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Nataša Jovanović
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Chapter 1

Introduction

1.1 Meetings and meetings support

Meetings constitute an important part of modern organizations. People meet to ex-
change ideas, share information, negotiate alternatives, collaboratively solve problems or
make decisions. Meetings as such are embedded in a larger work process. In many cases,
a work process is carried out through a series of meetings involving not always the same
group of participants. Furthermore, due to time and space constraints, people are not
always able to attend all of the meetings they are supposed to.

Although essential and increasing in numbers, meetings are, as many studies reveal,
neither as efficient nor as productive as they might be. An overview of these studies is
given in (Romano and Nunamaker, 2001). Inefficiency is manifested mostly through process
loss and information loss. The former is caused by, for example, ineffective leadership, lack
of participation or irrelevance of topics discussed (Romano and Nunamaker, 2001). The
latter is, however, a result of a failure to record important information, insights, decisions
and actions assigned to participants present as well as to non-attendees (Moran et al.,
1997; Whittaker et al., 2006). The loss of information may affect future individual and
collaborative actions, which in turn may have a negative impact on the outcome of the
work process itself.

Traditionally meetings are documented by taking minutes which contain a minimal de-
scription of group decisions and collectively agreed actions during the meeting (Whittaker
et al., 2006). Analyzing meeting recording practices, Whittaker et al. (2006) highlighted
several drawbacks of minutes among which the most prominent are unavailability, inac-
curacy and the lack of the informational context for the participants to carry out their
own actions. Meeting participants usually respond to these limitations by taking their
own notes. One of the most significant limitations of personal notes, as observed by the
same authors, is that taking notes reduces the ability of the note-taker to contribute to
discussions. Since they are usually cryptic and incomprehensive, non-attendees have prob-
lems in understanding other’s personal notes. The user survey presented in (Banerjee and
Rudnicky, 2006) confirms these findings. Additionally, the survey has shown that, when

1



2 Chapter 1. Introduction

available documents were not sufficient to obtain the information of interest, participants
usually asked someone who attended the meeting. However, this was not a guarantee that
information received was accurate since it had been shown that participants may have
different recollections of what went on in a meeting. Moreover, non-attendees’ understand-
ing of the meetings they missed was far from perfect even after considering all of these
information resources.

All these findings obviously indicate that there is a need for the development of tech-
nology to support meetings regarding both the content and process. At this point, it is
worth mentioning that a lot of work has already been done in facilitating meetings by
transcending space, that is, by enabling non-collocated participants to conduct meetings.
The technology has been invented to allow different modes of mediated communication
such as audio, video or web conferencing. Here we focus on conventional meetings, their
limitations and the technology needed to overcome those limitations.

With the advances in multimedia technologies, it has become feasible to capture all
aspects of multimodal multi-party interaction taking place in meetings as well as the sup-
porting meeting artifacts such as notes or slides. Multimedia meeting capturing obviously
overcomes most of the limitations of the traditional recording practices mentioned above.
To take benefit from meeting recordings two types of technology are needed: technology for
automatic analysis of meeting content and technology for adequate access to meeting data
(e.g. browsing, querying, filtering). Automatic meeting analysis is a rapidly emerging field,
as the number of recent research projects seems to confirm. It comprises development of a
wide range of technologies focusing on different aspects of interaction among meeting par-
ticipants such as speech recognition, participant and speaker identification, topic detection
and structuring, discussion modeling, detection of argumentative structures, summariza-
tion, identification of meeting events, emotion detection and so on. An overview of the
relevant technologies concerning automatic meeting analysis with the reference to relatively
recent literature is given in (Gatica-Perez et al., 2005).

Systems specifically designed to enable users to efficiently view and access automati-
cally analyzed content of previously recorded meetings are known as meeting browsers. A
meeting browser may, for example, support users in retrieving relevant information from
the previous meetings as a preparation for a new meeting. It may also assist users dur-
ing the meeting in accessing, for example, information on the same topic from previous
meetings or from a previous part on the same meeting. A recent review of the existing
meeting browsers is given in (Tucker and Whittaker, 2005). To provide useful support to
meetings, browsers must satisfy the needs of potential users. A number of user studies were
performed to explore user requirements for the exploitation of the meeting data (Lisowska,
2003; Jaimes et al., 2004; Banerjee et al., 2005; Cremers et al., 2005; Pallotta et al., 2006).
The following queries were found, among other things, to be of interests for the potential
users of meetings browsers:

• To whom are action items assigned and by when?

