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Abstract

Generalization performance of classifiers in deep

learning has recently become a subject of intense

study. Deep models, which are typically heav-

ily over-parametrized, tend to fit the training data

exactly. Despite this “overfitting”, they perform

well on test data, a phenomenon not yet fully

understood. The first point of our paper is that

strong performance of overfitted classifiers is not

a unique feature of deep learning. Using six real-

world and two synthetic datasets, we establish ex-

perimentally that kernel machines trained to have

zero classification error or near zero regression er-

ror (interpolation) perform very well on test data.

We proceed to give a lower bound on the norm of

zero loss solutions for smooth kernels, showing

that they increase nearly exponentially with data

size. None of the existing bounds produce non-

trivial results for interpolating solutions. We also

show experimentally that (non-smooth) Laplacian

kernels easily fit random labels, a finding that par-

allels results recently reported for ReLU neural

networks. In contrast, fitting noisy data requires

many more epochs for smooth Gaussian kernels.

Similar performance of overfitted Laplacian and

Gaussian classifiers on test, suggests that general-

ization is tied to the properties of the kernel func-

tion rather than the optimization process. Some

key phenomena of deep learning are manifested

similarly in kernel methods in the modern “over-

fitted” regime. The combination of the experimen-

tal and theoretical results presented in this paper

indicates a need for new theoretical ideas for un-

derstanding properties of classical kernel meth-

ods. We argue that progress on understanding
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deep learning will be difficult until more tractable

“shallow” kernel methods are better understood.

1 Introduction

The key question in supervised machine learning is that of

generalization. How will a classifier trained on a certain data

set perform on unseen data? A typical theoretical setting

for addressing this question is Empirical Risk Minimization

(ERM) (Vapnik, 1995). Given data {(xxxi, yi), i = 1, . . . , n}
sampled from a probability distribution P on Ω× {−1, 1},

a class of functions H : Ω → R and a loss function l, ERM

finds a minimizer of the empirical loss:

f∗ = arg min
f∈H

Lemp(f) := arg min
f∈H

∑

i

l(f(xxxi), yi)

Most approaches work by controlling and analyzing the

capacity/complexity of the space H. Many mathemati-

cal measures of function space complexity exist, including

VC and fat shattering dimensions, Rademacher complexity,

covering numbers (see, e.g., (Anthony & Bartlett, 2009)).

These analyses generally yield bounds on the generaliza-

tion gap, i.e., the difference between the empirical and ex-

pected loss of classifiers. Typically, it is shown that the

generalization gap tends to zero at a certain rate as the num-

ber of points n becomes large. For example, many of the

classical bounds on the generalization gap are of the form

|E[l(f∗(xxx), y)]− Lemp(f
∗)| < O∗(

√

c/n), where c is a

measure of complexity of H, such as VC-dimension. Other

methods, closely related to ERM, include regularization to

control bias/variance (complexity) trade-off for parameter

choice, and result in similar bounds. Closely related implicit

regularization methods, such as early stopping for gradient

descent (Yao et al., 2007; Raskutti et al., 2014; Camoriano

et al., 2016), provide regularization by limiting the amount

of computation, thus aiming to achieve better performance

at a lower computational cost. All of these approaches sug-

gest trading off accuracy (in terms of some loss function)

on the training data to get performance guarantees on the

unseen test data.

In recent years we have seen impressive progress in super-

vised learning due, in particular, to deep neural architectures.

These networks employ large numbers of parameters, often

exceeding the size of training data by several orders of mag-

nitude (Canziani et al., 2016). This over-parametrization
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allows for convergence to global optima, where the train-

ing error is zero or nearly zero. Yet these “overfitted” or

even interpolated networks still generalize well to test data,

a situation which seems difficult to reconcile with avail-

able theoretical analyses (as observed, e.g., in (Zhang et al.,

2016) or, much earlier, in (Breiman, 1995)). There have

been a number of recent efforts to understand generalization

and overfitting in deep networks including (Bartlett et al.,

2017; Liang et al., 2017; Poggio et al., 2018).

