of an intermediate situation cognition view would be 

required to both be able to detect hidden context as well as be able to 

dynamically adjust its contextual understanding over time.  

This inspiration led to the idea of developing a methodology that combined 

MCRDR and a function-fitting algorithm. As detailed earlier MCRDR was 

selected due to its being identified by Gaines (2000) as a promising 

methodology for modelling the process of practice. The ANNs used in the 

implementation in this chapter, were selected as they were adaptable to the 

requirements of the project. Other function fitting methods were ruled out due to 

their incompatibility and inflexibility. The purpose of combining these is to 

capture the advantages of each, for instance, the generalisation ability of the 

function fitting method, along with the knowledge acquisition and online 

learning ability of MCRDR. It was determined at the outset that a system 

capturing the advantages of both algorithms could be used not only to improve 

classification and learning, but could also be applied in a number of useful areas. 

The previous three chapters provided a review of the methods, techniques 

and ideas that have influenced the development of Rated MCRDR (RM). This 

extended chapter will detail the core RM algorithm and its development. It will 
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explain the implementation decisions and variations used in the process. There 

are seven different methods developed, each of which is thoroughly tested in the 

following chapter.  

First, this chapter describes the justifications and expected outcomes from 

the methodology. This is followed by a progression through the seven methods 

developed, from the non-network based weighted method, to the simplest linear 

gradient descent method to the more detailed Gaussian based growing network. 

During the development of various methods, explanations will be given for why 

a number of methods were not used and why certain changes were made to the 

methods that were used. 

It is important to note at the outset the different notations used throughout 

this chapter. The notation for the concept of the methodology, as previously 

mentioned, is RM. Each implementation variation presented has been given a 

subscripted tag, for instance RMbp(∆). This notation allows the different methods 

to be easily identified. It should also be noted that in previous publications 

different methods had simply used the notation RM (Dazeley and Kang 2003a; 

2004a; 2004b; 2004c) and others WM (Weighted MCRDR) (Dazeley and Kang 

2003b). The notation has been standardised for this thesis and where the 

algorithm has been previously published with a different notation a footnote will 

be given informing the reader of the changed name. 

5.1 Overview 

At various stages throughout this thesis a number of reasons have been 

identified for why this methodology was developed. In this brief section these 

will be reiterated and properly explained. First, it will look at deficiencies within 

the MCRDR algorithm itself and then review the philosophy behind the 

methodology and how this is achieved. Furthermore, it will broadly describe the 

basic idea behind the algorithm and how it meets the goals of the philosophy 

that inspired it. Lastly, it will briefly introduce what the possibilities are for the 

method. 
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5.1.1 Problem with MCRDR 

MCRDR incrementally builds a tree containing pieces of knowledge. Due to the 

structure, knowledge is stored, context is automatically captured. This is the 

context based on what is already known by the system. The multiple 

classification nature of MCRDR introduces an added complexity to the structure 

not encountered in single classification RDR. Namely, because any children can 

fire, you end up with a number of branches potentially firing for any given input 

case. This is obviously the point of the system; but, if each path being followed 

is derived individually without any reference to what is occurring in the other 

paths then there is a lack of cohesion between these separate paths.  

At this stage there is little work, with the exception of Richards (1998a) 

(section 3.4.1), that has been done concerning looking at which paths through 

the tree are followed in correlation with each other. For instance, if a particular 

group of paths always occur with a particular type of input case, is this, in some 

way, significant? It is the position of this thesis, that there is a correlation 

between the final classifications found and that this is information not currently 

being captured. This thesis is based on the idea that the MCRDR knowledge 

map contains hidden information within the structure itself, which can and 

should be extracted. Furthermore, once this information is extracted, it could be 

of particular use in understanding more about the areas that the KB needs to 

operate within. 

5.1.2 Philosophy of Knowledge Revisited 

The point of the second chapter in this thesis was not purely historical, but also 

to develop the philosophical background for the method developed. The 

philosophy of weak situation cognition has assisted in the development of 

contextually aware methodologies (Menzies 1998). There are now many 

methods developed that seriously attempt to include context in their systems 

(Menzies 1998). However, these systems still cannot fully enter the process of 

practice. Furthermore, these systems are still limited in their application. 

The development of the intermediate situation cognition view of knowledge 

may help penetrate the process of practise, by allowing a KBS system to be able 

to process and understand the knowledge contained in its own KB more 
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effectively. Additionally, it potentially identifies and clarifies many of the issues 

that strong situation cognition practitioners believe to be the primary 

impediment to KBS techniques. 

The hypotheses of this thesis are not related to proving the philosophy of 

intermediate situation cognition (ISC) or claiming that it solves the issues of the 

process of practice. These issues require a number of appropriate methodologies 

applied in a number of process of practice type applications to justify such 

claims. However, if the developed algorithm is able to meet this thesis’s 

identified hypotheses then this goes some way to showing that there are hidden 

contexts within the MCRDR knowledge map and that RM is capable of 

capturing this information. If hidden context can be found in MCRDR then this 

also goes someway to meeting the ISC view of knowledge. Furthermore, if this 

information can be used to improve the behaviour of the system, then this 

highlights that the philosophy of incorporating hidden and dynamic context is a 

plausible direction for KBS research to explore into the process of practice. 

5.1.3 Proposed Solution 

The proposed methodology in this thesis is a hybrid system combining MCRDR 

with an ANN. The output from the MCRDR inferencing process is passed to the 

neural network as its input. The network then feeds the input forward producing 

either a single output or a multitude of outputs. This hybridisation is simple in 

concept, but far from trivial to design and implement, in a way that captures the 

advantages of both of the original methodologies. 

Basically, the system is designed to recognise patterns of rules and 

classifications for particular cases and to attach a weighting to this observed 

pattern. Nowhere in the actual knowledge map is this information actually 

recorded; it is simply derived information from the pattern of rules evaluated in 

the MCRDR tree. This pattern exists because there is either a conscious or 

subconscious relationship between these classes in the expert’s mind. Therefore, 

the captured pattern of rules in their static context is effectively a type of hidden 

or unknown context. This now discovered context can be given a value 

representing its contribution, positive or negative, to a particular task. 

Additionally, through the use of an ANN, it is possible to constantly re-adjust 

this value as the context changes dynamically over time. 
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5.1.4 RM Possibilities 

Like with any neural network, RM requires a means of receiving training 

examples so it can effectively learn. Also, as in a normal ANN, this is really 

only limited by the imagination of the developer. Therefore, the RM method 

potentially can be applied in numerous domains. Additionally, within these 

domains it can provide many advantages over standard networks and KBSs.  

One major use for this method that is explored in this thesis is prudence 

analysis. As will be detailed in chapter 7, the network, if given careful feedback, 

can learn how to recognise cases from outside its knowledge domain that it has 

not encountered. Other possible uses for the method occur in data mining, 

information filtering and even reinforcement learning. These are by no means 

the limit of the proposed method. Other areas, such as natural language 

processing, induction, Web-spidering and robot navigation are all possible areas 

of application, just to name a few. If training examples and expert knowledge is 

available then the system should be able to learn fast and generalised solutions. 

5.2 Implementation Overview 

This section provides an overview of the RM implementation. It describes the 

overall design of the system, as well as details of the MCRDR component’s 

implementation. The second ANN component is not directly discussed in this 

section. Instead, it mainly discusses the problem faced in using a function fitting 

method to capture patterns in MCRDR inferenced results. The different 

implementations of the second component are discussed, in sections 5.3 to 5.9, 

in detail. The final part of this section discusses how the two main components 

of the method can be integrated. 

5.2.1 System Design 

The full RM algorithm, given in pseudo-code in Figure 5-1 and shown 

diagrammatically in Figure 5-2, consists of two primary components. Firstly, a 

case is pre-processed to identify all of the usable data elements, such as 

stemmed words or a patient’s pulse. The data elements are presented to the 
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1. Pre-process Case 

Initialise Case c 
c ← Identify all useful data elements. 

2. Classification 

Initialize list to store classifications 
Loop 

If child’s rule evaluates Case c to true 
list ← goto step 2 (generate all classifications in child’s branch). 

Until no more children 
If no children evaluated to true then 
 list ← Add this nodes classification. 
Return l. 

3. Evaluate Case 

x       ←  Generate input vector from list. 

ANN  ← x  

v       ←  ANN output value. 

4. Return RM evaluation 

Return list of classifications for case c and 
Value v  of case c. 

 

Figure 5-1: Pseudo code algorithm for RM. This describes the general inferencing and 
feedforward process used in RM and does not detail the network component as 
this is different for each version. 

standard MCRDR engine, which classifies them according to the rules 

previously provided by the user. Secondly, for each attribute, rule or class 

identified, an associated input neuron in the neural network will fire. The 

network finally produces a set of output values, v , for the case presented. The 

system, therefore, essentially provides two separate outputs; the case’s 

classifications and the associated set of values for those classifications. 

List of classifications.
l = Z, Y, U 

Tokens: 
a, b, c, f, i 

Document: 
a b b a c f i 

Value of case. 
v = 0.126 

Rule 5: 
If f then class Y

Rule 6: 
If e then class W 

Rule 4: 
If c,!h then class V

Rule 8: 
If a then class U

Rule 7: 
If c,g then class Y 

Rule 3: 
If !b then class X 

Rule 1: 
If a then class Z

Rule 2: 
If d then class Y 

Rule 0: 
If true then … 

MCRDR Neural Network 

Pre-Process 

Case / Document 

RM - case 

evaluation
 

Figure 5-2: RM illustrated diagrammatically. This diagram simply shows the general idea 
of an attached network. The topology of the network changes according to the 
type of RM actually used. The integration method shown is the terminating 
rule association (TRA) method (5.2.4.4). 
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Figure 5-2 shows a document classification and storage system where 

documents are also rated to judge their immediate importance. In this example a 

document with the tokens {a b b a c f i} has been pre-processed to a set of 

unique tokens {a, b, c, f, i}18. It is then presented to the MCRDR component of 

the RM system, which ripples the case down the rule tree finding three 

classifications: Z, Y, and U; from the terminating rules: 1, 5, and 8. In this 

example, which is using the TRA (Terminating Rule Association) method 

(section 5.2.4.4), the terminating rules then cause the three associated neurons to 

fire. The input pattern then feeds forward through the neural network producing 

a single value of 0.126. Thus, this document has been allocated a set of 

classifications that can be used to store the document appropriately, plus a rating 

indicating the importance of this document to the user. 

5.2.1.1 Learning in RM 

Learning in RM is achieved in two ways. Firstly, the rating component receives 

feedback from the environment concerning the accuracy of its predicted rating. 

Thus, a system using RM must provide some means of either directly gathering 

or indirectly estimating the correct rating. For example, in an email application 

where the system was required to order the documents in the order of 

importance, the amount of reward given to the network could be based on the 

order the articles are read by the user or whether the user prints, saves, replies, 

forwards or deletes the email. How the network actually learns is either in the 

standard way described in chapter 4, or, as described in the specific section 

detailing the network used (sections 5.3 to 5.9). 

The MCRDR component still acquires knowledge in the usual way; through 

the user identifying incorrect classifications and creating new rules and 

occasionally new classifications. Therefore, in the basic RM implementation the 

expert must still review cases and check classifications are correct. Methods of 

avoiding this are explored in chapter 7, where prudence analysis is performed 

using RM. 

                                                 
18  Repeated tokens could also be totalled and used in rules as well, but for simplicity this example 

only uses unique tokens. 
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5.2.2 MCRDR Component 

The MCRDR methodology was implemented as a basic module that could have 

different components added to it using one of the integration methods described 

in section 5.2.4. The different components are described in detail in the 

following sections of this chapter. The MCRDR algorithm itself was 

implemented using the majority of the features described in section 3.3. The 

primary difference was to only store a single cornerstone case, rather than all 

new rules creating cases as described in the MCRDR technique. The only case 

stored in this implementation is the one that is responsible for the creation of 

that particular rule. It was found during testing that the standard method of 

storing cornerstone cases, as described earlier, was ideal. However, in many 

situations it significantly reduces an expert’s ability to create rules. It was found 

that in situations where there is a limit on the number of attributes often the 

expert cannot create a rule. This is especially the case in the majority of 

simulated environments as most datasets are too simplified. Only storing a 

single cornerstone case, however, does not significantly hamper the method’s 

ability to learn. The only real effect is that the natural validation and verification 

ability of MCRDR is slightly reduced, meaning occasionally the rare additional 

rule has to be added to correct an incorrect rule.  

5.2.3 Artificial Neural Network Component 

The neural network components were designed to be plugged on to the end of 

the MCRDR component using an integration technique described in section 

5.2.4. The ANNs used are based on the backpropagation (4.3) and RBF (4.4) 

techniques. It should be noted that these methods are both traditionally 

supervised neural networks. However, they have also been used in unsupervised 

environments such as Tesauro’s TD-Gammon (1994). In these environments a 

separate reinforcement learning method is used to act as the supervisor. In this 

thesis the networks are also being used in a similarly unsupervised way (except 

there is no temporal separation). Specifically training is supplied either using the 

classification of the case or by a calculated class or rating. The specifics of the 

training rewards used in the various experiments are described fully in section 

6.1. 
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There were seven methods developed and described in detail starting in 

section 5.3. Each of these methods was designed to test a particular area of the 

tasks required by the system. Some methods were not expected to work very 

effectively, but were developed to show that the more advanced methods were 

required to capture the hidden and dynamic contexts. The primary issue in this 

project, however, is how to use a neural network in an environment with an ever 

changing input space. The following section will define this problem 

mathematically, describing exactly what output can be generated from the 

MCRDR inferencing process and what is required of the network. 

5.2.3.1 The Problem 

MCRDR produces an output that can be interpreted in a number of different 

ways. As the inference process is performed a number of rules fire down the tree 

and through particular branches. Keeping track of the rules that have fired is one 

form of output which is highly descriptive of the KB structure. A subset of this 

is to just consider the final nodes in the path, or terminating rules. There is also 

information within the rules’ nodes themselves. For instance, each terminating 

rule contains an identified classification or action, which is the usual output 

from the MCRDR inferencing process. However, frequently many terminating 

rules may have the same classification, effectively meaning that this is a 

reduction in the useful information from the MCRDR tree. Lastly, each rule also 

contains a number of attributes that apply to that particular rule. These 

potentially indicate important global information; however, only using attribute 

information removes some of the contextual based knowledge in the KB. 

Expressing these outputs mathematically, it can be seen that the output from 

the MCRDR methodology is essentially a set of rules fired, denoted R, where 

( )*RR ℘∈ , and R* is the set of all the rules currently in the knowledge base. 

Furthermore, the final terminating rules are those that inferencing could not 

continue past due to them either being a leaf node or because none of their 

children fired. This output can be given by ( )*RRT ℘∈ , where RT is the set of 

terminating rules and ( )RRT ℘∈ . Using the more common classification, 

denoted C, based view, then ( )*CC ℘∈ , and C* is the set of all possible 

classifications. Lastly, the attributes, denoted A, identified in the rule conditions 
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of fired rules could be expressed ( )*AA ℘∈ , where A* is the set of all possible 

attributes currently identified within the MCRDR KB. 

Clearly, regardless of which method or combination of methods is used for 

gathering MCRDR’s output, the fundamental mathematical nature of that output 

is the same. Therefore, for simplicity’s sake this is reduced to a common 

notation. MCRDR can be said to produce a set of features, denoted F, as outputs, 

where ( )*FF ℘∈ , F* is the set of all the features currently in the knowledge 

base, and **** ACRF ∪∪= . 

Given the above input to the ANN method, the output is a set of values, v , 

which provides one or more varying results in applications where dissimilar 

tasks may need to be rated differently. For instance, v0, may identify the 

desirability or importance of the case presented. Therefore, a mapping must be 

found from the set F→ v , ( )*FF ℘∈∀ . Additionally, RM should be able to learn 

this mapping for both linear and non-linear sets of features quickly and be able 

to generalise effectively. Thus, RM needs to identify patterns of features and 

then associate a value for each pattern through the use of a function-fitting 

algorithm.  

The neural network was integrated into MCRDR by linking individual 

features used to an input neuron. Thus, for each feature found by the MCRDR 

system, an associated neuron will fire. The obvious problem with this, as 

mentioned during the introduction, is that the input space is constantly growing. 

Every time the expert notices a deficiency in the KB they add a new rule, 

potentially with attributes never seen before in the conditions and occasionally 

forming a new conclusion. Therefore, the output feature space, F*, of MCRDR 

can grow towards, F#, where *# FF ≥  and F# is finite but unknown. 

To overcome this problem a method for adding input nodes was required. 

This cannot be easily achieved without significantly influencing the already 

semi-trained network. As will be detailed later in this chapter, through careful 

redesign of the ANN algorithms used and selection of initial weights for the new 

nodes certain effects can be removed or minimised. These, however are unique 

for each technique developed. 
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One interesting feature of this problem is that if the expert has just added a 

new rule it may be possible to assume that they are reasonably sure of the class 

or value for that case. This is due to having just spent the time reviewing it 

themselves. Therefore, it may be possible to automatically ensure the network is 

adjusted accurately for the newly added rule and neuron. This would need to be 

done by directly calculating a plausible value for any new components added to 

the network. Once again this calculation is unique for each method developed. 

5.2.4 Component Integration 

It was identified above that there are four possible types of features that can be 

derived as outputs from the MCRDR component of the RM algorithm. 

Integration of the MCRDR and ANN components is carried out by codifying the 

relevant features taken from MCRDR and converting these into a single input 

array of values, x , which is to be provided to the second component for 

processing. There were five association methods developed for integrating the 

two portions of the hybrid system. With the exception of the last method, each 

of them used a discrete on/off (1 and 0, respectively) input sequence. 

5.2.4.1 Class Association (CA) 

The class association (CA) method analyses every path returned from the 

MCRDR component and determines the identified classes. Each classification 

that has been identified by the user is given an index number identifying which 

input neuron is its associated point of connection. From this information an 

input array can be formed, where each class currently identified by the expert 

has a single input into the network. If that class was found in a terminating node 

from a path taken from the MCRDR inferencing process, then this is set to be on, 

otherwise it is off. 

The primary advantage of this association method is that it reduces the 

number of neurons being created in the ANN, thereby, also reducing the size of 

the input space. However, the reduced input space also means a reduced amount 

of information about the case, thereby, potentially limiting its learning ability 

and maybe allowing for less generalization. CA was rarely used in this thesis’s 

final results, as the other methods usually outperformed it in most situations. 
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5.2.4.2 Attribute Association (AA) 

The attribute association (AA) method analyses every path returned from the 

MCRDR component and extracts all the attributes that were used in making 

each rule fire. Each attribute identified by the user was given an index number 

identifying which input neuron is its associated point of connection. From this 

information an input array can be formed, where each attribute currently 

identified by the expert has a single input into the network. If that attribute was 

found in a node from a path taken from the MCRDR inferencing process then 

this is set to be on. An added complication can come about from the possibility 

of a rule containing a ‘not’ attribute condition. This can be resolved by either 

having a negative on, -1, or by treating it as a different attribute. If treated as a 

different attribute then it is given its own index and associated network input. 

The second option was the only method used in this thesis. A further variation is 

to only treat an attribute as being on if it was used in the terminating rules 

condition, instead of looking at them all through the path.  

One interesting aspect of this method is that it takes contextually located 

symbols and uses them in a globalised environment. It is like the commonly 

tried keyword method except the keywords are selected online by the user, 

which may have interesting applications in some areas, such as information 

filtering. Another advantage of this method is that if a path, not usually followed, 

is taken resulting in similar attributes in many of the rules then the system could 

potentially still achieve a good generalised estimate. However, this association 

method is subject to the situation being used. The greatest problem area for this 

method is when the firing of a particular attribute is highly contextually 

dependant. In such situations inputs would fire globally and, therefore, not when 

required. Once again it was found in this study that it was rarely better than 

other methods.  

5.2.4.3 Rule Path Association (RPA) 

The rule path association (RPA) method analyses every path returned from the 

MCRDR component and determines the rules that fired. Each rule has an index 

number identifying which is the associated input neuron. From this information 

an input array can be formed, where each rule currently identified by the expert 



Chapter 5: Rated MCRDR (RM) Methodology  Richard Dazeley 

    
 103 

has a single input into the network. If that rule is found in the path taken then it 

must have fired during the inferencing process, therefore, the input neuron is set 

to be on. 

This method was consistently one of the better performing association 

methods. While it does produce significantly more input nodes, it allows 

significantly more information to be passed on from the first component. One 

advantage is that if a case only diverges slightly from a previous case, then the 

input to the network only changes slightly. Therefore, a lot of contextual 

information is passed on to the network. 

5.2.4.4 Terminating Rule Association (TRA) 

The terminating rule association (TRA) method is essentially a subset of the 

RPA method. It analyses every path returned from the MCRDR component and 

determines the rules that fired at the end of the path. Therefore, an input for each 

neuron is switched on only if the associated rule both fired and was either a leaf 

node or none of its children fired. This method creates neurons at the same time 

as the RPA integration method but does change the number of inputs that fire 

significantly. This technique did occasionally work well, however, it does not 

convey any contextual information. Therefore, it is better suited to situations 

where the path information inhibits learning. For instance, when many rules 

have been added as contradictions then the paths may not contribute as well. The 

RPA method works well when the rules created are specializations of the parent 

instead.  

5.2.4.5 Decreasing Rule Path Association (DRPA) 

The decreasing rule path association (DRPA) method is the only method 

used in this thesis that does not use the on/off approach. This method could be 

viewed as a combination of the RPA and TRA association methods. For each 

rule that is encountered in a classification path an input is given for the 

associated neuron. The value of the neuron’s input, however, is measured by the 

distance from the terminating rule. Generally, this involves giving the 

terminating rule’s neuron an activation of 1, and a decreasing activation for each 

input that connects a rule higher up in the MCRDR tree. The amount of decrease 

per level can either be static or relative to the depth of the path. For instance, in 
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the static approach you may simply subtract some amount, such as 0.25, for 

each level. The relative approach alters the decrease according to how many 

rules are in the path. One simple relative approach is a linear decrease from 1 to 

0 from the terminating rule to the root using equation 5-1. 
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i ℘∈℘∈∈=  (5-1) 

Where P is the set of rules in an individual path; d
ir  is the depth of the ith 

rule, r, in the path (rd=0 at the root node and rd=||P|| at the terminating rule) and 

v
ir  is the activation value for the ith rule. Alternatively, a non-linear method 

could be used such as a sigmoidal or exponential function. In this thesis only the 

linear method was used. 

The original idea behind this method was to introduce a means of removing 

some degree of discreteness from the inputs. This was expected to help the 

ANNs develop; as such algorithms often perform better with continuous inputs. 

This method was occasionally found to produce a slightly better response than 

the RPA method; however, generally it did not significantly aid learning. One 

problem was the varied level of a particular node relative to the terminal node. 

Thus, sometimes a node would strongly contribute to the input space and other 

times it would have little effect at all. A second issue occurred when a node was 

the parent of multiple firing branches. If one branch was short and the other was 

long then the node could have either a high or low activation value. In this 

implementation it was always set to the highest possible value. 

5.3 RMw: Weighted Technique 

The simplest approach, referred to as RMw, does not use a neural network. 

Instead, a value is associated either with the rule, class or attribute and after 

inferencing these values are averaged. This system is implemented very simply. 

The primary difficulty is deciding what value to assign a new feature identified 

by the expert (5.3.1). This method was implemented as one of the benchmark 

methods for the other RM methods to be tested against. This was to ensure that 

the other methods were performing better than what was expected to be the 

worst performer, as well as to verify that the trouble of developing the more 

elaborate methods later on was warranted. 
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5.3.1 Implementation 

The basic implementation developed for RMw used equation 5-2 to calculate the 

appropriate RM output value, v, for each case. In situations where more than one 

RM output was required per case, then additional weights, wi, were stored for 

each relevant output. Essentially, equation 5-2, is simply averaging the weights 

of the features, where n is the number of MCRDR features that fired and 

*Fn ≤ , where *F  is the total number of MCRDR features currently being 

used. 
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Weights assigned to newly identified features were calculated using equation 

5-3. In circumstances where more than one RM output was required for each 

case, then additional weights were calculated for each. The idea is to calculate a 

value which allows an identical case in the future to get the correct output. This 

is achieved by subtracting the average from the value of the reward, vr, received 

by the system. It is possible, and frequently occurs, that the expert can add 

multiple new rules for the one case. In these situations the calculated weight is 

divided by the number of new features, m. This effectively distributes the weight 

between the created rules giving each new feature the same weight. 
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The additional step-distance function modifier, Zeta (ζ), should always be 

set in the range 10 ≤≤ ζ . It is included to allow adjustments to whether a full 

step or partial steps should be taken for the new features. For instance, if ζ is one 

then the new weights will provide a full step and any future identical cases will 

give the exact correct answer. A lesser value for ζ causes new features to only 

receive a portion of their value. It was found in testing that the inclusion of the ζ 

modifier allows better performances in some situations, especially in 

generalisation. 
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5.3.2 Discussion 

This method however, does not meet many of the previously stated requirements. 

For instance, it does not allow for the discovery of non-linear relationships. 

While such relationships may not always exist, it is a problem feature that may 

need addressing. More importantly, the method doesn’t allow for any form of 

learning. If the philosophical ideas stated in chapter 2 turn out to be false and 

there are no hidden or dynamic contexts then this method should perform as 

well, if not better, than the subsequent techniques. This is because the immediate 

value received should not need to find non-linear relationships. Nor should it 

need to find dynamically changing values.  

5.4 RMl(ε): Basic Linear Technique 

This similarly simple method takes the other approach, where it allows for 

learning but no immediate weight is assigned to new features. This method is 

identified by RMl(ε), where l stands for linear method and the ε identifies a 

random initialisation for new neurons. This method uses the simplest of ANN 

implementations. Basically, it uses a single layer network to capture linear 

relationships. This allows for new nodes to be added with little concern for the 

initial weight. As with RMw, this method was also implemented to show the 

value in the later methods.  

5.4.1 Implementation 

The implementation developed for RMl(ε), simply used the standard feedforward 

weighted sum, Equation 4-1, which is passed through the symmetric sigmoid 

function, Equation 4-3. New neurons were added by simply selecting a small 

initial, positive or negative, random number. A value other than zero is required 

to ensure some learning occurs. This method allowed the learning process of the 

network to appropriately adjust the weight on the new neuron’s connection.  

In this method there is no reason to be concerned about the new node 

hampering the learning of the other, older and better trained connections. This is 

because the new node will only affect the output when it receives an activating 

input. Therefore, given sufficient training time this network will learn a 

reasonable linear value for the relationship between features. 
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5.4.2 Discussion 

This method would be expected to work well in situations where relationships 

between features are linearly separable. However, it would have no ability to 

learn non-linear solutions. Also, while it would be expected that the extra 

information the network receives from the MCRDR component would speed the 

network’s learning over a standard network, this would only be a minor 

improvement. Therefore, while this method allows learning, which improves on 

the RMw method, it fails in two regards: being able to learn non-linear 

relationships and being able to learn fast enough to be used in an online 

environment. 

5.5 RMl(∆): Advanced Linear Technique 19 

The problem of faster learning was partially solved by the first implementation. 

RMw initialised the weights by calculating the correct value when the weight was 

created. This is possible because the expert had just created a new rule and, 

depending on the task at hand, a value can generally be derived for the new 

feature which is much closer to the final required weight. Therefore, such a 

feature allows us to learn an initial weight that is reasonably accurate and 

significantly faster. While the mathematics is slightly more complicated, this 

same idea is certainly applicable in the networked situation. This method, 

denoted RMl(∆), where the ∆ indicates the use of the single-step-∆l-initialisation-

rule (5.5.1.1), combines this idea with the learning ability of the RMl(ε) method. 

5.5.1 Implementation 

The implementation for this method is essentially the same as the previous RMl(ε) 

method. The only exception is that when a new node is added a flag is set so that 

on the subsequent update the system can use the single-step-∆l-initialisation-rule 

to set the new connection to a more appropriate weight than the random number 

generation allowed.  

                                                 
19  This version of RM was previously published in Weighted MCRDR: Deriving Information about 

Relationships between Classifications in MCRDR by Dazeley and Kang in 2003 with the notation 
WM. 
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5.5.1.1 The Single-Step-∆l-Initialisation-Rule 

The single-step-∆l-initialisation-rule directly calculates the required weight for 

the network to step to the correct solution immediately. This is done in 

fundamentally the same way as in the RMw method. However, because the 

feedforward process passes through the sigmoid function, rather than the simple 

averaging used in RMw, then we must go back through the inverse of the 

sigmoid when calculating our new weight.  

Equation 5-4, calculates the weight needed for the new input connection, wno 

by first calculating the error in the weighted-sum, δws. This is then divided by the 

input at the newly created input node, xn, which is always 1 in this 

implementation, where there are n>0 input nodes and o>0 output nodes. In a 

similar manner to the RMw implementation this value is also divided by the 

number of new features added for the current case and multiplied by the step-

distance modifier, ζ. 
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δws is calculated, using Equation 5-5, by first deriving the target weighted-

sum, Tws, from the known error, δ, and subtracting the actual weighted-sum at a 

particular output node, denoted by neto.  

owsws netT −=δ  (5-5) 

The value for net for each output node, o, was previously calculated by the 

network during the feedforward operation, and is shown in Equation 5-6, where 

there are n>1 input nodes, where the nth input node is our new input. 
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Tws, can be found for each output node, by reversing the thresholding process 

that took place at the output node when initially feeding forward. This is 

calculated by finding the inverse of the asymmetric sigmoid function, Equation 

4-2, and is shown in Equation 5-7, where f(net) is the original thresholded value 

that was outputted from that neuron.  
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Alternatively, using the symmetric sigmoid, shown in Equation 4-3, as used 

in this thesis’s implementation, Tws is calculated similarly and is shown in  

Equation 5-8. 
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Thus, the full single-shot-∆l-initialisation-rule, used for each of the new 

input’s connections to all of the output nodes is given in equation 5-9. Due to 

the use of the asymmetric sigmoid function, it is clear that at no time can the 

system try and set the value of the output to be outside the range 0 > (f(net) + δ) 

> 1 as this will cause an error. 
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Similarly, when using the symmetric sigmoid, Equation 5-10 is used, with 

the requirement that the system does not attempt to set the value of the output 

outside the range -0.5 > (f(net) + δ) > 0.5  as this will cause an error. 
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This updating method is best understood by seeing what is occurring 

diagramatically. Figure 5-3 shows an input pattern that had a weighted sum of 

3.0 calculated at the output node. This was fed through the symmetric sigmoid 

function, finding the output value 0.47. The correct output, however, was -0.358. 

The correct weight for the new input node is calculated by feeding this target 

back through the inverse of the sigmoid function finding the value -1.8. 

Therefore, the weight on the new node is the difference of the correct value and 

the actual weighted sum, -4.8, which is the required weight for the new input.  
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Figure 5-3: Example of the single-step-∆-initialisation-rule shown diagramatically. This 
shows the principle behind what the learning rule is calculating. The dot at 3.0 
is the incorrect weighted sum producing the output from the network of 0.47. 
The reward for this pattern was -0.358 which means that the inverse of the 
sigmoid function finds the correct weighted sum of -1.8. 

5.5.2 Discussion 

This is the first method to seriously address the learning outcomes of this project. 

It is able to step to the correct output immediately upon receiving new expert 

knowledge, allowing the system to learn initial estimates significantly faster. 

This allows for online learning. Additionally, unlike RMw, it can also continue to 

learn a finer representation of a relationship between features. However, it is still 

limited to only being capable of finding linear relationships. While many 

problems are linearly separable, it cannot be assumed that all MCRDR 

knowledge maps will only contain such relationships. Therefore, further work 

was required to develop a method for finding all types of dynamic contexts. 

