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Abstract 

Traditionally, the most popular sentences used to describe the arbuscular mycorrhizal symbiosis sound like: “AM fungi 
form one of the most widespread root symbioses, associating with 80% of land plants. In this symbiosis, the fungus 
provides the plant host with mineral nutrients, especially phosphate, receiving in turn carbohydrates.” In the last years, 
the mycorrhiza research field has witnessed a big step forward in the knowledge of the physiology and the mecha-
nisms governing this important symbiosis, that helped plants colonizing the lands more than 400 MYA. The huge 
expansion of the -omics studies produced the first results on the fungal side, with genomes and transcriptomes of 
AM fungi being published. In parallel, the need for more sustainable agricultural practices has boosted the research 
in the field of the plant symbioses, with the final aim of improving plant productivity employing symbiotic microbes 
as bioinoculants. Beside all the other (positive) effects that mycorrhizal fungi exert on plants, the nutrient exchange is 
considered as the keystone, and the core mechanism governing this symbiosis. This review will focus on the molecu-
lar determinants underneath this exchange, both on the fungal and the plant side. Coming back to the sentence that 
claims this symbiosis as based on phosphate provided to the plant in return to carbohydrate, we will find that some 
concepts of this view still stand, while some others have been partly revolutionized. 
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Introduction

Arbuscular mycorrhizal fungi belong to the basal fun-

gal phylum of Glomeromycota [1]. They are obligate 

biotrophs that associate with plant roots forming the 

mycorrhiza. The establishment of such symbiosis fol-

lows a finely tuned pattern that starts in the soil with the 

exchange of molecular signals produced by both the sides 

of the interaction [2]. Once a host is found, the fungus 

enters the plant root with a mechanism strictly regulated 

by both the partners. The functional core of this sym-

biosis is represented by the arbuscule, a complex, highly 

branched structure formed by the fungus intracellularly, 

and surrounded by a plant membrane called periarbus-

cular membrane (PAM) [3]. Here, the nutrient exchange 

between plant and fungus occurs. Outside the root, the 

fungus forms a net of extraradical hyphae that take up 

nutrients extending the portion of soil that the plant can 

reach with its own roots (Fig. 1).

The rules that govern this exchange of nutrients are 

complex, and should be viewed in the context of two 

symbionts that of course are not interacting alone, but 

also face a plethora of diverse biotic and abiotic stimuli 

in natural conditions. Furthermore, many reports have 

shown that the mycorrhizal outcome in terms of growth 

response can vary considerably, ranging from positive, 

to neutral to even negative [4, 5], and that among the 

AMFs, some have been described as more collaborative 

while some others less [6]. At the moment the bases of 

such variability have not been completely elucidated, 

even if  the researchers already  did big steps forward 

to assess the molecular determinants of the nutrient 

exchange, giving important clues on the factors acting 

as main regulators. All these data are in fact instrumen-

tal to draw the connection between the molecular and 
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the eco-physiological level of the mycorrhizal symbiosis 

functioning.

Major recent breakthroughs in the AM biotrophy, 

as the discovery of the fungal dependency on host fatty 

acids, represented a real paradigm shift, and stimulated 

the researchers to construct an updated scenario of the 

plant–fungal exchanges to integrate the new findings. 

Although both carbon and mineral nutrition in the AM 

symbiosis have been exhaustively reviewed by many 

Authors (as, for example, Casieri et  al. [7], Garcia et  al. 

[8], Shi et al. [9], Wang et al. [10]), the aim of this review 

is to provide the reader with a “handy guide” through the 

current view of the symbiotic transportome.

The first part of the story: the fungus provides the plant 

host with mineral nutrients

The improvement of plant phosphate nutrition by AM 

fungi has been extensively studied over the years. The 

transfer of phosphate from fungi to plant hosts has been 

demonstrated in the 90s, when Trifolium plants were 

mycorrhized in a two-compartment system in which 

radiolabeled P was added to the compartment accessi-

ble to the AM fungus only [11]. AM fungi provide plants 

with phosphate via an indirect pathway, called “the AM 

pathway”, that parallels “the direct pathway” where roots 

directly take up phosphate from the soil [12]. In mycor-

rhizal plants, a considerable part (up to 70%) of the over-

all phosphate uptake can be acquired via the AM pathway 

[13]. Expression of the direct phosphate transporter 

genes in non-mycorrhizal plants is regulated by the 

phosphate starvation signaling pathway; while in AM-

colonized plants, the direct pathway can be modulated 

independent of the phosphate status, as the result of the 

interplay with the AM pathway. It has been demonstrated 

that colonization by AM fungi reduces the direct root 

phosphate uptake locally, but without affecting it in dis-

tant non-colonized roots [14].