• What tasks were assigned to me?
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• Was there any discussion between participants X and Y?

In order to answer these queries, some sort of understanding of conversational structure
is required. Furthermore, different types of information need to be extracted from the
meeting content in order to provide a complete answer to each of them. However, what is
common for all these queries is that in order to be answered they need information about
who is being addressed at the particular instance. Obviously, automatically generated
meeting minutes, if available, should provide the required information concerning the action
items. In that case, addressee information is substantial for automatic generation of action
items components of meeting minutes (Purver et al., 2006).

Up to now, automatic understanding of meeting conversation was mostly focused on
identifying who speaks, what is said, what type of communicative act the speaker performs
with his utterance. However, the question to whom the speaker addresses this act remained
unanswered. In this thesis, we address this issue by developing a model that provides an
answer to this question.

There are many applications related to meeting research that could benefit from study-
ing addressing in human-human interactions. So far, we have only discussed meeting
browsers as tools to support meetings. However, participants in the meetings, regardless
of whether they are in a joint physical space or participate remotely, can be supported
by the environment itself and this support can be realized by introducing virtual agents
into the environment to act as meeting assistants (Nijholt et al., 2006; Rienks et al., 2007;
Purver et al., 2005). They can assist participants both personally and as a group in a va-
riety of tasks such as providing relevant information for completing tasks, making a record
of meetings or guarding the agenda. Meeting assistants may not be active participants
in the discussion but, to assist actual participants in meetings, they need to understand
natural interaction taking place among the participants. Also, when modeled as active
participants in conversation, these agents need to recognize when they are being addressed
and how they should address people in the environment.

Although the research presented in this thesis has been conducted in the context of
smart meeting rooms, the knowledge gained by studying addressing among participants
in meetings can be beneficial for modeling interaction in various other sensor-equipped
environments. In ambient intelligence research the assumption is that computing intelli-
gence will be embedded in our daily home, office and recreational environments and that
the environments and their devices will offer social and intelligent interfaces. The inter-
faces, whether they are using built-in cameras and microphones or other kinds of sensors,
perceive events and activities. The interpretation of what is perceived allows them to be
reactive and pro-active, to predict and to anticipate. People meet in these environments,
they interact with each other and with smart devices (e.g. humanoid robots) that are also
present. Knowledge about addressing in multi-party interaction in such environments is
needed for both the environment and its devices to be able to interpret the interactions
and to be able to support human activities in these environments (Nijholt, 2007).
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1.2 Addressing - bridging a gap between two-party

and multi-party interaction modeling

Addressing is an aspect of every form of communication. It represents a form of ori-
entation and directionality of the act the current actor performs toward the particular
others who are involved in interaction. In conversational communication involving two
participants, the hearer is almost always the addressee of the speech act that the speaker
performs; the speaker may also talk to himself. However, in multi-party conversation,
addressing becomes a real issue. In multi-party interaction, participants may, for exam-
ple, be addressed (addressee) or unaddressed (side-participants) or they may overhear the
conversation without taking part in it (bystanders).

The notion of addressee as well as mechanisms that speakers use in order to make clear
to whom they are addressing their speech has been extensively studied by conversational
analysts and social psychologists (Goffman, 1981a; Goodwin, 1981; Clark and Carlson,
1992). Moreover, these phenomena were investigated as a part of a more general con-
cept that characterizes conversational interaction involving more than two participants -
the concept of participation (Goffman, 1981a). Focusing their study on multi-party in-
teraction, researchers in these fields emphasized that conversation is not only organized
as a sequence of actions participants perform in speaking but also across different parties
present. Research on participation has been mostly focused on (1) decomposition of tra-
ditional notions of speaker and hearer into a set of participation roles as well as on (2)
specification of the means that speakers use in order to designate which hearers are to
take which roles. The latter is refer to as the recipient design principle (Sacks et al., 1974;
Clark and Carlson, 1992). A form of recipient design that is concerned with mechanisms
that speakers use in order to designate which participants are to take the addressee role is
known as addressee design (Clark and Carlson, 1992).