In this paper we make the case that progress on understand-

ing deep learning is unlikely to move forward until similar

phenomena in classical kernel methods are recognized and

understood. Kernel methods can be viewed as linear re-

gression in infinite dimensional Reproducing Kernel Hilbert

spaces (RKHS), which correspond to positive-definite ker-

nel functions, such as Gaussian or Laplacian kernels. They

can also be interpreted as two-layer neural networks with

a fixed first layer. As such, they are far more amenable to

theoretical analysis than arbitrary deep networks. Yet, de-

spite numerous observations in the literature that very small

values of regularization parameters (or even direct minimum

norm solutions) often result in optimal performance (Shalev-

Shwartz et al., 2011; Takác et al., 2013; Zhang et al., 2016;

Gonen et al., 2016), the systematic nature of near-optimality

of kernel classifiers trained to have zero classification er-

ror or zero regression error has not been recognized. We

note that margin-based analyses, such as those proposed to

analyze overfitting in boosting (Schapire et al., 1998), do

not easily explain performance of interpolated classifiers

in the presence of label noise, as sample complexity must

scale linearly with the number of data points. Below we

will show that most bounds for smooth kernels will, indeed,

diverge with increasing data. Besides, empirical evidence

shows consistent and robust generalization performance of

“overfitted” and interpolated classifiers even for high label

noise levels.

We will discuss these and other related issues in detail,

providing both theoretical results and empirical data. The

contributions of this paper are as follows:

Empirical properties of overfitted and interpolated ker-

nel classifiers.

1. The phenomenon of strong generalization performance

of overfitted/interpolated classifiers is not unique to deep

networks. We demonstrate experimentally that kernel clas-

sifiers that have zero classification or regression error on

the training data, still perform well on test. We use six

real-world datasets (Section 3) and two synthetic datasets

(Section 4) to demonstrate the ubiquity of this behavior. We

also observe that regularization by early stopping provides

at most a minor improvement to classifier performance.

2. It was recently observed in (Zhang et al., 2016) that ReLU

networks trained with SGD easily fit standard datasets with

random labels, requiring only about three times as many

epochs as for fitting the original labels. Thus the fitting

capacity of ReLU network function space reachable by a

small number of SGD steps is very high. In Section 5

we demonstrate very similar behavior exhibited by (non-

smooth) Laplacian kernels, which are easily able to fit ran-

dom labels. In contrast, as expected from the theoretical

considerations of fat shattering dimension (Belkin, 2018), it

is far more computationally difficult to fit random labels us-

ing Gaussian kernels. However, we observe that the actual

test performance of interpolated Gaussian and Laplacian

kernel classifiers on real and synthetic data is very similar,

and remains similar even with added label noise.

Theoretical results and the supporting experimental ev-

idence. In Section 4 we show theoretically that performance

of interpolated kernel classifiers cannot be explained by the

existing generalization bounds available for kernel learn-

ing. Specifically, we prove lower bounds on the RKHS

norms of overfitted solutions for smooth kernels, showing

that they must increase nearly exponentially with the data

size. Since most available generalization bounds depend at

polynomially on the norm of the solution, this result implies

divergence of most bounds as data goes to infinity. More-

over, to the best of our knowledge, none of the bounds apply

to interpolated (zero regression loss) classifiers. Note that

we need an assumption that the loss of the Bayes optimal

classifier (the label noise) is non-zero. While it is usually

believed that most real datasets have some level of label

noise, it is not possible to verify when this is the case. We

address this issue in two ways by analyzing (1) synthetic

datasets with a known level of label noise (2) real-world

datasets with added random label noise. In both cases we

see that empirical test performance of overfitted kernel clas-

sifiers decays at slightly below the noise level, as it would, if

the classifiers were nearly optimal. As the existing bounds

for noisy data diverge, we conclude that they are unlikely

to provide insight into the generalization performance of

kernel classifiers.

We will now discuss some important points, conclusions

and conjectures based on the combination of theoretical and

experimental results presented in this paper.

Parallels between deep and shallow architectures in per-

formance of overfitted classifiers. There is extensive em-

pirical evidence, including the experiments in our paper,

that “overfitted” kernel classifiers demonstrate strong per-

formance on a range of datasets. Moreover, we see that

introducing regularization (by early stopping) provides at

most a modest improvement to the classification accuracy.