The main plant actors of the AM pathway are specific 

phosphate transporters, which have been identified in 

different plant species, including Medicago truncatula, 

Oryza sativa and Lotus japonicus [15–19]. These PHT1 

family transporters show a specific pattern of expression 

in response to AM fungal colonization, being exclusively 

expressed in response to AMFs and localized at the inter-

face of the two symbionts, in the PAM [15].

The best characterized mycorrhiza-inducible PHT1 

gene is MtPT4 from M. truncatula. It has been detected 

in arbusculated cells, and immunolocalization assays sug-

gested its exclusive presence in the PAM [15, 16]. Other 

PHT1 family transporters are present that are likely 

involved in the direct phosphate acquisition pattern. 

In M. truncatula MtPT1, MtPT2, MtPT3, MtPT5 and 

MtPT6 belong to PHT1 family and, though with different 

specific patterns, their expression in mycorrhizal roots is 

generally reduced [20–22]. In rice, the genes OsPT2 and 

OsPT6 likely involved in the direct pathway are down-

regulated by the AM symbiosis, but this repression is 

missing in the mutant line that lacks the mycorrhiza-

responsive phosphate transporter OsPT11 [13].

The AM-inducible phosphate transporters are consid-

ered as good markers for the mycorrhizal status, since 

their transcripts specifically accumulate in response to 

fungal colonization [23–25]. Interestingly, Sawers et al. 

[26] showed that the mycorrhizal outcome in terms of 

Fig. 1 The interaction between Lotus japonicus roots and the arbuscular mycorrhizal fungus Gigaspora margarita. a The L. japonicus roots (R) are 
surrounded by a dense net (arrows) of G. margarita extraradical hyphae that give rise to newly formed fungal spores (S). b A detail of the contact 
between a L. japonicus root (R) and G. margarita hyphae decorated by an auxiliary cell cluster (Au). Bars correspond to 1.3 mm in a and 140 μm in b 



Page 3 of 12Salvioli di Fossalunga and Novero  Chem. Biol. Technol. Agric.            (2019) 6:12 

growth response of maize plants better correlates with 

the abundance of the extraradical mycelium than with 

the accumulation of the mycorrhiza-inducible phos-

phate transporter ZmPT6. This might indicate that the 

fungal ability of exploring the surrounding soil matters 

more than the amount of transporters expressed at the 

PAM. Very recently, a further mycorrhiza-inducible P 

transporter, ZmPt9, has been characterized in maize 

[27] Intriguingly, ZMPT9 seems to localize in the cyto-

plasm, and ZmPt9-overexpressing hairy roots displayed 

a dramatic reduction of AMF colonization [27].

The environmental phosphate level is a key regula-

tor of AM symbiosis. When plants are grown at high 

phosphate concentration, the AM colonization is dras-

tically reduced, with a response that depends on the 

plant species considered [28, 29]. Moreover, the lack of 

functioning of AM-inducible transporters impairs the 

arbuscules formation [15, 17, 19, 30]; these data sug-

gest a role for phosphate transporters (or alternatively 

for the phosphate transfer itself ) in the signaling path-

way that determines the establishment of a successful 

AM colonization. A similar role for phosphate has been 

suggested by Yang et  al., who showed that a mycor-

rhiza-responsive phosphate transporter from rice did 

not display a clear role in phosphate transfer but was 

requested for the correct arbuscule formation [13]. On 

this line, Volpe et al. [19] demonstrated that the expres-

sion of the mycorrhiza-inducible PT4 from M. trunca-

tula and L. japonicus was not restricted to the PAM but 

also present in the root tips of non-colonized plants. 

The authors suggested these PTs might act as transcep-

tors, i.e., proteins with a dual role, in phosphate trans-

port and in the sensing of the phosphate status.