There is agreement among the researchers in these fields that the notion of addressee
as well as the addressee design are complicated, significant and not very well explored.
The complexity of addressing is influenced, in the first place, by its multimodal nature:
addressing is carried out through various communication channels such as speech, gaze,
hand and head gestures. Furthermore, in most cases addressing is not performed explicitly
but tacitly. It depends on the course of the conversation, the status of attention of in-
teracting participants, their involvement in discussion as well as on what the participants
know about each other’s state of the knowledge whether explicit addressing is asked for.
This is what we refer to as context sensitivity of the addressing practices. Other elements
of context that have an effect on addressee design are the participants’ physical arrange-
ment and the presence of various attention ‘distracters’ in the conversational environment.
All these clearly impose a challenge for automatic modelling of addressing in multi-party
interaction.

Up to recent years, the research fields concerned with computational modeling of con-
versational interaction in various contexts were focused exclusively on the two-party model.
Therefore, addressing was not considered as a relevant issue. However, current changes in
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research tradition have shown tendencies to move from a two-party model to a multi-
party model which resulted in the first attempts to model addressing. The research on
addressee identification has been conducted in the context of mixed human-human and
human-computer interaction (Bakx et al., 2003; van Turnhout et al., 2005; Lunsford and
Oviatt, 2006), human-human robot interaction (Katzenmaier et al., 2004), mixed human-
agents and multi-agent interaction (Traum, 2004) and multi-party conversation (Otsuka
et al., 2005).

As previously stated, the work presented in this thesis is focused on modeling addressing
in face-to-face meetings. Meetings as a special context of talk have their own properties
that differ from ordinary conversations. For example, during a meeting participants may
be engaged in different types of activities such as giving a presentation, writing notes or
closing the meeting. This adds an additional complexity to modelling addressing, since
the same kind of addressing behavior may be interpreted differently for different meeting
activities. For example, gazing at a participant in the audience during a presentation
usually does not mean that the participant being gazed at is addressed whereas the same
kind of behavior during a discussion can be a strong indicator that the gazed participant
is the addressed one. This example is illustrated in Figure 1.1

Figure 1.1: An example of addressing in meetings - the presenter is addressing the group

Research on small group discussions presented in (Carletta et al., 2002) has shown that
there is a noticeable difference in the interaction patterns between large and small groups. A
small group discussion involving up to seven participants resembles two-way conversations
that occur between all pairs of participants and every participant can initiate conversation.
A large group discussion is more like a series of conversations between a group leader and
various individuals with the rest of participants present but silent. Due to their interactive
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nature, small group discussions are more appropriate for exploring interaction patterns of
addressing behavior. Therefore, we focus our research on small group meetings. Moreover,
we restrict ourselves to four-participants meetings which has been motivated by the choice
of meeting collections we employed in our study, as will be justified in the following section.

1.3 Research goals and research approach

The research presented in this thesis has been conducted with two main goals. The
first goal is to gain knowledge in how addressing is accomplished in face-to-face meetings.
In order to achieve this goal several questions need to be answered:

• how is the addressee role distinguished from other participation roles in conversation?

• which addressing mechanisms do speakers employ in order to make clear to whom
they are addressing their speech?

• how do addressing mechanisms depend on conversational context and meeting con-
text?

• how is addressing related to other practices operating in conversation, namely, to
turn-taking design and adjacency pairs organization?

To address these questions we survey the relevant literature regarding (1) sequential
organization of conversational interaction (e.g. turn-taking design, adjacency pair organi-
zation and overall organization) and (2) organization of conversation across participants.

We further aim to develop a computational model for addressee identification in face-
to-face meetings. The purpose of such a model is to identify for each communicative act
that a speaker performs in speaking who is being addressed by that speaker based on a
set of features extracted from the identified addressing mechanisms and context. This is
known as a classification problem. As the addressing process in a particular situation is
represented with a set of extracted features, modeling this process suffers from the loss
of information and thus for uncertainty. To deal with uncertainty, we have adopted a
probabilistic approach. More specifically, we have chosen Bayesian Networks as a prob-
abilistic framework. Regarding the development of a computational model for addressee
identification, two main lines of research can be distinguished:

• finding relevant features for addressee identification in face-to-face meetings

• finding the appropriate Bayesian Network models for this type of task.