5.6 RMbp(ε): Basic Non-Linear Technique 

To address the problem of finding non-linear solutions, a system using multiple 

layers of neurons is required. This, however, is a distinctly more difficult 

problem, due to the full interconnection of inputs in the hidden layer. Therefore, 

when new inputs are added they need to be connected to all the existing hidden 

nodes. Therefore, the new node will alter already learned patterns held in those 

older hidden nodes. A number of ‘tricks’ were developed to reduce the 

interconnection effects, which have been incorporated into the following method, 

RMbp(∆). This method, RMbp(ε), is the basic version using the standard 

backpropagation algorithm.  
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5.6.1 Implementation 

In the experiments used in this thesis the network developed comprised of a 

single fully connected hidden layer. As with the other perceptron based methods 

it is using a symmetric sigmoidal thresholding function with a bias term. When 

new input nodes are added to the system this method simply assigns small 

random weights, symbolised by ε, for the new connections. If these connections 

altered existing correct hidden nodes then this is simply accepted.  

It should also be noted that as new input nodes are added then new hidden 

nodes are also required. This is because the additional inputs are increasing the 

size of the input space, thus, the number of potential patterns that need to be 

learned. Therefore, in this implementation a new parameter representing the 

percentage ratio, p, of hidden nodes to input nodes is used to determine when 

and how many hidden nodes are added. For instance, a ratio of 100% means a 

new hidden node is created for every additional input node.  

In this implementation, when new hidden nodes are added, the connections 

from the old input nodes and any new input nodes are given a small random 

value. Likewise, the connections from the new hidden node to each of the output 

nodes are also given a small random value. Just as with the adding of input 

nodes, this process can affect all the previously learned patterns and temporarily 

reduce the system’s effectiveness. These issues are addressed more fully in the 

subsequent system, RMbp(∆). 

5.6.2 Discussion 

This method is still expected to learn, just more slowly than the linear based 

approach. The slower learning is especially expected during the early stages of 

training when many new input nodes are added. Once the MCRDR KB is 

nearing a more stable size the system should start learning nonlinear 

relationships quite effectively. This method is clearly incapable of learning in an 

online environment due to its slow initial learning. Even though it is not 

expected to learn quickly it has been included as a means of comparing the more 

refined version, RMbp(∆), to show the effectiveness of the adjustments made. 
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5.7 RMbp(∆): Advanced Non-Linear Technique20 

This method is one of the primary techniques developed in this thesis. It aims at 

addressing the combined problems from the previous implementations. Firstly, it 

needs to allow for non-linear relationships which RMl(∆) was unable to 

accomplish, without losing its fast initial learning. Secondly, it is designed to 

eliminate the effect new input and hidden nodes have on already trained hidden 

nodes. The resulting methodology is a powerful amalgamation, allowing for fast 

online learning and generalisation. 

5.7.1 Implementation 

The approach taken in this implementation captures the initial information by 

directly calculating the required weight that provides us with the correct 

weighted-sum without the need for a training period in a similar way as RMl(∆). 

When applying this weight, however, it must be done in a way that does not 

affect any of the already learnt cases. Therefore, no changes can be made to 

weights connecting the hidden layer to the output layer. This only leaves the 

connections from the input to hidden layers to carry the weight adjustments. 

However, due to the thresholding that is performed at the hidden layer it is 

entirely possible that weights on the arcs from the input layer to hidden layer 

cannot be increased enough to fully reduce the error and give the required result. 

These restrictions meant that the network structure needed to be altered by 

adding shortcut connections from any newly created input node directly to each 

output node and using these connections to carry the entire weight adjustment 

required to gain the desired set of results. Figure 5-4 shows the network 

topology used. This system allows the network to adjust immediately when a 

new feature is created and yet still provide the ability to learn adjustments to the 

new node’s relationships with other nodes through the underlying network. 

                                                 
20  This version of RM was previously published in Rated MCRDR: Finding non-Linear Relationships 

Between Classifications in MCRDR, by Dazeley and Kang in 2003 and An Augmented Hybrid 
System for Document Classification and Rating, by Dazeley and Kang in 2004 with the notation 
RM. 
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Shortcut 
connections 

 

Figure 5-4: Network structure of RMbp(∆) showing a single hidden layer network with 
shortcut connections directly connecting the input nodes to the output nodes. 

One potentially enabling result of using a topology such as this, is that we 

effectively now have two networks. The shortcut network is essentially a single 

layer network capable of learning linear functions, and thus, linear relationships, 

very quickly, while the two layer network underneath allows the system to still 

be able to learn non-linear relationships. Thus, the combination of these 

networks allows the system to learn a linear function quickly while still, over 

time, being able to derive the more complex non-linear functions. 

Like with RMbp(ε), additional hidden nodes still need to be added in parallel 

with the added input nodes. Likewise, these need to be assigned an initial weight. 

Therefore, when adding a new input and, zero or more, hidden nodes, new 

connections must also be added in the following places: 

• from the new input node to all of the old hidden nodes.  

• from all input nodes, new and old, to each of the new hidden nodes, if any.  

• from each of the new hidden nodes, if any, to all of the output nodes.  

• the shortcut connections from the new input node to all of the output nodes.  

The process for adding nodes and connections is illustrated in Figure 5-5. 

Each of these different groups of new connections requires particular start up 

values. First, the new connections from the new input node to all the old hidden 

nodes should be set to zero so that they have no immediate effect on existing 

relationships. If the new input node is included in particular patterns that already 

exist then this will be learned over time. If new hidden nodes have also been 

added then the connections from them to the output nodes should also be set to 

zero for the same reason. In order for these connections to be trained, the output 

from the new hidden nodes must be non-zero. Thus, the new connections from 

all the input nodes to the new hidden nodes, and their biases, are given random 

values. Finally, the new shortcut connections are given a value calculated using 

the single-step-∆bp-initialisation-rule. 



Chapter 5: Rated MCRDR (RM) Methodology  Richard Dazeley 

    
 114 

Original connections (not changed) 

New connections (set to zero) 

New connections (given random values) 

New connections (calculated using the Single-step-∆-initialisation-rule)

a) Adding input node only. b) Adding both input and hidden node. 

Connections key 

    bias 

New Input Nodes New Hidden Node 

 

Figure 5-5: Process used for adding new input and hidden nodes in RMbp(∆). (a) shows how 
inputs are added by themselves. (b) shows how input and hidden nodes are 
added simultaneously 

5.7.1.1 The Single-Step-∆bp-Initialisation-Rule 

The single-step-∆bp-initialisation-rule is essentially the same as the single-step-

∆l-initialisation-rule (5.5.1.1), both in derivation and use. The only difference is 

the weighted-sum calculation for the actual weighted-sum. In the ∆bp version 

this must also incorporate the weighted sum from the shortcut connections and 

is shown in Equation 5-11: where, i is the individual input layer nodes and n is 

the number of inputs; h is the individual hidden layer nodes and q is the number 

of hidden nodes; and, o is the individual output layer nodes. 
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Therefore, the final ∆bp rule can easily incorporate the new actual weighted 

sum and it is shown in its general form in Equation 5-12. 
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Due to the use of the symmetric sigmoid in this thesis the actual calculations 

were made using Equation 5-13. 
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As can be seen in the above equations, this method has also incorporated the 

use of the step-distance modifier, ζ.  

5.7.2 Discussion 

This is one of the main methods developed that is expected to learn an effective 

non-linear solution quickly, while maintaining the ability to generalise. It 

incorporates the stepping function combined with a multilayer network. 

Additionally, it carefully sets connection weights to significantly reduce any 

effect from new nodes on older already semi-trained nodes. One advantage of 

the shortcut connections is that the system can learn a linear function as quickly 

as RMl(∆), method and then learn a refined nonlinear value via the non-linear 

portion of the network. It is expected that there is no reason the same idea 

cannot be further extended to a two hidden layer network. However, this was not 

tested in this thesis.  

The primary problem with this method would be in successful generalisation 

during prediction tasks, where only a few inputs fire and these are all strongly 

excitory or inhibitory instead of a combination of both. In such a situation the 

system can produce a large positive or negative value, well outside the range of 

a reasonable result. This was mostly solved by using the RPA integration 

method. This meant that significantly more inputs fired considerably reducing 

the risk of a compounded result. Other techniques involving variations to reward 

structures can also limit this problem. This issue is explored further in the 

following initial results chapter. 
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5.8 RMrbf: Basic Radial Basis Function Technique21 

The second approach to finding nonlinear solutions was to use the radial basis 

function ideas discussed in section 4.4. It is important to recall here that when 

adding new inputs for the backpropagation method a weight needed to be 

selected that minimised the effect on already semi-learned hidden nodes. The 

advantage, in this regard, when using an RBF, is that when we add a new input 

node we can also add a hidden node which can be used to form a hyperellipsoid 

function representing the new input pattern in a similar method as that of the 

RAN network (4.5.5). This significantly simplifies the issues of altering values 

for already learned hidden nodes as the new input will not be recognised as part 

of their inputs. This method, along with the following algorithm, are the main 

alternatives to the backpropagation methods described previously. RBFs can 

traditionally learn faster solutions but run the risk of over fitting, and thus, may 

have poor generalisation. 

5.8.1 Implementation 

Fundamentally, this method is a standard RAN based RBF network. It uses the 

symmetric sigmoid thresholding function, Equation 4-3, for the output nodes 

and the hidden layer uses the Gaussian function, Equation 4-15, with a 

Euclidean distance measure, Equation 4-16. Like in Platt’s (1991) RAN network, 

new hidden nodes can be added to capture new and unique patterns.  

In this implementation, however, hidden nodes were only added when a new 

input was added. The new hidden node was given the hyperellipsoid function 

containing all the inputs for this new pattern. Therefore, the weight of a 

connection between each input node and the new hidden node is set to the same 

value as the activation value that was received. All the connections from the new 

input to the old hidden nodes are given the weight of 0. Thus, the new node will 

only have a small effect on any already learned nodes. Finally, the coefficient, λ, 

of the newly created basis function is calculated in an identical way as the new 

weights in the RMl(∆) method using the single-step-∆l-initialisation-rule. 

                                                 
21  This version of RM was previously published in Detecting the Knowledge Frontier: An Error 

Predicting Knowledge Based System, by Dazeley and Kang in 2004 and An Online Classification 
and Prediction Hybrid System for Knowledge Discovery in Databases, by Dazeley and Kang in 
2004 with the notation RM. 
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5.8.2 Discussion 

This method, as will be discussed in chapter 6, has shown a lot of ability at 

learning online. Through adjustment to the width of the Gaussian function, it has 

also been able to generalise effectively. Due to this method only adding hidden 

nodes when input nodes are added the usual problems of over fitting are 

prevented. However, it also prevents hidden nodes from being added for unique 

patterns that still may occur even when a new input was not added. This was 

found to significantly limit the system’s ability to learn the relationships 

between features on many problems.  

5.9 RMrbf+: Advanced Radial Basis Function Technique 

The final method developed is really an extension to the previous technique and 

uses the notation, RMrbf+.  The primary aim of this method was to improve on 

some of the issues that arose from the previous implementation, such as being 

able to allocate resources when inputs are not added and more directly 

addressing the issues that arise from the changing input space. This method was 

developed in the expectation that it would achieve fast and generalised learning 

and could outperform the backpropagation methods previously developed. 

5.9.1 Implementation 

Beginning with the implementation described for the RMrbf method, this 

technique addresses two main issues that arose during testing. The first is the 

need to be able to occasionally add new hidden nodes even though no input has 

been added. A subsequent issue concerning the prevention of the leaking effect 

caused when new inputs are added, which can still have a small affect on 

previously identified patterns, through the implementation of input keys. The 

solutions for these issues are detailed in the following subsections. 

5.9.1.1 Handling Resource Allocation 

The approach taken for the allocation of hidden nodes when no input was added 

was relatively simple. A threshold, θ, was selected that would indicate when an 

error was too large for the system to simply train towards. Once fired, the 

system investigated each hidden node to find any that fitted the input pattern 
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exactly, in other words a hidden node with a Euclidean distance of zero. If none 

were found, then it is known that this is a new previously unseen pattern that 

due to being outside the threshold deserves its own hidden neuron.  

The difficulty in this method is that the value for the threshold needs to be 

selected carefully. A threshold set too small will result in over fitting and, 

therefore, very poor generalisation, while a threshold set too large will have little 

effect on the method’s learning ability. The best setting for this parameter was 

found through repeated testing. 

5.9.1.2 Input Keys 

The original advantage in using an RBF network was that we could more easily 

reduce the effect of a newly discovered pattern on the already trained hidden 

neurons. However, they do still have some effect in certain circumstances. 

Imagine a situation where case A is correctly classified and rated. Then case B is 

received, which produces exactly the same result, but, this time it is not correct. 

A new rule is added creating a new input and hidden nodes in the network. Later 

still, case A happens to be re-presented. This time it still produces the same 

classification and input sequence to the network, however, the new hidden node 

created to cater for case B will also fire because the pattern is only wrong by one 

input. Obviously, it does not fire at full strength but it does still produce a value 

which perturbs the current result for case A. Therefore, a case that was fully 

trained now produces an incorrect value. Although, generally a small error, it 

can still cause problems. 

This was resolved by using what has been referred to as input keys. 

Basically, when a new hidden node is created in parallel with a new input node 

then a record is kept of the pair’s association. Now when future cases are 

processed hidden nodes can only fire if either their associated key input or an 

input created after its key input fired. Therefore, each hidden node cannot fire 

and disturb any patterns learned prior to its creation; instead it can only affect 

nodes added after it was created. This is possible because the ones created after 

it, were done with a full understanding of what was currently in the network. 

This was found to significantly aid the system’s stability as new nodes no longer 

had an affect on older ones. 
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5.9.2 Discussion 

This method represents an interesting application of an RBF network and has 

been quite effective in many of the experiments performed as part of this thesis. 

This method is expected to learn quickly with a reasonable generalisation. It is 

also expected to be able to capture non-linear relationships quickly. However, 

prior to testing it was unknown whether it would outperform the RMbp(∆) method 

developed. One of the primary difficulties with this method is the number of 

parameters that are now required, many of which have a significant effect on the 

system’s performance. This difficulty has made testing time consuming and 

difficult. 

5.10 Other Network Types and Function Fitting Methods 

The above implementations have been based primarily on the standard 

backpropagation, RBF, and RAN neural networks. From discussion with 

colleagues at the university and at the conferences attended, many have asked 

about other possible methods such as Cascade Correlation (CC) or self 

organising networks, such as Kohonen networks, and even non-network based 

methods such as Support Vector Machines (SVM). Many of the methods that 

have been considered were briefly described in chapter 4. However, these 

investigations confirmed that these systems were not suitable.  

The primary problem for all of these methods is that any method that could 

be devised for assigning additional input neurons resulted in an unwieldy 

algorithm at best and completely impossible at worst. For instance, CC trains a 

hidden neuron until stable then sets it in stone, freezing its weights, and adds a 

new hidden node for further refinement. However, a given hidden node will 

never be stable if the input space is constantly changing. Additionally, many 

cases are only seen once preventing the training of subsequent hidden nodes. No 

means of adjusting the algorithm could be found that could handle the required 

environment and still keep any of the CC algorithm intact. Another issue which 

occurred with methods such as the upstart, divide-and-conquer and tiling 

algorithms were that they required the entire dataset at the outset and could not 

operate in an online environment.  
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A version of the resource allocating network (RAN), called adaptive 

response function neurons (ARFNs), described in section 4.5.5.1, had been a 

particularly promising method for application to the RM system. This was 

because if the ARFNs were used as input nodes then the inputs could be trained 

to only respond to particular input levels. Basically, it was the only existing 

method found that allowed for the adding of input nodes. However, the ARFN 

requires continuous inputs and MCRDR could only provide discrete values. This 

was why the DRPA integration method had been developed, to find a means of 

providing a more continuous-like input. This, however, failed because the 

fractional values are always a portion of on as opposed to a sensor type reading 

for which the neurons were created. 

5.11 Summary 

This chapter was the primary methodology chapter, describing the RM system 

developed in detail. Initially it described the problem of a lack of cohesion with 

the MCRDR methodology and that inferencing occurs down separate paths with 

no reference to what may be the conclusion of other paths. Also, ideas 

concerning the philosophy of knowledge were revisited, identifying clearly the 

aims of the algorithm being developed in this thesis. 

The main methodology was developed over a number of sections. The 

system overview described the overall design of the system and a brief 

description of the two components of the hybrid system. The section also 

described how the two components could be integrated in five possible ways. 

These are by no means the only integration methods possible but they do 

represent the methods tested in this thesis. The following sections described the 

seven different methods developed. Some of these techniques, such as RMw and 

RMl(ε) were very simplistic. These were used to show, in the following chapter, 

that the more complicated techniques, such as RMbp(∆) and RMrbf+ were required.  



 

 

    66  
6 CCllaassssiiffiiccaattiioonn  aanndd  PPrreeddiiccttiioonn  

It sounded to him like a riddle, and he was never much good at 
riddles, being a Bear of Very Little Brain (Milne 1926, p67). 

The previous chapter presented the justification and development of the RM 

algorithm. In developing the algorithm, a number of alternative neural network 

implementations were presented. This chapter details a large number of test 

results designed to accomplish two tasks. Firstly, the chapter aims to find which 

of the presented methods developed produces the optimal learning and 

generalisation abilities for both classification and prediction tasks. Secondly, the 

chapter intends to illustrate how RM compares against MCRDR and neural 

networks by themselves. Thus, the aim is to show how RM learns as fast as 

MCRDR on presented cases, yet maintains the generalisability of a neural 

network on unseen cases.  

This chapter has been divided into three distinct sections. First, it will 

discuss the classification and prediction experiments being performed. This will 

consist of a discussion of the simulated experts previously used in RDR based 

research and the development of the experts used for the experiments performed 

as part of this chapter, along with the datasets used. The second section will 

present a collection of results that provide a comparison of the proposed 

algorithms presented in the previous chapter. This comparison will then be 

discussed and used for the selection of the primary methods used for the 

remainder of this thesis. The final section will provide additional results aimed 

at showing how the selected RM method compares against MCRDR and a 

neural network in the classification domain and a neural network in a prediction 

domain. Additionally, due to RM specifically targeting an online environment, 

test results will also be shown indicating how they progress as cases are 

presented individually over time.  
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6.1 Experimental Method 

There is a large collection of results presented in this chapter, and all were 

carried out in similar ways. Each test used 10 different randomisations of the 

relevant datasets with the average presented in this chapter. In many of the tests 

there are too many parameters to define them all. Therefore, Appendix D has a 

table giving all the relevant parameters used on all the experiments. This chapter 

consists of two primary types of tasks. The first is a standard classification task, 

while the second investigates the prediction capability of the methods. Each task 

consists of two types of tests: generalisation and online learning. The first, 

generalisation test, divides each dataset into ten equal sized groups. Results are 

presented where 9/10ths of the dataset are used for training and 1/10th for testing. 

The size of the training set is then reduced incrementally in steps of 1/10th, down 

to 1/10th. The same 1/10th set is always used as the test set. The second, online-

classification test, investigates how the methods can correctly classify cases or 

predict values over time. In this test the entire dataset is broken up into smaller 

blocks, each 1/50th of the original dataset, and passed through the system one 

group at a time. The system’s performance is recorded after each group, 

showing how fast the system learns for each new batch of cases. 

This section will briefly discuss the use of simulated expertise in RDR 

research. This will be followed by a detailed description of the simulated experts 

used in this thesis and how they were used in generating the MCRDR and RM 

results. Next, a detailed description is provided of the two types of experiments 

run for each type of task. Finally, this section will describe the datasets used to 

evaluate the RM methods developed. 

6.1.1 Simulated Expertise 

One of the greatest difficulties in KA and KBSs research is how to evaluate the 

methodologies developed (Compton 2000). This is because any evaluation 

requires the use of people to actually build the system. Furthermore, the same 

experts would ideally be used to compare two systems. Clearly, for this 

comparison to be meaningful they should also be built around the same domain. 

Therefore, the expert will have accrued some experience when building the first 

system and would provide better quality knowledge for the second system built. 
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Even if the results of such a comparison could be gained in a meaningful way 

then finding an expert to provide their time to build two expert systems is next 

to impossible and would be prohibitively expensive.  

One attempt to develop a method of comparatively testing KA development 

tools is based on the Sisyphus projects (Linster 1992). These projects consist of 

a complete specification on paper of a problem. KBS developers can then trial 

their systems on the projects providing a base for comparison. However, the 

results are far from conclusive. Due to all the required knowledge being made 

available, no actual KA is required. Therefore, such test beds are more likely to 

only compare a methodology’s problem solving method development ability. 

The solution to this evaluation problem taken by the majority of RDR based 

research has been to build a simulated expert, from which knowledge can be 

acquired. Generally, this has been accomplished by first building a KB using 

another KBS. The KA tool being tested can then use the simulated expert as its 

source of knowledge. This allows the method being tested to build a new KBS 

which should have the same level of competence as the original KBS. Clearly, 

this approach has certain advantages, such as the experimenter having complete 

control over the variables used and being able to perform multiple tests, 

allowing the method’s further refinement (Compton et al. 1995). Such a method 

also allows the direct comparison of different methods more easily. 

While there are issues with this approach, such as the data model defined in 

the original KBS is easily extracted in the secondary KBS. Nevertheless, the 

problems are generally minor. Obviously, testing with a simulated expert can 

never provide the same level of analysis that testing with real human experts can 

supply, but they do provide an excellent initial testing ground. Such testing can 

be used during methodological development, and then once the method is fully 

refined, it can then be tested in a real world domain. 

This is the approach that has been taken in this thesis. For the majority of 

testing, a set of simulated experts has been used to both refine and justify the 

majority of claims in this thesis. The resulting method is then used in the 

MonClassifier monitoring and classification system to illustrate that the claims 

made using simulated experts hold when using human expertise. This section 

will discuss the four simulated experts created for the tests performed in this 

chapter. 
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6.1.1.1 C4.5 Simulated Expert 

The first simulated expert created is fundamentally very similar to what has been 

described in other RDR research such as the one used by Compton et al’s (1996). 

The only purpose of the simulated user is to select which differences in a 

difference list are the primary ones. In other words, it uses its KB to select the 

symbols that will make up the new KB. In this thesis, the first simulated expert 

uses C4.5 (Quinlan 1993) to generate the simulated expert’s knowledge base. 

This is done by presenting the dataset to the C4.5 decision tree generation 

software. This was done with no modifiers or tree pruning, because we are not 

after the most efficient decision tree just an effective one. The decision tree 

generated is then loaded into the RM testing environment. 

The loaded tree views each case presented and classifies it, just like our KB 

under development. If the KB being constructed evaluates an incorrect 

classification then the simulated expert KB tree is used, by finding rules that led 

to the correct classification. Any attributes that appear in the different list and 

are in the path of rules from root to concluding leaf node in the simulated expert, 

can potentially be selected.  

There are numerous ways this can be done. In order to limit the quantity of 

testing required to a manageable level, this project only used settings that have 

been classed as reasonable in other studies. Firstly, attributes were selected from 

the top down, that is, attributes closest to the root were always selected first, and 

those nearest the leaf were selected last. Secondly, the simulated expert always 

tried to select two attributes for each rule. In situations where there is only one 

possible attribute then only one was selected. This is similar to the ‘smartest’ 

expert created by Compton et al (1995). 

This expert was found to work particularly effectively with any dataset that 

can first be run through the C4.5 method. It also allows a direct comparison of 

work done on prudence analysis in chapter 7, against Compton et al’s (1996) 

prudence system. It should be noted; however, that the performances of the RM 

methods vary a little with changes to the number of attributes selected just as the 

performance of MCRDR is altered. These differences were generally relatively 

small, and irrelevant when comparing RM against MCRDR because the same 

settings were always used for both. 
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6.1.1.2 Linear Multi-Class Simulated Expert 

The fundamental problem with the above simulated expert is that it requires an 

induction system, such as C4.5, to generate a complete KB prior to its use. This 

is a problem because no such system is available that can create such a tree for a 

multiple classification domain. In C4.5, while there can be many conclusions, 

each case can only have a single associated class. However, the system being 

developed in this thesis is primarily targeting domains with multiple 

classification domains. Therefore, a second simulated expert was created 

specifically designed for handling a particular multiple classification based 

dataset (6.1.4).  

This heuristic based simulated expert uses a randomly generated table of 

values, representing the level that each possible attribute, Aa∈ , in the 

environment contributes to each possible class, Cc∈ . Two rules were used in 

generating the expert: each attribute contributes to one class positively (1 to 3) 

and one class negatively (-1 to -2) and the remaining classes are given a value of 

zero; secondly, each class has one positive and one negative attribute from every 

|C| number of possible attributes. Thus, if there are 6 class and 12 attributes then 

each class will have two attributes providing a positive and two suppling a 

negative influence, the rest have no effect and have the value zero. An example 

of an expert’s attribute table used is shown in Table 6-1.  

 a b c d e f g h i j k l 

C1 0 0 -1 3 0 0 0 0 0 0 -1 3 

C2 0 0 0 -2 2 0 0 -2 0 0 1 0 

C3 0 -2 1 0 0 0 0 0 0 1 0 -1 

C4 -1 3 0 0 0 0 1 0 -1 0 0 0 

C5 0 0 0 0 -2 2 -2 0 2 0 0 0 

C6 2 0 0 0 0 -2 0 1 0 -2 0 0 

Table 6-1: Example of a randomly generated table used by the linear multi-class 
simulated expert. Attributes a - l are identified across the top, and the possible 
classes C1 – C6 down the left side. 

When a case is presented to the expert it is tested to see which class it 

belongs to by adding all the associated values for each attribute in each class. 

The expert will then classify the case according to which classes provided a 

positive total. The reason for setting up the expert in this way was to ensure that 

every case presented to the expert would be classified in at least one or more 
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classes. When creating a new rule, the expert selects the attribute from the 

difference list that distinguishes the new case from the cornerstone case to the 

greatest degree. This was achieved by locating the most significant attribute, 

either positively or negatively, that appeared in the difference list. 

Table 6-2, gives two example cases each with 4 attributes where the method 

for calculating the case’s appropriate classification can be seen. Each attribute 

contributes a value for the class. The simulated expert’s resulting classification 

for both of these cases are {1, 4, 6} for case A and {2, 3, 6} for case B. This 

expert was used for the multiple conclusion dataset. 

Case A = {a, b, c, d} Case B = {a, c, e, g} 

Classifications Classifications Attributes 

1 2 3 4 5 6 

Attributes 

1 2 3 4 5 6 

a 0 0 0 -1 0 2 a 0 0 0 -1 0 2 

b 0 0 -2 3 0 0 c -1 0 1 0 0 0 

c -1 0 1 0 0 0 e 0 2 0 0 -2 0 

d 3 -2 0 0 0 0 g 0 0 0 1 -2 0 

Total 2 -2 -1 2 0 2 Total -1 2 1 0 -4 2 

Classified      Classified      

Table 6-2: Two example cases being evaluated by the linear multi-class simulated expert. 
Each case has 6 classes in which they can be classified. They are only classed 
as being in that class if the total for the case’s attributes are greater than zero. 

6.1.1.3 Non-Linear Multi-Class Simulated Expert 

The above simulated expert was effective but only tested RM in linearly 

separable problems. It was linear because each attribute always affected a 

particular attribute in the same way. It cannot be assumed that all problems 

encountered are as simplistic. Therefore, a second multi-class simulated expert 

was developed, to test the method’s ability in a non-linear domain. A non-linear 

expert needs the attributes’ contribution to classifications to vary according to 

what other attributes were in the case. This was achieved by selecting an even 

number of attributes and pairing them together for each of the classes. Once 

paired, they were given an increasing absolute value. Additionally, alternate 

pairs had their sign changed. This can best be understood by investigating the 

example shown in Table 6-3. Here it can be seen that for the class C1, the 

attribute pairs {b, j}, {f, h} and {d, j} have a positive influence, while {a, l}, {h, i} 

and {a, k} have a negative influence.  
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 1 -1 2 -2 3 -3 

C1 b j a l f h h i d j a k 

C2 g b c f e h a b k d g k 

C3 i d e b g i k l j a c f 

C4 l a c i j a i l f h j a 

C5 k g b f d g j f b c a e 

C6 c l h j a c j b g k d e 

Table 6-3: Example of a randomly generated table of attribute pairs. The top numbers 
represent the positive or negative values for the pairs. Each class in this 
example has six pairs. 

Now when a case is presented to the expert it is tested to see which class it 

belongs to in much the same way as in the linear expert, by adding all the 

associated values for each attribute and attribute-pairs in each class. The expert 

will, once again, classify the case according to which classes provided a positive 

total. When creating a new rule, the expert selects the attribute or pair of 

attributes, from the difference list that distinguishes the new case from the 

cornerstone case to the greatest degree.  

Table 6-4, gives the same two example cases, as with the linear expert, 

where each case has 4 attributes. As before each attribute contributes a base 

value for the class, and attribute pairs add or subtract the extra values. The 

simulated expert’s resulting classification for both of these cases are {1, 4, 5, 6} 

for case A and {2, 3, 6} for case B. This expert was found to be quite versatile 

allowing both simple and more complicated tests to be performed.  

Case A = {a, b, c, d} Case B = {a, c, e, g} 

Classifications Classifications Attributes 

1 2 3 4 5 6 

Attributes 

1 2 3 4 5 6 

a 0 0 0 -1 0 2 a 0 0 0 -1 0 2 

b 0 0 -2 3 0 0 c -1 0 1 0 0 0 

c -1 0 1 0 0 0 e 0 2 0 0 -2 0 

d 3 -2 0 0 0 0 g 0 0 0 1 -2 0 

{a, c}      2 {a, c}      2 

{a, b}  -2     {e, a}     -3  

{b, c}     3         

Total 2 -4 -1 2 3 4 Total -1 2 1 0 -7 4 

Classified      Classified      

Table 6-4: Two example cases being evaluated by the non-linear multi-class simulated 
expert. Each case has 6 classes in which they can be classified. They are only 
classed as being in that class if the total for the case’s attributes are greater 
than zero. 
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6.1.1.4 Multi-Class-Prediction Simulated Expert 

While one of the most common application domains for neural networks and 

KBSs is in classification, ANNs can also be applied in value prediction 

problems as well. This, however, is not a common application of symbolic based 

AI methods. Early work on this project found, however, that the RM method 

also introduced a means of using expert knowledge specifically for value 

prediction. Testing RM in such a domain, however, was found to be problematic 

when using traditional datasets. This was because the datasets available do not 

give both symbolic knowledge and a target value instead of a classification. This 

could be partially resolved by assigning each classification a value. However, 

fundamentally this is still a classification type problem.  

The approach taken in this thesis was to extend the linear multi-class 

simulated expert allowing a value to be provided instead of the classification. By 

using the Multi-Class dataset (6.1.4.2) it was possible to incorporate both 

symbolic expert knowledge and a rating. The symbolic knowledge could still be 

used to correct rules in the same way that was used by the linear multi-class 

simulated expert. Thus, the expert still maintains an understanding of 

classification at least as a means of grouping similar cases. The rating is a 

concept of overall importance. This can represent many different things in a real 

world application.  

One example situation where we may have a classification and a rating could 

be an email system. The classification may be the folder a received email should 

be placed. While the rating could be an indication of how important the email 

would be to the user. For instance, it may learn that an email from the boss is 

important and give it a high rating. However, if the email was sent to a social 

group address then it is much less important. The application may then use this 

rating as an indication of whether to alert the user to the email’s arrival with a 

dialog or just place it in a list for when the user is ready to check.  

In such a system the rating would have to be learnt from watching user 

behaviour. For instance, the system may start by always giving alerts but if the 

user doesn’t immediately read the email then the rating for that email would be 

low. Also, if they print, save or reply to the email quickly then that may raise the 

rating. There are many other possible applications for this approach where a 
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single method can both classify and calculate a rating of importance. In the 

experiments performed in this thesis the rating is calculated and supplied 

directly by the simulated expert. 

To fully push the system’s abilities, the rating calculated by the simulated 

expert would be required to generate a non-linear value across the possible 

classifications. The eventual implementation used for prediction tests throughout 

this thesis, generates an energy space across the level of class activations, giving 

an energy dimensionality the same as the number of classes possible. Each case 

is then plotted on to the energy space in order to retrieve the case’s value. 