On the fungal side, some phosphate transporters 

appear to be responsible for the first step of the symbiotic 

phosphate transport. They have been described on the 

basis of transcriptomic and genomic data: GmosPT from 

Funneliformis mosseae, GvPT from Diversispora epigaea, 

GiPT from Rhizophagus intraradices, and one from Giga-

spora margarita [31–34]. These PTs are all expressed in 

the extraradical mycelium, where they likely mediate the 

phosphate uptake from the soil. GmosPT from Funneli-

formis mosseae (formerly Glomus mosseae) and GigmPT 

from Gigaspora margarita expression have been recorded 

also in the intraradical hyphae, where they are supposed 

to be active in the phosphate re-uptake from the periar-

buscular space [32, 35, 36]. The inactivation of GigmPT 

by host-induced gene silencing impaired arbuscule devel-

opment, corroborating the view that phosphate sensing 

might also play a role in the establishment of a functional 

symbiosis, possibly entailing a role for PTs as transcep-

tors also on the fungal side. Upon phosphate uptake from 

the soil, its internal levels have to be strictly regulated to 

allow the accumulation and the transfer to the plant host 

of high amounts of phosphate without disturbing the 

fungal homeostasis. The acknowledged model includes 

the phosphate polymerization into polyphosphate 

(polyP) and its storage in the fungal vacuoles, from which 

it can be further released, thanks to the activity of vacu-

olar polyphosphatases, and then exported to the cytosol 

through a vacuolar exporter [37]. The molecular deter-

minants of AM phosphate homeostasis are not clearly 

identified so far. Recently, SPX domain-containing pro-

teins have been widely recognized as main players in the 

regulation of phosphate homeostasis. The SPX domain 

acts by allowing the binding of the regulatory protein 

with inositol polyphosphates (InsPs), thus modulating its 

activity in a phosphate-dependent manner [38]. Recent 

mining of the published genomic and transcriptomic data 

from AMFs detected the presence of genes encoding for 

SPX domain-containing proteins and for InsPs metabolic 

enzymes [37, 39]. Some of them have been found to be 

regulated upon polyP formation and in the response to 

high phosphate concentrations. Strikingly, the R. irregu-

laris genome also revealed the presence of genes encod-

ing for SPX-containing proteins characterized so far only 

in plants, such as the Arabidopsis thaliana SPX1, and 

NLA genes, both involved in the maintenance of plant 

phosphate homeostasis [40, 41]. Taken together, these 

data suggest that a regulatory mechanism based on SPX 

domain-containing proteins and InsPs metabolism might 

have specifically evolved in AMF to meet the double need 

of managing the transfer to the plant of massive amounts 

of phosphate and finely tuning at the same time the fun-

gal phosphate homeostasis.

Although the phosphate transfer surely covers the 

lion’s share, the relevance of nitrogen uptake in the AM 

symbiosis has been also disclosed more recently, with an 

important role played both for plant nutrition and for 

the regulation of the symbiosis functioning itself. In the 

soil, inorganic nitrogen is present as nitrate  (NO3) and 

ammonium  (NH4
+), and AMF possess specific trans-

porters for both the N forms. In Rhizophagus irregularis, 

three sequences refer to ammonium transporters, and 

one nitrate transporter has been identified [42]. The tran-

scriptome assembly of Gigaspora margarita, an AM fun-

gus belonging to a different order as the model species 

R. irregularis, confirmed a similar equipment in nitrate/

ammonium transporters, being the respective genes well 

expressed in all the considered fungal life stages [34]. The 

expression of R. irregularis ammonium transporter Gin-

tAMT1 has been demonstrated to be induced under low 

environmental  NH4
+ conditions [43], while the nitrate 

transporter is induced by the presence of  NO3
− [44]. 

When  NO3
− is taken up by AMF, it is reduced to nitrite 

by a nitrate reductase and then converted into  NH4
+ by a 
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nitrite reductase. The latter (originated by  NO3
− reduc-

tion or directly taken up by ammonium transporters) is 

then assimilated into amino acids following two path-

ways: the NAD(P)-glutamate dehydrogenase or the glu-

tamine synthetase–glutamate synthase (GS-GOGAT) 

pathway. The GS-GOGAT pathway generates arginine 

that represents the most abundant amino acid in the ext-

raradical mycelium of AMF. Arginine is then transferred 

through the hyphae to the intraradical mycelium [45], 

where it is broken down into urea and ornithine. Finally, 

 NH4
+ is produced from urea via the urease activity, and 

then released in the symbiotic interface. This fungal abil-

ity to take up and transfer N is mirrored by the pres-

ence of specific plant transporters: several AM-inducible 

ammonium transporters have been in fact identified in 

different species such as Lotus japonicus, Glycine max 

(soybean), and Medicago truncatula. In L. japonicus, the 

 NH4
+ transporter LjAMT2;2 is exclusively expressed in 

the mycorrhizal roots, and preferentially in arbusculated 

cells [46]. Similarly, in soybean, a specific expression of 

an ammonium transporter has been detected in arbuscu-

lated cortical root cells [47].

AM fungi can also acquire organic N from the soil 

[48]  (Table  1). An amino acid permease, GmosAAP1, 

has been characterized from Funneliformis mosseae (for-

merly Glomus mosseae) as expressed in the extraradical 

mycelium and induced by high levels of organic N [49]. 

Recently, a dipeptide transporter from R. irregularis, 

RiPTR2, has also been described [50]. Its expression pro-

file indicates responsiveness to diverse environmental 

cues when the fungus grows symbiotically, both in intra- 

and extraradical compartments. On the plant side, in 

Lotus japonicus, a high-affinity amino acid transporter 

(LjLHT1.2) has been identified and characterized as pref-

erentially expressed in arbusculated cells. The authors 

suggested for this transporter a possible role in the re-

uptake and the recycling of amino acids from the plant–

fungal symbiotic interface [51].