The features employed for addressee identification are obtained from several resources:
speech, gaze, conversational and meeting context.

To develop models for automatic addressee identification in meetings, we need a collec-
tion of audio and video meeting recordings annotated with addressee information as well
as with a set of phenomena relevant to addressing (e.g. information who is looking at



1.3. Research goals and research approach 7

whom during the meeting). In this study, we make use of two meeting corpora developed
in the course of two European projects in which contexts the research presented in this
thesis has been conducted: the M4 (MultiModal Meeting Manager)1 and AMI (Augmented
Multiparty Interaction)2 projects. Both projects were concerned with the development of
technology to support meetings, in particular, meeting browsers.

In the first phase of the research presented in this thesis, which was conducted in
the context of the M4 project, no corpus was available to us that could be utilized for
our study on addressing. Therefore, we developed a small multi-modal corpus of hand-
annotated meeting dialogues designed primarily for studying addressing behavior in multi-
party interaction. This was the first corpus to be made publicly available for this research
purpose. Meetings included in the corpus were recorded in the IDIAP smart meeting room
as a part of the M4 meeting data collection. These meetings are short, informal, discussion
meetings. They are scripted in terms of type and schedule of group actions that participants
perform in meetings such as presentation, discussion or note taking, but content is natural,
spontaneous and unconstrained. The spontaneous behavior of the participants in these
meetings allows us to examine observable patterns of addressing behavior in small group
discussions. The corpus developed in our study is a part of the publicly available M4
corpus which contains some additional annotations and meetings. In this thesis, we use
the term M4 corpus only when we refer to our corpus. The AMI corpus, developed recently,
consists of more natural scenario-based meetings involving a group focused on the design
of a TV remote control. It was richly hand-annotated with a wide range of phenomena
aiming to support multi-disciplinary research in the AMI project. Both corpora consist
of four-participants meetings. By conducting experiments on both meeting corpora, we
also aim to explore to what extent findings regarding the addressee identification in a less
realistic meeting scenario can be generalized to more natural meetings.

The exploration of the relevance of various features is performed by means of static
Bayesian Network classifiers. The features used to model addressing are obtained from
human annotated data. As the features are in a sense ideal, the present study aims to
investigate the upper bounds for the task of addressee prediction in face-to-face meetings.
However, we also address the issue of the further automation of addressee identification pro-
cess that could be obtained in a more realistic setting in which we have to rely on features
provided by automatic predictors instead of human observers. Compared to static Bayesian
Network classifiers, the Dynamic Bayesian Network classifier we consider in Chapter 5 is a
step in the direction of this more realistic situation. This classifier uses the automatically
identified value of the preceding addressee to predict the current addressee.

1the M4 project: http://www.m4project.org/
2the AMI project: http://www.amiproject.org/
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1.4 Thesis outline

The remainder of this thesis is organized as follows:

Chapter 2 addresses the first research goal. It consists of two main parts. The first
part is concerned with sequential organization of the conversational interaction whereas the
second part deals with the organization of interaction across the participants. Furthermore,
a clear distinction is made between conversation and meetings as two different contexts
of talk. All phenomena under study are first introduced for ordinary conversation and
then applied to meetings. The first part of the chapter describes two practices that locally
organize conversational interaction - namely, turn-taking and adjacency pairs organizations
- as well as overall organization of conversation. Since local organization practices were
mostly studied in the two-party context, we discuss their limitations when applied to the
multi-party case. This part concludes with an overview of various units of analysis that
have been used by conversational and interaction analysts in studying different aspects of
conversational interaction. Furthermore, it specifies the unit of analysis employed in our
study. The second part of the chapter discusses the concept of participation in multi-party
conversation. It first describes the notion of participant, different levels of participation
and differences between official and unofficial participants in conversation. Then, several
categorization systems are presented and compared. As outcomes of the analysis, the
categorization of participation in our study is outlined and a definition of addressee is
provided. The chapter further describes the recipient design principle focusing mainly
on addressee design. It also discusses the relation among recipient design, turn-taking
and adjacency pairs. Finally, the chapter describes a recently proposed framework for
the analysis of conversational sequences that is based on the concept of participation in
conversational interaction - the P-shift framework (Gibson, 2003).