Our findings parallel those for deep networks discussed

in (Zhang et al., 2016). Considering that kernel methods

can be viewed as a special case of two-layer neural network

architectures, we conclude that deep network structure, as

such, is unlikely to play a significant role in this surprising

phenomenon.
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Existing bounds for kernels lack explanatory power in

overfitted regimes. Our experimental results show that

kernel classifiers demonstrate nearly optimal performance

even when the label noise is known to be significant. On

the other hand, the existing bounds for overfitted/interpo-

lated kernel methods diverge with increasing data size in

the presence of label noise. We believe that a new theory of

kernel methods, not dependent on norm-based concentration

bounds, is needed to understand this behavior. At this point

we know of few candidates for such a theory. A notable

(and, to the best of our knowledge, the only) example is

1-nearest neighbor classifier, with expected loss that can be

bounded asymptotically by twice the Bayes risk (Cover &

Hart, 1967), while its empirical loss (both classification and

regression) is identically zero. We conjecture that similar

ideas are needed to analyze kernel methods and, potentially,

deep learning.

Generalization and optimization. We observe that

smooth Gaussian kernels and non-smooth Laplacian ker-

nels have very different optimization properties. We show

experimentally that (less smooth) Laplacian kernels eas-

ily fit standard datasets with random labels, requiring only

about twice the number of epochs needed to fit the origi-

nal labels (a finding that closely parallels results recently

reported for ReLU neural networks in (Zhang et al., 2016)).

In contrast (as suggested by the theoretical considerations

of fat shattering dimension in (Belkin, 2018) optimization

by gradient descent is far more computationally demanding

for (smooth) Gaussian kernels. On the other hand, test per-

formance of kernel classifiers is very similar for Laplacian

and Gaussian kernels, even with added label noise. Thus

the generalization performance of classifiers appear to be

related to the structural properties of the kernels (e.g., their

radial structure) rather than their properties with respect to

the optimization methods, such as SGD.

Implicit regularization. One proposed explanation for the

performance of deep networks is the idea of implicit reg-

ularization introduced by methods such as early stopping

in gradient descent (Yao et al., 2007; Raskutti et al., 2014;

Neyshabur et al., 2014; Camoriano et al., 2016). These ap-

proaches suggest trading off some accuracy on the training

data by limiting the amount of computation, to get better per-

formance on the unseen test data. It can be shown (Yao et al.,

2007) that for kernel methods early stopping for gradient

descent is effectively equivalent to traditional regularization

methods, such as Tikhonov regularization.

As interpolated kernel methods fit the labels exactly (at

or close to numerical precision), implicit regularization,

viewed as a bias/variance trade-off, cannot provide an ex-

planation for their generalization performance. While over-

fitted (zero classification loss) classifiers can be taking ad-

vantage of regularization by introducing regression loss

not reflected in the classification error (cf. (Schapire et al.,

1998)), we see (Section 3,4) that their performance does not

significantly differ from that for interpolated classifiers.

Since deep networks are also trained to fit the data exactly,

the similarity to kernel methods suggests that implicit regu-

larization is not the basis of their generalization properties.

Inductive bias. We would like to draw a distinction be-

tween regularization which introduces a bias on the training

data and inductive bias, which gives preferences to certain

functions without affecting their output on training data.

While interpolated methods fit the data exactly and thus

produce no regularization, minimum RKHS norm inter-

polating solutions introduce inductive bias by choosing

functions with special properties. Note that, while in-

finitely many RKHS functions are capable of interpolat-

ing the data1, the Representer Theorem (Aronszajn, 1950)

ensures that the minimum norm interpolant is a linear

combination of kernel functions supported on data points

{K(xxx1, ·), . . . ,K(xxxn, ·)}. As we observe from the empiri-

cal results, these solutions have special generalization prop-

erties, which cannot be expected from arbitrary interpolants.

While we do not yet understand how this inductive bias leads

to strong generalization properties of kernel interpolants,

they are obviously related to the structural properties of

kernel functions and their RKHS. It is instructive to com-

pare this setting to 1-NN classifier. While no guarantee can

be given for piece-wise constant interpolating functions in

general, the specific piece-wise constant function chosen

by 1-NN has certain optimality properties, guaranteeing the

generalization error of at most twice the Bayes risk.