In more recent times, multiple evidences demonstrated 

that a complex interplay occurs between nitrogen and 

phosphate homeostasis, both at the level of nutrient 

acquisition and sensing, eventually regulating also the 

symbiosis establishment and functioning. A simultane-

ous low phosphate and low nitrogen soil condition dra-

matically increases the extent of AM colonization [52], 

and N starvation is partially overruling the negative effect 

that high soil phosphate availability exerts on mycorrhi-

zation [53]. A striking demonstration of such an inter-

connection has been provided by Breuillin-Sessoms et al. 

[54]. They observed that in the M. truncatula pt4 mutant, 

the premature arbuscule degeneration due to the lack of 

the P transporter is averted when plants are kept under 

nitrogen starvation. This compensatory effect is lost in 

the double mutant pt4,amt2;3. Moreover, no functional 

role in the NH4 + transport could be demonstrated for 

MtAMT2;3. The authors, thus, concluded that AMT2;3 

in M. truncatula represents a keystone in the signaling 

cross-talk between phosphate and nitrogen metabolism, 

with an active role in sensing/signaling more than in 

nutrient transport [54].

Sulphur (S) is an essential macronutrient for plants, 

but its role in the arbuscular mycorrhizal symbiosis has 

been poorly investigated so far. The demonstration that 

AM fungi can take up both organic and inorganic S and 

transfer it to the plant partner only came in recent times 

[55, 56]  (Table  1). Mycorrhizal colonization has been 

demonstrated to positively impact plant sulphur nutri-

tion, with an effect particularly relevant under low envi-

ronmental S conditions [56–58]. Both Lotus japonicus 

and Medicago truncatula possess sulphate transporters 

(LjSultr1;2 and MtSultr1;2, respectively) that respond to 

mycorrhizal symbiosis [18, 57]. LjSultr1;2 has been dem-

onstrated to be strongly activated in arbuscule-contain-

ing root cells [58], being at the same time also involved 

in the sulfate uptake directly from soil. A recent micro-

array study of M. truncatula root and leaf responses to 

S starvation combined with colonization with the AM 

fungus R. irregularis showed that transcriptional changes 

directly linked to a sulphate-deficiency status were less 

dramatic in mycorrhizal versus non-mycorrhizal plants 

[59]. Whether and to which extent mycorrhiza-mediated 

S uptake can interplay with the sensing and transport of 

the other nutrients, and whether the S transporters can 

also have a role in the regulation of the symbiosis itself 

are still a matter of research.

Potassium (K) is perhaps the most neglected macro-

nutrient in the AM symbiosis. Yet, several reports indi-

cate that the mycorrhizal status results in an improved 

K nutrition, and this has been observed in different 

plant–AM fungus associations [60–62]  (Table  1). Sev-

eral types of plant K transporters have been character-

ized, such as Trk (transporter of K), HAK (high-affinity 

K uptake) and SKC (Shaker-like channels), but their role 

in the AM symbiosis [63] has not been investigated so far 

[63]. A few exceptions are represented by a putative HAK 

transporter found as strongly induced in mycorrhizal 

L. japonicus roots [18] and a SKC-like channel of maize 

which resulted up-regulated by AM colonization under 

salt stress [64]. On the fungal side, several sequences 

annotated as putative SKC and HAK are present in the 

genomes of the sequenced AM fungi (see for example 

those available at the JGI MycoCosm portal, https ://

genom e.jgi.doe.gov/progr ams/fungi /index .jsf ), but more 

focused research is needed to elucidate their possible role 

in the symbiotic K uptake and transfer [8].

https://genome.jgi.doe.gov/programs/fungi/index.jsf
https://genome.jgi.doe.gov/programs/fungi/index.jsf
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Table 1 List of the transporters from different host plants and AM fungi cited in this review

Nutrient Plant transporter name Plant species References

Phosphorus MtPT4 Medicago truncatula Harrison et al. [15]
Javot et al. [16]
Volpe et al. [19]

MtPT1 Bucher [20]
Liu et al. [21]
Grunwald et al. [22]

MtPT2

MtPT3

MtPT5

MtPT6

OsPT2 Oryza sativa Yang et al. [13]

OsPT6

OsPT11

ZmPT6 Zea mays Sawers et al. [26]

ZmPT9 Liu et al. [27]

LjPT4 Lotus japonicus Volpe et al. [19]

Nitrogen LjAMT2;2 Lotus japonicus Guether et al. [46]

LjLHT1.2 Guether et al. [51]

GmAMT4.1 Glycine max Kobae et al. [47]

MtAMT2;3 Medicago truncatula Breuillin-Sessoms et al. [54]

Sulphur LjSultr1;2 Lotus japonicus Guether et al. [18]

MtSultr1;2 Medicago truncatula Casieri et al. [57]

Water LjNIP1 Lotus japonicus Giovannetti et al. [70]