Chapter 3 presents the M4 and AMI meeting corpora. The chapter starts with a
brief description of the software that was employed for the creation of both meeting corpora
- the NXT (NITE XML Toolkit). Each corpus is then described in detail including the
description of the meeting data and annotation schemas. Regarding the AMI corpus, we
focus only on those annotation schemas that are used for addressee annotation as well as
for annotation of the features employed in our study. Apart from the corpora descriptions,
this chapter provides a detailed reliability analysis of the annotation schemas. It concludes
with a comparison between the M4 and AMI meeting corpora. The chapter is partially
based on the work published in (Jovanovic et al., 2006b).

Chapter 4 provides a detailed overview of Bayesian Network models employed for
the experiments on addressee identification presented in this thesis. It first introduces
Bayesian Networks, well-known tools for knowledge representation and reasoning under
uncertainty, and discusses various algorithms for learning and inference in Bayesian Net-
works. The second part of the chapter is concerned with Bayesian Networks in the function
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of classifiers. It provides an overview of the static Bayesian Network classifiers employed
for automatic addressee modeling presented in the next chapter. Further, the chapter
gives a brief description of Dynamic Bayesian Networks as they were also used for the
same purpose. The chapter concludes with a discussion on methodologies for classifiers’
evaluation.

Chapter 5 presents results on addressee identification in four participants face-to-face
meetings using the static and dynamic Bayesian Network models introduced in the previous
chapter. The first part of the chapter discusses the results of addressee classification on the
M4 data performed by means of the static Bayesian Networks classifiers. The experiments
can be seen as preliminary explorations of features and models for this type of task. The
second part of the chapter is concerned with automatic addressee identification on the
AMI data performed by means of the static and dynamic Bayesian Network classifiers. To
compare performances of the static Bayesian Networks classifiers on the M4 and AMI data,
the experiments on the AMI data were first performed using a set of features that were
shown to be the most informative for addressee identification on the M4 data. The chapter
further describes a number of experiments conducted on the AMI data using static Bayesian
Network classifiers that were carried out to explore the relevance of additional features and
models for addressee identification. The results of those experiments were employed in
the design of a Dynamic Bayesian Network addressee classifier. The experiments with the
Dynamic Bayesian Network classifier conclude the experimental part of this chapter. At the
end, the chapter addresses the issue of further automation of the addressee classification
using automatically extracted instead of manually annotated features. This chapter is
partially based on the work published in (Jovanovic et al., 2006a).

Chapter 6 summarizes the thesis and suggests some general directions for future
work.





Chapter 2

Addressing in the context of interaction
research

To engage successfully in conversational interaction, participants are obliged not only
to produce utterances, but also to coordinate their talk with the talk of others in a mean-
ingful way. The coordination concerns both content and process of talk. In other words,
participants have to successfully coordinate not only what they say, but also when they
say what they say and to whom.

In this study, we are concerned with the concept of participation in conversational
interaction taking place in a face to face setting. Moreover, we focus our investigation
on meetings as a specific form of talk-in-interaction. As most analyses of phenomena
implicated in conversational interaction have been conducted for ordinary conversation, we
will first introduce the phenomena under study defined for conversation and then discuss
their generalizations and adaptations for meetings.

The starting point of our study is Goffman’s theory of the participation framework
(Goffman, 1981a). Goffman claims that at any point in time, conversation can be charac-
terized by its participation framework:

When a word is spoken, all those who happen to be in perceptual range of the
event will have some sort of participation status relative to it. The codifica-
tion of these various positions and the normative specification of appropriate
conduct within each provide an essential background for interaction analysis.
(Goffman, 1981a, p. 3)

The participation framework represents an ensemble of ‘participation statuses’ of all
participants in the gathering at a particular moment of speech. Goffman has also suggested
that the traditional notion of speaker can be decomposed into a set of categories that he
termed the production format. Developing this insight, Goffman was mostly interested in
a decomposition of the global notions of hearer and speaker into a set of categories and in
the way in which the boundary between official and unofficial participants in conversation
is maintained. However, he did not provide us with sufficient characterization of the
categories nor with clear distinctions between them to make their application feasible.