It is well-known that gradient descent (and, in fact, SGD)

for any strictly convex loss, initialized at 0 (or any point

other point within the span of {K(xxx1, ·), . . . ,K(xxxn, ·)}),

converges to the minimum norm solution, which is the

unique interpolant for the data within the span of the

kernels functions. On the other hand, it can be easily

verified2 that GD/SGD initialized outside of the span of

{K(xxx1, ·), . . . ,K(xxxn, ·)} cannot converge to the minimum

RKHS norm solution. Thus the inductive bias correspond-

ing to SGD with initialization at zero, is consistent with that

of the minimum norm solution.

Unfortunately, we do not have an analogue of the Represen-

ter Theorem for deep networks. Despite a number of recent

attempts (see, e.g., (Neyshabur et al., 2017)), it is unclear

how best to construct a norm for deep networks similar to

the RKHS norm for kernels. Still, it is likely that similarly

to kernels, the structure of neural networks in combination

with algorithms, such as SGD, introduce an inductive bias3.

1Indeed, the space of RKHS interpolating functions is dense in
the space of all functions in L

2!
2The component of the initialization vector orthogonal to the

span does not change with the iterative updates.
3We conjecture that fully connected neural networks have in-
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A remark on the importance of accelerated algorithms,

hardware and SGD. Finally, we note that the experiments

shown in this paper, particularly fitting noisy labels with

Gaussian kernels, would be difficult without fast kernel

training algorithms (we used EigenPro-SGD (Ma & Belkin,

2017), which provided 10-40x acceleration over the stan-

dard SGD/Pegasos (Shalev-Shwartz et al., 2011)) combined

with modern GPU hardware. By a remarkably serendipitous

coincidence, small mini-batch SGD can be shown to be ex-

ceptionally effective (nearly O(n) more effective than GD)

for interpolated classifiers (Ma et al., 2017).

To summarize, in this paper we demonstrate significant par-

allels between the properties of deep neural networks and

the classical kernel methods trained in the “modern” over-

fitted regime. Note that kernel methods can be viewed as

a special type of two-layer neural networks with a fixed

first layer. Thus, we argue that more complex deep net-

works are unlikely to be amenable to analysis unless simpler

and analytically more tractable kernel methods are better

understood. Since the existing bounds seem to provide lit-

tle explanatory power for their generalization performance,

new insights and mathematical analyses are needed.

2 Setup

We recall some properties of kernel methods used in this

paper. Let K(xxx,zzz) : R
d × R

d → R be a positive defi-

nite kernel. Then there exists a corresponding Reproduc-

ing Kernel Hilbert Space H of functions on R
d, associ-

ated to the kernel K(x, z). Given a data set {(xxxi, yi), i =
1, . . . , n},xxxi ∈ R

d, yi ∈ R, let K be the associated kernel

matrix, Kij = K(xxxi,xxxj) and define the minimum norm

interpolant

f∗ = argminf∈H, f(xxxi)=yi
‖f‖H (1)

Here ‖f‖H is the RKHS norm of f . From the classical rep-

resenter theorem (Aronszajn, 1950) it follows that f∗ exists

( if no two data points xi and xj have the same features but

different labels). Moreover, f∗ can be written explicitly as

f∗(·) =
∑

α∗

iK(xxxi, ·), (α∗

1, . . . , α
∗

n)
T = K−1yyy (2)

where yyy = (y1, . . . , yn)
T . The fact that matrix K is invert-

ible follows directly from the positive definite property of

the kernel. It is easy to verify that indeed f(xxxi) = yi and

hence the function f∗ defined by Eq. 2 interpolates the data.

An equivalent way of writing Eq. 1 is to observe that f∗

minimizes
∑

l(f(xxxi), yi) for any non-negative loss function

l(ỹ, y), such that l(y, y) = 0. If l is strictly convex, e.g.,

the square loss l(f(xxxi), yi) = (f(xxxi)− yi)
2, then ααα∗ is the

ductive biases similar to those of kernel methods. On the other
hand, convolutional networks seem to have strong inductive biases
tuned to vision problems, which can be used even in the absence
of labeled data (Ulyanov et al., 2017).

unique vector satisfying

ααα∗ = arg min
α∈Rn

n
∑

i=1

l









n
∑

j=1

αiK(xxxj ,xxxi)



 , yi



 (3)

This is an important formulation as it allows us to define

f∗ in terms of an unconstrained optimization problem of

a finite-dimensional space R
n. We also recall that the

RKHS norm of an arbitrary function of the form f(·) =
∑

αiK(xxxi, ·) is simply ‖f‖2H = 〈ααα,Kααα〉 =
∑

ij αiKijαj .