LjXIP1

ZmTIP1;1 Zea mays Barzana et al. [72]

ZmTIP1;2

Arsenic

Zinc

Iron

Sugars MtSUTs Medicago truncatula Doidy et al. [96]

MtSucS1 Baier et al. [98]

MtSut2 Kafle et al. [104]

MtSUT4‐1

MtSWEET12

MtSWEET15c

MtSWEET15d

GmSWEET6 Glycine max Zhao et al. [105]

GmSWEET15

StSWEET1a Solanum tuberosum Manck-Götzenberger et al. [103]

StSWEET1b

StSWEET7a

StSWEET12a

Lipids LjCBX1 Lotus japonicus Xue et al. [123]

MtWRI5a Medicago truncatula Jiang et al. [24]

Nutrient Fungal transporter name Fungal species References

Phosphorus GmosPT Funneliformis mosseae Benedetto et al. [32]

GvPT Diversispora epigaea Harrison et al. [31]

GiPT Rhizophagus irregularis Fiorilli et al. [13]

GigmPT Gigaspora margarita Salvioli et al. [34]
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Considering the symbiotic nutrient flow in a broader 

sense, the water transport is also worth to be mentioned. 

Plant water homeostasis is mediated at the cellular level 

by specific channels called aquaporins (AQPs, [65]; 

Table  1). AQPs belong to a large protein family further 

grouped into five sub-families (see Wang et  al. [10] for 

a review). Mycorrhizal plants have been shown to take 

advantage of an improved water flow from the soil, with 

a better tolerance to (mild) drought conditions (see Bal-

estrini et  al. [66] for a review), and this effect has been 

linked to a modulation of the plant AQPs [67–69].

To cite an example, in L. japonicus, two AQP genes 

(LjNIP1 and LjXIP1) have been demonstrated to be 

induced by mycorrhization [70]. Interestingly, laser 

microdissection experiments demonstrated that tran-

scripts of one of these AQPs specifically accumulated in 

arbuscule-containing cells [70].

AM fungi also appear to modulate their AQP genes 

during the symbiosis. The transcript profiles of two R. 

irregularis AQP genes showed an activation in arbuscule-

containing maize root cells [71]. On the same line, the 

expression of the R. intraradices RiAQPF2 gene in tomato 

plants subjected to drought showed a significantly up-

regulation [69].

Beside water transport, AQPs are also involved in the 

translocation of small molecules as ammonia, urea and 

glycerol, and this function might also play a role in the 

mycorrhizal symbiosis [10]. As an example, Barzana 

et al. [72] analyzed the expression of the maize AQPs in 

roots under diverse experimental conditions, and found 

that two of them, namely ZmTIP1;1 and ZmTIP1;2, were 

up-regulated upon mycorrhization [72]. In maize, most 

of the AQPs belonging to the TIP subfamily, including 

ZmTIP1;1 and ZmTIP1;2, have been demonstrated to 

transport NH3 and urea [25, 73]: taken together, these 

data point to a fine-tuned interplay between symbiotic 

mineral nutrition and water flow.

Beyond the mineral nutrition: the dual role of the AM 

symbiosis in plant metal ions uptake

Some metals such as iron (Fe), manganese (Mn), zinc 

(Zn), copper (Cu), molybdenum (Mo) and nickel (Ni) play 

an important role in plant nutrition as essential micronu-

trients (Table 1). They are required in minimal amounts 

by the organisms, but become toxic when present at 

high concentrations, thus polluting soils and water. In 

this respect, plants have remarkable abilities to scavenge 

heavy metals and tolerate them at relatively high concen-

trations, with some species acting as hyperaccumulator 

employed in phytoremediation strategies for the recov-

ery of polluted soils [74]. Mycorrhizal plants exposed to 

high environmental heavy metal concentrations exhib-

ited a wide spectrum of behaviors ranging from hyper 

accumulation to a reduction of the uptake, also includ-

ing neutral responses (see Shi et al. [9] for a review). Early 

reports showed that zinc uptake in maize was positively 

affected by AM fungi, with an increase of plant growth 

parameters [75]. In addition, AM fungi can be acclima-

tized to high heavy metal concentrations, mitigating in 

turn their accumulation in plants, following a mechanism 

that likely involves the binding and immobilization of 

metals on the mycelium surface [76–78]. Unfortunately, 

this tolerance was shown to dramatically decrease being 

even got lost when the acclimatized fungal strain grew 

in heavy metal-free substrate, compromising in turn the 

fungal ability to confer tolerance to the plant host [79]. 