First, the strength of each classification found is calculated. As previously 

discussed, in the basic Multi-Class simulated expert, a case was regarded as 

being a member of a class if its attribute value was greater than 0. However, no 

consideration was made to what was the degree of membership. In this expert 

the degree of the case’s membership is calculated as a percentage, p, of 

membership using Equation 6-1.  

ma ttp /=  (6-1) 

This is simply the actual calculated total, ta, divided by the maximum 

possible total, tm, for that particular class. Extending the example from Table 6-2 

for case A, classification C1, the total 2 is divided by the best possible degree of 

membership 6, from Table 6-1, thereby, giving a percentage, p, membership of 

33%. This calculation is performed for each class. Each class then has a 

randomly selected point of highest value, or centre, c, which is subtracted from 

the percentage and squared, Equation 6-2. This provides a value which can be 

regarded as a distance measure, d, from the centre. This distance measure can be 

stretched or squeezed, widening or contracting the energy patterns around a 

centre, by the inclusion of a width modifier, w. 

2)( cpwd −=  (6-2) 

The classes’ centres are combined to represent the point of highest activation 

for the expert, referred to as a peak. Therefore, if the square root of the sum of 

distances is taken then the distance from this combined centre can be found. 

This distance can then be used to calculate a lesser value for the case’s actual 

rating. Therefore, as a case moves away from a peak its value decreases. Any 

function can be used to calculate the degree of reduction in relation to distance. 
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In this thesis a Gaussian function was used. Equation 6-3 gives the combined 

function for calculating a value for each possible peak, vp, where n is the number 

of classes in the dataset. 
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Finally, it is possible to have multiple peaks in the energy space. In such a 

situation each class has a centre for each peak. Each peak is then calculated in 

the same fashion as above, resulting in a number of values, one for each peak. 

The expert then simply selects the highest value as the case’s actual rating. This 

rating method is best understood by looking at a three dimensional 

representation shown in Figure 6-1.  

The third dimension, shown by the height, illustrates the value at any 

particular point in the energy space. This figure shows a dataset with only two 

possible classes, C1 and C2, and two peaks. A three class dataset cannot be 

represented pictorially. The advantage of this approach is that it generates an 

energy pattern that is nonlinear. At no location can a straight line be drawn 

where values are all identical. 

 

 

Figure 6-1: Example of a possible energy pattern used in the Multi-Class-Prediction 
simulated expert. This would be used for a dataset with two possible 
classifications. This energy pattern contains two randomly located peaks. 
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6.1.2 Generalisation Experiment 

The first collection of experiments performed is aimed at finding how well the 

different methods generalise. This experiment has used the standard approach of 

presenting a portion of the dataset for the algorithm to use for training purposes. 

Then at certain intervals the remaining section of the dataset, which has never 

been seen, is shown to the method for testing. The procedure for this experiment 

is described in the Figure 6-2. 

 

Preparation 

1. Load the dataset and generate the simulated expert. 

2. Divide the dataset into 10 equal sized pieces. Discard any left over cases. 

Processing 

3. Present a preset number of dataset segments (either 1 to 9 segments) once. 

 a. Load the next case. 

 b. Classify or rate using the method being tested. 

 c. If correctly classified  
  i. Present a reward to the method  
    (MCRDR and RMw simply ignore the reward value).  

  ii. Return to 3.a until all cases have been used. 

 d. Otherwise, if incorrectly classified  
  i. Either, present a negative reward, if performing the classification task or 
   the expert’s value if doing the prediction task, to the method. Then use the  
   simulated expert to add the required exception rules. 
    (no reclassification performed with the ANN based methods). 

  ii. Return to 3.a until all cases have been used. 

4. Present the final dataset segment only. 

 a. Load the next case. 

 b. Classify or rate using the method being tested. 

 c. Either, record whether the classification found is correct, or maintain a  
  progressive average-error between the predicted rating and the expert’s rating in  
  the prediction tasks.  

 d. Return to 4.a until all cases have been used.  

5. Log, either the amount of correct and incorrect classifications found in step 4, or the  
 average difference between the predicted rating and the expert’s rating in the  
 prediction tasks.  

6. Return to 3 for the next training iteration for a preset number of times. 

 

Figure 6-2: Step-by-step description of the generalisation experiment. 

Each experiment was run 10 times and averaged. Furthermore, each dataset 

was run using 9/10ths, down to 1/10th for training. Regardless of the amount of 

training they received, they were only tested on the final 1/10th of the dataset. 

This allows an analysis to be made of how a method’s generalisation tapers off, 

as the amount of training received decreases.  
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6.1.3 Online Learning Experiment 

The second type of experiments, were aimed at discovering how well the 

different methods could learn in an online environment. The purpose of these 

experiments was to show the speed with which a method learns a reasonable 

solution. This experiment, described in Figure 6-3, involved first breaking the 

given dataset up into a number of equal sized blocks of cases then presenting 

each block in turn to the system. After all of the blocks were shown, the cases 

were randomly reordered and partitioned again ready for the next iteration.  

 

Preparation 

1. Load the dataset and generate the simulated expert. 

2. Divide the dataset into 50 equal sized pieces. Temporarily discard any left over cases. 

Processing 

3. Present each of the 50 data segments in turn. 

 a. Load the next case. 

 b. Classify or rate using method being tested. 

 c. If correctly classified  

  i. Present a reward to the method  
    (MCRDR and RMw simply ignore the reward value).  

  ii. Either, increment the number of correct classifications if performing the  
   classification task, or keep a running average of the difference between the  
   rating given and the expected rating if performing the prediction task. 

  iii. Return to 3.a until all cases have been used. 

 d. Otherwise, if incorrectly classified  

  i. Either, present a negative reward if performing the classification task, or the  
   expert’s value if doing the prediction task, to the method. Then use the  
   simulated expert to reclassify the case  
    (no reclassification performed with the ANN based methods). 

  ii. Either, increment the number of incorrect classifications if performing the  
   classification task, or keep a running average of the difference between the  
   rating given and the expected rating if performing the prediction task. 

  iii. Return to 3.a until all cases have been used. 

 e. Log, either the amount of correct and incorrect classifications found in step 4, or  
  the average difference between the predicted rating and the expert’s rating in the  
  prediction tasks. 

4. Re-randomise the whole dataset and then repartition into 50 segments. 

5. Return to 3 for the next dataset segment for a preset number of times. 
 

Figure 6-3:  Step-by-step description of the online learning experiment. 
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6.1.4 Datasets 

The purpose of the testing in this chapter was to select the best RM method and 

to show how RM performs against the existing MCRDR and ANN 

methodologies. It does not aim to show how RM would perform specifically in 

any particular area. The six datasets used were selected to provide different 

types of problems. The first five are standard datasets retrieved from the 

University of California Irvine Data Repository (Blake and Merz 1998). These 

five methods have used the C4.5 based simulated expert (6.1.1.1). The third 

dataset is a purpose designed randomised set and is used only with the multi-

class simulated experts (6.1.1.2, 6.1.1.3 and 6.1.1.4). 

6.1.4.1 Standard Datasets 

Below is a list describing each of the five dataset used from the University of 

California Irvine Data Repository (Blake and Merz 1998). Each has a brief 

description and details the number of attributes each case has, as well as how 

many cases and how many classifications can be determined from the dataset. 

Also, described is how many cases appear in each 1/10th and 1/50th segments. 

• CHESS – Using the Chess end game of King+Rook (black) vs King+Pawn 

(white) on a7.  

 36 attributes  

 3196 cases  

 Producing a binary classification.  

 In each 1/10th group there are 319 cases and 63 cases in each 1/50th 

group. 

• TIC-TAC-TOE (TTT) – This dataset uses the complete collection of 

possible terminating board configurations for Tic-Tac-Toe.  

 9 attributes  

 958 cases  

 Producing a binary classification.  

 In each 1/10th group there are 95 cases and 19 cases in each 1/50th 

group. 
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• NURSERY DATABASE – This dataset was derived from a hierarchical 

decision model developed to rank applications for nursery school.  

 8 nominal attributes  

 12960 cases  

 5 classifications. 

 In each 1/10th group there are 1296 cases and 259 cases in each 

1/50th group. 

• AUDIOLOGY – Contains a standard set of attributes used in audiology 

medical diagnostics.  

 70 nominal-valued attributes  

 200 cases  

 17 classifications.  

 In each 1/10th group there are 20 cases and 4 cases in each 1/50th 

group. 

• CAR EVALUATION – Derived from a simple hierarchical decision model.  

 6 attributes  

 1728 cases  

 4 classifications.  

 In each 1/10th group there are 172 cases and 34 cases in each 1/50th 

group. 

6.1.4.2 Multi-Class Dataset 

The multi-class dataset was generated specifically for testing RM in its ideal 

environment. The actual dataset builds cases by randomly selecting attributes 

from the environment. For instance, an environment setup for the example 

simulated expert used in section 6.1.1.2 and 6.1.1.3 would allow for 12 possible 

attributes. In the tests carried out in this chapter each case selected 6 attributes, 

giving a possible 924 different cases. There were also 6 possible conclusions 

that could happen singly or together. Therefore, in each 1/10th group there are 92 

cases and 18 cases in each 1/50th group. This dataset is used for both 

classification and prediction experiments. The actual dataset does not change for 

these two tasks but a different simulated expert is used. 
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6.2 Comparison of Proposed Methods  

In the previous chapter seven methods RMw, RMl(ε), RMl(∆), RMbp(ε), RMbp(∆), 

RMrbf and RMrbf+ were developed. These represent a range of possible 

approaches to the task at hand; many are expected to perform better than others. 

This section is aimed at investigating each of these seven proposed algorithms to 

decide which performs classification and prediction tasks best. It will do this in 

two sub-sections: classification and prediction.  

6.2.1 Classification 

In the classification task we are concerned with the algorithm’s ability to 

correctly identify which category or categories each case belongs. Each 

algorithm has been tested on each of the seven datasets for both their ability to 

generalise and to perform in an online environment. The results for these tests 

are discussed across the following subsections. In the tests using the multi-class, 

nursery, audiology and car evaluation datasets each method is assigned an 

output for each of the possible classes. Thus, with six classes each method has 

six outputs. During testing if the network delivers a value above zero then the 

current case is given that classification, otherwise it is not. In the tests using the 

chess and tic-tac-toe datasets each method only has one output. If the value is 

above zero then ‘win’ is the identified class, otherwise the selected class is ‘no-

win’. 

6.2.1.1 Generalisation Overview 

The ability of a method to generalise is measured by how well it can correctly 

classify cases during testing that it did not see during training. A method that 

cannot generalise will be unable to recognise anything about a new unique case. 

The performance of each method at generalisation in this thesis is gauged by its 

ability to classify unseen cases both after training and during training. The 

results shown in Figures 6-4 through to 6-10 show how each of the seven 

methods performed on each of the four datasets. Each chart shows the 

percentage of correct classifications, averaged over 10 trials, for each of the nine 

tests. To reduce the complexity of the charts, error bars have been omitted. 

Instead, they are shown in later figures when specific results are discussed. 
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Multi-Class Dataset using Linear Simulated Expert. 

Chart a) One training round
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Chart b) After Training Complete
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Figure 6-4 Two charts comparing how each of the seven proposed methods RMw, RMl(ε), 
RMl(∆), RMbp(ε), RMbp(∆), RMrbf and RMrbf+, perform on the Multi-Class dataset 
using the Linear Multi-Class simulated expert. Chart a) shows how the 
methods compare after only one viewing of the training set. Chart b) shows 
how the methods compare after training has completed. The X-axis shows how 
many tenths of the dataset were used for training. The Y-axis shows the 
percentage of cases that were classified correctly (must get all six classes 
correct). All results used the last tenth for testing. 
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Multi-Class Dataset using Non-Linear Simulated Expert. 

Chart a) One training round
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Chart b) After Training Complete
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Figure 6-5 Two charts comparing how each of the seven proposed methods RMw, RMl(ε), 
RMl(∆), RMbp(ε), RMbp(∆), RMrbf and RMrbf+, perform on the Multi-Class 
dataset using the Non-Linear Multi-Class simulated expert. Chart a) shows 
how the methods compare after only one viewing of the training set. Chart b) 
shows how the methods compare after training has completed. The X-axis 
shows how many tenths of the dataset were used for training. The Y-axis shows 
the percentage of cases that were classified correctly (must get all six classes 
correct). All used the last tenth for testing. 
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Chess Dataset using C4.5 Simulated Expert. 

Chart a) One training round
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Chart b) After Training Complete
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Figure 6-6: Two charts comparing how each of the seven proposed methods RMw, RMl(ε), 
RMl(∆), RMbp(ε), RMbp(∆), RMrbf and RMrbf+, perform on the Chess dataset using 
the C4.5 simulated expert. Chart a) shows how the methods compare after 
only one viewing of the training set. Chart b) shows how the methods compare 
after training has completed. The X-axis shows how many tenths of the dataset 
were used for training. The Y-axis shows the percentage of cases that were 
classified correctly. All used the last tenth for testing. 

RM(w) same as after 1 
training iteration (chart a). 
It is not shown here. 
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Tic-Tac-Toe (TTT) Dataset using C4.5 Simulated Expert. 

Chart a) One training round
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Chart b) After Training Complete
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Figure 6-7:  Two charts comparing how each of the seven proposed methods RMw, RMl(ε), 
RMl(∆), RMbp(ε), RMbp(∆), RMrbf and RMrbf+, perform on the Tic-Tac-Toe dataset 
using the C4.5 simulated expert. Chart a) shows how the methods compare 
after only one viewing of the training set. Chart b) shows how the methods 
compare after training has completed. The X-axis shows how many tenths of 
the dataset were used for training. The Y-axis shows the percentage of cases 
that where classified correctly. All used the last tenth for testing. 
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Nursery Dataset using C4.5 Simulated Expert. 

Chart a) One training round
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Chart b) After Training Complete
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Figure 6-8 Two charts comparing how each of the seven proposed methods RMw, RMl(ε), 
RMl(∆), RMbp(ε), RMbp(∆), RMrbf and RMrbf+, perform on the Nursery dataset 
using the C4.5 simulated expert. Chart a) shows how the methods compare 
after only one viewing of the training set. Chart b) shows how the methods 
compare after training has completed. The X-axis shows how many tenths of 
the dataset were used for training. The Y-axis shows the percentage of cases 
that where classified correctly. All used the last tenth for testing. 
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Audiology Dataset using C4.5 Simulated Expert. 

Chart a) One training round
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Chart b) After Training Complete
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Figure 6-9 Two charts comparing how each of the seven proposed methods RMw, RMl(ε), 
RMl(∆), RMbp(ε), RMbp(∆), RMrbf and RMrbf+, perform on the Nursery dataset 
using the C4.5 simulated expert. Chart a) shows how the methods compare 
after only one viewing of the training set. Chart b) shows how the methods 
compare after training has completed. The X-axis shows how many tenths of 
the dataset were used for training. The Y-axis shows the percentage of cases 
that where classified correctly. All used the last tenth for testing. 
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Car Evaluation Dataset using Linear Simulated Expert. 

Chart a) One training round
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Chart b) After Training Complete
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Figure 6-10 Two charts comparing how each of the seven proposed methods RMw, RMl(ε), 
RMl(∆), RMbp(ε), RMbp(∆), RMrbf and RMrbf+, perform on the Car Evaluation 
dataset using the C4.5 simulated expert. Chart a) shows how the methods 
compare after only one viewing of the training set. Chart b) shows how the 
methods compare after training has completed. The X-axis shows how many 
tenths of the dataset were used for training. The Y-axis shows the percentage 
of cases that where classified correctly. All used the last tenth for testing. 
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These charts show an overview of all the results after the first iteration and 

after training has completed. Methods were regarded as being complete after 

they showed little sign of further improvement. There is a lot of information in 

these graphs that will be discussed in this section. Some of the information will 

be shown again in a more digestible manner as each point is discussed. The 

areas of discussion below relate to: 

• The performance of the basic relationship weighting of RMw. 

• How well the single-step-∆-initialisation-rules performed. 

• The difference between linear and non-linear methods. 

• The greater effectiveness of the RAN style RBF+ network compared 

to the basic RBF. 

• Which network type, backpropagation or RBF, was best for RM. 

6.2.1.2 RMw Performance 

As previously mentioned, RMw calculated a simple weight for each relationship 

in the MCRDR tree. This weight was calculated at the time of each new rule 

being added to the system. As expected, the above results show this was not 

very effective. However, what was surprising was that without any learning it 

was able to give correct classification occasionally. Even more astonishing was 

its performance in the Chess, TTT and especially the Audiology datasets. For 

instance, in the TTT experiments it averaged over 97% accuracy, and was the 

equal best performer in the Audiology dataset. These results essentially show 

that the two binary and the Audiology datasets are relatively simple, with a high 

degree of linear separation between the possible conclusions. These results show 

that the idea of calculating an immediate value does give a meaningful value 

initially, which could be improved upon during a learning phase.  

It may also be noticed that generally the method did not improve its 

performance significantly when viewing more segments of the dataset before 

testing on the last tenth. This is because during the first cases seen the method 

has accrued a rating for the collection of relationships and the subsequent 

viewing of cases offers little possibility of refinement without an associated 

learning rule. When reviewing these results it was evident that the value 

calculated was most relevant during the early stages of knowledge acquisition.  
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6.2.1.3 The Single-Step-∆-Initialisation-Rules 

Probably the most important algorithm decision made was the inclusion of the 

single-step-∆-initialisation-rule. When included it was hoped that it would 

provide significantly faster learning capabilities while not adversely affecting 

the technique’s ability to learn and generalise over the long term. In order to 

justify the inclusion of this unique initialisation rule, a comparison between 

RMl(∆) and RMbp(∆), and their randomised initialisation partners, RMl(ε) and 

RMbp(ε) respectively, must be made. Due to large amounts of information 

presented in the previous figures, a number of additional charts are shown in 

Tables 6-5 and 6-6, comparing each method pair on each dataset.  

A quick glance down the first column of results clearly shows that the 

methods using the ∆-rules always out performed the randomly initialised 

method. A T-Test was performed comparing all results, finding that the RMl(∆) 

method performed significantly better than RMl(ε), with the worst p-value being 

0.04. While the comparison between the RMbp(∆) and RMbp(ε) showed an even 

stronger statistically significant improvement, with the worst p-value of only 

0.001. This difference was due to the RMbp(ε) method learning very slowly 

initially. It can also be seen that the random method had much greater error 

ranges on some datasets, such as the chess set. This was because sometimes it 

received a lucky number during the random initialisation, which aided learning.  

One interesting result was RMbp(ε)’s performance on the TTT dataset. Here it 

can be seen that the method was unable to noticeably improve its performance 

when it saw more of the dataset, and was only able to improve with protracted 

training. This was because each time a new rule is added it receives a new input 

and hidden nodes with random weights. These random weights prevent the 

system from learning until a series of cases are seen that do not create new 

nodes. Basically, the new weights are so small that when combined with the 

affect of the second layer sigmoid, they are unable to alter the resulting 

conclusion. Therefore, they require a significant amount of training before the 

weights change enough to have an affect. The effect of this is more evident in 

the TTT dataset because the expert creates a very high number of rules with only 

a small number of cases exacerbating the problem more. 
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RM Linear (RMl(ε) verses RMl(∆))  
After One Iteration After Training Complete 
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Table 6-5: Compares the linear versions of RM (RMl(ε) and RMl(∆)) for each of the 
datasets and types of experts tested. Each chart shows each technique’s 
average percentage of correct classifications across each of the nine tests 
performed. The charts also show error bars set at the 95% confidence mark.  
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RM Non – Linear (RMbp(ε) verses RMbp(∆))  
After One Iteration After Training Complete 
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Table 6-6: Compares the non-linear versions of RM (RMbp(ε) and RMbp(∆)) for each of the 
datasets and types of experts tested. Each chart shows each technique’s 
average percentage of correct classifications across each of the nine tests 
performed. The charts also show error bars set at the 95% confidence mark.  
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The improved performance because of the single-step-∆-initialisation-rules 

was largely expected, although the degree of improvement in the non-linear 

methods was impressive. The primary concern, however, at the inclusion of the 

∆-rules in the methodology was whether or not the targeted initialisations would 

damage the method’s ability to learn and generalise over time. The second 

column presents the results after training is complete. Here the ∆-rule based 

methods were not expected to do better than the random initialised methods and 

the fear was that they would be significantly worse. However, their performance 

was if anything marginally better in all tests for all datasets. This was not caused 

through the ∆-rule based methods getting a head start, because training was 

continued until the randomised methods showed no discernable learning.  

Instead, the slightly improved performance of the ∆-rule based methods is 

believed to be because of the momentum effect. Previously, as discussed in 

section 4.3.4, ANN researchers have found that adding a momentum factor can 

force an ANN to jump over local minima. It is possible that the use of the ∆-

rule’s ability to take a large step towards the value a node requires, allows it to 

step over a number of possible local minima. These minima missed still have the 

potential to trap the randomly initialised methods. This result, while unexpected, 

means the ∆-rule can be used in RM to vastly improve learning initially, through 

directly representing new knowledge in the ANN without any adverse affect on 

the trainability of the method and may even offer a slight overall advantage. 

6.2.1.4 Linear verses Non-Linear 

In ANN based methods developers face a significant decision on whether a 

linear or non-linear network should be used. Generally, a linear ANN will learn 

any task significantly faster, because error information does not need to be fed 

back through two sigmoidal thresholds. However, the linear ANN will never 

solve problems with a non-linear component. In RM it was unclear during 

methodological development whether it could be assumed that a purely linear 

approach would suffice, or if a non-linear approach was used, how much that 

would affect the trainability of the system. Therefore, methods were developed 

for both. Table 6-7 shows a set of charts comparing RMl(∆) and RMbp(∆) directly. 
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RMl(∆) verses RMbp(∆)  
After One Iteration After Training Complete 
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Table 6-7: Compares RMl(∆) and RMbp(∆) for each of the datasets and types of experts 
tested. Each chart shows each technique’s average percentage of correct 
classifications across each of the nine tests performed. The charts also show 
error bars set at the 95% confidence mark.  
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Looking at the first column of results from Table 6-7, it can be seen that, 

with the exception of the TTT dataset, there is no statistically relevant advantage 

to the linear method. The significant advantage on the TTT dataset (average p-

value of just under 0.05 over the last 6 tests (4-9 tenths for training)) is because 

it had quickly learned adjustments to the initial step made by the ∆-rule. This 

training is visible in the TTT experiment because of the simplicity of the dataset. 

The poor performance of the linear method on the one-tenth tests is because it 

had not seen a sufficient number of cases for even the linear technique to have 

started learning. The non-linear version having done better in the one tenth tests 

is most likely a statistical anomaly caused by the small set of results. 

The advantage in favour of the linear method is extremely small, especially 

if compared to the usual difference between a linear and non-linear ANN. In the 

chess dataset it can be seen that the non-linear method actually performed better. 

However, this is not statistically significant and the large error bars suggests that 

it most likely is not correct. 

While non-linear methods do not learn as quickly, they usually do learn a 

better solution in the long run. The second column of results compares the RMl(∆) 

and RMbp(∆) methods to see if that holds in this methodology. While in the 

Nursery dataset the non-linear approach did marginally better, there is very little 

statistical evidence in these results indicating the non-linear approach performed 

better after training. Most of the results indicate that, if there is any advantage at 

all, it is only extremely small. It can also be seen that even in the multi-class 

dataset using the non-linear simulated expert, which was specifically designed to 

have a major nonlinearity in the classifications was only marginally better.  

The performance of RMbp(∆) in the TTT and Nursery dataset when only 

training on a small percentage of the dataset are the only results showing any 

significance. This result suggests that the linear method could not build a 

sufficiently general function from the sparse amount of examples, whereas, the 

non-linear approach could use its non-linear nature to capture extra information. 

Some interesting questions arise from these results. First, why would the non-

linear approach generally offer only a small advantage? Second, why would it 

offer significantly more advantage in information sparse environments? 

While the answer to these questions may need further study, the answer 

appears to be due to MCRDR providing a means for reducing dimensionality of 
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the problem domain. This would be similar, in principle, to the way Support 

Vector Machines (SVM) or the hidden layers in a neural network behave. 

Basically, it appears that the expert when creating rules has created them in such 

a way that the problem for the neural network is actually only linear, even 

though the original problem was non-linear. Therefore, it suggests that the 

relationships between rules in the MCRDR tree are primarily linear, regardless 

of the complexity of the dataset. 

This explanation can be extended to potentially answer the second question 

as well. In situations where the MCRDR tree is incomplete, due to an 

information sparse domain or just because it is still incomplete, then it is not 

able to fully reduce the dimensionality. Therefore, as the MCRDR tree grows it 

is reducing the dimensionality of the domain. This could be further extended to 

suggest that a knowledge base is complete when the hidden context is linearly 

separable. 

These ideas are interesting, but not the focus of this thesis and so are not 

further investigated. The reason for performing this analysis was to find the best 

method of hybridising MCRDR and an ANN. The trouble is that these results do 

not fully justify selecting either approach. However, the potential advantage of 

the non-linear approach in some situations, and with little significant learning 

penalty, meant that it was potentially the most versatile approach to be chosen 

for further experimentation.  

6.2.1.5 Radial Basis Function Comparison 

Often in ANN research RBF networks have been found to be very effective. 

Their primary drawback can be poor generalisation when over fitting of hidden 

nodes occurs. In chapter 5, two methods were developed using RBF style 

networks. The first method, RMrbf added hidden nodes whenever a new input 

node was added. The second method, RMrbf+ also did this but also investigated a 

number of other possible improvements, such as adding hidden nodes even 

when rules are not added, dynamically changing the size of the hyperellipsoid 

functions and the use of input keys. Table 6-8 below, compares these two RBF 

style methods on each of the datasets both before and after training.  
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RMrbf verses RMrbf+  
After One Iteration After Training Complete 
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Table 6-8: Compares RMrbf and RMrbf+ for each of the datasets and types of experts tested. 
Each chart shows each technique’s average percentage of correct 
classifications across each of the nine tests performed. The charts also show 
error bars set at the 95% confidence mark.  
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In the more complex multi-class datasets it can be seen that the RMrbf+ 

approach has provided some advantage during both the first iteration and after 

training has completed. However, only the results with the linear simulated 

expert have any statistical significance (p-value of 0.05 or less for all except the 

1/10th test after the first iteration). Interestingly, the more complex method 

performed virtually identically on the chess, TTT, Nursery and Audiology 

datasets and slightly worse on the Car Evaluation dataset. This was because the 

amount of hidden nodes added when new rules were added, was sufficient to 

learn the task. Therefore, the requirements for adding additional hyperellipsoid 

functions occurred very infrequently. Tightening the threshold for node creation 

only resulted in a worse performance due to over fitting, such as with the Car 

evaluation dataset.  

6.2.1.6 Comparison of Non-linear Approaches 

The final comparison needs to be made between the best of the backpropagation 

and RBF approaches. These two methods represent the main methods developed. 

The RBF based approaches were developed as they generally perform better in 

most ANN applications. However, this ANN application is vastly different to 

the general network usage and it was unclear how the changing input space for 

the network would affect performance. Table 6-9 below, compares the RMbp(∆) 

and RMrbf+ non-linear methods on each of the datasets both before and after 

training.  

This set of charts presents an interesting dichotomy of results. On the one 

hand, the backpropagation method has clearly outperformed the RBF approach 

on the Multi-class, Audiology, and Car Evaluation dataset. This was even more 

pronounced on the Multi-class dataset after training completed, with a strong 

statistical significance across all tests. Yet the RBF approach was able to 

perform marginally better during the early stages of training on the Chess and 

TTT datasets and significantly better on the Nursery data.  

The RBF’s poor performance on the multi-class dataset can be put down to 

the large amount of contradictory rules created. Generally, it was observed that 

there were many ‘stop rules’, as well as rules that significantly changed the 

conclusion in the multi-class datasets. This caused many hidden nodes to be 

added into the RBF that were later not used.  This  caused  significant  over  



Chapter 6: Classification and Prediction  Richard Dazeley 

    
 153 

RMbp(∆) verses RMrbf+  
After One Iteration After Training Complete 
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Table 6-9: Compares RMbp(∆) and RMrbf+ for each of the datasets and types of experts 
tested. Each chart shows each technique’s average percentage of correct 
classifications across each of the nine tests performed. The charts also show 
error bars set at the 95% confidence mark.  
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fitting where nodes were not needed, plus poor coverage where nodes were 

required. Likewise the complexity in the Audiology and Car Evaluation datasets 

also resulted in over fitting of the RBF based approach. In the Chess, TTT and 

especially the Nursery datasets the rules where fewer and more straight forward 

with a smaller range of conclusions, allowing less hidden nodes to be created 

and, therefore, causing less over fitting.  

The most significant problem with the RBF approach, however, which is not 

clear in these results, is its volatility (although the large error bars in some 

results are an indication). It was found during experimentation that the smallest 

change to a single parameter could have a significant detrimental effect. 

Additionally, the occasional experiment would produce a result vastly different 

to the others. Thus, the method was very reliant on the order the cases were 

presented. This volatility combined the above results show that in general the 

backpropagation method, RMbp(∆), would be the preferred choice in most 

situations. However, there are occasions where the RBF style system could be 

used effectively. 

6.2.1.7 Online Classification 

One of the main features RM was hoping to gain from the use of the ANNs was 

the ability to generalise well, an ability not usually attributed to KBSs. It was 

also hoped that the KBS portion of the hybrid system would contribute the 

ability to learn quickly from only seeing cases a few times, preferably only once, 

which is not a typical feature of ANNs. The collection of results in this section 

is aimed at investigating the method’s ability to learn quickly in an online 

environment. If successful, then it is RM’s ability to capture and combine the 

two underlying system’s abilities that potentially makes it a powerful 

methodology. 

This section provides Figures 6-11, 6-12, 6-13, 6-14, 6-15 and 6-16 showing 

how each of the seven methods developed and performed at classification in an 

online learning environment for each dataset. To reduce the number of results 

the multi-class dataset using the linear simulated expert was not used. Each 

point on the charts is an average of the previous 10 data segments (over 2 data 

segments on the small Audiology dataset), over the ten randomised runs. Each 
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segment contains a random selection of cases, 1/50th the size of the whole 

dataset. Error bars were omitted, allowing greater readability.  

Multi-Class Dataset using Non-Linear Simulated Expert. 

Chart a) Multi-Class Dataset
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Chart b) Multi-Class Dataset Close up

90

91

92

93

94

95

96

97

98

99

100

1
0

4
1
0

8
1
0

1
2
1
0

1
6
1
0

2
0
1
0

2
4
1
0

Number of 1/50th data segments seen

A
v

e
ra

g
e

 p
e

rc
e

n
ta

g
e
 o

f 
c

o
rr

e
c

t 
c
la

s
s

if
ic

a
ti

o
n

s
 o

v
e

r 
th

e
 l

a
s

t 
te

n
 d

a
ta

 

s
e

g
m

e
n

ts

RM(rbf+) RM(rbf)

RM(bp(∆)) RM(bp(ε))

RM(l(∆)) RM(l(ε))

RM(w)

 

Figure 6-11: Two charts comparing how each of the seven proposed methods RMw, RMl(ε), 
RMl(∆), RMbp(ε), RMbp(∆), RMrbf and RMrbf+, perform on the Multi-Class dataset 
using the non-linear simulated expert. The x-axis shows the amount of 1/50 
data segments that have been seen. The y-axis shows the percentage correct 
over the last 10 data segments. Each point is an average across ten runs. 
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Chart a) shows the overall result. Chart b) shows a close up of the four 
methods that all performed well.  

Chess Dataset using C4.5 Simulated Expert. 

Chart a) Chess dataset
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Chart b) Chess dataset close up
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Figure 6-12: Two charts comparing how each of the seven proposed methods RMw, RMl(ε), 
RMl(∆), RMbp(ε), RMbp(∆), RMrbf and RMrbf+, perform on the Chess dataset using 
the C4.5 simulated expert. The x-axis shows the amount of 1/50 data segments 
that have been seen. The y-axis shows the percentage correct over the last 10 
data segments. Each point is an average across ten runs. Chart a) shows the 
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overall result. Chart b) shows a close up of the six methods that all performed 
well.  