In this paper we will use the popular smooth Gaussian ker-

nel K(xxx,zzz) = exp
(

−‖xxx− zzz‖2/σ2
)

as well as non-smooth

Laplacian kernel K(xxx,zzz) = exp (−|xxx− zzz‖/σ). We use

both direct linear systems solvers and fast iterative methods.

3 Generalization Performance of

Overfitted/Interpolating Classifiers

In this section we establish empirically that interpolating

kernel methods provide strong performance on a range of

standard datasets (see supplementary for descriptions) both

in terms of regression and classification. To construct kernel

classifiers we use iterative EigenPro-SGD method (Ma &

Belkin, 2017), which is an accelerated version of SGD in

the kernel space (cf. Pegasos (Shalev-Shwartz et al., 2011)).

This provides a highly efficient implementation of kernel

methods and, additionally, a setting parallel to neural net

training using SGD. Our experimental results are summa-

rized in Fig. 1. We see that as the number of epochs in-

creases, training square loss (mse) approaches zero4. On

the other hand, the test error, both regression (mse) and

classification (ce) remains very stable and, in most cases (in

all cases for Laplacian kernels), keeps decreasing and then

stabilizes. We thus observe that early stopping regulariza-

tion (Yao et al., 2007; Raskutti et al., 2014) provides a small

or no benefit in terms of either classification or regression

error. For comparison, we also show the performance of

interpolating solutions given by Eq. 2 and solved using di-

rect methods. As expected, direct solutions always provide

a highly accurate interpolation for the training data with the

error in most cases close to numerical precision. Remark-

ably, we see that in all cases performance of the interpolated

solution on test is either optimal or close to optimal both in

terms of both regression and classification error.

Performance of overfitted/interpolated kernel classifiers

closely parallels behaviors of deep networks noted in (Zhang

et al., 2016) which fit the data exactly (only the classifica-

tion error is reported there, other references also report

MSE (Chaudhari et al., 2016; Huang et al., 2016; Sagun

et al., 2017; Bartlett et al., 2017)). We note that observations

of unexpectedly strong performance of overfitted classifiers

4Training classification error (not shown), is similarly small. It
is exactly zero after 20 epochs for all datasets, except for 20 News
with Gaussian/Laplace kernels and HINT-S with Gaussian kernel.
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(a) MNIST (b) CIFAR-10 (c) SVHN (2 · 104 subsamples)

(d) TIMIT (5 · 104 subsamples) (e) HINT-S (2 · 104 subsamples) (f) 20 Newsgroups
Figure 1: Comparison of approximate classifiers trained by EigenPro-SGD (Ma & Belkin, 2017) and interpolated classifiers obtained from
direct method for kernel least squares regression. † All methods achieve 0.0% classification error on training set. ‡ We use subsampled
dataset to reduce the computational complexity and to avoid numerically unstable direct solution.

have been made before. For example, in kernel methods

it has been observed on multiple occasions that very small

values of regularization parameters frequently lead to opti-

mal performance (Shalev-Shwartz et al., 2011; Takác et al.,

2013). Similar observations were also made for Adaboost

and Random Forests (Schapire et al., 1998). However, we

have not seen recognition or systematic exploration of this

phenomenon for kernel methods, and more generally in con-

nection to interpolated classifiers and generalization with

respect to the square loss.

In the next section we will examine in detail why the existing

margin-based bounds are not likely to provide insight into

the generalization properties of classifiers in overfitted and

interpolated regimes.

4 Existing Bounds Provide No Guarantees

for Interpolated Kernel Classifiers

In this section we discuss theoretical considerations related

to generalization bounds for kernel classification/regression

corresponding to smooth kernels. We also provide some

further supporting experimental evidences. Our main the-

oretical result shows that the norm of overfitted kernels

classifiers increases nearly exponentially with the data size

as long as the error of the Bayes optimal classifier (the label

noise) is non-zero. Most of the available generalizations

bounds depend at most polynomially on the RKHS norm,

hence diverge to infinity as data size increases and none

apply to interpolated classifiers. On the other hand, we will

see that the empirical performance of interpolated classifiers

remains nearly optimal, even with added label noise.