Table 1 (continued)

Nutrient Fungal transporter name Fungal species References

Nitrogen GintAMT1 Rhizophagus irregularis López-Pedrosa et al. [43]

GmosAAP1 Funneliformis mosseae Cappellazzo et al. [49]

RiPTR2 Rhizophagus irregularis Belmondo et al. [50]

Sulphur

Water RiAQPF2 Rhizophagus irregularis Chitarra et al. [69]

Arsenic RiArsAB Rhizophagus irregularis Maldonado-Mendoza and Harrison [84]

RiMT-11 Gonzalez-Chavez et al. [83]

Zinc GintZnT1 Rhizophagus irregularis González-Guerrero et al. [85]

Iron RiFRE1 Rhizophagus irregularis Tamayo et al. [87]

RiFTR1-2

Sugars RiMST2 Rhizophagus irregularis Helber et al. [107]

RiMST5 Ait Lahmidi et al. [108]

RiMST6

Lipids
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Very recently, the possibility to assess the elemental com-

position of living organisms at the -omics level (referred 

as ionomics) has allowed the simultaneous and quantita-

tive analysis of 19 ions including metal ones in leaves and 

roots of maize with and without inoculation with the AM 

fungus F. mosseae [80]. This analysis indicated that a clus-

ter of elements was positively affected by mycorrhization 

in roots, including Ca, Na, Mo, P, Rb, S and Sr, while the 

content of some metals such as Cd, Co, Cu, Mn, Ni and 

Zn was reduced. In the leaves, the influence of AM colo-

nization on the ion profile was different but still evident, 

with Al, As, Co, Fe, Na, Ni and P increased, while Mn and 

Zn were decreased as already evidenced in roots [80]. 

Recent findings demonstrate that the AM symbiosis can 

modulate the expression of genes that play crucial roles 

in the plant heavy metal accumulation and detoxifica-

tion processes. In Festuca arundinacea, the AM fungus 

F. mosseae led to an induction of ABC transporters and 

metallothionein transcripts under high nickel concentra-

tions [81], and the inoculation with a fungal consortium 

that included R. irregularis increased the transcription 

of Solanum lycopersicum phytochelatin synthase, metal-

lothionein and NRAMP (natural resistance‐associated 

macrophage protein) genes in polluted soils [82].

On the fungal side, the metal ion homeostasis has been 

poorly investigated so far. Current data suggest that AM 

fungi respond to high metal concentrations by regulating 

the expression of genes dealing with their transport and 

metabolism. The exposure of R. irregularis to high arse-

nate concentrations led to the up-regulation of the two 

components of the RiArsAB arsenite efflux pump and of 

a methyltransferase (RiMT-11) in the fungal mycelium 

[83, 84]. Putative fungal transporters have been charac-

terized: GintZnT1 from the extraradical mycelium of R. 

irregularis, with a predicted function in the fungal zinc 

homeostasis [85] and RintABC1, putatively involved in 

heavy metal detoxification [86].

Tamayo et al. [87] performed a careful data mining on 

the R. irregularis genome assembly to retrieve and char-

acterize in silico the copper, iron and zinc transporter 

genes. The same authors went more in detail character-

izing the key components of the reductive pathway of Fe 

assimilation in R. irregularis, namely the ferric reductase 

(RiFRE1) and the high-affinity Fe permeases (RiFTR1-2) 

[88]. Expression data of those genes in the fungal myce-

lium and complementation assays of yeast mutants 

indicate their fine-tuning in dependence of the fungal 

life stages and of the external Fe availability, suggesting 

that Fe homeostasis in AMF is tightly regulated. On the 

ecological point of view, the iron uptake from the sur-

rounding environment has important implications for 

immunity, preventing pathogens invasion on one hand 

and being also involved in beneficial plant–microbe 

interactions on the other [89]. Interestingly, compara-

tive transcriptomics of the AM fungus G. margarita 

colonized or not by an obligate intracellular bacterium, 

showed that one of the genes more up-regulated by the 

bacterial presence is actually an iron transporter [34]. 

Taken together, these data strengthen the vision that the 

regulation of iron homeostasis might represent a relevant 

mechanism enabling AM fungi to cope with bacteria in 

the rhizosphere.

Does the plant reward the fungus only with sugars?

Early reports showed that sugars can be transported from 

the plant host to the fungus in the AM symbiosis [90, 

91] (Table 1). Mycorrhizal colonization increases the root 

sink strength, with up to 20% of photosynthates trans-

ferred to the fungus [92]. Consistently, AM plants often 

display an increased photosynthesis [93, 94], that seems 

not only to sustain the fungal metabolism but also to cor-

relate with an increase in plant biomass [95]. Plants have 

different families of sucrose transporters (SUTs) that can 

be involved in the sugar transfer to the colonized roots: 

in M. truncatula, the expression profiles of MtSUTs are 

finely tuned by the presence of the fungal symbiont [96], 

and the three sucrose transporters from tomato are also 

up-regulated in roots colonized by Funneliformis mosseae 

[97]. M. truncatula antisense lines for the biosynthetic 

enzyme sucrose synthase (MtSucS1) in roots displayed 

an abnormal mycorrhizal phenotype, with an impairment 

of plant growth under phosphate limitation, a reduced 

mycorrhization and relevant alterations in the morphol-

ogy and life span of the arbuscules [98]. These traits were 

mirrored by a reduced expression of plant genes markers 

for the AM symbiosis, pointing to a central role of plant-

derived sugars in the mycorrhiza establishment and func-

tioning [98].