Tic-Tac-Toe Dataset using C4.5 Simulated Expert. 

Chart a) Tic Tac Toe Dataset
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Chart b) Tic Tac Toe Dataset - Close up
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Figure 6-13: Two charts comparing how each of the seven proposed methods RMw, RMl(ε), 
RMl(∆), RMbp(ε), RMbp(∆), RMrbf and RMrbf+, perform on the TTT dataset using 
the C4.5 simulated expert. The x-axis shows the amount of 1/50 data segments 
that have been seen. The y-axis shows the percentage correct over the last 10 
data segments. Each point is an average across ten runs. Chart a) shows the 
overall result. Chart b) shows a close up of the seven methods. 
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Nursery Dataset using C4.5 Simulated Expert. 

Chart a) Nursery dataset
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Chart b) Nursery dataset close up
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Figure 6-14: Two charts comparing how each of the seven proposed methods RMw, RMl(ε), 
RMl(∆), RMbp(ε), RMbp(∆), RMrbf and RMrbf+, perform on the Nursery dataset 
using the C4.5 simulated expert. The x-axis shows the amount of 1/50 data 
segments that have been seen. The y-axis shows the percentage correct over 
the last 10 data segments. Each point is an average across ten runs. Chart a) 
shows the overall result. Chart b) shows a close up of the seven methods. 
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Audiology Dataset using C4.5 Simulated Expert. 

Chart a) Audiology dataset 
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chart b) Audiology dataset close up
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Figure 6-15: Two charts comparing how each of the seven proposed methods RMw, RMl(ε), 
RMl(∆), RMbp(ε), RMbp(∆), RMrbf and RMrbf+, perform on the Audiology dataset 
using the C4.5 simulated expert. The x-axis shows the amount of 1/50 data 
segments that have been seen. The y-axis shows the percentage correct over 
the last 2 data segments. Each point is an average across ten runs. Chart a) 
shows the overall result. Chart b) shows a close up of the seven methods. 
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Car Evaluation Dataset using C4.5 Simulated Expert. 

Chart a) Car Evaluation dataset
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Chart b) Car Evaluation dataset Close up
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Figure 6-16: Two charts comparing how each of the seven proposed methods RMw, RMl(ε), 
RMl(∆), RMbp(ε), RMbp(∆), RMrbf and RMrbf+, perform on the Car Evaluation 
dataset using the C4.5 simulated expert. The x-axis shows the amount of 1/50 
data segments that have been seen. The y-axis shows the percentage correct 
over the last 10 data segments. Each point is an average across ten runs. 
Chart a) shows the overall result. Chart b) shows a close up of the seven 
methods. 
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Firstly, looking at the results from the multi-class dataset it can be seen that 

the non-linear based backpropagation approach learned faster and sustained that 

advantage over the long term. The other backpropagation methods did 

eventually come close but did not learn as fast at the outset. It can be seen in the 

close up view that while the random initialisation approach, as expected caught 

up, the non-linear approach always maintained an advantage over the linear 

method. It can also be seen that both the methods using the single-step-∆-

initialisation-rules achieved a much faster initial learning boost at the outset. 

This is not a standard feature of ANNs. Unexpectedly though, even the 

randomly initialised method, RMbp(ε), was able to learn very quickly.  

Likewise, in the Nursery dataset the non-linear based backpropagation 

approach outperformed the linear approach over a period of time. However, like 

in the generalisation approach the RBF based approaches did significantly better 

due to fewer contradictions and conclusions in the dataset. Contrasting the 

Nursery dataset, the Car evaluation dataset results show the linear version 

achieved an advantage. Although it appears that the non-linear approach was 

closing the gap slowly.  

The results from the chess, TTT and audiology datasets are less clear. The 

problem with these was that all the main methods did extremely well making it 

more difficult to single one out as performing the best. It can be seen though that 

in the chess experiment the non-linear approach using backpropagation still did 

better than its linear counterpart and significantly better than the randomly 

initialised version. However, this was not duplicated in the TTT results where 

the linear method performed marginally better during the early stages.  

What is clear from all these results is that the ∆-rules allowed much faster 

learning in the online environment. Generally, there is also an advantage in 

using the non-linear technique, because it usually performs better and rarely 

incurs any penalty in learning. Deciding the best approach between the RBF and 

backpropagation methods is, however, more difficult. It is expected that the 

selection should almost certainly be dependant on the problem domain in which 

RM is being applied. Therefore, in applications with simpler linear contextual 

relationships the RBF based approach offers advantages in both speed and long 

term learning. However, in the more complex and less linear domains the non-

linear backpropagation method shows clear advantages. 
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6.2.2 Prediction 

Traditionally, MCRDR and other KBSs can usually only be applied to 

classification problems. Even when used for prediction they usually still use the 

same basic classification style but each classification gives a predictive value 

instead. One advantage found in the hybrid system developed in this thesis is 

that it can also be applied in a prediction environment. This can be achieved by 

the network being setup to output just a single value, representing the system’s 

prediction for the task at hand.  

The expert, however, is still required to ‘classify’ each case, as well as judge 

its accuracy in predicting the required value. This classification does not need to 

be a class as such, but can simply be a grouping of cases to similar cases in the 

expert’s mind. Basically, s/he needs to determine if a case is different from those 

that previously reached the same concluding rule. If it is different then a new 

rule needs to be defined. Due to the restriction that our expert would be needed 

to both determine a form of classification, as well as a value, the C4.5 based 

experts could not be used and, therefore, neither could the chess and TTT 

datasets. Instead, only the multi-class prediction expert was used (6.1.1.4). This 

section is once again broken into two sections. The first deals with 

generalisation in a prediction environment and the second looks at how each 

method performs in predicting a value in an online environment. 

6.2.2.1 Prediction Generalisation 

The tests performed for prediction generalisation are essentially identical to 

those performed for the classification problem, except that instead of producing 

an output for each class, RM produces a single value. The value returned is then 

compared to the simulated expert’s correct value. The absolute difference 

between these two values (error) is then averaged over all the cases in the data 

segment and logged. The results shown in Figure 6-17 show how each of the 

seven methods developed perform on the multi-class-prediction simulated 

expert. Each point is the average error for the test data segment averaged over 

ten randomised runs of the experiment, for each of the nine tests. To reduce the 

complexity of the charts shown, error bars have been omitted. 

 



Chapter 6: Classification and Prediction  Richard Dazeley 

    
 163 

Multi-Class Dataset using Multi-Class-Prediction Simulated Expert. 

Chart a) One Training Round
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Chart b) After Training Complete
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Figure 6-17 Two charts comparing how each of the seven proposed methods RMw, RMl(ε), 
RMl(∆), RMbp(ε), RMbp(∆), RMrbf and RMrbf+, perform on the Multi-Class-
Prediction dataset using the Multi-Class-Prediction simulated expert. Chart a) 
shows how the methods compare after only one viewing of the training set. 
Chart b) shows how the methods compare after training has completed. The X-
axis shows how many tenths of the dataset were used for training. All used the 
last tenth for testing. The Y-axis shows the average error. 

RM(w) same as after 1 
training iteration (chart a). 
It is not shown here. 
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For RM, the act of predicting a value is significantly different to simply 

classifying a case. When RM was used for classification it was only required to 

find a value above or below zero for each class. However, when predicting, it 

must learn a precise value. Therefore, if the ∆-rules are going to cause problems, 

it is most likely going to occur during the prediction task. This is because the 

initial value can sometimes be different to the true value, and the system, 

therefore, may be pushed further away from the target rather than closer.  

This concern has materialised in the unusual performance of the RMw 

method. It can be seen in chart (a) that its simple value assigning actually 

performed marginally worse as it saw more of the dataset. This is clearly counter 

intuitive. It indicates a flaw in the value assigning rule, which to some degree 

may also occur in the more advanced ∆-rule based methods. It illustrates that 

when new rules are added to MCRDR, and a value is assigned, that the value 

calculated can cause already correct values to become incorrect when averaged 

with the new values assigned. Therefore, the more knowledge added causes 

more values to be included in the averaging function. When this is in a 

significantly non-linear domain it actually detracts from the overall performance.  

The ∆-rule based initialisation methods would also be expected to suffer 

with this same difficulty. Interestingly, however, the above results indicate that 

both RMl(∆) and RMbp(∆) gained significant advantages over their randomly 

initialised counterparts, RMl(ε) and RMbp(ε), during the early stages of training. 

This contradiction is due to the RMw method relying on a higher zeta, ζ, value 

(0.8) to compensate for the lack of learning capability. The ∆-rule methods can 

reduce the zeta constant (0.4, 0.2 for RMbp(∆) and RMl(∆)) to prevent this 

difficulty, yet still have a high enough rate to maintain faster initialisation.  

The improved learning initially, however, did not carry through to the 

eventually trained systems. The poorer performance after training is, however, 

extremely small. The results for the non-linear results are reproduced in Figure 

6-18 with error bars. It can be seen in this chart that the small difference is even 

less relevant due to the large range of variation in the results. In fact, the p-value 

is only 0.05 – 0.4 across the nine tests, indicating there is only some weak 

statistical advantage in not using the ∆-rule on the fully trained system. There is, 

however, a very significant advantage to using the ∆-rule during the early stages 

of learning (p-values in the range 0.009 – 0.02). 
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Figure 6-18: Comparison of RMbp(∆) and RMbp(ε) after training was completed on the Multi-
Class-Prediction test. The X-axis shows how many tenths of the dataset were 
used for training. All used the last tenth for testing. The Y-axis shows the 
average error. Error bars are included for both data series. 

 The performance of the non-linear method against the linear version shows 

that the linear method has performed marginally better in the majority of the 

tests. There is some significance to this in the early stages of learning (p-values 

range from 0.002 – 0.6). This is due to the speed of learning of the linear method 

and allows it to gain a lead beyond the advantage already provided by the ∆-rule. 

This advantage does not continue after training. In fact there is an advantage to 

the non-linear approach after training, for the tests where more of the dataset 

was seen, which is approaching weak significance (p-value 0.17). These results 

appear to show that the non-linear approach may have an advantage in non-

linear domains but it requires most of the dataset to have been viewed, in order 

to achieve this advantage. 

The results in Figure 6-17 also show that the RBF method, while performing 

exceptionally well during the early stages, struggles during training to learn as 

effectively as the backpropagation methods. This poor learning is due to over 

fitting of hidden nodes during later training, which may be improved marginally 

by refining the hidden node creating rules. Another concern with the RBF 

method, however, is the variation in results, indicating a strong correlation 

between its performance and the type and order of the dataset. Also, additional 

data examples can harm learning rather than allowing for improvement. 
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6.2.2.2 Prediction Online 

The tests performed for prediction online are essentially identical to those 

performed for the classification problem, except that instead of producing an 

output for each class it produces a single value. Like in the above generalisation 

experiments, the value returned is compared to the simulated expert’s correct 

value. The absolute difference between these two values (error) is then averaged 

over all the cases in the data segment. The results in Figure 6-19, show how 

each of the seven methods perform on the multi-class-prediction dataset. Each 

point is the average error over the last 10 data segments for the 10 runs 

performed. The first point shows the average after 10 data segments followed by 

the subsequent points being after every 50 data segments.  

These results once again reinforce earlier findings that the better performing 

methods are the linear methods, RMl(∆) and RMl(ε), and the non-linear method, 

RMbp(∆), using the ∆-rule initialisation. They also suggest that during the early 

stages the RMl(∆) method performed better than the RMl(ε) (only in the first group 

of iterations) and RMbp(∆). Although after some training, the three methods all 

converged to similar results. Certainly, there is little to suggest in these results 

that the extra complexity of the RMbp(∆) is warranted and the speed of learning of 

the linear method gives it an early advantage. With a much closer inspection of 

the last few hundred iterations it can be seen that the non-linear approach always 

performs, as well and on some of the results performed marginally better, than 

the other linear methods. While there is no statistical significance in this 

difference, the trend does continue through the following 3000 iterations (not 

shown). It is possible that the non-linearity could only be captured, or was only 

useful, in some groups of data segments.  

It can also be seen that the RBF based methods once again started 

exceptionally well, but were unable to continue this with training afterward. 

Likewise the result for RMw followed the same trend observed in the 

generalisation experiment. It can be seen that as it saw more cases its 

performance level decreased. As suggested previously, this is a result of its high 

zeta rate causing new values to cause older values to shift from their already 

partially correct value to one that is more incorrect. Due to it receiving no 

further training it was unable to correct the problem. 
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Multi-Class Dataset using Multi-Class-Prediction Simulated Expert. 

Chart a) Multi-Class Dataset
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Chart b) Multi-Class Dataset - Close up

0.015

0.02

0.025

0.03

0.035

0.04

1
0

2
1

0

4
1

0

6
1

0

8
1

0

1
0

1
0

1
2

1
0

Number of 1/50th data segments seen

A
v

e
ra

g
e

 e
rr

o
r 

o
v

e
r 

th
e

 l
a

s
t 

te
n

 d
a

ta
 s

e
g

m
e

n
ts

RM(rbf+) RM(rbf)

RM(bp(∆)) RM(bp(ε))

RM(l(∆)) RM(l(ε))

RM(w)

 

Figure 6-19 Two charts comparing how each of the seven proposed methods RMw, RMl(ε), 
RMl(∆), RMbp(ε), RMbp(∆), RMrbf and RMrbf+, perform on the multi-class dataset 
using the multi-class-prediction simulated expert. The x-axis shows the amount 
of 1/50 data segments that have been seen. The y-axis shows the average error 
over the last 10 data segments. Each point is an average across ten runs. 
Chart a) shows the overall result. Chart b) shows a close up of the main six 
methods. 

RM(w) is not shown here. 
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6.2.3 Further Discussion 

This section has presented and discussed numerous results. This has been done 

to analyse the seven methods developed to verify which methods perform best 

in which situations. Across all of the results gathered it has been clear, that the 

most effective methods are those using backpropagation with the single-step-∆-

rule for initialisation. Although the RBF based methods did occasionally do as 

well, they only occasionally performed better. The primary difficulty with the 

RBF approach was the volatility of the method. It was extremely inconsistent in 

its performances and was very dependant on the order cases were presented. 

Furthermore, while the evidence was seldom significant the non-linear method, 

RMbp(∆) usually showed more potential.  

For the purposes of this thesis one of these methods needed to be selected for 

further experimentation. This is because it would be unreasonable and 

unnecessary to test all the methods when they are not as effective. The issue in 

this section, was which one? It seems apparent, from the previous discussion, 

that the best methods to use would be RMbp(∆) and RMl(∆). While the linear 

method was tested in the later experiments, it was not ever the best performer 

(although it was often an equal performer). For these reasons the results in the 

remainder of this thesis will use RMbp(∆). 

Initially, the first method developed and applied to the experiments in the 

later chapters had been the RMrbf+ technique. This was because, prior to being 

proved otherwise, it was expected to perform the best. After observing the 

results in this chapter many of the experiments were redone. This resulted in the 

majority of results being significantly improved upon. Therefore, while the 

method selected from the above results is the RMbp(∆), other methods have been 

tested but not presented to minimise the amount of results. Furthermore, it 

should also be noted that some results previously published (Dazeley and Kang 

2004b; 2004c) have been updated in this thesis and so are no longer current. 

Where this situation occurs a footnote will be provided detailing the relevant 

changes. 
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6.3 Comparing RM against MCRDR and ANNs 

The first hypothesis being addressed in this thesis was concerned with whether a 

hybridised technique combining MCRDR with an ANN would result in an 

improved learning system that was greater than the sum of its parts. So far we 

have only tested the different hybrid methods developed against themselves. In 

this section, this analysis will be extended to compare how the selected 

algorithm performs in comparison to its two original core techniques. This will 

be done by repeating the earlier experiments for both MCRDR and a neural 

network. In order to positively answer the hypothesis RM would need to learn as 

fast as MCRDR but also be able to apply this in a generalised manner like an 

ANN. This section has been broken up into three subsections. The first will 

discuss the ANN used for testing. This includes a description of what input is 

provided. The second section will discuss the classification abilities of the 

methods being investigated, while the third will look at the prediction abilities. 

It should be noted that MCRDR cannot be used for prediction tasks in any 

meaningful sense and so is not included in the last section’s results. 

6.3.1 Overview of ANN used 

During this section the ANN used is a standard backpropagation network. This 

network of course suffers the same difficulties of all ANNs when parameters are 

selected. The parameters used for the results in this section are listed in 

Appendix D. Furthermore, decisions had to be made concerning the network 

topology and what input should be provided. All these decisions can affect the 

network’s performance and it should be noted that while the best effort was 

made to make the most appropriate selection there is no guarantee that they are 

the most effective.  

When using the multi-class dataset the network simply provided a single 

input node for each attribute. Any relationships between the attributes would 

need to be found by the network. This was used as it is the most intuitive and 

any neural network test on a dataset, such as this, would use this input method 

initially. The inputs for the network on the chess, tic-tac-toe, nursery, audiology 

and car evaluation datasets are slightly different. For these experiments the 

network had an input node for each possible value of each attribute. For instance, 
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each of the nine attributes in the TTT dataset can have an x, o or b (blank), 

therefore the network had 27 inputs. Therefore, only one input would fire out of 

every three representing that attribute. This is also a fairly standard input 

representation for these types of datasets. 

The outputs for the network were identical to the method used for RM. 

Therefore, in the tests using the multi-class, nursery, audiology and car 

evaluation datasets the network is assigned an output for each of the possible 

classes. Thus, with six classes each method has six outputs. Then during testing, 

if the network delivers a value above zero then the current case is given that 

classification, otherwise it is not. In the tests using the chess and tic-tac-toe 

datasets each method only has one output. If the value is above zero then ‘won’ 

and ‘positive’ respectively is the identified class, otherwise the selected class by 

the systems is ‘no-win’ and ‘negative’. 

6.3.2 Classification 

In the classification task we are concerned with the algorithm’s ability to 

correctly identify in which category or categories each case belongs. Each 

algorithm has been tested on each of the seven datasets for both their ability to 

generalise and their performance in an online environment. These tests are 

separated into two sub sections: generalisation and online classification.  

6.3.2.1 Generalisation  

The ability of the methods to generalise is measured by how well they can 

correctly classify cases during testing. A method that cannot generalise will be 

unable to recognise anything about a new unique case. The performance of each 

method at generalisation in this thesis is gauged by its ability to classify unseen 

cases both after training and during training. In other words, the performance 

will be classified according to how fast it learns enough about the domain to be 

able to generalise. The results shown in Figures 6-20, through to 6-26 show how 

RM compares against MCRDR and an ANN on each of the seven datasets. Each 

chart shows the percentage of correct classifications, averaged over 10 trials, for 

each of the nine tests.  
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Multi-Class Dataset using Linear Simulated Expert. 

Chart a) One training round
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Chart b) After Training Complete
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Figure 6-20 Two charts comparing how each method RMbp(∆), ANN(bp) and MCRDR, 
perform on the Multi-Class dataset using the Linear Multi-Class simulated 
expert. Chart a) shows how the methods compare after only one viewing of the 
training set. Chart b) shows how the methods compare after training was 
completed. The X-axis shows how many tenths of the dataset were used for 
training. All results used the last tenth for testing. The Y-axis shows the 
percentage of cases that were classified correctly (must get all six classes 
correct). Error bars are included showing the 95% confidence range. 
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Multi-Class Dataset using Non-Linear Simulated Expert. 

Chart a) One training round
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Chart b) AfterTraining Complete
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Figure 6-21 Two charts comparing how each method RMbp(∆), ANN(bp) and MCRDR, 
perform on the Multi-Class dataset using the Linear Multi-Class simulated 
expert. Chart a) shows how the methods compare after only one viewing of the 
training set. Chart b) shows how the methods compare after training was 
completed. The X-axis shows how many tenths of the dataset were used for 
training. All results used the last tenth for testing. The Y-axis shows the 
percentage of cases that were classified correctly (must get all six classes 
correct). Error bars are included showing the 95% confidence range. 
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Chess Dataset using C4.5 Simulated Expert. 

Chart a) One training round
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Chart b) AfterTraining Complete
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Figure 6-22 Two charts comparing how each method RMbp(∆), ANN(bp) and MCRDR, 
perform on the Chess dataset using the C4.5 simulated expert. Chart a) shows 
how the methods compare after only one viewing of the training set. Chart b) 
shows how the methods compare after training was completed. The X-axis 
shows how many tenths of the dataset were used for training. All results used 
the last tenth for testing. The Y-axis shows the percentage of cases that were 
classified correctly. Error bars are included showing the 95% confidence 
range. 
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Tic-Tac-Toe Dataset using C4.5 Simulated Expert. 

Chart a) One training round
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Chart b) AfterTraining Complete
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Figure 6-23 Two charts comparing how each method RMbp(∆), ANN(bp) and MCRDR, 
perform on the Tic-Tac-Toe dataset using the C4.5 simulated expert. Chart a) 
shows how the methods compare after only one viewing of the training set. 
Chart b) shows how the methods compare after training has completed. The X-
axis shows how many tenths of the dataset were used for training. All results 
used the last tenth for testing. The Y-axis shows the percentage of cases that 
were classified correctly. 
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Nursery Dataset using C4.5 Simulated Expert. 

Chart a) One training round
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Chart b) AfterTraining Complete
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Figure 6-24 Two charts comparing how each method RMbp(∆), ANN(bp) and MCRDR, 
perform on the Nursery dataset using the C4.5 simulated expert. Chart a) 
shows how the methods compare after only one viewing of the training set. 
Chart b) shows how the methods compare after training has completed. The X-
axis shows how many tenths of the dataset were used for training. All results 
used the last tenth for testing. The Y-axis shows the percentage of cases that 
were classified correctly. 
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Audiology Dataset using C4.5 Simulated Expert. 

Chart a) One training round
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Chart b) AfterTraining Complete
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Figure 6-25 Two charts comparing how each method RMbp(∆), ANN(bp) and MCRDR, 
perform on the Audiology dataset using the C4.5 simulated expert. Chart a) 
shows how the methods compare after only one viewing of the training set. 
Chart b) shows how the methods compare after training has completed. The X-
axis shows how many tenths of the dataset were used for training. All results 
used the last tenth for testing. The Y-axis shows the percentage of cases that 
were classified correctly. 
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Car Evaluation Dataset using C4.5 Simulated Expert. 

Chart a) One training round
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Chart b) AfterTraining Complete
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Figure 6-26 Two charts comparing how each method RMbp(∆), ANN(bp) and MCRDR, 
perform on the Car Evaluation dataset using the C4.5 simulated expert. Chart 
a) shows how the methods compare after only one viewing of the training set. 
Chart b) shows how the methods compare after training has completed. The X-
axis shows how many tenths of the dataset were used for training. All results 
used the last tenth for testing. The Y-axis shows the percentage of cases that 
were classified correctly. 
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These results show that the RM hybrid system has done exceptionally well 

both initially as well as after training is complete when generalising. However, it 

was unable to perform as well as hoped. In both of the multi-class experiments 

RM very significantly outperformed the neural network. However, while it 

performed well, it was not able to match the performance of MCRDR. Also, 

after training was completed RM significantly generalised better than MCRDR 

but could not match the neural network. Although, it should be noted, that this 

was rarely a statistical significant difference in performance. 

RM’s performance on the chess, TTT, Audiology and Car Evaluation 

datasets (and to a lesser extent the Nursery dataset) was considerably better than 

in the multi-class environments. For instance, it was able to match MCRDR in 

the first iteration on a number of the datasets. Additionally, it was able to learn a 

much improved generalisation function over both the neural network and to a 

lesser extent MCRDR after training.  

While RM was not always able to perform quite as well as hoped, some 

points should be noted. For instance, when it did not reach its full potential it did 

come close. Secondly, in both of the multi-class datasets, it was also found that 

after the second training iteration RM had outperformed MCRDR across most of 

the nine tests. It should also be noted that the results for the neural network had 

required significantly more training to get its marginally better results. 

6.3.2.2 Online Classification  

As previously identified, the aim of RM was to gain fast learning online and the 

ability to generalise. The results in this section investigate how RM compares 

with its two underlying methodologies in the online environment. Figures 6-27 

through to 6-32 show how RM, MCRDR and the ANN perform on the six 

datasets. The multi-class dataset using the linear simulated expert was not used. 

Each point on the charts is an average of the previous 10 data segments (except 

2 data segments for the Audiology dataset as it is much smaller) which are then 

further averaged over the ten randomised runs. Each segment contains a random 

selection of cases, each 1/50th the size of the whole dataset. Error bars have been 

omitted to allow for greater readability. 
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Multi-Class Dataset
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Figure 6-27: Chart comparing RMbp(∆) against MCRDR and an ANN using backpropagation 
on the multi-class dataset using the non-linear simulated expert. The x-axis 
shows the amount of 1/50th data segments that have been seen. The y-axis 
shows the average error over the last 10 data segments. 
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Figure 6-28: Chart comparing RMbp(∆) against MCRDR and an ANN using backpropagation 
on the chess dataset using the C4.5 simulated expert. The x-axis shows the 
amount of 1/50th data segments that have been seen. The y-axis shows the 
average error over the last 10 data segments.   
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Tic-Tac-Toe Dataset
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Figure 6-29: Chart comparing RMbp(∆) against MCRDR and an ANN using backpropagation 
on the tic-tac-toe dataset using the C4.5 simulated expert. The x-axis shows 
the amount of 1/50th data segments that have been seen. The y-axis shows the 
average error over the last 10 data segments.  
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Figure 6-30: Chart comparing RMbp(∆) against MCRDR and an ANN using backpropagation 
on the nursery dataset using the C4.5 simulated expert. The x-axis shows the 
amount of 1/50th data segments that have been seen. The y-axis shows the 
average error over the last 10 data segments. 
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Audiology Dataset
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Figure 6-31: Chart comparing RMbp(∆) against MCRDR and an ANN using backpropagation 
on the audiology dataset using the C4.5 simulated expert. The x-axis shows the 
amount of 1/50th data segments that have been seen. The y-axis shows the 
average error over the last 2 data segments. 
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Figure 6-32: Chart comparing RMbp(∆) against MCRDR and an ANN using backpropagation 
on the car evaluation dataset using the C4.5 simulated expert. The x-axis 
shows the amount of 1/50th data segments that have been seen. The y-axis 
shows the average error over the last 10 data segments. 
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These comparisons are powerful indicators of the advantages of RM over a 

standard backpropagation neural network when being applied in an online 

environment. On the chess, TTT and audiology datasets it can be seen that RM 

has learned as fast or nearly as fast as MCRDR. On the nursery and car 

evaluation datasets it was only between 3% and 6% below MCRDRs 

performance and overtime was narrowing this gap. This meets our original goal 

of gaining the speed of MCRDR’s instantaneous learning as soon as a rule is 

added. In the multi-class results this same result can be observed, except it can 

also be seen how RM continued to learn after MCRDR had accrued all its 

possible knowledge.  

MCRDR’s failure to continue to learn after its initial gains was a point of 

concern in the multi-class test. However, after investigation, it was found to be 

caused by two main factors. Firstly, for a case to be correctly classified it must 

get all six classes correct. Therefore, MCRDR’s performance was not as poor as 

it first appears. Secondly, there is one unusual problem in the MCRDR rule 

creation and validation phase. It is possible that when an expert attempts to 

create a rule there may be no suitable attributes available. This generally only 

occurs on the later difference lists generated when there are multiple cornerstone 

cases. This problem was partly solved by Kang’s (Kang 1996) incremental 

difference list generation method (3.3.2.2), but can still occur in rare situations.  

The complexity of the multi-class dataset, especially the use of attribute 

pairs highlights this problem. This caused the simulated expert to be unable to 

create required rules on some occasions. One solution to this was to randomly 

select an unimportant attribute; however, this only compounds the problem and 

passes it on to a later stage of KB development. Therefore, for the purposes of 

this test, failed rules were not added to the knowledge base, partially limiting the 

method’s performance. 

However, these lost rules can now be treated as a form of hidden context. 

Therefore, RM’s ability to significantly outperform the MCRDR’s performance 

shows its ability to capture that hidden information even when it is unavailable 

to the knowledge base. The performance of RM appears to essentially learn 

exactly like any standard learning curve but rather than start from scratch it 

began from where MCRDR had finished learning. 



Chapter 6: Classification and Prediction  Richard Dazeley 

    
 183 

6.3.3 Prediction 

As discussed in section 6.2.2, MCRDR and other KBSs are generally only 

applied in classification domains. When they are applied to prediction problems 

they usually use the same basic classification process but with conclusions as 

values. This is highly problematic and does not allow for partial values. The 

huge advantage of RM in this domain is that it allows expert knowledge to be 

incorporated into a more general approach to prediction.   

As detailed earlier, this means that the expert is still required to ‘classify’ 

each case, as well as judge its accuracy in predicting the required value. Due to 

this restriction, our expert would be needed to both determine a form of 

classification, as well as a value. This meant that the C4.5 based experts could 

not be used and, therefore, neither could the chess and TTT datasets. Instead 

only the multi-class prediction expert was used (6.1.1.4).  

6.3.3.1 Prediction Generalisation 

This section’s tests were performed in the same way as in section 6.2.2.1, where 

the neural network receives input in the same way as described in section 6.3.1. 

Figure 6-27, on the following page, shows how RM compares to an ANN using 

backpropagation in a generalisation test for value prediction. Each point on the 

chart is from the average across the last 10 data segments over 10 runs. 
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Figure 6-33 Two charts comparing how each method RMbp(∆), and ANN(bp), perform on the 
Multi-Class-Prediction dataset using the Multi-Class-Prediction simulated 
expert. Chart a) shows how the methods compare after only one viewing of the 
training set. Chart b) shows how the methods compare after training was 
completed. The X-axis shows how many tenths of the dataset were used for 
training. All results used the last tenth for testing. The Y-axis shows the 
average error. 



Chapter 6: Classification and Prediction  Richard Dazeley 

    
 184 

These results introduce another interesting potential advantage of RM over 

the standard backpropagation method. Here it can be seen that the neural 

network was unable to continue to learn after it had reached a particular point. 

This problem is thought to be caused by the network having fallen into a local 

minimum, a problem common to neural networks, especially in prediction 

domains. RM is less likely to encounter this learning problem as the knowledge 

base provides an extra boost, similar to a momentum factor, which propels it 

over any local minima and closer to the true solution. Therefore, not only does 

RM introduce KBSs into potential applications in the prediction domain, as well 

as, allow for greater generalisation similar to an ANN, but it also helps solve the 

local minima problem.  

6.3.3.2 Prediction Online 

The process of RM being able to predict an accurate value in an online 

environment could potentially allow the use of RM in a number of environments 

that have previously been problematic. For instance, KBSs in information 

filtering (IF) have difficulties due to their problems in prediction, while neural 

networks are far too slow. RM allows for the inclusion of expert knowledge 

with the associated speed but also provides a means of value prediction. Figure 

6-28 shows a comparison between RM and an ANN in an online environment. 
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Figure 6-34 This chart compares how RMbp(∆), and NN(bp), perform on the Multi-Class-
Prediction dataset using the Multi-Class-Prediction simulated expert.  The x-
axis shows the amount of 1/50th data segments that have been seen. The y-axis 
shows the average error over the last 10 data segments. 



Chapter 6: Classification and Prediction  Richard Dazeley 

    
 185 

Once again it can be seen that RM has performed outstandingly well from 

the outset and was able to maintain this performance. This fast initial learning 

can be vital in many applications as it is what users usually expect. Additionally, 

although the chart only shows the first thousand iterations, the fully trained 

network was only able to achieve a best of 0.23, while RM was able to continue 

on learning to a minimum error of 0.14. Once again this could indicate the 

network fell into a local minimum during training preventing it from further 

improvement.  

6.3.4 Further Discussion 

Overall, the results in this section have shown how powerful RM is at acquiring 

knowledge and learning. These results highlight that it was able to generalise 

nearly as well as a neural network, thereby, allowing a reduction of the 

knowledge based systems brittleness, while still being capable of accruing 

knowledge at a rate comparable to MCRDR. This indicates a positive answer to 

the first hypothesis for both the classification and prediction tasks. The 

combination of these abilities makes RM unique in the field of classification and 

prediction.  