Let (xxxi, yi) ∈ Ω × {−1, 1} be a labeled dataset, Ω ⊂ R
d

domain, and let the data be chosen from some probability

measure P on Ω × {−1, 1}. We will assume that the loss

of the Bayes optimal classifier (the label noise) is not 0,

i.e., y is not a deterministic function of xxx on a subset of

non-zero measure. We will say that h ∈ H t-overfits the

data, if it achieves zero classification loss, and, additionally,

∀iyih(xxxi) > t > 0 for at least a fixed portion of the train-
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ing data. This condition is necessary as zero classification

loss classifiers with arbitrarily small norm can be obtained

by simply scaling any interpolating solution. The margin

condition is far weaker than interpolation, which requires

h(xxxi) = yi for all data points. We now provide a lower

bound on the function norm of t-overfitted classifiers in

RKHS corresponding to Gaussian kernels5.

Theorem 1. Let (xxxi, yi), i = 1, . . . , n be data sampled

from P on Ω×{−1, 1}. Assume that y is not a deterministic

function of x on a subset of non-zero measure. Then, with

high probability, any h that t-overfits the data, satisfies

‖h‖H > AeB n1/d

for some constants A,B > 0 depending on t.

See the proof in the full version (https://arxiv.org/

abs/1802.01396) of this paper.

Remark. The bound in Eq. 1 applies to any t-overfitted

classifier, independently of the algorithm or loss function.

We will now briefly discuss the bounds available for kernel

methods. Most of the available bounds for kernel methods

(see, e.g., (Steinwart & Christmann, 2008; Rudi et al., 2015))

are of the following (general) form:
∣

∣

∣

∣

∣

1

n

∑

i

l(f(xxxi), yi)− EP [l(f(xxx), y)]

∣

∣

∣

∣

∣

≤

C1 + C2
‖f‖α

H

nβ
, C1, C2, α, β ≥ 0

Note that the regularization bounds, such as those for

Tikhonov regularization, are also of similar form as the

choice of the regularization parameter implies an up-

per bound on the RKHS norm. We see that our super-

polynomial lower bound on the norm ‖f‖H in Theorem 1

implies that the right hand of this inequality diverges to

infinity for any overfitted classifiers, making the bound triv-

ial. There are some bounds logarithmic in the norm, such

as the bound for the fat shattering in (Belkin, 2018) (used

above) and eigenvalue-dependent bounds, which are poten-

tially logarithmic, e.g., Theorem 13 of (Goel & Klivans,

2017). However, as all of these bounds include a non-zero

accuracy parameter, they do not apply to interpolated classi-

fiers. Moreover, to account for the experiments with high

label noise (below), any potential bound must have tight

constants. We do not know of any complexity-based bounds

with this property. It is not clear such bounds exist.

4.1 Experimental validation

Zero label noise? A potential explanation for the disparity

between the consequences of lower norm bound in The-

orem 1 for classical generalization results and the perfor-

mance observed in actual data, is the possibility that the error

5The results also apply to other classes of smooth kernels, such
as inverse multi-quadrics, see (Belkin, 2018).

rate of the Bayes optimal classifier (the “label noise”) is zero

(e.g., (Soudry et al., 2017)). Since our analysis relies on

EP [l(f(xxx), y)] > 0, the lower bound in Eq. 1 does not hold

if y is a deterministic function of xxx. Indeed, many classical

bounds are available for “overfitted” classifiers under zero

label noise condition. For example, if two classes are lin-

early separable, the classical bounds (including those for the

Perceptron algorithm) apply to linear classifiers with zero

loss. To resolve this issue, we provide experimental results

demonstrating that near-optimal performance for overfitted

kernel classifiers persists even for significant levels of label

noise. Thus, while classical results describe generalization

in zero noise regimes, they cannot explain performance in

noisy regimes. We will provide several lines of evidence:

1. We study synthetic datasets, where the noise level is

known a priori, showing that overfitted and interpolated

classifiers consistently achieve error close to that of the

Bayes optimal classifier, even for significant noise levels.

2. By adding label noise to real-world datasets we can

guarantee non-zero Bayes risk. However, performance of

overfitted/interpolated kernel methods decays at below the

noise level, as it would for the Bayes optimal classifier.