11
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Another very important aspect of participation, that remained also unexplained by
Goffman, is recipient design. It refers to a variety of methods speakers employ in designing
their talk to designate which participants are to take which roles. The major contribution
to the analysis of participation along this direction has been made by conversational an-
alysts (Sacks et al., 1974; Sacks and Schegloff, 1979; Goodwin, 1981; Clark and Carlson,
1992; Lerner, 1995, 2003). According to Sacks et al. (1974) the recipient design represents
“perhaps the most general principle which particularizes conversational interaction”. Tak-
ing into account that talk-in-interaction, as has been discovered by conversational analysts,
is organized by turn-taking practices and sequences of actions produced in interaction, a
question that naturally arises at this point is “how are the recipient design principle and
these two practices mutually influenced?”. This chapter tries to provide an answer to this
question by analyzing these three aspects both separately and in combination.

The first part of the chapter is concerned with the analysis of the phenomena that
organize conversational interaction in a face-to-face setting. An intuitive definition of face-
to-face conversation is provided in Section 2.1. Section 2.2 highlights some limitations
of traditional approaches in studying conversational interaction based on the two-party
model emphasizing the inapplicability of the outcomes of these studies on the multi-party
model. An overview of the local organization practices operating in conversation - namely,
turn-taking and adjacency pairs - as well as the overall organizations of conversation is
given in Section 2.3. Section 2.4 introduces meetings as a special form of talk in interac-
tion and provides comparisons between meetings and conversations regarding turn-taking
design and overall organization. Section 2.5 summarizes various units of analysis that have
been employed by conversational and interaction analysts in studying different aspects of
conversational interaction. The second part of the chapter discusses the concept of partic-
ipation from two perspectives: (1) categorization of participation, that is, the production
format and the participation framework with a focus on the addressee role and (2) re-
cipient design, with the a focus on the addressing process and addressing behavior. The
concept of participation is first introduced for face-to-face conversation (Sections 2.6, 2.7
and 2.8) and then extended to meetings (Section 2.10). Relations between recipient de-
sign, turn-taking and adjacency pairs are described in Section 2.9. The last part of the
chapter (Section 2.11) describes a new framework, the so-called P-shift framework, pro-
posed in the literature for the analysis of conversational interaction which is concerned
with moment-by-moment reshuffling of the participation framework.

2.1 Conversation - a preliminary definition

Conversation in a broad sense can be defined as a

..familiar predominant kind of talk in which two or more participants freely
alternate in speaking, which generally occurs outside specific institutional set-
tings like religious services, law courts, classrooms and the like (Levinson, 1983,
p. 284)
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This definition encompasses different kinds of conversations such as face-to-face con-
versations, phone conversations and computer mediated conversations. As the main focus
of our study is a face-to-face setting, Goffman’s definition of conversation can also be em-
ployed. According to Goffman (1981d, p. 14), the term conversation can be used “in a
loose way as an equivalent of talk or spoken encounter” where spoken encounter can be
seen as a specific kind of focused interaction (Goffman, 1963, p. 24):

the kind of interaction that occurs when persons gather close together and
openly cooperate to sustain a single focus of attention, typically by taking
turns at talking.

On the other hand, unfocused interaction represents the kind of communication con-
cerned with “management of sheer and mere copresence”.

A more technical characterization of conversation will be provided in Section 2.4 after
introducing three kinds of organization operating in conversation: turn-taking, adjacency
pairs and overall structural organizations.

2.2 Dyadic versus Multi-party conversation

Traditional research on verbal interaction has been mainly focused on studying dyadic
interaction. The term ‘dyadic’ is used to describe interaction between exactly two partici-
pants (the term ‘two-party’ is also employed). As such, in contrast to two-party interaction,
multi-party interaction refers to interaction encompassing three or more participants. An
alternative term used in the literature to describe multi-party case is ‘polylogue’ (Kerbrat-
Orecchioni, 2004).