RM’s ability to perform so well can be put down to two features of the 

system. First, is that the flattening out of the dimensionality of the problem 

domain by the MCRDR component allows the system to learn a problem that is 

mostly linear even if the original problem domain was non-linear. This allows 

the network component to learn significantly faster. Second, the network gets an 

additional boost through the use of the single-step-∆-rule, allowing the network 

to start more closely to the correct solution when new knowledge is added to the 

KB. 

In addition to meeting the challenges set by the first hypothesis is the 

suggested evidence that RM moves beyond this in two key areas, offering 

significant advantages to other classifiers and predictors. First is the strong 

indication of RM’s ability to continue learning about hidden contextual 

relationships and using this information to further improve classification. This is 

highlighted by its ability to learn beyond the knowledge stored in the KB. 

Second are the indications that the use of MCRDR, combined with the single-

step-∆-initialisation-rule, provides a means for avoiding local minima. Therefore, 
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RM not only fulfils the first hypothesis, but also represents a system that is 

significantly greater than the sum of its parts. 

6.4 Summary 

This extensive chapter served two primary purposes. The first was to fully 

test each of the seven RM methods developed in the previous chapter. This 

allowed the merits of certain design decisions to be analysed and for the best 

performing method to be selected; RMbp(∆). The selected method could then be 

compared to the underlying methods that were used to construct RM: MCRDR 

and a backpropagation neural network. This comparison allowed the chapter to 

test the selected method in two primary areas of general application for AI 

methodologies: classification and prediction. These tests where intended to be 

general in nature and not represent any one particular problem domain. The 

chapters in part 3 of this thesis will test RM in a specific problem domain, 

prudence analysis, and will show how RM’s classification and prediction 

abilities allow it to perform these more specific tasks. 

Initially, this chapter investigated which of the seven methods developed 

performed the best across a number of problem domains. The methods were 

tested on their ability to generalise and to learn online in both classification 

(6.2.1) and prediction (6.2.2) tasks. These tests’ results showed that features 

such as the single-step-∆-initialisation-rule were very effective in speeding up 

learning. This was due to its providing a significant head start as well as helping 

the network to avoid local minima. It was also found that most of the non-

linearity of a dataset was absorbed by the MCRDR component allowing the 

network to learn faster due to having a primarily linear problem left to solve. 

The later part of this chapter investigated how the best method, RMbp(∆), 

performed against the two components that were used in its hybridised 

construction (6.3). This was directly aimed at verifying the first hypothesis. It 

was found that RMbp(∆) learned nearly as fast as MCRDR during the initial stages 

(6.3.2). This fast learning allows the method to be applied in online learning 

tasks effectively. However, RMbp(∆) continued to learn beyond the knowledge 

MCRDR provided initially allowing it to generalise as effectively as the ANN 

after training was completed. It was also found that the method was able to 
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significantly outperform the ANN in a predictions domain due to its ability to 

avoid local minima (6.3.3). These results strongly suggest that the method 

developed in this thesis is better than the sum of its parts, fulfilling the first 

hypothesis. 
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7 DDiissccoovveerriinngg  tthhee  KKnnoowwlleeddggee  FFrroonnttiieerr    

‘It all comes,’ said Pooh crossly, ‘of not having front doors big enough.’  
‘It all comes,’ said Rabbit sternly, ‘of eating too much…’ (Milne 1926, p25). 

The aim of this thesis was to develop a methodology that went someway to 

incorporating hidden and dynamic contexts, and thereby, meeting the 

intermediate situation cognition view of knowledge (chapter 2). Once developed, 

this was shown in the previous chapter to be highly successful in solving general 

classification and prediction tasks. These initial results show that the hybrid 

system has captured key advantages from each of the underlying techniques, as 

well as started capturing other hidden information not captured by MCRDR. 

These results by themselves suggest that RM can successfully be applied in any 

classification and prediction based domain, where human knowledge is available. 

It was argued (chapter 1) that this additional contextual information captured 

by RM would not only improve classification and prediction, but also provide 

valuable information to other problem domains, such as Information Filtering, 

Data Mining, Natural Language Processing, and even Reinforcement Learning. 

However, rather than only doing a weak analysis of each of these, it was decided 

to perform a more significant investigation of the generation of prudence 

warnings. The provision of a working system for providing prudence based 

warnings, supplied by a dynamically context aware KBS, could significantly aid 

knowledge acquisition.  

This chapter will first provide a brief overview of prudence analysis and the 

related field of research, verification and validation, along with an investigation 

of previous RDR based prudence systems. This will be followed by the 

development, testing and analysis of two prudence systems developed using RM. 

These results will be compared with a previous prudence based system. Finally, 

this chapter will investigate the effects of using warnings on the final KB. 
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7.1 Review 

Prudence analysis is not one of the most widely known areas of study in KBS 

research. This section will provide a brief overview of the domain, providing an 

introduction to what prudence analysis is attempting to achieve in the area of 

brittleness and how it is related to verification and validation. Also discussed is 

what other work has been done in prudence analysis. At this time, work in RDR-

based research is leading this field of study, thus, the systems discussed all stem 

from attempting to provide warnings with RDR-based KBSs. 

7.1.1 Brittleness 

Regardless of how intelligent we think we are, there will occasionally be that 

slip up - that embarrassing moment when we do or say something that reveals an 

extreme lack of knowledge about one particular detail that everyone else knows. 

This, fairly rare human ailment, has long been recognised as being a frequently 

occurring flaw in knowledge based systems (KBS). While such an error may 

make the person that made the mistake uncomfortable, it can usually be covered 

up or laughed at and then simply put aside. However, when a knowledge base 

makes this error it highlights a major error in a system’s knowledge base and 

causes the system’s user to lose faith in its ability to give an accurate and 

meaningful conclusion. The famous apocryphal example is the expert system 

that diagnosed a man as being pregnant (Compton et al. 1996). 

This brittleness, often associated with KBSs, is founded in the system’s 

inability to realise when its knowledge base is inadequate to provide an accurate 

and meaningful conclusion. The cause of such inadequacies is generally 

recognised as being due to the concentration of specialised knowledge in the 

target domain for the particular system (Lenat and Feigenbaum 1991). Within 

this particular domain they may perform exceptionally well, however, the 

moment some form of knowledge is needed from just outside of this domain 

their competence drops off quickly to complete incompetence. As the previous 

paragraph alluded, people are also subject to this difficulty. However, they have 

the ability to fall back on layer upon layer of general knowledge providing a 

much less precipitous slope (Op cit).  
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Figure 7-1: Conceptual diagram of knowledge distribution within a particular domain. 

This can be viewed in the conceptual diagram, Figure 7-1, where the full 

knowledge needed for a particular domain is represented by the normal 

distribution. The choice of the normal distribution is to highlight that, while the 

vast majority of the knowledge required is in the core of the domain, the 

potential knowledge needed is much greater. It also shows that the further you 

move away from the core domain knowledge the less relevant and less likely 

that knowledge will actually be required. It can be seen in this diagram that the 

KBS generally has a very poor coverage of the general knowledge beyond the 

core domain as well as incomplete knowledge of the domain itself. This is 

primarily due to the inherit difficulties of current KA methodologies being 

unable to extract all of the expert’s knowledge.  

7.1.2 Verification and Validation 

The issue of brittleness has been investigated from many possible sides, and as 

mentioned earlier was the catalyst for the development of the majority of KBS 

methodologies. One area of research moved away from finding better methods 

of acquiring knowledge, and instead, developed a means of checking whether a 

KB was complete. This process is commonly referred to as Validation and 

Verification (V&V) (Preece 1995). 

Basically, the majority of V&V systems attempt to check a system by 

generating all of the possible cases for the data pattern in the domain that the 

KBS will operate. Each of these is then processed by the inference engine 

attached to the knowledge base and the conclusions are checked by a human 

expert. Generally, however, these techniques tend not to be particularly useful or 

cover a large range of data patterns. The larger the data pattern the more 
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frequently the expert will be asked to speculate about hypothetical situations of 

which they may have no experience and that may not occur in reality (Colomb 

and Sienkiewicz 1996; Compton and Jansen 1990; Compton et al. 1996). 

In RDR, V&V has been an incremental process since the outset. As each 

rule is added it is verified immediately within the context it was added. However, 

Kang et al (1994; 1996) identify that this incremental V&V does not always 

ensure that old knowledge is in fact unchanged when new knowledge is added. 

This is because only the case that causes a rule to be created is stored and used 

as a cornerstone case. Other cases can be different and still be correctly 

classified yet when a new rule is added it is not validated with these cases that 

were never stored as a cornerstone case. This could be resolved by storing all 

cases. However, the reason only the first is used as a cornerstone case is to 

reduce storage, and more importantly lessen the validation effort required on the 

expert during KA.  

Kang et al (1994; 1996), concerned about the theoretical potential of the 

V&V problem, performed tests finding that only 2% of old cases were 

incorrectly classified after new knowledge was added which is significantly less 

than the 10%-20% of errors on unseen cases. Many of the methods created since 

RDR have investigated V&V in relation to the proposed system. Additionally, 

one of the influences in the creation of the MCRDR methodology was the 

problem of V&V.  

7.1.3 Prudence Analysis 

Fundamentally, V&V is attempting to identify whether all the possible cases are 

covered by the KBS. However, as mentioned above, many cases will not occur 

and thus should not require validation. The incremental nature of RDR, however, 

provides the opportunity for a significant paradigm shift, through the possibility 

of identifying cases that are not valid during the inferencing process. Essentially, 

the system would need to be aware to some degree of what knowledge it 

currently possessed. Once a case is found that appears to require knowledge 

from outside the KB, it would provide a warning to the expert. These warnings, 

therefore, would be provided progressively allowing the expert to check the 

classification found.  
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This is potentially a very powerful tool that significantly reduces the KA 

effort for an expert because the expert will no longer be required to check all 

cases classified for correctness. Additionally, depending on the accuracy of the 

warnings this would go a long way to alleviating users’ fears of harmful errors 

hidden in a KB due to brittleness. Also, in maintenance based systems, such as 

RDR, the ability to provide warnings at the time significantly aids the interactive 

nature of the methodologies. 

7.1.4 RDR Prudence Systems 

There have been a number of techniques used, which have attempted to generate 

a measure of prudence in RDR based methods. The first work carried out 

relating to prudence checking was known as WISE by Kang (1996) and 

Edwards (1996)22 , which, after inferencing in standard RDR was complete, 

would search the RDR tree for repeated instances of the conclusion found. The 

paths to these conclusions were then compared to test the usefulness of storing 

the history of corrections. It was found that apart from adding to the explanation 

ability of the KBS it may be possible to also use such information for prudence 

checking (Richards 1998a). 

WISE was later extended using reflective learning through what Edwards et 

al (1995a; 1995b) 23  and Edwards (Edwards 1996), termed prudence and 

credentials. The system developed was called Feature Recognition Prudence 

(FRP) which tested if further inferencing beyond the similarly matched 

conclusions was possible and resulted in different conclusions. Such situations 

indicated that there was a possibility of an error in the original conclusion found.  

A second approach taken at the same time for prudence detection was 

Feature Exception Prudence (FEP), where, after a conclusion was generated, the 

system looked at the database and flagged features of the current case that have 

not been previously validated by the expert as permissible. If any flags are 

generated then the conclusion is identified as potentially invalid. These systems 

were used on the LabWizard ES showing the potential of finding all errors. 

However, it did suffer from a large quantity of false positives (Edwards 1996; 

                                                 
22 WISE was not published until Kang’s and Edward’s, PhD and Masters Theses respectively were 
submitted, even though they were created significantly earlier.  
23 FRP and FEP, which followed WISE, however, were published separately, prior to Kang’s and 
Edward’s, PhD and Masters Theses were submitted, and so have earlier publication dates. 
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Edwards et al. 1995a; Edwards et al. 1995b). A later study by Nadioo (1998) 

into prudence checking methods questions Edwards’s results claiming they are 

highly reliant on the expert, order of cases and the nature of the dataset used. 

While there are interesting features in Edwards’s work, the fundamental 

problem is that there must already be knowledge within the KB for it to be able 

to predict missing knowledge, which does not truly solve the full prudence 

problem. Compton et al (1996) took a new approach of comparing cases with 

previously seen cases within context, and provided warnings if they differed in 

some unusual way. Basically, the method compared individual value-attribute 

pairs and warned if they exceeded what had been previously seen. This simple 

method achieved a reasonably high level of accuracy on some datasets with 

significantly less false positives. However, it concluded that the results were still 

not sufficiently accurate and still produced too many warnings to be applied in a 

real world application. Since Compton et al’s work, little research has been 

published on further improving these results. Therefore, these published results 

are used in this thesis for comparison with the performance of RM when applied 

to prudence analysis in this chapter. 

7.2 RMp: Prudence Methodology 

There are always a number of ways of applying any particular algorithm to a 

problem. Using RM for prudence analysis, referred to as RMp, is no different. 

Therefore, no guarantee can be provided that any method used is the best 

approach. In this thesis there have been two methods developed to handle this 

particular domain. These are based on the work carried out in the previous 

chapter. Therefore, one method is designed around the RM prediction method, 

called RMp(p), and the second approach is based on the classification technique, 

referred to as RMp(c). This section of the chapter will provide a detailed 

description of these two methods developed and detail the reasons behind their 

designs. These two approaches are then compared against each other, as well as 

against Compton et al’s (1996) results, in the experiments performed later in this 

chapter. 
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7.2.1 RMp(p): Prediction Method 

The first method developed uses the idea of predicting a single value, which 

represents a confidence-like factor. This prediction is not a true confidence 

factor in the statistical sense, but rather, a rating or measure of whether the input 

pattern representing a case is likely to be an unreasonable or unseen pattern. The 

system begins with the assumption that all input patterns are unreasonable and 

always generate a warning. Over a short period of time it will learn which 

patterns are likely to be correct and stop warning on those patterns. This is 

essentially a simple online prediction task; learning to predict which patterns are 

correctly classified. In order to achieve good results in this learning task it is, 

therefore, paramount that the system learns quickly in order to reduce the 

amount of warnings. 

As discussed in chapter 5, the neural network component of RM is 

attempting to learn patterns of rules, attributes and/or classes. When it receives a 

new input node, the pattern used to generate that input will be trained 

immediately to a high level of confidence. This can be done because the expert 

has essentially just confirmed the pattern when creating the new rules. If this 

pattern is then seen again it will return a high confidence. However, other 

patterns, not seen, will still only return a low level of confidence, causing a 

warning to be generated. Subsequently, if a new case uses the new input but the 

other inputs are different, then this new pattern defaults to a low confidence – 

causing a warning to be generated. 

There were a number of questions needing answers when forming a 

workable design for developing this value-prediction based prudence system. 

What information was reasonably available for the system to use for training the 

network, when was this available and how should it be used? Furthermore: what 

value should new nodes be assigned during initialisation in order to achieve the 

required training advantages? Another question included: at what point should a 

low confidence actually be low enough to generate a warning? The decisions 

made, answering these questions will be discussed in more detail in the 

following subsections. 
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7.2.1.1 Training 

One of the primary difficulties in applying RM to prudence analysis was the 

lack of information available to train the network component. Essentially, the 

only information that can be used is whether the expert has created a new rule or 

not. This was further limited however, because we can only use the cases that 

have generated a warning for training. Cases that do not result in a warning 

cannot be assumed to be correct and, therefore, cannot be used for training the 

network. This leaves relatively little information available to be used for training.  

The training methodology developed is reasonably simple. Training only 

occurs when a warning has been generated. Then, if the user discounts the 

warning and accepts the offered classification, the level of confidence for the 

case’s input pattern should be increased. Alternatively, if the user accepts the 

warning and creates a new rule, then the confidence level for the original pattern 

prior to the new rule being added should be trained down, while the new pattern 

with the new rule will be given a high confidence. 

The second point of consideration is to decide what values produced by the 

network should be considered high, and therefore, which are low. Part of this 

problem is what kind of network range should be used. Generally, when using 

an ANN, little consideration is made as to whether the network should simply 

produce values in the range 0 → 1, or whether the sigmoid function should shift 

values down producing outputs in the range -0.5 → 0.5. It was found, however, 

that the more common range of 0 → 1 failed almost completely. This was found 

to be because the vast majority of rewards given to the network are to increase 

the confidence level. Therefore, the network is constantly being trained towards 

1. Eventually, the system always produces a very high confidence even for cases 

never seen.  

The first solution was to use the -0.5 → 0.5 output range. This allowed the 

system to treat the value 0 as low confidence and 0.5 or -0.5 as high confidence. 

In this approach, each pattern would either be trained towards the positive or 

negative ends of the scale. The end it was trained towards could be randomly 

chosen, thereby, insuring a roughly 50/50 split. This method meant patterns that 

had not been seen tended to be made up of both positive and negative values 

which then averaged out to a value close to 0, giving a low confidence.  
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This second method was significantly more effective but still suffered from 

the previous problem, just less frequently. Occasionally, all the feeds to the 

output were all positive or all negative causing a high average again. The final 

solution used solved this problem. In this approach the high confidence was 

taken to be either positive or negative 0.25. Therefore, low confidence was 0, 

0.5 and -0.5. This allowed compounding averages to also produce a low 

confidence. Theoretically, the compounded averages could also occasionally 

equal ±0.25 as well, however this was found to be rare. 

Therefore, the actual values used for rewarding the network are ±0.25 if the 

expert does not create a new node after a warning and a reward of 0.0 if they do 

create a new node. The choice for selecting a positive or negative value of 0.25 

is done by looking at what the current value is. If the current value is positive 

then it is trained closer to +0.25. Likewise, if it is negative it is trained towards   

-0.25. 

7.2.1.2 Initialisation Value 

This reward structure also applies to the initialisations used by the network 

when a new node is added. Therefore, when the expert creates a new rule, after a 

warning was given, the system adds the appropriate new input nodes. These 

nodes are given initial values using the single-step-∆-update-rule, where they 

step towards either ±0.25. The choice of positive or negative alternates with 

each new input node, thereby, ensuring the network remains balanced. Prior to 

this new node being added, however, the incorrect pattern is trained towards a 

low confidence ensuring that this pattern will create a warning next time it is 

seen. 

7.2.1.3 Threshold 

At some point the variable confidence factor must switch from low confidence, 

requiring a warning to high confidence, not requiring a warning. This threshold 

point needs to be located to best meet the needs of the experts using the system. 

For instance, a low threshold will result in very few warnings, but also poor 

accuracy, thereby missing many incorrectly classified cases and visa versa. In 

this study two types of thresholds were trialled.  
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The first was simply a static threshold. For instance, a threshold might have 

been 0.05. This threshold is then applied to either side of our high confidence 

point of ±0.25. Therefore, a warning is issued when the absolute rating is outside 

the value range 0.2→0.3. It was found, however, that in the early stage of 

prediction that only confidence factors that were very accurate should not be 

warned about, while later on only cases that were distant from the high 

confidence mark warranted a warning.  

Therefore, a second approach of varying the threshold was also trialled. In 

this approach the dynamic threshold was increased when a warning was 

unwarranted and reduced when the expert created a new rule. Clearly, as fairly 

few rules are created this thresholding value will tend to increase in value over 

time, and therefore, less warnings will be produced later in the life cycle of the 

KB. Due to this constantly increasing threshold, some form of upper bound is 

required. This simple approach was found to be more effective than the static 

approach, although it does require the training rate for the threshold and a 

maximum value to be defined.  

7.2.2 RMp(c): Classification Method 

The second method developed employs the idea of using the neural network for 

classification comparisons. The basic idea is to allow MCRDR to develop 

classifications in the general way. Meanwhile, the network passively watches 

rules being added to the MCRDR tree. As it watches it also attempts to identify 

the correct classifications. However, as the network gets additional a posteriori 

information it can make improved classifications. The improved classification of 

the network, shown in chapter 6, is used as a dynamic check of the MCRDR 

classification.  

As previously discussed in the results of chapter 6 concerning online 

classification, MCRDR and the neural network often produced a difference of 

opinion when classifying. This was especially apparent during the early stages 

of the KBs development. This can be seen more clearly in Figure 7-2, where the 

dark area shows when there was a difference of opinion on the multi class 

dataset. Additionally, when both MCRDR and the ANN misclassify a case (the 

light grey area) they are both likely to disagree.  
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Figure 7-2: Re-formatting of results shown in Figure 6-18, where the difference between 
MCRDR and the attached neural network is shown. The white area shows 
agreement between MCRDR and the ANN. The dark grey area shows 
disagreement but where one is correct. The light grey area shows areas where 
both MCRDR and the ANN are wrong. 

The RMp(c) method is designed to produce a warning whenever such a 

disagreement between the two classifiers occurs, allowing the user to correct the 

difference. One interesting aspect of this method is that it allows the provision 

of additional information for the user because now the system can inform the 

user which classification specifically is the likely cause of concern, and 

potentially what is the correct classification. These added abilities even further 

simplify the expert’s task. This prudence method was developed after RMp(p) and 

turned out to be much easier to design and implement, with fewer difficulties 

and subjective design decisions being required. However, some simple issues 

still required resolution, which are described in the following subsections. 

7.2.2.1 Training 

Training is a simple process of identifying the correct classification that the 

expert has agreed to when accepting a case. Obviously, however, this can only 

be done when a warning has actually been generated. On the occasions when no 

warning is generated the system is unable to train because the system cannot be 

certain whether the expert would have wanted to alter the classification. The 

actual reward assigned is the same as in the previous chapter when learning 

classifications. That is, a positive value was given as a reward when it should 

have been classified as a particular case and a negative value otherwise. 
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7.2.2.2 Initialisation Value 

Likewise, the initialisation value can be set in precisely the same manner as in 

chapter 6: stepping a good distance to the assigned value using the single-step-

∆-update rule. As shown in the previous chapter this is an effective manner of 

quickly learning a classification. 

7.2.2.3 Thresholding 

Unlike the value prediction method, the classification method has a conceptually 

natural thresholding point, 0.0, for each class. Using this threshold would 

literally result in the type of system described, where it warns when there is a 

difference between the two sub-components. While this does work with some 

success, it was found that often the two components matched but the network 

was not particularly decisive, meaning the value was just above or below the 

threshold. This was especially the case during the earlier stages of training. 

Therefore, the notion of a threshold was introduced to this method as well.  

Thresholding in the classification method was done on a per class basis. 

Basically, if the MCRDR and ANN classes were the same, then a warning was 

not generated. However, if the network’s absolute rating for a particular class 

was below a certain threshold then it was interpreted as the network being 

unsure of its rating, and therefore, a warning would be generated. This second 

method of warning only occurred when the network had the same result as the 

MCRDR inference engine. This simple tool was found to be highly effective at 

improving prediction. 

In a similar fashion to the prediction approach, the thresholding value was 

found to only really be needed during the early phase of knowledge acquisition. 

Therefore, the thresholding value was also made dynamically adjustable. When 

a warning was warranted, the threshold was increased and when the warning 

was not needed, the threshold was reduced. Once again, it could not be adjusted 

when there was no warning generated. One change that could have been trialled 

was to have had separate thresholds for each possible classification. While it is 

unlikely to have an effect in the studies done in this thesis, a per-classification 

threshold would be needed in situations where classes are created during 

training. 
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7.3 Experimental Method 

Two types of tests with four different datasets were performed to evaluate the 

success of the above prudence analysis approaches. The first test simply tested 

the ability of the methods to produce warnings accurately with the minimum 

amount of unnecessary warnings. The second looked at what effect on rule 

creation, and the eventual KB, occurs when the expert trusts the warning system 

and only checks cases that produced a warning. This section will provide a 

detailed overview of the experiments performed and the nature of the results 

gathered. Additionally, it will look at the simulated experts and datasets used in 

gathering the results. The following chapter will investigate how each of the 

methods performs at similar tasks using real world human knowledge. 

7.3.1 Overview 

The first experiment tested both prudence methods 10 times with each dataset 

randomly reordered. The results shown in the following section are an average 

of these 10 experiments. For each dataset tested there were small variations 

made to various learning parameters and the thresholds used to identify when 

warnings were given (Appendix D). The first test carried out did not use these 

generated warnings directly. Instead, it simply gathered statistics on how 

accurate its predictions actually were. Thus, the simulated user actually still 

checked every case, ignoring any warnings, and created new rules whenever it 

found a case incorrectly classified.  

The aim at this stage was to test RM’s ability to identify misclassifications. 

In the test discussed in this thesis, one of the following four details were 

recorded for each case as it was processed: 

• If the conclusion was correct and RM gave a warning, then a False 

Positive (FP) was recorded. 

• If the conclusion was correct and RM did not give a warning, then a True 

Negative (TN) was recorded. 

• If the conclusion was incorrect and RM gave a warning, then a True 

Positive (TP) was recorded. 

• If the conclusion was incorrect and RM did not give a warning then a 

False Negative (FN) was recorded. 
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This simple testing methodology is identical to that used by Compton et al’s 

(1996) work on prudence analysis, thereby, allowing a direct comparison with 

the earlier system. From these results the accuracy of the system can then be 

determined. A successful prudence system would need to produce a high level 

of accuracy, while not producing an excessive amount of warnings. The best 

performing method was then used for further analysis in the second set of 

experiments. 

The second experiment in this chapter tested how different the KB would be 

when the expert only checked cases that were first warned about by the 

prudence system. These experiments were designed to determine whether the 

misclassified cases that were not warned about caused a major reduction in the 

accuracy of the completed KB. For instance, it was suspected that if the system 

misses a warning and the expert does not correct that particular case, a 

compounding series of misclassifications could be caused. This potentially 

exponential problem could result in a significantly incomplete KB. If this turned 

out to be the situation then even a high level of accuracy may not be good 

enough. Such a result would not only negate this method’s approach, but show 

that any form of prudence analysis is fundamentally flawed. 

To determine whether this conceived problem is actually a flaw in the theory 

of prudence analysis, two experiments were performed. The first is essentially 

the same as the previous test, except the call to the expert to test the correctness 

of a classification and to correct it, if it was wrong, is only made when a 

warning has been generated. In this test we are interested in how big a difference 

there is in the size of the knowledge base compared to the system where the 

expert checks every case. 

The second test is essentially a repeat of the generalisation test for 

classification in the previous chapter. In this test the system where the expert 

only checks warned cases is compared against the approach where the expert 

checks every case regardless of the warnings generated. In each series of tests 

the KBs are built on 9/10ths down to 1/10th of the dataset and tested on the tenth 

segment. It is unlikely that the system relying only on the warning system will 

perform as well, but it is hoped it will not perform significantly worse. If the 

warned expert approach can come close to the complete KB, then prudence 

analysis and in particular this approach to prudence can be regarded as viable. 
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7.3.2 Simulated Experts 

This chapter used the same simulated experts that were described in section 

6.1.1. Therefore, once again the C4.5 expert was used for the majority of 

datasets, chess, Tic-Tac-Toe and the new dataset introduced in section 7.3.3, 

GARVAN. Also, the Linear Multi-Class simulated expert was used for the Multi 

Class dataset. Both of these simulated experts are setup and operate in the same 

way as previously described (6.1.1). 

7.3.3 Datasets 

Once again the same three datasets are used as described in the previous chapter 

(6.1.4). The two standard datasets, chess and Tic-Tac-Toe have been selected as 

they are the same as used by Compton et al (1996), thereby allowing a direct 

comparison. The multi-class dataset used was expanded to include a variable 

number of attributes per case. Therefore, instead of each case having 6 attributes 

(6.1.4.2) they now contain between 3 and 9 resulting in 3938 possible cases. 

All of these datasets are reasonably small in size, therefore, a forth dataset 

was introduced allowing the prudence system to be tested on a much larger 

problem referred to as GARVAN. This dataset was gathered by the GARVAN-

ES1 expert system over a number of years and provides medical diagnoses for 

thyroid problems. However, the actual version of the dataset used in this thesis 

differs from the full version significantly. The version of the GARVAN dataset 

used in this study is the same one used by Compton et al (1996), thereby, 

allowing a direct comparison to be made. 

The dataset used differs from the full dataset in two ways. Firstly, the full 

dataset contains 43,472 cases, while the version used here contains 21,822. The 

full dataset was taken over the full life of the GARVAN-ES1 system. However, 

during the period of its operation some additional medical tests were added 

resulting in changes to the attributes. These changes caused a major shift 

midway through the full dataset. This is a problem when randomising the order 

of the dataset for each trial. The smaller version only contains cases from one 

extended period of steady data. The second alteration was the discretization of a 

number of continuous attributes. This discretization was performed prior to 

Compton et al’s (1996) work and was not performed as part of this thesis. 
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7.4 Prudence Results24 

The ability of RMp to predict which cases are outside its knowledge base can be 

measured through a combination of accuracy and the number of warnings. For a 

prudence system to be viable it requires a high degree of accuracy, while 

keeping the amount of warnings to a minimum. Table 7-1, shows results for 

each dataset tested with both prudence systems and averaged over ten 

randomised runs and rounded to two significant figures. The full results for the 

classification based method are shown in section 7.4.4 25 . The furthest left 

column identifies which dataset the results were from, while the second column 

shows the method used for prudence analysis. The last column is highlighted as 

it is a derived column, calculated from the first two columns of raw results. 

Datasets Algorithms
False 

Neg % 
True 

Pos % 
False 
Pos % 

True 
Neg % 

Accuracy %

RMp(p) 0.36
 

1.5 18 80 80 
GARVAN 

RMp(c) 0.13 1.7 15 83 93 

RMp(p) 0.94 2.4 31 66 72 
Multi 

RMp(c) 0.11 3.3 10 86 97 

RMp(p) 0.21 0.75 12 87 78 
Chess 

RMp(c) 0.19 0.79 8.4 91 81 

RMp(p) 4.5 8.4 31 56 65 
TTT 

RMp(c) 2.9 8.8 12 76 75 

Table 7-1: Comparison of the averages between the two prudence analysis systems 
developed. These results have been rounded to 2 significant figures. The four 
columns of raw results are shown plus the calculated accuracy.  

                                                 
24  The results in this section differ to those published in Dazeley and Kang (2004b, 2004c). Previously, 

published material had used the RMrbf+ method which has since been found to be generally inferior. 
As discussed in Chapter 6 this thesis is only using RMbp(∆) in the prudence part of the project. 
Additionally, the environment used in those earlier results had mistakenly not matched Compton et 
al’s (1996) work as claimed at the time. The environment was still legitimate but significantly 
simplified, involving repeated viewings of cases. Compton et al’s (1996) work would theoretically 
perform the same regardless of how many times it viewed the case. However, RM improves 
performance with additional viewings. Also, training had been permitted on cases not warned about 
by the system, which it would not be able to receive when actually used for prudence analysis. 
These two factors allowed significant extra training, which had provided RMp with an advantage 
and inflated the accuracy and number of true negatives. These issues have been corrected in this 
thesis and the results presented here are based on a single viewing of each case, without training on 
cases not warned about. Training is still performed when a new node is added even if a warning was 
not given. This, however, cannot be avoided and it also matches Compton et al’s (1996) work as 
their system also acquired knowledge when a warning was not given. Therefore, these results 
provide a more accurate comparison with Compton et al’s work. 

25  The results for RMp(p) are the only ones gathered. The results for RMp(c), however, are only a 
selection, chosen for this section’s discussion. The results selected here are using parameter settings 
that generated results that most closely matched Compton et al’s (1996) level of warnings. For the 
multi-class dataset the selected result was the furthest from the dotted random result line Figure7-5, 
indicating it was the best all round performer. 
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7.4.1 Accuracy 

The level of accuracy can be calculated by dividing the amount of cases that 

were warned about and for which the expert created rules, true positives, by the 

total amount of cases that needed to have new rules added, true positives plus 

false negatives. The level of accuracy for each method, including Compton et 

al’s (1996) results, are compared for each dataset in Figure 7-3. It should be 

noted that Compton et al’s system was never tested on the multi-class dataset.  