In the roots, the sucrose unloaded from the phloem or 

newly synthesized is thought to be cleaved into monosac-

charides by plant invertases. Monosaccharides are the 

most likely sugar forms transferred to the fungal sym-

biont: consistently, plant monosaccharides transporters 

(MSTs) are finely regulated in roots upon mycorrhizal 

colonization [99–101]. Recently, a new class of sucrose 

and monosaccharide exporters has been characterized 

that likely operates the plant sugar efflux in both patho-

genic and symbiotic interactions [102]. These so-called 

SWEET transporters have been also linked to the AM 

symbiosis, since a recent paper highlighted a transcrip-

tional induction of some of them in arbusculated cells 

from potato plants [103]. Recent findings strongly sug-

gest that sugar transporters can operate at the molecu-

lar level the “reward mechanism” described by Kiers 

et al. [6], which postulated that plants can modulate the 

symbiotic C allocation to reward the most collaborative 
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symbionts. Kafle et  al. [104] provided an elegant dem-

onstration employing the split-root system and 13CO2 

labeling to dissect a tripartite association of M. trunca-

tula with the nodule-forming rhizobacterium Ensifer 

meliloti and the AM fungus R. irregularis. By modulating 

the symbiotic nutrient access and the plant nutritional 

status, they demonstrated that plants under N demand 

preferentially allocated organic C to the nodulated root 

half, but this flux was more balanced when the AM fun-

gus also had access to an exogenous N source. Interest-

ingly, some specific isoforms of the SUT and SWEET 

transporters showed expression patterns that nicely fol-

lowed the plant C partitioning: the expression levels of 

MtSUT2 and MtSUT4‐1 positively correlated with the C 

allocation to the symbiotic partners, and MtSWEET12, 

MtSWEET15c, and MtSWEET15d were up-regulated in 

the mycorrhizal roots when the fungus had access to a 

N source, but were down‐regulated when the host plant 

was not under N starvation. Another recent research 

analyzed the transcriptional responses of soybean roots 

colonized with more or less cooperative (in terms of their 

ability to promote plant growth) AM fungi, and found 

that two SWEET genes (GmSWEET6 and GmSWEET15) 

and one sugar invertase (Glyma.17G227900) were exclu-

sively induced when the roots were colonized with more 

cooperative AMF species [105].

To parallel the activation of plant sugar transporters, 

on the fungal side, a few actors have been demonstrated 

to take part in the symbiotic sugar uptake [106, 107]. In 

particular, RiMST2 from R. irregularis is expressed in the 

intraradical fungal structures, and its silencing affects 

both arbuscule morphology and the extent of the mycor-

rhization [107].

Recently, two further fungal sugar transporters 

(RiMST5 and RiMST6) have been found to be expressed 

also in the extraradical mycelium, being involved in the 

direct uptake from the soil [108]. Both these are mono-

saccharide transporters, and RiMST6 has been character-

ized as a glucose-specific, high-affinity  H+ co-transporter. 

However, the contribution of the non-symbiotic sugar 

uptake in AMF has not been clarified yet. Our survey of 

the G. margarita transcriptome highlighted the expres-

sion of fungal sugar transporters also in the pre-symbi-

otic stages of the fungal life cycle. Furthermore, potato 

mutant defective for the SUT gene did not display an 

impaired mycorrhizal phenotype [109]. Taken together, 

these evidences indicate that, though the sugar flux in the 

AM symbiosis is not questioned, this mechanism seems 

not to represent the keystone of the AMF strict biotro-

phy. To justify this peculiar lifestyle, the fungus should be 

dependent on its host for some essential (nutritional) fac-

tors. At the molecular level, this might be due to the lack 

of expression of some crucial genetic determinant in the 

asymbiotic phase, or alternatively to the absence of the 

coding potential for an essential pathway. The availability 

of genomic data on the first sequenced AMF R. irregula-

ris followed in the last year by other species and genera 

[42, 110–113] allowed to reveal that AMF do not possess 

the genes encoding the fungal type I Fatty acid Synthase 

(FASI). Some very recent researches well characterized 

at the molecular level the dynamics of such a fatty acid 

auxotrophy, and clarified that lipids are likely transferred 

from the plant host to the fungus at the symbiotic inter-

face  (Table  1). First of all, a number of fatty acid- and 

lipid-biosynthesis genes were found to be up-regulated 

in arbusculated roots, including a specific acyl-ACP thi-

oesterase (FatM) and a glycerol-3-phosphate acyl trans-

ferase (RAM2) required for the symbiosis [101, 114–116]. 