3. We show that (as expected) for “low noise” synthetic and

real datasets, adding small amounts of label noise leads to

dramatic increases in the norms of overfitted solutions but

only slight decreases in accuracy. For “high noise” datasets,

adding label noise makes little difference for the norm but a

similar decrease in classifier accuracy, consistent with the

noise level. We first need the following (easily proved)

Proposition 1. Let P be a multiclass probability distribu-

tion on Ω × {1, . . . , k}. Let Pǫ be the same distribution

with the ǫ fraction of the labels flipped at random with equal

probability. Then the following holds:

1. The Bayes optimal classifier c∗ for Pǫ is the same as the

Bayes optimal classifier for P .

2. The error rate (0− 1 loss)

Pǫ(c
∗(xxx) 6= y) = ǫ

k − 1

k
+ (1− ǫ)P (c∗(xxx) 6= y) (4)

Remark. Note that adding label noise increases the error

rate of the optimal classifier by at most ǫ.
A note on the experimental setting. In the experimental

results in this section we only use (smooth) Gaussian kernels

to provide a setting consistent with Theorem 1. Overfitted

classifiers are trained to have zero classification error us-

ing EigenPro6. Interpolated classifiers are constructed by

solving Eq. 2 directly.

Synthetic dataset 1:

separable. We start by

considering a synthetic

dataset in R
50. Each data

point (xxx, y) is sampled

6We stop iteration when classification error reaches zero.

https://arxiv.org/abs/1802.01396
https://arxiv.org/abs/1802.01396
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as follows: randomly sample label y from {−1, 1} with

equal probability; for a given y, draw the first coordinate

x1 of xxx = (x1, . . . , x50) ∈ R
d from a univariate normal

distribution conditional on the label and the rest uniformly

from [−1, 1]:

x1 ∼

{

N(0, 1), if y = 1
N(10, 1), if y = −1

x2 ∼ U(−1, 1), . . . , x50 ∼ U(−1, 1)

(5)

We see that the classes are (effectively) linearly separable,

with the Bayes optimal classifier c∗(xxx) = sign(x1 − 5).

Figure 2: Overfitted and interpolated Gaussian classifiers with
added label noise, separable synthetic dataset. Left: test error,
Right: RKHS norms.

In Fig. 2, we show classification error rates for Gaussian

kernel with a fixed kernel parameter. We compare classifiers

constructed to overfit the data by driving the classification

error to zero iteratively (using EigenPro) to the direct

numerical interpolating solution. We see that, as expected

for linearly separable data, an overfitted solution achieves

optimal accuracy with a small norm. The interpolated

solution has a larger norm yet performs identically. On the

other hand adding just 1% label noise increases the norm by

more than an order of magnitude. However both overfitted

and interpolated kernel classifiers still perform at 1%, the

Bayes optimal level. Increasing the label noise to 10%
shows a similar pattern, although the classifiers become

slightly less accurate than the Bayes optimal. We see that

there is little connection between the solution norm and the

classifier performance.

Additionally, we observe that the norm of either solution

increases quickly with the number of data points, a finding

consistent with Theorem 1.

Synthetic dataset 2:

Non-separable. Con-

sider the same setting

as above, except that

the Gaussian classes

are moved within two

standard deviations of each other (right figure). The classes

are no longer separable, with the optimal classifier error of

approximately 15.9%.

Figure 3: Overfitted and interpolated Gaussian classifiers for non-
separable synthetic dataset with added label noise. Left: test error,
Right: RKHS norms.

Since the setting is already noisy, we expect that adding

additional label noise should have little effect on the norm.

This, indeed, is the case: See Fig 3 (bottom left panel).

We note that the accuracy of the interpolated classifier is

(a) MNIST

(b) TIMIT

Figure 4: Overfitted and interpolated Gaussian classifiers for real
datasets with added label noise. Left:test error, Right:RKHS norm.

consistently within 5% of the Bayes optimal, even with the

added label noise.

Real data + noise. We consider two real-data multiclass

datasets (MNIST and TIMIT). MNIST labels are arguably

close to a deterministic function of the features, as most

(but not all) digit images are easily recognizable. On the

other hand, phonetic classification task in TIMIT seems to

be inherently noisier. This is reflected in the state-of-the-art

error rates, less than 0.3% for (10-class) MNIST (Wan et al.,

2013) and over 30% for (48-class) TIMIT (May et al., 2017).