It can be seen in these results that the RMp(c) prudence technique has 

outperformed Compton et al’s (1996) results across all datasets except the chess 

dataset where they performed equally well. One interesting result was its success 

on the harder datasets. This indicates that the more complex applications have a 

greater degree of relationship information available during training. This 

additional information aids the prediction of misclassifications. In situations 

where there is less information the system struggles more to determine when a 

rule may be needed. For instance, on the TTT dataset especially, but also on the 

chess dataset, all methods struggled to identify warnings correctly. These results 

are interesting as they indicate that the more real world datasets may still be able 

to achieve good accuracy even though the little fake domains cause problems.  
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Figure 7-3: Chart comparing the accuracy of the two systems developed in this thesis: 
RMp(p) and RMp(c) against Compton et al’s (1996) results for each of the four 
datasets.  
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The three datasets where a comparison is made to Compton et al’s (1996) 

system are not the ideal domain for RM. RM is designed for multiple 

classification domains where it received much more useful information. The 

results in Figure 7-3 show that RM performed significantly better in this domain 

over all of the other results.  

The RMp(p) approach performed reasonably on the smaller chess datasets, but 

was relatively unsuccessful on the others. It is believed that the single output 

does not provide enough information for identifying misclassifications. In the 

complex multi-class dataset, where many inputs in the network fire, RMp(p) 

bounces wildly never being able to train towards a solution.  

7.4.2 Number of Warnings 

Having a good level of accuracy by itself is, however, easy to achieve. Simply 

warning every case will get perfect accuracy. The key is to achieve this high 

level of accuracy while being able to reduce the number of warnings generated. 

Therefore, we also wish to maximise the amount of true negatives found by the 

system. While this information is in the above table it is shown again in a 

column chart in figure 7-4 along with Compton et al’s (1996) results. 
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Figure 7-4: Chart comparing the percentage of true negatives of the two systems 
developed in this thesis: RMp(p) and RMp(c), against Compton et al’s (1996) 
results for each of the four datasets tested. The higher the column the less 
warnings that were generated. 
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The number of cases not warned about by RMp(c) is identical to Compton et 

al’s (1996) system, across all datasets except TTT. This is because the results 

selected in Table 7-1 were selected because they had the same amount of true 

negatives as the earlier prudence work. By selecting results with the same 

amount of warnings it is easier to see the small improvement in accuracy (7.4.1) 

of RMp(c). As will be discussed in the next section, this selection was possible 

because RM actually allows the expert to determine which is of greater 

importance, accuracy or the number of warnings. 

RMp(c)’s results on the TTT dataset were, however, unable to match the 

earlier work in relation to the number of true negatives. This was because RMp(c) 

was unable to reduce the amount of warnings to the level required. RMp(c) 

compensated this by producing a much higher accuracy with the TTT dataset 

than Compton et al’s (1996) system. RMp(c)’s and Compton et al’s (1996) low 

performance on the TTT dataset shows that highly ridged datasets where each 

case is unique are difficult domains for any prudence system. It is, however, 

very unlikely that any real application for any prudence system would be like 

the TTT dataset.  

RM kept warnings quite low for the multi class dataset. While not as high as 

the results for the chess dataset it achieved this with a much higher degree of 

accuracy. The results for the multi-class dataset indicate that in the ideal 

environment for RM it can achieve significantly higher accuracy with a 

reasonable number of warnings. All the above results indicate that RM performs 

slightly better than earlier work in the domains not suited to it, but significantly 

better in its ideal domain. Chapter 8 will investigate this further by testing RM 

in a real world multi-classification domain instead of the fabricated set used here. 

Lastly, it can be seen that the number of cases that did not generate a 

warning were quite low for the RMp(p) method, compared to RMp(c) and Compton 

et al’s (1996) system. Even though RMp(p)’s performance on the chess dataset 

was reasonable, it was found that the classification method was much more 

effective at learning not to warn and does show a marked improvement over the 

prediction based results. Generally, the prediction based approach failed and is 

no longer considered in the results gathered in this chapter. 
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7.4.3 Total Error 

Overall the above results indicate that the RMp(c) method was able to gather 

additional information and that this information can be used to provide 

reasonably good prudence analysis. One interesting observation of these results 

is that the total number of wrongly classified cases that were not warned about is 

very small. For instance, on the GARVAN dataset there is only 0.1% of errors 

over the entire knowledge base life cycle that the expert was not warned about. 

This is remarkable, especially when you consider that the KB initially started 

with no knowledge. This equates to a knowledge base with an accuracy of 

99.9%. No long term knowledge base can claim they are this accurate.  

7.4.4 Versatility of RM 

These results provide a small improvement over previous prudence analysis 

results, indicating the value of RMp(c) as a potential predictor of the boundary of 

knowledge in a KB. While this separation between RMp(c) and Compton et al’s 

(1996) results is only small, there was one very significant advantage found in 

the RM approach during the testing procedure. After the basic parameters have 

been selected, the final threshold adjusting rate can have a significant and 

worthwhile affect on the system’s results.  

This parameter can be set to adjust the threshold quickly or slowly. If it 

adjusts quickly the system is less accurate but produces fewer warnings. If it 

adjusts slowly then this significantly improves the accuracy at the cost of 

producing more warnings. Effectively, this allows an expert direct and simple 

control over the warning and accuracy of the prudence system. It would be 

envisioned that in an application this adjustment could be made via a simple 

slide bar. For example, such a system would allow an expert creating a 

knowledge base for a nuclear reactor to set the system to provide many warnings 

but will gain a KBS with virtually 100% accuracy. Alternatively, an expert 

creating a KB to filter their emails into appropriate folders may reduce the 

accuracy, thereby, only having to check a few more accurate warnings.  

The potential for this versatility was noticed during early testing of the 

prudence methods and so a number of tests were performed to verify its 

occurrence. These tests involved setting up ten different values for the threshold 
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adjustment factor and running the system, each with ten different 

randomisations. This was done for each of the four datasets. Figure 7-5, shows 

eight charts, two for each of the datasets. The first column shows a full chart for 

each dataset with a number of pieces of information. In this column there is a 

dotted straight line joining the 100% accuracy with the 100% number of no-

warnings. This line represents the theoretical case for a random generation of 

warnings. Secondly, there is one unfilled and nine filled triangles, joined by a 

smoothed line, representing the different performances of the RMp(c) approach 

for the different threshold adjusting rates. The unfilled triangle identifies the 

result that was given in Table 7-1. These charts also include a single square 

showing the result for RMp(p). Finally, the empty circle represents the location 

that Compton et al’s (1996) system achieved for each dataset26. 

The second column of charts provides a close up of the RM results section of 

the chart in the first column. The charts in this column do not show the line 

indicating the theoretical results for random prediction of warnings. Included on 

these charts instead are two sets of error bars for the square and each of the 

triangles. The vertical error bars indicate the 95% confidence range for the 

average accuracy, while the horizontal bars show the same for the percentage of 

cases not warned.  

It can be seen in these results that RM was able to achieve virtually 100% 

accuracy for all datasets. For example, with the GARVAN Dataset, the system 

can achieve nearly 100% accuracy (the actual average result was 99.93%) if 

warnings are provided on just over 50% of cases. This is clearly a lot of 

warnings but is a vast improvement on the current use of RDR methodologies 

where the expert must check every case. It can also be seen that the 100% 

accuracy could only be guaranteed if the system provided a warning on every 

case, as would be expected. What is important in these results is that you can 

achieve a result very close to perfect with much fewer warnings. The other 

aspect of these results is that the number of warnings can be reduced to around 

84%, in the GARVAN dataset, of cases if the expert can tolerate an accuracy of 

just fewer than 90%, which is still very high. Similar results allowing variation 

can also be seen for the other datasets.  

                                                 
26  Not included on the multi-class dataset as that is unique to this thesis. 
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Figure 7-5: Comparison of results from a range of tests using different threshold 
adjustment values. The y-axis represents the level of accuracy achieved by 
each experiment. The x-axis shows the percentage of cases where a warning 
was correctly not given. Each triangle and square represents an average from 
ten runs. Each also has error bars for both the x and y axis indicating the 95% 
confidence level. The hollow triangle identifies the result also shown in Table 
7-1. The square identifies the result for RMp(p). The hollow circle locates 
Compton et al’s (1996) results. The dotted line represents how a random 
prediction would be expected to perform. 
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These results also reveal that there is a natural limit in RMp(c) when trying to 

reduce the number of warnings. As the threshold adjustment variable approaches 

infinity the system effectively loses the effect of the threshold. This represents 

the situation for the lowest level of accuracy and warnings. However, this does 

not result in zero warnings. On the contrary, the system still produces a number 

of warnings and is still reasonably accurate. This is because warnings are still 

being produced when there is a difference between MCRDR and the ANN’s 

classifications. No amount of adjustment to the threshold can stop these 

warnings. This is why in the TTT dataset the number of warnings could not be 

matched to Compton et al’s. This does not, however, negate the advantages of 

the versatility just discussed, because this appears to only occur at relatively low 

levels of accuracy, which is unlikely to be selected by an expert. 

These results also show Compton et al’s (1996) results sit on or very near the 

performance line of RMp(c). This shows that, with the appropriate parameter 

settings for RM, the systems perform similarly well. However, the versatility of 

RMp(c) provides a very significant advantage over Compton et al’s (1996) system, 

which is incapable of adjusting its performance. The way it performs for a 

particular dataset is entirely governed by that dataset. 

7.4.5 Learning Speed 

When this system has been presented at conferences, the question that has 

commonly arisen is how can the ANN in this method learn so quickly to get 

such spectacular results?  This question originates from a long held belief that 

ANNs only learn very slowly. The answer for the success in the RM system 

essentially boils down to two factors. The first is the speed of learning in the 

fundamental methodology. As described in the previous chapter’s results, 

MCRDR reduces the dimensionality of the problem space making the task of the 

network easier especially when combined with the single-step-∆-update-rule. 

The second is a sleight of hand regarding the application of the method to the 

task. Normally, an ANN is trained for what you are trying to learn, for instance, 

what cases are incorrect and require a warning. The key to the approach used in 

this thesis is that the methods are learning what they do not want to know. In 

other words, they are learning when not to warn. This can best be described by 

the chart in Figure 7-6.  
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Figure 7-6: Comparison of the average percentage of cases that produced each of the four 
types of results over ten randomly generated trials.  This chart shows the 
RMp(c) system on the multi-class dataset. 

This chart shows the percentage of each of the four possible results for each 

case using the multi-class dataset with RMp(c). These are an average taken over 

the ten randomised runs for the same parameter settings used in the results 

shown in Table 7-1. It can be seen that the true negative line follows a fairly 

typical ANN learning curve and is essentially what the network is trying to learn. 

Therefore, there is no real trickery in the ANN itself just how it has been applied 

to the task.  

7.4.6 Error Distribution 

Two early fears in testing prudence analysis with RM were that there may be 

either: a peak of false negatives during the early cases presented to the system or, 

an increase in the number of missed warnings towards the end of the expert 

system development. An early peak could cause many of the major generalising 

rules to be omitted causing many errors in the final KB. Without the 

thresholding rule this peak does in fact occur, although it is only small. One 

reason for introducing the thresholding was to prevent this early peak of false 

negatives. The increase in missed warnings would indicate that the system was 

steadily deteriorating, which is the opposite effect to what is required and 

rendering the whole process as unviable. The progressive results displayed in 

Figure 7-6, however, show that neither of these potential problems occurred. 

The few false negatives that did occur were spread out evenly over the first half 

of the expert system’s development. These results strongly indicate that RMp(c) is 

certainly viable and worth further testing. 
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7.5 Using Prudence Warnings 

The results in the last section show an advance from Compton’s earlier work. 

They illustrate that prudence analysis is viable and that it may be possible to 

build a system that can self-assess its knowledge base in relation to each new 

case presented. In the field of knowledge acquisition this could be a significant 

improvement. However, the above results do not show how well the system 

would perform if the user placed their trust in the prudence analysis and only 

checked cases that had generated a warning. Furthermore, due to no previous 

prudence systems producing a consistently high enough accuracy, no one has 

published any studies on the effect of an expert trusting such a system.  

It is possible that even a relatively small amount of inaccuracy in a prudence 

based system could result in large problems in the knowledge base. For instance, 

when an expert does not correct a rule, because it was not warned about, any of 

the following could result: 

1) The system may simply notice the next time a similar case 

arrives and warn the expert at this later stage. 

2) The missed rule may never be created and the prudence system 

may not warn about future cases that may have also caused the 

creation of the rule. 

3) The missed rule may have a compounding effect, where it 

causes rules that would have produced warnings later to now be 

missed because the knowledge base is damaged.  

4) The compounding effect could be exponential resulting in a KB 

that is woefully inadequate. 

Without testing, it is unclear which of these results would occur. The 

greatest obstacle to the idea of prudence analysis as a viable technique would be 

the compounding effect described in the last two points. Therefore, the aim of 

this final result section on prudence analysis will attempt to determine the effect 

on the final KB when developed by a trusting expert. The first result simply 

investigates the number of rules created, while the second section compares the 

trusted KB against the full KB when classifying unseen cases.  
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7.5.1 Rule Creation Comparison 

This first test was performed to investigate how many rules are created in a 

system where the expert trusts the prudence analysis. In these experiments each 

dataset was re-run with the same parameters as the earlier prudence studies 

shown in Figure 7-5. However, on this occasion rules were only corrected if 

there was a warning generated. Figure 7-7 shows the results gathered in four 

stacked area charts, one for each dataset. Each area joins the ten different 

parameter settings, which line up with those in Figure 7-5. For instance, the 

result with the highest accuracy in Figure 7-5 is placed in the left most position. 

The bottom area in each of the charts of Figure 7-7 show the percentage of 

rules created by the trusting expert against the total number a full expert would 

have created. In a system with full accuracy these would be the same giving an 

area of 100%. However, in systems with less accuracy this percentage would be 

expected to reduce. The second dark-grey stack shows the percentage of rules 

we know were not warned about from the previous study. If these missed 

corrections are not fixed but all other rules are, as per the second point above, 

then the stacked percentage should be approximately 100%. If the missed rules 

are warned about later, as per the first point, then the percentage of the bottom 

area will increase resulting in the combined total for the two areas going over 

100%. If missed rules cause a compounding effect, where rules correctly warned 

about in the previous study are now missed because the knowledge base is 

incomplete, then the combined areas will drop below 100%. 

Upon inspection, it can be seen that the results are mixed. Both GARVAN 

and the Multi dataset maintain a total area above 100% for the majority of 

parameter settings. This is an extremely promising result and indicates that the 

only rules missed are those not warned about and that some of these are even 

found later during the development cycle. However the last two GARVAN 

results do start to degrade marginally, suggesting that this promising result is 

only possible when the accuracy is sufficiently high. Comparing these results 

with those in Figure 7-5, the reduction in performance correlates to parameter 

setting where the accuracy drops below 90%. The multi-class dataset does not 

show the same drop on average but the error bars do indicate that this 

performance was beginning to be affected by the order cases were presented. 
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d) Tic Tac Toe 

Figure 7-7: Four stacked area charts showing whether there is any compounding effect on 
a KB when rules are missed. The bottom area shows the percentage of rules 
created by the trusting expert compared to the total amount the full expert 
would have created. The top area shows the percentage of missed warnings 
from the previous prudence experiment. Error bars are shown for each point 
on the bottom area. They are not shown on the top area as they are too small 
to be visible. 

Both the chess and TTT datasets’ results, however, are not as impressive. It 

can be seen that they drop off relatively quickly. These show that unless near 

perfect accuracy is achieved then there is a severe compounding effect. Not only 

did these experiments miss the rules not warned about but the damaged KB 

caused additional results not to be warned. While this degrading performance 

does not appear to be exponential, it does appear immediate. Unlike the 

GARVAN and multi dataset which tolerated a degree of missed rules, the chess 

and TTT datasets dropped off the moment the degree of accuracy started to 

reduce. The issue with these datasets is that they are both constructed from rigid 

environments where the smallest change in the position of a piece can 

significantly alter the case. Therefore, missed cases are more likely to have an 

affect on the resulting knowledge base. On reflection these are not ideal datasets 

for this environment but were used only to compare with the previous work in 

prudence analysis. 
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7.5.2 Classification Accuracy 

The promising results in the last section show that the only rules not created are 

those not warned about and that even some of these are still found later on. This 

is important for the viability of prudence analysis, however, it does not show 

what effect even these few missed rules have on the classification ability of the 

resulting knowledge base. To judge the over-all affect on the KB, the 

generalisation test from chapter 6 has been performed on each dataset with both 

the full and trusting experts. Figure 7-8 shows four charts showing the 9 

classification tests. Each of the nine indicates how many 1/10th segments were 

used for training prior to being tested on the last 1/10th segment. The parameters 

chosen for each experiment are the same ones used for the results shown in 

Table 7-1. These all had a reasonably low level of accuracy and not many 

warnings.  
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Figure 7-8: Compares the full and trusting experts’ knowledge bases after training. Each 
chart shows the KB’s performance for the full system (where the expert checks 
every case) and the trusted system (where corrections are only made if a 
warning is generated). Error bars are also shown at a 95% confidence range. 
The full expert is shown with filled triangles and solid lines while the trusting 
expert has hollow triangles and dotted lines. 
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Interestingly, the trusted KBs perform nearly as well across each of the 

datasets. On the multi-class dataset the KB is almost identical while the 

GARVAN dataset only degraded by less than 1%. This is remarkable as the KB 

had lost approximately 7% of its rules because the expert did not receive a 

warning. Likewise, a similar performance can be seen on the chess and TTT 

datasets. For instance, the chess dataset only lost a little over 1% in its 

classification ability even though it had lost over 30% of its rule base and TTT 

had lost less than 15% of its classification even though it lost more than 40% of 

its rules.  

At first glance this seems remarkable that the KBs could still maintain such a 

high level accuracy. This result though is most likely related to the general 

nature of KBSs. For instance, between 1984 and 1987 the GARVAN-ES1 KBS 

increased its number of rules by approximately 80% but only improved its level 

of accuracy from 96 to 99.7% accuracy (Compton et al. 1988; 1989)(3.1.1). 

Therefore, like in the GARVAN-ES1 system, the rules RM fails to warn on 

appear to be the more specialised rules that only cater for the occasional rule. 

This cannot be proven in this study but the high degree of accuracy after losing 

so many rules indicates that the rules remaining are more general in nature. 

7.5.3 Non-Perfect Humans 

The above results compared trusting the prudence system against an expert that 

checks every case. This is fine in a simulated environment. However, in a real 

world knowledge acquisition (KA) task a human expert is rarely in a situation to 

fully check every case. It could be argued that, in fact the human expert is likely 

to miss the occasional misclassification in the full system. This is likely to be 

especially prevalent during the later stages of KA as they become more 

complacent towards the system’s accuracy. It is entirely possible that the human 

expert could fail to notice more misclassifications than RMp. For instance, it 

would not seem unlikely that a human expert could easily miss 5-10% of errors 

in the KB. The results for RMp, however, can achieve a much improved level of 

accuracy. 

It could be further argued that a human expert is more likely to pay closer 

attention to a case when the prudence system produces a warning. Therefore, 

they are much less likely to miss a misclassification after a warning. Thus, it 



Chapter 7: Discovering the Knowledge Frontier  Richard Dazeley 

    
 220 

may be that in a real world system, the small reduction in performance of the 

trusted KB would be entirely dissipated or even reversed. Unfortunately, the 

performance of an expert in the two different environments is extremely difficult 

to measure, and is not within the scope of this thesis.  

7.6 Summary 

Prudence analysis represents a method for predicting when a case requires 

knowledge beyond the system’s current KB. It is one way of attempting to 

resolve the issue of brittleness in current knowledge based systems. In theory, 

prudence analysis would be a very powerful tool when performing knowledge 

acquisition and maintenance. Previous work in this area (7.1.3), however, has 

yielded results that are not of sufficient accuracy, or that produce too many 

warnings, to make such a system viable. Theoretically, RM studies the internal 

structure of the KB as it is being developed. Therefore, it was believed that this 

information could be applied to this domain, by allowing it to learn the contents 

of the KB, and thus, know when a case requires knowledge from outside.  

In this chapter, two methods of prudence analysis were developed utilising 

RM. The first, RMp(p) (7.2.1), predicted a single value indicating whether the 

expert should check the case. Generally this method did not perform as well as 

either the second approach developed or previous research in the area. The 

second method developed, RMp(c) (7.2.2), used the classification ability of both 

hybridised components in the RM methodology and compared the results. If 

they disagreed a warning was produced.  

The results presented in this chapter show that RMp(c) is able to predict errors 

more accurately than previous work (7.4.1) without increasing the number of 

warnings (7.4.2). The most interesting results were those detailing RMp(c)’s 

versatility (7.4.4). It could be seen that, through a simple process, the expert 

could control precisely what level of accuracy was required for the task at hand. 

This versatility makes RMp(c) more useful when applied in a range of 

applications. 

Due to the RMp(c)’s excellent performance, it was further tested to see how 

the KB would be effected if the expert trusted the system and only checked 

cases that first produced a warning (7.5). Previously, no study had been 
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undertaken to test the application of a prudence system and it was feared that the 

missed errors could compound through the KB development, resulting in a 

significantly flawed KB. Results (7.5.1), however, indicate that compounding of 

errors only occurs with very low levels of accuracy or in particularly rigid 

datasets where the smallest change in the case results in a different conclusion. 

In fact, some evidence was found to suggest that missed errors appear to be 

noticed and corrected in subsequent cases.  

The most impressive result found in this chapter was that, even though a 

number of rules may not be created because no warning was produced, a high 

level of classification accuracy could still be expected (7.5.2). For example, the 

KB built with the GARVAN dataset lost approximately 7% of its total rule base. 

However, this only caused a loss of less than 1% of the KB’s classification 

ability.  

It is further argued (7.5.3) that in many application domains the resulting KB 

may even be better than one fully checked by an expert. This is due to the expert 

having less complacency when checking cases warned about by a prudence 

system than when every case must be verified. This advantage would be most 

prevalent when warnings are kept to a minimum. Therefore, the RMp(c) system 

presented in this chapter represents a truly viable solution to prudence analysis 

which is deserving of further study in a real world domain using human 

expertise. 

  

 

 



 

 

  88  
8 MMoonnCCllaassssiiffiieerrRRMM::  VVeennttuurriinngg  iinnttoo  tthhee  RReeaall  WWoorrlldd  

“You never can tell with bees” said Pooh (A. A. Milne, p11). 

The previous chapter introduced the concept of prudence analysis and showed 

how RM is a highly effective tool at generating accurate warnings, while 

minimising the total number of spurious warnings. It was illustrated that in the 

example datasets, RM’s use of hidden contextual relationships allowed the 

system to outperform Compton et al’s (1996) previous results. Combined with 

its versatility, this system supplies a viable and realistic approach to providing a 

working prudence system for incremental knowledge base development. This 

was further supported by the results suggesting that the final knowledge base 

produced comparable classification accuracy to a fully checked knowledge base. 

These strong results, however, are all from either fabricated datasets or using 

artificial expert knowledge, generally in the form of a decision tree. While these 

simulated experts provide strong indications of how well a method performs in a 

given situation – they are still only indications. However, these simulated 

experts do not show if the system will work when using real human knowledge. 

This is due to human knowledge often differing from the simulated knowledge 

of systems like C4.5. Therefore, this chapter is aimed at moving the prudence 

methods developed in the last chapter into a more realistic environment. In this 

environment the approach used can be tested in a domain using human 

knowledge. If the prudence system can predict misclassifications with a 

reasonable degree of accuracy then this will show that the system is viable for 

use in real world knowledge based products. 

This chapter uses an application, referred to as MonClassifier, developed by 

Sung Sik Park, as its testing environment. MonClassifier is part of a larger suite 

of applications, called PWIMS (Personalized Web Information Management 

System), that have been published, in different forms and sometimes using 

different names, across a number of international conferences (Kim et al. 2004a; 
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Kim et al. 2004b; Park et al. 2003; 2004a; 2004b). This application has been 

used to collect and classify a number of knowledge domains. For each of these 

domains a knowledge base has been incrementally built using human experts.  

After detailing the overall PWIMS system, this chapter will describe the 

MonClassifier application including why it was selected to be used in this study. 

It will also describe how this tool and the datasets were used when testing RM 

within this environment. This will include a discussion of various alterations 

made to the knowledge base and the dataset formats to allow for integration of 

RM and MonClassifier. This is required as the two systems were not directly 

compatible in their original states. Finally, this chapter will then describe the 

experiments performed as well as present and discuss the results gathered.  

It is important to note that the MonClassifier application itself is not part of 

this thesis and that the author of this thesis had no direct input in its 

development. MonClassifier is presented here purely to give the reader an 

understanding of the application used. This thesis is only concerned with the 

philosophy of hidden and dynamic contexts, the development of a method to 

capture such concepts and showing the developed technique’s ability to perform 

in prudence analysis. MonClassifier is only being used in this thesis, as it 

provides access to a large real world compatible dataset along with a near 

complete real world knowledge base developed by a human expert. Therefore, it 

provides an environment that is as close to a real world test as is possible within 

the time frame of this project. 

8.1 The MonClassifier Application 

MonClassifier is a component of a larger integrated knowledge management 

system for newly uploaded pages on the World Wide Web (WWW). Currently, 

the larger system which is still in development has no official name, but has 

been published in a similar form where it was referred to as PWIMS 

(Personalized Web Information Management System). The difference between 

the published system and the current system is that it is no longer a stand alone 

personalised tool, rather, it has been redeveloped using a server-client 

architecture (Park 2005). For the purposes of this thesis, the larger system will 

be referred to by the older name PWIMS as it is fundamentally the same system. 
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8.1.1 PWIMS 

The PWIMS system, and the current version of the system, consists of three 

components: 

• a Web monitoring agent 

• a storage management (or knowledge management) component, and 

• a knowledge sharing agent. 

PWIMS provides support for dynamic and personal web portals in a simple 

suite of applications. The Web monitoring agent monitors a number of user-

specified websites for newly uploaded pages. When a new page is uploaded the 

system retrieves the page and stores it in the database. Therefore, this system is 

ideal for monitoring sites such as news or research portals. When pages are 

gathered the storage management component is used by a domain expert to 

classify each article appropriately. The system can then redistribute the 

classified articles to a web page or push relevant pages to clients. Figure 8-1 

shows a diagram showing the PWIMS architecture. The Web monitoring and 

knowledge sharing agents, however, are not relevant to this thesis and are not 

discussed further. 
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Figure 8-1: PWIMS Architecture (Park et al. 2003) 
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8.1.2 MonClassifier Overview 

The only component of PWIMS that is directly relevant to this thesis is the 

central storage management component. In PWIMS this was just a component 

of the larger system, however, in the currently unpublished version this 

component is the stand alone client application referred to as MonClassifier 

(Park 2005). This sophisticated application takes each gathered web page (case) 

and presents it to the expert who classifies each in turn. Generally, this simply 

involves accepting the offered classification, but occasionally may require a 

reclassification.  

The classification engine used is MCRDR, hence the interest in the system 

to this project. Therefore, the human expert can classify each web page into any 

number of possible classes. These classes are actually folders organised in a tree 

like hierarchy in a similar fashion to Windows Explorer. The expert actually 

only really needs to understand the folder organisation and does not require any 

understanding of the underlying knowledge base. A screen shot of the main 

view from the MonClassifier application is shown in Figure 8-2. 

 

Figure 8-2: Main view of the MonClassifier application. It shows the monitored sites and 
classification tree on the left with block arrows indicating the current article’s 
classifications. The current article has been parsed with only the relavant 
details shown in the main window. The keywords, used for the current 
classifications, are highlighted. The top splitter window shows the current list 
of classified articles. 
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In situations where the expert feels a case has been misclassified they can 

correct it via the KA interface provided. A new class can be created by the 

expert by simply creating a new folder. The expert can then create rules by 

simply selecting words from a difference list. It can be seen from the previous 

screen shot that each case consists of many possible keywords. Therefore, the 

MCRDR engine allows the expert to select the words that they believe 

adequately separate the cases within the current context. 

The MonClassifier application stores each article gathered in a MySQL 

database. Additionally, the database stores all relevant information required 

about the knowledge stored and the relevant cornerstone cases. It is in fact this 

database that RM directly interfaces with in order to generate the results in this 

chapter. 

8.1.3 Weakness of MonClassifier 

The MonClassifier system is an extremely sophisticated application and one of 

the most elaborate implementations of MCRDR in a real world system. It’s an 

application designed to be used by non-technically minded users. However, like 

in any RDR based application it fails significantly in one regard. The work load 

required by the expert to build a knowledge base is far too high. The dataset of 

gathered articles used in this chapter has taken a number of months (part-time) 

for the expert to build the knowledge base. The process has involved the expert 

reading each article and deciding whether the conclusion was correct. Clearly, 

this is excessively time consuming, especially during later stages of KB 

development, as so few cases actually need correcting. 

While the MonClassifier has an important market in its current form it could 

be significantly improved by the inclusion of a viable prudence system. A 

prudence system would allow an expert to reduce the amount of cases that 

require reviewing while still being able to maintain a reasonable level of 

confidence in the accuracy of the knowledge base. It is the viability of RM in 

this role that this chapter will investigate.  
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8.1.4 MonClassifier Knowledge Representation 

RM was not actually directly interfaced with the MonClassifier system. Instead, 

it remains a separate application and testing environment that directly interacts 

with the MonClassifier’s database and knowledge base. While the 

MonClassifier used MCRDR for its knowledge base it was not implemented 

exactly as stipulated in Kang’s (1996) PhD thesis. The altered form of the 

MonClassifier’s MCRDR structure did cause some integration issues with the 

RM system, which are detailed in this section.  

MCRDR rules were designed to incorporate any number of conditions linked 

with a Boolean ‘AND’ operator. However, MonClassifier implemented a 

simplified design where each rule contained only one condition. In situations 

where more than one condition was selected by the expert, a series of single 

child branches were added to the tree where only the final rule contained the 

actual classification. The different representations can be seen in Figure 8-3. 

This alternative representation was not a major problem, although care was 

required when creating rules, which is detailed in section 8.2.2. 

 

If a, b, c then 
Class X 

If d then 
Class Y 

If e,!f then 
Class Z 

If a then 
Class null 

If c then 
Class X 

If b then 
Class null 

If !f then 
Class Z 

If e then 
Class null 

If d then 
Class Y 

a) MCRDR Rules b) MonClassifier Rules 

 

Figure 8-3: Comparison of the rule structures used in traditional MCRDR and that used in 
MonClassifier. a) Shows how the MCRDR KR compactly incorporates the 
conditions. b) Illustrates the more spread out KR used in the MonClassifier 
application. Rules without an associated class simply have a null classification. 
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8.2 Experimental Method 

The testing methodology used to generate the results in this chapter is 

essentially the same as the one used in the previous chapter. However, using RM 

in this environment did present a number of difficulties. While most of these 

were only implementation difficulties, some deserve mentioning in this section. 

The expert knowledge available had to be used indirectly, rather than producing 

warnings for the user directly. Other difficulties revolved around the memory 

requirements of a large dataset as well as the use of unclassified cases. This 

section will first provide an overview of the tests performed, the human-expert 

knowledge, and the dataset used. 

8.2.1 Tests Overview 

The tests performed for the results in this chapter are the same as the 

previous chapter. Essentially, two types of tests were performed using both of 

the prudence analysis implementations, RMp(p) and RMp(c). The first test simply 

tested each method’s ability to accurately predict when to warn the user of a 

potential misclassification. This involved recording true positives, false 

positives, false negatives and true negatives for each case presented. The second 

test investigated what effect using the RMp(c) prudence system would have on the 

accumulated creation of rules when the expert trusts the system. The last chapter 

also included a generalisation test on both the full and trusted KB. However, this 

experiment could not be duplicated for the MonClassifier’s dataset due to the 

difficulties in processing large collections of full text cases in a limited time 

frame. 