L. japonicus fatm mutant lines showed a reduced shoot 

phosphate content attributable to an impaired symbi-

otic functionality, and biochemical analyses evidenced a 

decrease of the mycorrhiza-specific phospholipids and an 

alteration of the fatty acid profile [117]. Also, mutations 

in FatM, RAM2 and another FA biosynthetic gene called 

DIS (encoding a β-keto-acyl-ACP synthase I) resulted 

in an impaired mycorrhization, with alteration of the 

arbuscule morphology [115, 116, 118, 119]. The lack of a 

specific ABC transporter that localizes at the symbiotic 

interface (STR-STR2) displays a phenotype very similar 

to that of the AM-specific lipid biosynthesis mutants: this 

transporter represents a plausible candidate to operate 

the lipid flow from the plant to the fungus [116, 118, 120]. 

The next step has been the demonstration that a trans-

fer of lipids from the plant to the fungus actually takes 

place, and this has been provided by different research 

groups following distinct approaches on Lotus japoni-

cus and Medicago truncatula [116, 118, 121]. Taken all 

these data together, the current model for lipid transfer 

from the plant to the AM fungus includes an induction 

of fatty acid biosynthesis in the colonized roots, with 16:0 

fatty acids produced by DIS and released by FatM. Then, 

RAM2 transfers the newly generated FAs to a glycerol 

moiety to produce 16:0 monoacylglycerols (MAG). This 

lipidic molecule is then transported through the PAM by 

the STR–STR2 transporter, and taken up by the fungus 

with a mechanism that remains still unknown. The AMF 

can, thus, use these symbiotic 16:0 MAGs directly for 

energy production or in anabolic processes, modifying 

the FA structure by means of FA active enzymes as elon-

gases and desaturases encoded by the fungus itself.

Recent findings shed some lights on the regula-

tory mechanisms that orchestrate the plant symbiotic 

responses in terms of nutrient exchange.

The RAM1 transcription factor has been identified as 

an early regulator of the mycorrhiza-specific reprogram-

ming, activating on the one hand genes involved in the 
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transfer of FAs to the fungus [121] and the AM-specific 

phosphate transporter PT4 on the other [122]. Follow-

ing different strategies to screen for transcription factors 

that could bind the promoters of mycorrhiza-inducible 

genes, two very recent researches identified elements 

acting downstream RAM1, namely LjCBX1 in Lotus 

japonicus [123] and MtWRI5a in Medicago truncatula 

[124]. LjCBX1 binds the conserved cis-regulatory motif 

“CTTC” enriched in mycorrhiza-regulated genes as well 

as an AW-box motif present in the promoters of glyco-

lysis and fatty acid biosynthesis genes. Accordingly, the 

authors showed that LjCBX1 can activate the transcrip-

tion of FA metabolic genes as well as of the L. japonicus 

PT4 [123]. The M. truncatula MtWRI5a transcription 

factor has also been shown to bind the AW-box motif 

present in the promoter of the fatty acid ABC trans-

porter STR, as well as the phosphate transporter MtPT4, 

enhancing their expression [124]. On the contrary, 

hairy roots of M. truncatula wri5a mutants showed an 

impaired arbuscule formation [124]. These two WRIN-

KLED1-like transcription factors seem to represent key 

elements in the regulation of the symbiotic bidirectional 

nutrient exchange, and well fit into an updated the sce-

nario of the “reciprocal rewards” in the AM symbiosis 

[6], that also accounts for the central role played by FAs 

beside sugars.

Conclusions

The nutrient exchange has surely been the more exten-

sively studied aspect of the arbuscular mycorrhizal 

symbiosis. Yet, recent findings demonstrated that the 

scenario depicted in many years of research was far to be 

conclusive, and that much work is still needed to clarify 

the mechanics and the implications underneath this flow 

of nutrients. In particular, some important milestones 

have been recently placed:

• In the fungus-to-plant direction, the relevant role of 

the transfer of nutrients other than P and N has been 

brought to light, as well as the intricate network of 

connections that orchestrates the regulation of the 

nutrient exchange as a whole;

• In the plant-to-fungus direction, recent compelling 

results requested a real paradigm shift that shook up 

the mainstream bulk of knowledge: beside sugars, 

lipids are also transferred from the plant to AMFs, 

and their transfer might represent the key of the fun-

gal obligate biotrophy.

The advancements made in the deciphering of this mul-

tifaceted scenario are extremely meaningful for the myc-

orrhiza scientific community. Nonetheless, they are also 

instrumental to the implementation of the mycorrhizal 

symbiosis into agronomical practices aimed at improving 

the health and productivity of crop plants.
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