While the true Bayes risk for real data cannot be ascertained,

we can ensure that it is non-zero by adding label noise. Con-

sistently with the expectations, adding even 1% label noise
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significantly increases the norm of overfitted/interpolated so-

lutions norm for “clean” MNIST, while even additional 10%
noise makes only marginal difference for “noisy” TIMIT

(Fig. 4). On the other hand, the test performance on either

dataset decays gracefully with the amount of noise, as it

would for optimal classifiers (according to Eq. 4).

(a) Synthetic-2 (b) MNIST

Figure 5: Overfitted/interpolated classifiers, and Bayes optimal for
datasets with added label noise. y axis: classification error on test.

High label noise. In Fig. 5 we show performance of Gaus-

sian and Laplacian kernels for different levels of added label

noise for Synthetic-2 and MNIST datasets. We see that in-

terpolated kernel classifiers perform well and closely track

the Bayes risk7 even for very high levels of label noise.

There is minimal deterioration as the level of label noise

increases. Even at 80% label corruption they perform well

above chance. Consistently with our observations above,

there is very little difference in performance between inter-

polated and overfitted classifiers. This graph illustrates the

difficulty of constructing a non-trivial generalization bound

for these noisy regimes, which would have to provide values

in the narrow band between the Bayes risk and the risk of a

random guess.

We conclude that the theoretical and experimental results

in this section suggest that it would be difficult to reconcile

performance of overfitted/interpolated kernel classifiers in

the noisy regimes with the usual norm-based bounds.

5 Kernels and ReLU Networks

Laplacian kernels and ReLU networks. We

will now point out some interesting similarities

between Laplacian kernels and ReLU networks.

In (Zhang et al., 2016) the authors showed that

ReLU neural networks are easily capable of

Table 1: Epochs to overfit, Laplace

Label MNIST SVHN TIMIT

Original 4 8 3

Random 7 21 4

Table 2: Epochs to overfit, Gauss

Label MNIST SVHN TIMIT

Original 20 46 7

Random 873 1066 22

fitting labels randomly

assigned to the origi-

nal features, needing

only about three times

as many iterations of

SGD as for the origi-

nal labels. In Table 1

7As we do not know the true Bayes risk for MNIST, we use a
lower bound by simply assuming it is zero. The “true” Bayes risk
is likely slightly higher than our curve.

we demonstrate a very similar finding for Laplacian kernels.

We see that the number of epochs needed to fit random

labels is no more than twice that for the original labels.

Thus, SGD-type methods with Laplacian kernel have very

high computational reach, similar to that of ReLU networks.

Note that Laplacian kernels are non-smooth, with a discon-

tinuity of the derivative similar to that of ReLU units. We

conjecture that optimization performance is controlled by

the type of non-smoothness.

(a) MNIST (b) TIMIT

Figure 6: Overfitted and interpolated classifiers using Gaussian
kernel and Laplace kernel for datasets with added label noises (top:
0%, middle: 1%, bottom: 10%)

Laplacian and Gaussian kernels. On the other hand, train-

ing Gaussian kernels to fit noise is far more computationally

intensive (see Table. 2), as suggested by the bounds on fat

shattering dimension for smooth kernels (Belkin, 2018). As

we see from the table, Gaussian kernels also require many

more epochs to fit the original labels. On the other hand,

overfitted/interpolated Gaussian and Laplacian kernels show

very similar classification and regression performance on

test data (Section 3). That similarity persists even with

added label noise, see Fig. 6. Hence it appears that the

generalization properties of these classifiers are not related

to the specifics of the optimization process. We conjecture

that the radial structure of these two kernels plays a key role

in ensuring strong classification performance.

A note on computational efficiency. In our experiments

EigenPro traced a very similar optimization path to SGD/Pe-

gasos while providing 10X-40X acceleration in terms of

the number of epochs (with about 15% overhead). When

combined with Laplacian kernels, optimal performance is

consistently achieved in under 10 epochs. We believe that

accelerated methods with Laplacian kernels hold significant

promise for future work on scaling to very large data.
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