8.2.2 Expertise 

The ideal test would have been to have RM fully integrated with the 

MonClassifier system and see how the human expert actually performs in this 

prudence based environment. The difficulty here is that the time frame of this 

project did not permit for this model of testing, nor was it possible to have an 

independent expert provide months of their time to produce a single test. Instead, 

the project used the knowledge base already built by a human expert in a similar 

way to the C4.5 simulated experts in the previous chapters. However, instead of 



Chapter 8: MonClassifierRM: Venturing into the Real World Richard Dazeley 

    
 230 

first generating a decision tree through machine learning, the human expert’s 

MCRDR tree was used. This involved creating a new semi-simulated expert. 

The reference to this new expert being only semi-simulated identifies that, while 

the expert behaviour is software driven, the actual KB used is not simulated. 

Regardless of the similarities to the previous chapter’s simulated expert, this 

semi-simulated expert is fundamentally different to its brother in many respects. 

Firstly, the knowledge base is full of all the usual inconsistencies, errors, 

intuitions and foibles that would be expected from a human built system. These 

‘errors’ from a human expert do not occur in the machine generated knowledge 

base. Secondly, the human built tree was built from a multiple classification 

domain, whereas, the C4.5 based simulated expert could only produce single 

classifications. 

The semi-simulated expert first loads the knowledge tree from the 

MonClassifier’s database, which is kept in its original form, as described in 

section 8.2. This tree then views each case presented and classifies it, just as in 

the C4.5 expert. However, occasionally a classification can result in a ‘null’ 

class. In these situations the last ‘non null’ class is used as the classification. 

This is the same method of inferencing used in the MonClassifier application.  

If the semi-simulated expert’s conclusions differ from those of RM then new 

knowledge is added. When selecting attributes for the conditions of any new 

rule the same process was taken as in the previous C4.5 based simulated expert. 

Starting from the root, attributes are selected by moving down the knowledge 

tree until a certain number are identified as not being in the RM rule path of the 

node currently being corrected. The main difference here is that there is no 

arbitrary number of attributes required. The expert will select all the attributes 

needed to reach the relevant non null node.   

The resulting semi-simulated expert creates rules in a fashion that is very 

simular to the real world human expert and does so with the human knowledge 

previously recorded. However, this approach is not using the actual human 

expert for interaction. Thus, it is not a true representation of a real world test. 

Nevertheless, it is as close as possible, in any realistic sense, to a real world 

environment. Additionally, it offers advantages that direct interaction with a 

human would not offer, for instance the ability to perform the tests multiple 

times with different sequences of cases. 
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8.2.3 Dataset 

The monitoring agent in PWIMS has been gathering articles for an extended 

period of time within a number of various domains. The domain with the largest 

collection of articles is the eHealth domain which contains articles gathered 

from a number of health related news sites, such as Australian Health, BBC 

Health and CNN Health. At the time of testing this dataset contained 17571 full 

text articles. More importantly though, was that the expert had classified 12645 

of these cases into the KB. In classifying these articles the expert had created 

some 120 classes. This presents a very substantial real world dataset. 

There were two main difficulties, however, with the dataset as it was 

supplied by the MonClassifier application. The first was the 4926 cases not yet 

classified. The vast majority of these could simply be correctly classified 

immediately using the existing knowledge in the KB. The only reason they are 

in the pool of unclassified articles was because the expert has not checked them 

yet. However, some may need new rules to be added while others may have 

been seen by the expert but rejected as not being relevant to the domain. The 

problem for the experiments in this thesis was what to do with these cases. If 

they were simply omitted, the tests would not be checking whether RM can 

recognise default cases that do not need a classification.  

The decision made was to treat these cases exactly the same as the classified 

ones. This meant making the assumption that the knowledge base was complete 

and that the classifications that would be given to the, as yet unclassified, cases 

were correct. The benefit of this decision meant that all types of cases even 

those rejected as irrelevant or requiring a default classification could be included.  

The second issue was purely an implementation issue. Each case was very 

large and access times to the MonClassifier database were far too slow to be 

done on an individual basis. Therefore, large chunks of the dataset were loaded 

during each query. This reduced the database access time but slowed testing 

down due to memory issues. In order to reduce these memory issues each case 

had irrelevant words removed. Therefore, each case was reduced down to only 

those keywords that appear somewhere in the KB created by the expert. This 

had no effect on the behaviour of RM as the words removed would not have 

been used anyway, but it did speed up the expert’s attribute selection.  
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8.3 Results 

To measure RM’s performance in a real world domain, the same approach was 

taken as in the previous chapter. This involved viewing the differences in both 

accuracy and the number of warnings. Table 8-1 shows the raw results of each 

system’s performance on the eHealth dataset. Included in this table is the 

calculated level of accuracy in the final column.  

Algorithms 
False 

Neg % 
True 

Pos % 
False 
Pos % 

True 
Neg % 

Accuracy % 

RMp(p) 0.12 1.6 22 76 93 

RMp(c) 0.058 1.7 17 81 97 

Table 8-1: Comparison of the raw averages and the calculated accuracy between the two 
prudence analysis systems developed on eHealth. These results have been 
rounded to two significant places. 

These results are very interesting when viewed in correlation with those 

from the previous chapter. Both methods, but especially the classification based 

approach, have been able to maintain a very high level of accuracy, far beyond 

previous research. RMp(c) has performed exceptionally well outperforming its 

earlier performance in the last chapter. Likewise, RMp(p) has also achieved a 

higher than expected accuracy. This high level of accuracy is essential to 

maintain a KB that is as similar as possible to what would be created if every 

case is checked.  

The main issue revealed in these results is the percentage of warnings 

generated. When using the prediction based approach there was a warning 

produced on a quarter of cases. This is because of the increased size and 

complexity of the system. As previously discussed the algorithm is actually 

learning when not to warn. Therefore, RMp(p) has failed to learn well enough for 

a prudence system. When an expert used a system producing excessive warnings 

it is likely they would cease paying full attention to the warnings produced.  

RMp(c), on the other hand, has produced significantly better results. It was 

able to maintain a higher level of accuracy while also being able to limit the 

number of warnings produced. However, like the first approach, it has also 

increased its percentage of warnings from the earlier test sets. Interestingly, it 

suffered much less from the more complicated domain. This is most likely due 

to it being able to produce more information from the network’s outputs, thereby, 

preventing a single node from having to provide all the analysis required. 
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8.3.1 Versatility in eHealth 

As discussed in section 7.4.4, one major advantage of RMp(c)
27 when applied to 

prudence analysis is its versatility. It was found that the threshold adjustment 

factor could be modified, which had very interesting affects on the final results. 

By altering the threshold at different speeds and maximising the threshold at 

different levels, a significant degree of control could be achieved. For instance, 

it was found that the accuracy could often be improved to around 100% at a cost 

to the number of warnings generated. Likewise, the number of warnings could 

be significantly reduced at a cost in accuracy. 

The results for RMp(c), shown in Table 8-1, were selected as it was judged 

the best all round performer. However, just as in chapter 7, it was found that a 

range of performances were possible. An identical experiment to the one 

performed in 7.4.4 was performed for the eHealth domain. This allowed a 

determination to be made as to whether the versatility noticed previously is the 

same for the human knowledge based domain. Figure 8-4 displays two charts 

showing a selection of experiments with different threshold parameter settings. 

Each triangle represents the average for a particular parameter setting over 10 

runs. Each triangle also has error bars in both the x and y planes, indicating the 

95% confidence range. As before the theoretical random system is shown as a 

dotted line.  

The interesting aspect of these results, as discussed in 7.4.4, is that by simply 

adjusting a single parameter, the system can control the warning frequency and 

accuracy of the system. Therefore, in a critical system, such as a nuclear reactor, 

the parameters can be set to give approximately 100% accuracy, while still 

reducing the amount of warnings from a fully checked system by nearly 50%. 

Likewise, in minimum risk applications, it may be better to set the parameters to 

produce as few warnings as possible. In this situation the expert could still 

expect to get a high degree of accuracy.  

                                                 
27  This versatility is also possible using RMp(p) as well, however this was not tested as its general 

performance was significantly worse than RMp(c). 
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Figure 8-4: Comparison of results from a range of tests using different parameter settings. 
The y-axis represents the level of accuracy achieved by each experiment. The 
x-axis shows the percentage of warnings. Each triangle represents a single run.  

8.3.2 Parameter Tuning 

 
While this feature makes RM a very powerful tool as it allows the system to be 

set up specifically for a particular user’s needs, it also represents its most 

significant failing. The sheer number of parameters and possible variations does 

make it difficult to ensure that the best parameters are shown. These parameters 

and possible variations also require time and effort to set up the system for each 

domain applied. This has been a common issue in ANN research. However, this 

issue was exasperated in RM, because not only were there the ANN parameters 

but also parameters related to the integration of the ANN with the MCRDR 

engine. 

This problem of parameter tuning has been consistently a major issue in 

gathering results throughout this project. For instance, the many results 

generated throughout this thesis were all hampered by the difficulty of 

parameter tuning. When being applied in a real world application, significant 

testing of the system would be required to determine a reasonable setting. 

However, it was also found that with experience many of the parameters were 

becoming easier to set as they tended to following various patterns. Therefore, 

while parameter tuning is a major development issue, it alone does not prevent 

RM’s application.   
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8.4 Using Prudence Warnings 

The previous chapter showed that in situations where cases did not generate a 

prudence warning when the expert would have created a rule produced no 

compounding effect, unless the accuracy of the system was very low. This is 

important, because a compounding error would mean a prudence system would 

require virtually 100% accuracy, thereby, rendering prudence analysis as 

effectively useless. For completeness, this test has also been applied to the 

eHealth domain, in order to confirm that errors do not perform any form of 

compounding issues in a real world domain. 

This test was performed by only showing cases to the expert in situations 

where the RM agent had produced a warning. Figure 8-5, details the average 

percentage of rules created compared to what should have been created and the 

amount of missed warnings. It can be seen that the average total of these 

regularly passes 100%, indicating that there was no compounding effect caused 

when rules were missed. These results strongly indicate that RMp(c) is viable in 

such a domain. Not only does it maintain a high accuracy, with a manageable 

number of warnings, but it also suffers no error compounding. Additionally, the 

error bars in Figure 8-5 suggest that RMp(c) is very consistent regardless of the 

order cases are delivered to the system for analysis. 
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Figure 8-5: Stacked area chart showing the average number of rules created when trusting 
the prudence system for the eHealth domain. The number of false negatives 
are taken from the full implementation. The total rules and missed warnings is 
also provided 
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8.5 Summary 

This chapter built upon the findings in the previous chapter by applying the 

developed prudence methods into an environment using human knowledge. The 

environment used was developed from the cases collected and knowledge 

acquired in the MonClassifier application, developed by Sung Sik Park (8.1). 

MonClassifier is an MCRDR based classifier for newly uploaded web pages. 

The MonClassifier program is one part of a larger suite of applications, referred 

to as PWIMS (Personalized Web Information Management System) (8.1.1). 

This chapter briefly described this application and detailed the few issues that 

arose when attempting to integrate it with the RM methodology developed in 

this thesis. 

The purpose of this chapter was to apply RM in as close to a real world 

environment as possible. The advantage of using the MonClassifier system was 

that it allowed the use of a large dataset of world health news stories collected 

over more than a year, combined with the knowledge already extracted from a 

human expert. This was important as the knowledge contains all the usual 

inconsistencies, errors, intuitions, and foibles that would be expected from a 

human expert. Furthermore, this knowledge uses MCRDR and so is in a 

compatible format. 

The results discussed during this chapter certainly support the general trend 

observed in the simulated environments. Both algorithms showed a strong 

ability at being able to accurately predict when a case was beyond the current 

system’s knowledge to accurately classify (8.3). This is of great importance as it 

supports chapter 7’s findings that RM applied to prudence is a powerful tool. It 

was also found that the classification based approach showed a significantly 

stronger performance in both accuracy and avoiding false warnings.  

The results from the previous chapter, as well as, those presented here, 

highlight the ability of RM in one major domain of study. Here RM has out-

performed earlier approaches to prudence analysis. This strongly indicates that 

the hidden and dynamic context discovered in the RM system provide valuable 

information that can very effectively be applied in a highly useful way, thereby, 

supporting the second hypothesis of this thesis that RM produces significant and 

useful information.  



 

 

 

    99  
9 CCoonncclluussiioonn  

‘It’s a Missage[sic],’ he said to himself, ‘that’s what it is. And 
that letter is a “P,” and so is that, and so is that, and “P” 
means “Pooh”, so it’s a very important Missage[sic] to me…’  
  (Milne 1926, p123). 

Gaines’s (2000) conceptual framework for human psychology, sociology, action 

and knowledge, identified the process of practice as a central core region that, as 

yet, remains virtually untouched by researchers in the AI community. 

Connectionists have been attempting to emulate higher brain functions while 

knowledge based approaches like Cyc have attempted to extend the application 

of reason downward through codifying general knowledge. However, 

connectionist based approaches suffer from their slow computational nature and 

inability to consistently reason and justify their conclusion. While knowledge 

based approaches are unable to avoid their inherit brittleness, partly from a lack 

of general knowledge, but also through an inability to adapt and generalise 

stored facts.  

The dichotomy between connectionist and knowledge based methodologies 

is not simply limited to their performance in various domains, but also stretches 

back to some of the underlying philosophies. The knowledge based approaches 

have traditionally been based on the physical symbol hypothesis which is built 

around the idea that knowledge is a substance that exists. Furthermore, this 

knowledge can be imparted from one person to another, which must involve the 

transference of this substance. Logically, if this material can be passed around, 

then it can be codified and passed to a computer. Yet, numerous failed systems 

have forced some researchers to revise these concepts of knowledge and move 

towards a situation cognition (SC) based view. The SC view revolves around the 

premise that knowledge is generated at the time of its use. This implies that the 

existence of knowledge is based on the context of a given situation. 
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However, the few methodologies specifically attempting to incorporate the 

context of a situation, either in the knowledge itself or in the structure 

knowledge is represented, only treat context as a static entity. Strong situation 

cognition advocates claim that this is inadequate and that context has a much 

more significant influence over knowledge. They go on to claim that any form 

of symbolic representation should be completely discarded as systems should be 

purely reactive. This is the fundamental philosophical nature of most 

connectionist based methodologies. Nevertheless, a purely reactive system is 

unable to plan, reflect or apply any other form of reason with any great 

significance. Additionally, strong SC advocates fail to recognise that symbolic 

approaches have been, and continue to be, successful in a many applications.  

The position of this thesis was to find a middle road between these 

dichotomous streams of philosophical and methodological research. 

Philosophically, this meant finding a position that potentially satisfies both 

streams of situation cognition. This was achieved by defining an intermediate 

situation cognition view of knowledge, by taking a position that is essentially 

similar to that of the strong SC advocates, with one primary exception – it does 

not disregarding symbolic reasoning. Basically, this new philosophical position 

agrees with the strong SC view that context is more complex than weak SC 

advocates commonly assume. However, if the symbolic approach can 

incorporate hidden and dynamic forms of context, then they can achieve a 

similar level of reactivity as is present in non-symbolic approaches. 

Methodologically, this thesis intended to develop an approach that took this 

intermediate SC position, by including the incorporation of hidden and dynamic 

contextual information within a system that was symbolic at its core. Although 

not tested directly, such a method moves much closer toward being able to 

model the process of practice. The remainder of this chapter will briefly 

summarise the methodology and the results achieved in classification and 

prediction tasks. Additionally, it will review the methodology’s application to 

the domain of prudence analysis. Secondly, this chapter will discuss some 

aspects of this work not directly addressed in the core of the thesis, as well as 

identify some of the problems with the methodology. Finally, this document is 

only a first step in the possible uses of RM. Therefore, the last section details a 

number of avenues that could be further investigated. 
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9.1 Methodology and Results Summary  

This project involved the development of a hybrid methodology, referred to as 

Rated MCRDR (RM), combining MCRDR (Multiple Classification Ripple-

Down Rules) with a function fitting technique, namely an artificial neural 

network (ANN). This hybridisation was performed in such a way that the 

function fitting algorithm learns patterns of conclusions found during the 

inferencing process. The position of rules and conclusions in the MCRDR 

structure represents the context of the knowledge, while the network adjusts its 

function over time as a means of capturing hidden relationships. It is these 

relationships that represent the methodology’s hidden contexts, while the ability 

to alter these contexts during the system’s life allows a form of dynamic 

contextual adjustment. 

This amalgamation appears simplistic but was by no means trivial. The 

fundamental difficulty was finding a means for taking the inferenced results 

from MCRDR and coding an input sequence for the network. Basically, the 

problem comes from the fact that the MCRDR structure is expanding constantly. 

Therefore, the network’s input space must also grow to match. However, 

previous work in the function-fitting literature has not attempted to develop a 

network capable of increasing its input space. The problem arises from the 

internal structure of neural networks where, as the input space is altered, the 

interconnections between neurons and the associated weights are also changed.  

During this project a number of different approaches to solving the growth 

of the input space were investigated. Included in chapter 5 is a description of the 

main seven methods developed. Attempts to use other network forms or 

different types of function fitting algorithms were unsuccessful due to their lack 

of extendibility. These seven methods were not all developed to be the best - 

some were used in testing mainly to show that aspects of the more complex 

approaches did offer some learning assistance. 

The initial results chapter (6) first involved performing a number of 

experiments on the seven techniques. These tests were aimed at finding which 

method learned the fastest and maintained the best generalisation in both 

classification and prediction tasks. These tests all used simulated expertise, 

allowing for a greater range of testing that could never be performed using real 
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human expertise. The C4.5 simulated expert was developed in the same manner 

as those used by previous researchers (Compton 2000; Kang 1996). The other 

simulated experts were specifically designed to test particular features of the 

system, such as multiple classification and non-linear knowledge domains. 

The experiments investigating the various methods’ abilities at classification 

involved both testing their ability to generalise and to learn in an online 

environment. The generalisation test involved seeing varying sized portions of a 

dataset for training. A separate section, not seen during training, was then used 

for testing. Each system’s ability to correctly classify these previously unseen 

cases provided a metric for measuring which method was most capable at 

generalisation. The online experiments involved showing the entire dataset to 

the system in small amounts repeatedly. A system capable of learning online 

should be able to correctly classify a large percentage of cases after only a few 

viewings. Similar experiments were also performed for the prediction domain. 

Success, however, was measured by the average amount of error in the system’s 

conclusion rather than the amount of correct classifications. Likewise, the online 

test for predictions maintained a running average error over time to judge the 

system’s accuracy. 

Section 6.2 of the thesis was extensive and resulted in the conclusion that the 

RMbp(∆), approach was the most versatile. It also found that the linear version, 

RMl(∆), also performed just as well in many situations. However, it rarely 

outperformed the non-linear approach. One interesting result was the failure of 

the RBF based techniques which did not live up to the expectation of being the 

most effective implementation. The RBF result was put down to a problem with 

over fitting. This over fitting was most likely due to the MCRDR component 

having reduced the dimensionality of the problem space. This has reduced the 

difficulty for the network and caused the RBF approach to create too many 

hidden nodes. Likewise the speed of learning in the backpropagation based 

approaches was improved by the reduction in dimensionality and then further 

improved with the use of the single-step-∆-initialisation-rule. 

The second collection of experiments in chapter 6, tested RMbp(∆) against 

each of the methods used in its construction, MCRDR and a backpropagation 

neural network. RM was not tested against other classifiers or predictors as this 

project was only interested in whether the hybridised approach outperforms each 
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of its parts. The tests performed in this section are identical to the generalisation 

and online tests performed in the first section. When doing these tests the best 

effort was made to set the neural network up in the most optimal fashion 

possible. Therefore, a number of tests were run in an attempt to find the best 

parameter settings for the tasks required. 

The results in section 6.3 showed that RM was able to capture the power of 

both techniques, achieving both excellent generalisation and learning fast 

enough for an online environment. These results also indicated that when the 

knowledge structure is unable to capture some aspects of a domain that the 

network was able to compensate, producing significantly better results. The 

results in chapter 6 show that across all datasets RM is a very powerful 

methodology and generally outperformed both of its underlying algorithms. This 

effectively answers the first hypothesis positively. 

While part 2 was looking at developing and illustrating the performance of 

RM in general, part 3 investigated its performance in a single specific domain, 

prudence analysis. Prudence analysis is a specialised form of verification and 

validation and is concerned with attempting to predict when a situation is 

outside its KB. In situations where the system believes it requires knowledge 

from outside its current area of coverage then a warning is issued, requesting 

that the expert investigates the situation.  

Two approaches were developed to attempt to predict misclassifications 

using RM. One method was based on the prediction technique (7.2.1), referred 

to as RMp(p), and the other used the classification approach (7.2.2), called RMp(c). 

Both of these methods were tested on four datasets and compared to Compton et 

al’s (1996) results. These tests once again relied on simulated expertise, 

allowing for a more extensive evaluation. In the experiments (7.3) the prudence 

systems were shown each case in turn. They first classified and then produced a 

warning if the system felt it was not sure about the conclusion it had determined. 

Then, ignoring if a warning was given or not, the expert corrected any 

misclassifications. A log recorded when the system proved these warnings and 

whether the expert corrected any errors. The analysis of these results could then 

determine the accuracy of the warnings provided.  
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Both methods were effective on the majority of datasets, although the 

prediction based technique failed in the more complex multiple classification 

domains (7.4). Most impressive, though, was the exceptional performance of the 

classification based approach. This method outperformed Compton et al’s (1996) 

approach in both the level of accuracy (7.4.1) and the prevention of too many 

false warnings (7.4.2). Additionally, it achieved these results across all datasets. 

The method represents the first truly viable approach to prudence analysis yet 

found.  

During the testing phase a surprising result also occurred (7.4.4). It became 

apparent that by simply adjusting a single parameter within the classification 

based approach it was possible to have direct control over the prudence system’s 

accuracy. You could increase the accuracy at the cost of producing more 

warnings or reduce the amount of warnings by reducing the accuracy. This 

provides RM with a unique and very useful ability. It allows the expert direct 

control over their knowledge base development. Previous research, such as 

Compton et al’s (1996) work, had relied entirely on a case’s attributes to judge if 

a warning was required. Therefore, warnings were produced by the dataset and 

the order cases were presented. Therefore, the expert had no ability to control 

the warning frequency or accuracy. 

Due to the system’s success in this domain, it was further tested to ensure 

that a KB constructed using prudence analysis would still result in being viable 

(7.5). This involved re-running the previous experiments with one fundamental 

difference. This time the expert would only correct misclassifications if the 

warning system had first produced a warning. This test emulates an expert that 

fully trusts the prudence application. In the few studies on prudence analysis 

done previously no attempt has been made to measure what the effect of missing 

errors has on a knowledge base. The fear was that a missed classification could 

compound, causing many other misclassifications to then be missed. These tests 

showed, however, that this was generally not the case. There appeared to be no 

compounding of errors unless the accuracy of the system was very low. In fact 

there was an indication that missed classifications were often detected later.  

The final experiment performed in section 7.5.2 tested to see what effect on 

a KB’s classification ability was incurred by a trusting expert. This involved 

performing the generalisation experiments from chapter 6 again but this time 
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only creating a new rule if a case was warned about by the expert. These 

experiments produced some spectacular results. It was found that even when a 

large amount of misclassifications are missed, due to no warning being 

produced, only a relatively small effect was produced on the classification 

accuracy of the resulting KB. For instance, a KB built for the GARVAN dataset 

only lost 1% of accuracy even though it had 7% less rules.  

These result show that even the small amount of missed warnings in the 

RMp(c) system have very little effect on the KB illustrating the effectiveness of 

this approach. RM provides a distinct advantage over other knowledge 

acquisition tools because the expert can confidently leave all cases that do not 

generate warnings and know they will still achieve a solid KB. These results 

illustrate how the hidden contextual information found can be interpreted to 

provide significant and useful information, effectively answering the second 

hypothesis. 

The advantage of using simulated expertise in these earlier experiments was 

that it allowed for many tests to be performed, which would otherwise be 

impossible. However, simulated results using artificially generated knowledge 

only provides an indication of a system’s viability. Ideally, a new KBS such as 

this should be applied in a real world domain using human knowledge. This 

however, is far beyond the scope of this thesis. It would not have been possible 

to find an expert willing to devote their time and energy to develop two expert 

systems: one using prudence analysis and one not. Additionally, even if an 

expert was available, the test would be invalid, because the expert would gain 

experience during the development of the first system, which they could use in 

the development of the second. 

Instead, in chapter 8, this thesis attempted to test the prudence analysis 

system in as close to a real world environment as possible. This involved using a 

semi-simulated expert. This expert used a simulated method of interacting with 

the RM system, similar to that used in the C4.5 simulated expert, but using 

human rather than artificially generated knowledge as a basis for the expert. 

This means the knowledge was consistent and repeatable for all experiments but 

also still contained all the potential foibles that are characteristics of human 

knowledge. This represented a significantly more realistic series of experiments 

to judge the feasibility of RM. 
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This final chapter of results used the MonClassifier program developed by 

Sung Sik Park. This application is used for gathering, classifying and 

distributing newly uploaded pages from a selection of websites. This was the 

perfect real world environment to test RM’s prudence abilities. MonClassifier 

used the same knowledge acquisition and inferencing techniques as RM and the 

eHealth domain had already gathered a substantial dataset. Most importantly, 

though, was that it already had a large store of human expertise for that dataset.  

The results from the experiments carried out on RM’s analysis of the 

eHealth domain showed that its performance was very similar to the simulated 

tests. The accuracy for RMp(c) in the eHealth domain was very high, 97%, with a 

manageable level of warnings, 81%. The versatility of RMp(c) was also examined 

(8.3.1) finding that this ability was maintained when using human knowledge, 

allowing an expert to vary the accuracy and number of warnings. Additionally, 

tests on how much the KB was affected by missed warnings reinforced the idea 

that the system was robust. 

This is of great importance, as it shows that not only were the simulations 

reasonably accurate in many regards, but also that RM performs just as well in a 

full text, multi-classifiable domain with human knowledge. These results 

highlight that RM should be a viable approach to developing real applications 

designed for extracting human knowledge and releasing the expert from being 

required to check and verify all cases presented to the system.  

9.2 Discussion 

In developing the method for this section a small number of issues and questions 

arose concerning the methodology developed. This discussion section is aimed 

at briefly addressing some of these concerns to provide the reader with an 

understanding of some of these side issues. The first subsection discusses how 

RM would be expected to perform if attached to a KB that is already partially 

constructed. The second challenges a simplifying assumption made throughout 

all testing that we know at the outset how many classifications to expect. The 

final subsection discusses some problems encountered throughout testing. While 

these had been briefly identified earlier they are stated more clearly here as they 

are important issues if RM was to be applied in a real world system. 
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9.2.1 Building upon Existing Knowledge 

All the studies undertaken in this thesis have been based on the idea that RM is 

applied from the first stages of knowledge acquisition. Fundamentally, it is the 

information gathered when rules are created that allows the system to learn 

quickly and effectively. This, however, does not mean the network cannot be 

applied retrospectively to an MCRDR tree. Providing the earlier cases used to 

build the tree have been retained, such as the stored cornerstone cases, then 

these can simply be used to train the network. Therefore, when being applied to 

an existing tree, the network can be initialised with random weights and input 

nodes for each current feature from the tree, such as an input node for each rule. 

Then, the network can simply be trained through repeated viewings of each case 

in the exact same manner as any neural network.  

There is one clear disadvantage of adding the network to a partly constructed 

tree. It is unable to use the shortcut initialisation rule. Therefore, this initial 

training process cannot occur online. However, the tree will still provide a 

flattening of the dimensionality of the problem space, thereby, allowing the 

system to quickly learn the required hidden contexts and associated values.  

The resulting network after training will be expected to be able to provide 

the same classification and prediction results for the partially complete 

knowledge base as it would have been able to if it had been present during the 

KB creation. Furthermore, the KB can still then be built upon, after the network 

had been added, using the ∆-initialisation-rule in exactly the same manner as 

shown throughout this thesis.  

While this process has not been directly tested during this project, there is no 

reason to expect the network would be unable to eventually learn the required 

functions. Neural networks perform exceptionally well – especially in relatively 

linear domains. The training of the network in the above situation is just a 

standard application of a neural network in a dimensionally flat domain. 

Additionally, once the network has been attached and trained there is essentially 

no difference between the current structure and what would have been formed, 

had the network been present from the outset.  
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9.2.2 Incrementing Network Classifications Online 

Throughout this thesis all test results were generated with the network knowing 

how many classifications were possible in the dataset used. This is irrelevant in 

the prediction based methods as they only ever provided a single output node. 

However, in the classification based techniques the amount of output nodes was 

set at the outset. The problem with this approach is that in a real world domain 

there is no way to know how many unique classifications are going to be 

generated by the expert when adding knowledge to the MCRDR tree.  

The alternative approach is to add new outputs when the expert creates a 

new and previously unseen class. The experimentation in this thesis did not test 

this approach. However, there is no reason to expect that the system would 

perform any differently. When a new output is added it would simply give all 

the weights from the already present hidden and input nodes the default value as 

detailed in chapter 5. This will certainly mean the performance will be the same. 

Secondly, the weight would be set on the new input to the new output using the 

∆-initialisation rule, once again exactly as done previously. Thus, the adding of 

output nodes dynamically during run time should be no different as the new 

node does not affect and is not affected by any of the other nodes. A second 

possible approach is to create more output nodes than required and simply 

allocate them as needed. This, of course, assumes we can accurately determine a 

maximum. This method also should perform with the same level of performance. 

9.2.3 Problems 

There was one primary qualitative problem noticed when doing the testing in 

this thesis. This was mentioned briefly in section 8.3.2 on parameter tuning. 

This problem is the large number of parameters that require a setting prior to the 

system’s use. One of the complaints about neural networks is the arbitrary 

nature for setting parameters. RM incorporates those problems from neural 

networks while also needing to select strategies used by MCRDR and, more 

importantly, the different types of interaction between the two methods. This 

problem was even further exacerbated during the prudence analysis section due 

to the introduction of additional thresholding parameters.  
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As a result every test of each method and dataset required adjustments to 

many of these parameters. Even now, the results published here may not be the 

best results possible. Many tests were run for each experiment to enable the 

selection of the most appropriate parameters. However, there may still be 

combinations not fully tested. The issues relating to parameter tuning caused all 

testing throughout this project to be extremely difficult and time consuming.  

Fundamentally, this difficulty runs the risk of rendering RM unusable. It was 

found, however, that in some of the later testing, the parameter tuning process 

became significantly easier. For instance, when performing the prudence 

analysis on the eHealth dataset using the classification based approach, it was 

found that the parameters selected on the first attempt worked exceptionally well 

(and are the results used in chapter 8). This indicates that after a level of 

experience has been achieved that the parameters can be chosen reasonably 

accurately.  Therefore, while the number of parameters is a major issue it should 

not prevent its application, providing developers gain sufficient experience. 

Furthermore, in the results shown in this thesis it is unclear whether the best 

parameter settings were governed by the dataset or by the way the expert created 

rules. If each expert’s behaviour is an important aspect in parameter selection, 

then it would be difficult to build generic software. While this was not directly 

tested, it was noticed that during testing with the C4.5 simulated expert that 

good parameters were effective for each different selection strategy trialled by 

the expert. This indicates the expert may not have a strong effect, but this 

requires further study using human expertise and behaviour patterns and is 

beyond the scope of this thesis. 

9.3 Future Work 

This thesis has travelled from the investigation into finding a new view of 

situation cognition and how that affects our understanding of knowledge, 

through to the development of a unique methodology. This algorithm has been 

shown to be exceptionally powerful at classification and prediction, thereby, 

reducing the brittleness of a KBS, while also showing exactly how it can be 

applied in the prudence domain with human expertise. However, the forum of a 

PhD dissertation is too brief to adequately follow all the possibilities that a new 
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technique such as this opens up. The aim of this brief section is to detail just a 

few possibilities available to RM. The first subsection briefly reviews some 

adaptations to the method that would allow its application in many other areas, 

while the second sub section looks at a few plausible applications. 

9.3.1 Algorithm Additions 

One very useful extension to the development of a prudence analysis method is 

that when a warning is generated it may be possible to analyse the ANN 

structure and identify which rule in MCRDR had contributed most to the 

generated warning. Once identified, a relatively simple statistical analysis on the 

attributes identified in a difference list, could identify the most significant and 

warranting selection for a rule. This would allow the system to not only identify 

misclassifications but also identify and create rules. Effectively, this introduces a 

unique form of incremental online induction, RMInduct. This approach would be 

even further improved if some feedback information, a reward, could be 

supplied to aid in the rule identification. 

Some very preliminary work in testing whether the correct rule could be 

identified had been carried out during the early stages of using RM in prudence 

analysis. The results had been promising, indicating that this could be worth 

further investigation. The primary problem in this approach is that incorrect 

warnings will potentially result in the creation of irrelevant rules. This should 

not prevent the ability of the KB to operate but would certainly result in a much 

larger structure than would be developed in a traditional induction method.  

One issue not directly addressed in this dissertation was how noise may 

affect the learning ability of the ANN. Noise is not normally a concern in a KBS, 

but it is frequently considered when developing ANNs. Due to RM requiring 

some feedback this can sometimes be affected by noise within the environment 

being used. For instance, in a prediction domain, a reward may be received as a 

measure of the importance of a case to the user. However, the importance of this 

document can shift over time and the measuring of that importance can be 

affected by many external factors. Therefore, RM should have a means for 

addressing this issue.  

The use of an ANN, however, has in itself mostly solved this issue. ANNs 

are extremely good at learning in a noisy environment - an ability RM could be 
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expected to have acquired. One approach used in ANNs to reduce the effect of 

noise even further, is to use a reducing gain. During early work with RM this 

approach was trialled, except it was performed on a per arc basis. Therefore the 

more times a connection was used the faster its gain was reduced. Those early 

studies had shown that the reducing gain technique significantly helped RM in 

noisy environments. This work, and the associated work in information filtering, 

published in the Pacific Rim International Conference in Artificial Intelligence 

(PRICAI)(Dazeley and Kang 2004a), were not included in this thesis as they 

were neither complete nor relevant to the hypotheses presented. 

The final extension to RM identified here is the notion of applying RM in 

temporally separated situations, referred to as RM(λ). In particular, by adding an 

eligibility trace to each arc, RM could potentially solve reinforcement learning 

type problems. This adjustment would have no effect on the existing 

methodology when applied in the previous domains. Reinforcement learning 

methods, such as Sarsa, Temporal Difference Learning (TD), Q-Learning, DG-

learning and Concurrent-Q-Learning (CQL) are often used in conjunction with 

neural networks to allow for generalisation of the state and/or action spaces. 

Through applying these algorithms in an identical manner to the network used in 

RM, allows for a significantly more expressive state-action pairs’ representation. 

Furthermore, this could incorporate RMInduct ideas, allowing for a fully automatic 

reinforcement learning KBS. This could represent the ultimate solution to the 

ideas of the process of practice.  

9.3.2 Possible Applications 

One major potential application of RM using prudence analysis is in the domain 

of data mining. Effectively, the prudence analysis system, not only can be used 

to identify cases where the expert has failed to provide a classification, but also 

to identify special cases that the expert may not have been aware of in the first 

place. Fundamentally, this is the goal of KDD (Knowledge Discovery in large 

Databases) type systems. The case found could be an unusual shopping pattern 

by a particular group of customers or a previously unknown combination of 

drugs that produce a particular side effect. Furthermore, RM in its general sense 

could also offer further advantages to data mining through its application as a 

missing value predictor (Dazeley and Kang 2004c). 
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Another obvious application of RM is in the application domain of 

information filtering (IF). RMs application in IF is interesting as it allows the 

development of systems capable of being easily used by general users and fits 

the standard models for such a system. RM can offer an versatile approach to 

this domain. RM is most similar to the common approach of using keyword 

weightings. The difference with RM is that the keywords are selected by the 

expert and are contextually dependant. With the inclusion of methods for 

reducing noise, discussed in the previous subsection, RM becomes a potentially 

powerful tool. Furthermore, RM could be used to classify documents, as in the 

eHealth domain, or for rating the importance of each. For instance, placing 

emails in order of importance, or personalising the order results are presented 

from a search engine (Dazeley and Kang 2004a). 

There are, in fact, very few application domains where RM could not be 

applied. Other applications are possible, such as natural language processing, 

Web-spidering, and even robot navigation are all potential areas of application. 

Generally, if a reward structure can be developed for the required goal and 

expert knowledge is available, then the system should be able to learn a fast and 

generalised solution. 

9.4 A Final Word 

The work in this project represents a significant paradigm shift in both 

philosophical thinking and methodological development for symbolic based 

applications. The dissertation supporting this thesis is only a first move in 

exploring the philosophical step taken. The proposed methodology represents 

only one plausible approach to the inclusion of hidden and dynamic contextual 

information in a symbolic methodology. The methodology itself has shown that 

it is a powerful classifier and predictor, and that the information it learns can 

successfully be applied in highly useful ways. Additionally, the application of 

the methodology developed has only been fully explored in one domain but 

many other uses are clearly identifiable. 
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Appendix A: Chapter Quotes 
 
Each chapter in this thesis began with a quote from the famous series of 

children’s books about Winnie the Pooh, by A. A. Milne. Pooh’s philosophy on 

life and simple interpretation of the world around him provides great and simple 

examples of knowledge inference that are both important and straightforward. 

These misinterpretations of the world lead toward many of the adventures in the 

100 acre wood. 

 

Milne, A. A. (1926). Winnie-The-Pooh. reprint (2003), London, Egmont Books Limited. 
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Appendix B: Notation 
 
This Appendix details all the various notations used in equations throughout this 

thesis. Most notations used are standardised with the existing literature, however, 

some were changed to avoid clashes. A couple of notations are used in different 

places to represent different terms; it should be clear from a notation’s context 

as to which of the definitions apply. These are ordered according to the order 

they appear in the thesis. 

Notation Description 

net 
The weighted sum of the inputs to a perceptron prior to having 
the thresholding function applied. 

n Number of elements (such as the number of nodes) 

j 
Index for the current input source (either an input or hidden 
node) 

w 

The weight attached to the arc from an input node to the 
current node. 

A width modifier in the Multi-Class-Prediction simulated 
expert. 

x The value of input into a particular node of an ANN 

f(net) The threshold function applied to the weighted sum. 

e 
Natural constant ( ) 2.7182811 =+

n

n
 (rounded to 5 decimal 

places) 

k 
A positive constant that controls the spread of the sigmoid 
function. 

δ The amount of error at a particular neuron. 

p 

A particular input pattern. 

The percentage ratio of hidden nodes to input nodes. A 
percentage of 200 will result in 2 hidden nodes being added for 
every additional input node. 

Percentage of membership in the Multi-Class-Prediction 
simulated expert. 

o Index for the current output node. 
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h Index for the current hidden node. 

f'(net) 
The derivative of the thresholding function applied to the 
weighted sum at a particular neuron. 

vr The value of the reward applied to a particular neuron.  

vc The value of the output node’s original conclusion. 

l 
Index for the current output source (either an hidden or output 
node) 

t A moment in time. 

η A network’s gain term (often referred to as learning rate). 

α A network’s moment term. 

sk A function in k-dimensional space 

λ A particular coefficient that is learned for each basis function 

φ  A basis function. 

y The centre of a hyperellipse 

σ 
A positively valued shaping parameter used to maintain 
control over the acceptable distance from the centre of a basis 
function. 

d A distance measure – usually using Euclidean distance. 

i Index for the current input node. 

c 

A Case 

The centre value for a given class in the Multi-Class-
Prediction simulated expert. 

list 
A list of Classifications found by the MCRDR inferencing 
process 

x  Input array for neural network 

v  A vector of neurons’ output values. 

R A set of rules. 

℘ The power set function. 

R* A set of all the known rules. 



Appendix B: Notation  Richard Dazeley 

    
 269 

RT A set of terminating rules. 

C A set of classifications. 

C* A set of all the known classifications. 

A A set of Attributes from fired rules. 

A* A set of all the known Attributes. 

F A set of features. A feature is a rule, class or attribute. 

F* A set of all the known Features. 

F# A set containing all the features both known and unknown. 

P 
A set of rules that fired within a particular path. All paths 
contain the root node, the terminating node and all the nodes 
in between. 

rd 
The depth of a rule within a particular path of fired rules 
followed. rd=0 at the root node and rd=||P|| at the terminating 
rule. 

rv The activation value for the input neuron associated with a 
particular rule. 

r A single rule. 

v 
A single neurons output value. Short hand for the more 
specific notation identified above vo. 

RMw Rated MCRDR using the weighted average 

ζ 
Step-distance modifier. Allows partial steps to be taken rather 
than full steps. 

m 
The number of features added to the system during a single 
case’s correction phase. 

RMl(ε) 
Rated MCRDR using a linear network and random 
initialisation. 

RMl(∆) 
Rated MCRDR using a linear network and the single-step-∆-
initialisation-rule. 

∆l Initialisation rule for a single layered linear network 

ws The weighted sum at a particular node. 

δws The error in the weighted sum at a particular node. 
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Tws 

The target required for a particular weighted sum. The target 
is the reward after it has been passed back through the inverse 
of the thresholding function. 

RMbp(ε) 
Rated MCRDR using a non-linear network and random 
initialisation. 

RMbp(∆) 
Rated MCRDR using a non-linear network and the single-
step-∆-initialisation-rule. 

∆bp Initialisation rule for a two layered non-linear network 

q Index for the current hidden node in ∆bp-rule. 

RMRBF 
Rated MCRDR using an RBF network – only creating hidden 
nodes when a new input is added. 

RMRBF+ 

Rated MCRDR using an RBF network – creates hidden nodes 
when a new input is added and when needed. Also uses other 
techniques to aid learning. 

ta The actual calculated total for a class in the Multi-Class-
Prediction simulated expert. 

tm The maximum total possible in the Multi-Class-Prediction 
simulated expert. 

RMp Rated MCRDR applied to prudence analysis 

RMp(p) 
Rated MCRDR using the prediction method for prudence 
analysis 

RMp(c) 
Rated MCRDR using the classification method for prudence 
analysis 

ηs 
The shortcut connections gain term (often referred to as 
learning rate). 

θ 

A threshold value used in the RBF+ based technique. If the 
error exceeds this value, then an investigation should be done 
into whether a new hidden node should be added. 

θt 
The threshold at time t indicating what level the output must 
exceed to prevent a warning to be given. 

θs 
The threshold at the start of the knowledge base creation 
phase.  



Appendix B: Notation  Richard Dazeley 

    
 271 

 

θη 
The threshold training rate. Indicates the amount of change 
made to the threshold after each case. 

θm 
The minimum (class based method) or maximum (prediction 
based method) that the threshold can not exceed. 
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Appendix C: Acronyms 
 
This Appendix lists all the acronyms used throughout this thesis in alphabetical 

order. 

AA Attribute Association 

ADALINE Adaptive Linear Combiner 

AI Artificial Intelligence 

ANN Artificial Neural Network 

ARFN Adaptive Response Function Neurons 

BP Backpropagation 

BPA Backpropagation Algorithm 

CA Class Association 

CBR Case Based Reasoning 

CC Cascade Correlation 

CMOD Casual Modelling 

CPN Counterpropagation Network 

CQL Concurrent-Q-Learning 

DNF Disjunctive Normal Form 

DRDR Dynamic RDR 

DRPA Decreasing Rule Path Association 

ES Expert System 

ETS Expertise Transfer System 

FCA Formal Concept Analysis 

FMR Fuzzy MCRDR 

FN False Negative 

FP False Positive 

FRDR Fuzzy RDR 

FROCH Fuzzy ROCH 

GENICA Generalization using Intra Construction and Absorption 

GKB Generic Knowledge Base 

HBF Hyper Basis Function 

IF Information Filtering 

IONICS Iterative Organisation of Novel Ion Chromatography 

Solutions 
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ISC Intermediate Situation Cognition 

KA Knowledge Acquisition 

KADS Knowledge Acquisition and Design Structuring 

KB Knowledge Base 

KBS Knowledge Based System 

KDD Knowledge Discovery in Databases 

KE Knowledge Engineering 

KM Knowledge Maintenance 

KR Knowledge Representation 

KSS0 Knowledge Support System Zero 

LDRDR Learning Dynamic RDR 

MADALINE Many ADALINE 

MCRDR Multiple Classification Ripple Down Rules 

MCRDR/FCA A hybrid Combination of MCRDR and FCA 

MDLP Minimum Description Length Principle 

ML Machine Learning 

NRDR Nested RDR 

OKBC Open Knowledge Base Connectivity 

OL Ontology Learning 

ONCOCIN Oncologic MYCIN 

OODBMS Object Oriented Database Management System 

PCP Personal Construct Psychology 

PDP Parallel Distributed Processing System  

PEIRS Pathology Expert Interpretative Reporting System 

PRDR Possible RDR 

PRICAI Pacific Rim International Conference in Artificial 

Intelligence 

PSM Problem Solving Method 

PWIMS Personalized Web Information Management System 

RAN Resource Allocating Network 

RBF Radial Basis Function 

RDR Ripple-Down Rules 

REMAP Representation and Maintenance of Process knowledge 

RL Reinforcement Learning 
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RM Rated MCRDR. 

ROCH RDR-Oriented Conceptual Hierarchies 

RPA Rule Path Association 

RRDR Recursive RDR 

SC Situation Cognition 

SCRDR Single Classification RDR  

SITCRC Smart Internet Technology Co-operative Research Centre 

SQL Structured Query Language 

SVM Support Vector Machine 

TD Temporal Difference Learning 

TLU Threshold Logic Unit 

TN True Negative 

TP True Positive 

TRA Terminating Rule Association 

TTT Tic-Tac-Toe 

V&V Validation and Verification 

WM Weighted MCRDR (old acronym now referred to as RM) 

WWW World Wide Web 

XRDR Simple RDR 
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Appendix D: Parameters used in Experiments 
 
This Appendix lists all the necessary parameters used in each experiment 

throughout this thesis. The table below lists these parameters according to 

experiment in the order they appear in the thesis.  

E
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A
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ζ  η η s
 

A
ss

o
ci

a
ti

o
n

 
T

yp
e 

p
 k σ θ θ s
 

θ r
 

θ m
 

#
 o

f 
ex

p
er

t 
co

nd
it

io
ns

 

RMw 0.1 - - DRPA - - - - - - - - 

RMl(ε) - 0.1 - RPA - 1.0 - - - - - - 

RMl(∆) 0.1 0.1 - DRPA - 1.0 - - - - - - 

RMbp(ε) - 0.1 - RPA 3.0 1.0 - - - - - - 

RMbp(∆) 0.1 0.1 0.1 DRPA 1.0 1.0 - - - - - - 

RMrbf - 0.1 - RPA - 1.0 15 - - - - - 

RMrbf+ - 0.1 - RPA - 1.0 13 0.3 - - - - 

MCRDR - - - - - - - - - - - - 

M
u
lt

i 
L

in
ea

r 

ANN - 0.1 - - 40* 1.0 - - - - - - 

RMw 0.1 - - DRPA - - - - - - - - 

RMl(ε) - 0.1 - RPA - 1.0 - - - - - - 

RMl(∆) 0.1 0.1 - DRPA - 1.0 - - - - - - 

RMbp(ε) - 0.1 - RPA 3.0 1.0 - - - - - - 

RMbp(∆) 0.1 0.1 0.1 DRPA 1.0 1.0 - - - - - - 

RMrbf - 0.1 - RPA - 1.0 15 - - - - - 

RMrbf+ - 0.1 - RPA - 1.0 13 0.3 - - - - 

MCRDR - - - - - - - - - - - - M
u
lt

i 
N

o
n

-L
in

ea
r 

ANN - 0.1 - - 40* 1.0 - - - - - - 

RMw 0.1 - - TRA - - - - - - - 2 

RMl(ε) - 0.1 - TRA - 1.0 - - - - - 2 

RMl(∆) 0.1 0.1 - TRA - 1.0 - - - - - 2 

RMbp(ε) - 0.1 - TRA 1.0 1.0 - - - - - 2 

RMbp(∆) 0.1 0.1 0.1 TRA 1.0 1.0 - - - - - 2 

RMrbf - 0.1 - TRA - 1.0 2 - - - - 2 

RMrbf+ - 0.1 - TRA - 1.0 2 0.3 - - - 2 

MCRDR - - - - - - - - - - - 2 

C
h

es
s 

ANN - 0.05 - - 300* 1.0 - - - - - - 

RMw 1.0 - - TRA - - - - - - - 3 

RMl(ε) - 0.2 - TRA - 1.0 - - - - - 3 

RMl(∆) 1.0 0.2 - TRA - 1.0 - - - - - 3 

RMbp(ε) - 0.2 - TRA 1.0 1.0 - - - - - 3 

RMbp(∆) 1.0 0.2 0.2 TRA 1.0 1.0 - - - - - 3 

RMrbf - 0.2 - TRA - 1.0 2 - - - - 3 

RMrbf+ - 0.2 - TRA - 1.0 2 0.3 - - - 3 

MCRDR - - - - - - - - - - - 3 

C
la

ss
if

ic
at

io
n
 G

en
er

al
is

at
io

n
 

T
T

T
 

ANN -  0.1 - - 15* 1.0 - - - - - - 

* This represents the number of hidden nodes used in the network on this task. It does not represent 
the hidden percentage like the other values in the same column.
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n
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RMw 0.6 - - RPA - - - - - - - - 

RMl(ε) - 0.2 - RPA - 1.0 - - - - - - 

RMl(∆) 0.6 0.2 - RPA - 1.0 - - - - - - 

RMbp(ε) - 0.2 - RPA 1.0 1.0 - - - - - - 

RMbp(∆) 0.6 0.2 0.2 RPA 1.0 1.0 - - - - - - 

RMrbf - 0.1 - TRA - 1.0 2 - - - - - 

RMrbf+ - 0.1 - TRA - 1.0 2 0.2 - - - - 

MCRDR - - - - - - - - - - - - 

N
u

rs
er

y
 

ANN - 0.1 - - 100* 1.0 - - - - - - 

RMw 0.5 - - TRA - - - - - - - - 

RMl(ε) - 0.01 - TRA - 1.0 - - - - - - 

RMl(∆) 0.5 0.01 - TRA - 1.0 - - - - - - 

RMbp(ε) - 0.01 - TRA 2.0 1.0 - - - - - - 

RMbp(∆) 0.5 0.01 0.01 TRA 2.0 1.0 - - - - - - 

RMrbf - 0.1 - TRA - 1.0 3 - - - - - 

RMrbf+ - 0.1 - TRA - 1.0 3 0.2 - - - - 

MCRDR - - - - - - - - - - - - 

A
u
d
io

lo
g
y
 

ANN - 0.01 - - 1* 1.0 - - - - - - 

RMw 0.45 - - TRA - - - - - - - 2 

RMl(ε) - 0.2 - TRA - 1.0 - - - - - 2 

RMl(∆) 0.45 0.2 - TRA - 1.0 - - - - - 2 

RMbp(ε) - 0.2 - TRA 3.0 1.0 - - - - - 2 

RMbp(∆) 0.45 0.2 0.2 TRA 3.0 1.0 - - - - - 2 

RMrbf - 0.1 - TRA - 1.0 3 - - - - 2 

RMrbf+ - 0.1 - TRA - 1.0 3 0.2 - - - 2 

MCRDR - - - - - - - - - - - 2 

C
la

ss
if

ic
at

io
n
 G

en
er

al
is

at
io

n
 

C
ar

 

ANN - 0.1 - - 50* 1.0 - - - - - - 

RMw 0.1 - - DRPA - - - - - - - - 

RMl(ε) - 0.1 - RPA - 1.0 - - - - - - 

RMl(∆) 0.1 0.1 - DRPA - 1.0 - - - - - - 

RMbp(ε) - 0.1 - RPA 3.0 1.0 - - - - - - 

RMbp(∆) 0.1 0.1 0.1 DRPA 1.0 1.0 - - - - - - 

RMrbf - 0.1 - RPA - 1.0 15 - - - - - 

RMrbf+ - 0.1 - RPA - 1.0 13 0.3 - - - - 

MCRDR - - - - - - - - - - - - M
u

lt
i 

N
o

n
-L

in
ea

r 

ANN - 0.1 - - 40* 1.0 - - - - - - 

RMw 0.1 - - TRA - - - - - - - 2 

RMl(ε) - 0.1 - TRA - 1.0 - - - - - 2 

RMl(∆) 0.1 0.1 - TRA - 1.0 - - - - - 2 

RMbp(ε) - 0.1 - TRA 1.0 1.0 - - - - - 2 

RMbp(∆) 0.1 0.1 0.1 TRA 1.0 1.0 - - - - - 2 

RMrbf - 0.1 - TRA - 1.0 2 - - - - 2 

RMrbf+ - 0.1 - TRA - 1.0 2 0.3 - - - 2 

MCRDR - - - - - - - - - - - 2 

 C
la

ss
if

ic
at

io
n
 O

n
li

n
e 

C
h
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s 

ANN - 0.05 - - 300* 1.0 - - - - - - 
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RMw 1.0 - - TRA - - - - - - - 3 

RMl(ε) - 0.2 - TRA - 1.0 - - - - - 3 

RMl(∆) 1.0 0.2 - TRA - 1.0 - - - - - 3 

RMbp(ε) - 0.2 - TRA 1.0 1.0 - - - - - 3 

RMbp(∆) 1.0 0.2 0.2 TRA 1.0 1.0 - - - - - 3 

RMrbf - 0.2 - TRA - 1.0 2 - - - - 3 

RMrbf+ - 0.2 - TRA - 1.0 2 0.3 - - - 3 

MCRDR - - - - - - - - - - - 3 

T
T

T
 

ANN -  0.1 - - 15* 1.0 - - - - - - 

RMw 0.6 - - RPA - - - - - - - - 

RMl(ε) - 0.2 - RPA - 1.0 - - - - - - 

RMl(∆) 0.6 0.2 - RPA - 1.0 - - - - - - 

RMbp(ε) - 0.2 - RPA 1.0 1.0 - - - - - - 

RMbp(∆) 0.6 0.2 0.2 RPA 1.0 1.0 - - - - - - 

RMrbf - 0.1 - TRA - 1.0 2 - - - - - 

RMrbf+ - 0.1 - TRA - 1.0 2 0.2 - - - - 

MCRDR - - - - - - - - - - - - 

N
u
rs

er
y
 

ANN - 0.1 - - 100* 1.0 - - - - - - 

RMw 0.5 - - TRA - - - - - - - - 

RMl(ε) - 0.01 - TRA - 1.0 - - - - - - 

RMl(∆) 0.5 0.01 - TRA - 1.0 - - - - - - 

RMbp(ε) - 0.01 - TRA 2.0 1.0 - - - - - - 

RMbp(∆) 0.5 0.01 0.01 TRA 2.0 1.0 - - - - - - 

RMrbf - 0.1 - TRA - 1.0 3 - - - - - 

RMrbf+ - 0.1 - TRA - 1.0 3 0.2 - - - - 

MCRDR - - - - - - - - - - - - 

A
u
d
io

lo
g
y
 

ANN - 0.01 - - 1* 1.0 - - - - - - 

RMw 0.45 - - TRA - - - - - - - 2 

RMl(ε) - 0.2 - TRA - 1.0 - - - - - 2 

RMl(∆) 0.45 0.2 - TRA - 1.0 - - - - - 2 

RMbp(ε) - 0.2 - TRA 3.0 1.0 - - - - - 2 

RMbp(∆) 0.45 0.2 0.2 TRA 3.0 1.0 - - - - - 2 

RMrbf - 0.1 - TRA - 1.0 3 - - - - 2 

RMrbf+ - 0.1 - TRA - 1.0 3 0.2 - - - 2 

MCRDR - - - - - - - - - - - 2 

C
la
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if
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at

io
n
 O

n
li

n
e 

C
ar

 

ANN - 0.1 - - 50* 1.0 - - - - - - 

RMw 0.8 - - TRA - - - - - - - - 

RMl(ε) - 0.1 - TRA - 1.0 - - - - - - 

RMl(∆) 0.2 0.1 - TRA - 1.0 - - - - - - 

RMbp(ε) - 0.1 - TRA 3.0 1.0 - - - - - - 

RMbp(∆) 0.4 0.1 0.1 TRA 3.0 1.0 - - - - - - 

RMrbf - 0.1 - TRA - 1.0 11 - - - - - 

RMrbf+ - 0.1 - TRA - 1.0 12 0.2 - - - - 

P
re

d
ic

ti
o

n
 

G
en

er
al

is
at
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n

 

M
u
lt

i 
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ANN - 0.1 - - 40* 1.0 - - - - - - 
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RMw 0.8 - - TRA - - - - - - - - 

RMl(ε) - 0.1 - TRA - 1.0 - - - - - - 

RMl(∆) 0.2 0.1 - TRA - 1.0 - - - - - - 

RMbp(ε) - 0.1 - TRA 3.0 1.0 - - - - - - 

RMbp(∆) 0.4 0.1 0.1 TRA 3.0 1.0 - - - - - - 

RMrbf - 0.1 - TRA - 1.0 11 - - - - - 

RMrbf+ - 0.1 - TRA - 1.0 12 0.2 - - - - 

P
re

d
ic

ti
o
n
 O

n
li

n
e 

M
u
lt

i 
P

re
d
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n
 

ANN - 0.1 - - 40* 1.0 - - - - - - 

RMp(p) 0.61 0.2 0.2 DRPA 1.0 1.0 - - 0.01 0.001 0.1 2 

RMp(c) 0.2 0.2 0.2 RPA 2.0 1.0 - - 0.4 0.0001 0.0 2 

RMp(c) 0.2 0.2 0.2 RPA 2.0 1.0 - - 0.4 0.0003 0.0 2 

RMp(c) 0.2 0.2 0.2 RPA 2.0 1.0 - - 0.4 0.0005 0.0 2 

RMp(c) 0.2 0.2 0.2 RPA 2.0 1.0 - - 0.4 0.0007 0.0 2 

RMp(c) 0.2 0.2 0.2 RPA 2.0 1.0 - - 0.4 0.001 0.0 2 

RMp(c) 0.2 0.2 0.2 RPA 2.0 1.0 - - 0.4 0.002 0.0 2 

RMp(c) 0.2 0.2 0.2 RPA 2.0 1.0 - - 0.4 0.003 0.0 2 

RMp(c) 0.2 0.2 0.2 RPA 2.0 1.0 - - 0.4 0.005 0.0 2 

RMp(c) 0.2 0.2 0.2 RPA 2.0 1.0 - - 0.4 0.01 0.0 2 

G
A

R
V

A
N

 

RMp(c) 0.2 0.2 0.2 RPA 2.0 1.0 - - 0.4 0.03 0.0 2 

RMp(p) 0.5 0.15 0.15 TRA 2.0 1.0 - - -0.1 0.005 0.49 - 

RMp(c) 0.2 0.2 0.2 DRPA 2.0 1.0 - - 0.4 0.00001 0.0 - 

RMp(c) 0.2 0.2 0.2 DRPA 2.0 1.0 - - 0.4 0.0001 0.0 - 

RMp(c) 0.2 0.2 0.2 DRPA 2.0 1.0 - - 0.4 0.001 0.0 - 

RMp(c) 0.2 0.2 0.2 DRPA 2.0 1.0 - - 0.4 0.003 0.0 - 

RMp(c) 0.2 0.2 0.2 DRPA 2.0 1.0 - - 0.4 0.01 0.0 - 

RMp(c) 0.2 0.2 0.2 DRPA 2.0 1.0 - - 0.4 0.03 0.0 - 

RMp(c) 0.2 0.2 0.2 DRPA 2.0 1.0 - - 0.4 0.05 0.0 - 

RMp(c) 0.2 0.2 0.2 DRPA 2.0 1.0 - - 0.4 0.07 0.0 - 

RMp(c) 0.2 0.2 0.2 DRPA 2.0 1.0 - - 0.4 0.1 0.0 - 

M
u

lt
i 

RMp(c) 0.2 0.2 0.2 DRPA 2.0 1.0 - - 0.4 0.5 0.0 - 

RMp(p) 0.7 0.25 0.25 TRA 1.0 1.0 - - 0.04 0.005 0.2 2 

RMp(c) 0.3 0.2 0.2 DRPA 2.0 1.0 - - 0.4 0.001 0.0 2 

RMp(c) 0.3 0.2 0.2 DRPA 2.0 1.0 - - 0.4 0.003 0.0 2 

RMp(c) 0.3 0.2 0.2 DRPA 2.0 1.0 - - 0.4 0.008 0.0 2 

RMp(c) 0.3 0.2 0.2 DRPA 2.0 1.0 - - 0.4 0.012 0.0 2 

RMp(c) 0.3 0.2 0.2 DRPA 2.0 1.0 - - 0.4 0.014 0.0 2 

RMp(c) 0.3 0.2 0.2 DRPA 2.0 1.0 - - 0.4 0.018 0.0 2 

RMp(c) 0.3 0.2 0.2 DRPA 2.0 1.0 - - 0.4 0.02 0.0 2 

RMp(c) 0.3 0.2 0.2 DRPA 2.0 1.0 - - 0.4 0.025 0.0 2 

RMp(c) 0.3 0.2 0.2 DRPA 2.0 1.0 - - 0.4 0.03 0.0 2 

C
h

es
s 

RMp(c) 0.3 0.2 0.2 DRPA 2.0 1.0 - - 0.4 0.05 0.0 2 

RMp(p) 0.6 0.2 0.2 DRPA 2.0 1.0 - - 0.01 0.02 0.24 2 

RMp(c) 0.05 0.2 0.2 DRPA 3.0 1.0 - - 0.4 0.004 0.0 2 

RMp(c) 0.05 0.2 0.2 DRPA 3.0 1.0 - - 0.4 0.006 0.0 2 

RMp(c) 0.05 0.2 0.2 DRPA 3.0 1.0 - - 0.4 0.008 0.0 2 

RMp(c) 0.05 0.2 0.2 DRPA 3.0 1.0 - - 0.4 0.009 0.0 2 

RMp(c) 0.05 0.2 0.2 DRPA 3.0 1.0 - - 0.4 0.01 0.0 2 

RMp(c) 0.05 0.2 0.2 DRPA 3.0 1.0 - - 0.4 0.015 0.0 2 

RMp(c) 0.05 0.2 0.2 DRPA 3.0 1.0 - - 0.4 0.02 0.0 2 

RMp(c) 0.05 0.2 0.2 DRPA 3.0 1.0 - - 0.4 0.03 0.0 2 

RMp(c) 0.05 0.2 0.2 DRPA 3.0 1.0 - - 0.4 0.05 0.0 2 

P
ru

d
en

ce
  

T
T

T
 

RMp(c) 0.05 0.2 0.2 DRPA 3.0 1.0 - - 0.4 0.1 0.0 2 
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RMp(p) 0.1 0.2 0.2 TRA 3.5 1.0 - - 0.0001 0.0002 0.4 * 

RMp(c) 0.3 0.2 0.2 TRA 3.5 1.0 - - 0.4 0.0001 0.0 * 

RMp(c) 0.3 0.2 0.2 TRA 3.5 1.0 - - 0.4 0.0005 0.0 * 

RMp(c) 0.3 0.2 0.2 TRA 3.5 1.0 - - 0.4 0.001 0.0 * 

RMp(c) 0.3 0.2 0.2 TRA 3.5 1.0 - - 0.4 0.002 0.0 * 

RMp(c) 0.3 0.2 0.2 TRA 3.5 1.0 - - 0.4 0.004 0.0 * 

RMp(c) 0.3 0.2 0.2 TRA 3.5 1.0 - - 0.4 0.0045 0.0 * 

RMp(c) 0.3 0.2 0.2 TRA 3.5 1.0 - - 0.4 0.007 0.0 * 

RMp(c) 0.3 0.2 0.2 TRA 3.5 1.0 - - 0.4 0.01 0.0 * 

RMp(c) 0.3 0.2 0.2 TRA 3.5 1.0 - - 0.4 0.05 0.0 * 

P
ru

d
en

ce
  

eH
ea

lt
h

 

RMp(c) 0.3 0.2 0.2 TRA 3.5 1.0 - - 0.4 0.1 0.0 * 

* The number of expert conditions is covered by how many must be selected to reach the next non-
null conclusion. 