The main assumptions for privileging dyadic interaction was an implicit belief that the
two-person arrangement “informs an underlying imagery we have about face-to-face inter-
action” (Goffman, 1981a, p. 129). It has also been assumed that without basic changes
in analysis, any modification of conditions can be easily handled (e.g. the inclusion of ad-
ditional participants in interaction). However, many researchers have shown that crucial
phenomena regarding conversation discovered for two-party case, cannot be easily managed
in multi-party case. Furthermore, many patterns of interaction found in interaction involv-
ing more than two participants are not applicable when only two participants are involved.
For all phenomena discussed in this chapter, we will give some examples of cases that are
not supported in a multi-party situation. Participation is an example of phenomena that
is highly simplified in the dyadic model of conversation:

The common dyadic model of speaker-hearer specifies sometimes too many,
sometimes too few, sometimes too wrong participants. (Hymes, 1974, p. 54)

2.3 Conversational organization

A fundamental finding about talk-in-interaction in general, and thus about conversa-
tion in particular, is that talk is proceeded through a sequence of turns. Turn can be
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intuitively defined as “the talk of one party bounded by the talk of others” Goodwin
(1981). This definition has a number of limitations regarding, for example, overlapping
speech or backchanneling. A process through which turns are exchanged between speakers
is referred to as turn-taking.

Conversational analysts, focusing their investigation on turn as a basic unit of analy-
sis, have uncovered two fundamental forms of organization of conversation: organization
of turn-taking and organization of sequences. Organization of turn-taking is considered
with mechanisms that people use in interaction to achieve orderly and smooth transitions
from one speaker to another. Although turns occur one after the other, in a serial order,
relationship between them is not serial but sequential: each turn displays understanding
of the previous turn. This principle of sequential organization is called adjacency relation-
ship (Schegloff, 1988, p. 113). The adjacency relationship is the most general sequential
organizational feature of conversation. It is a by-product of turn taking design: “it is a
systematic consequence of turn-taking organization of conversation that it obliges its par-
ticipants to display to each other, in a turn’s talk, their understanding of other’s talk”(Sacks
et al., 1974, p. 728). A more complex sequential organization operating in conversations
is adjacency-pairs relationship. Adjacency pairs are a kind of paired utterances such as
greeting-greeting or question-answer. Compared to adjacency relationship, adjacency pairs
have in addition “a powerful prospective operation”: the first paired utterance (termed as
first pair part) limits a set of relevant second pair parts that come next (Schegloff and
Sacks, 1973; Schegloff, 1988).

Turn-taking organization and adjacency pair organizations are two types of local or-
ganization operating in conversation - local in a sense that they are operating across just
two turns (Levinson, 1983). Additionally, there are other types of organizations, called
overall organizations, that organize conversation as whole i.e. the “totality of exchanges
within some specific kind of conversation” (Levinson, 1983, p. 308-309). Each form of
talk-in-interaction is characterized with its own form of overall organization.

2.3.1 Local organization of conversation

In this section, we discuss in more detail turn-taking and adjacency pair organizations of
conversation. These two mechanisms are not the only organizational mechanisms operating
in conversation. There are also quite different devices such as organization of repairs
(Schegloff et al., 1977) or pre-sequences (Levinson, 1983). However, we describe only turn-
taking and adjacency pairs, as we believe that they are directly related to the organization
of talk across different participants.

The turn and turn-taking systems

Although the turn and turn-taking phenomena are intuitively clear and easily observ-
able in conversation, providing a precise definition of a turn as well as specifying mecha-
nisms that organize turn-taking is anything but simple (Goodwin, 1981; Levinson, 1983).
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There is no general agreement among investigators as to what should be classified as a
turn nor how turn-taking mechanisms operate in conversations.

Turn How turns are defined varies from study to study. Some definitions equate turns
with speakers whereas others identify turns with isolated speech. For example, Goffman
(1981d, p. 22-23) refers to a turn or a turn at talk as “an opportunity to hold the floor,
not what is said while holding it”, where “everything what an individual says during his
exercise of turn at talk” is referred to as talk during a turn. On the other hand, Haris
(1951, as cited in Goffman, 1981d, p. 22-23) defines a turn as “a stretch of talk, by one
person before and after which there is a silence on the part of that person”. The latter
specifies the boundaries of a turn in terms of silence on the part of speaker. A slightly
different approach includes other participants’ behavior for identifying boundaries. For
example, Fries (1952, as cited in Goodwin, 1981, p.17) defines a turn as “all the speech
of one participant until the other begins to speak”. Goodwin’s (1981) definition of a turn
introduced in Section 2.3 makes use of the same approach.

The cited definitions are primarily concerned with accurate determination of the bound-
aries of the turn. Problematic concepts for these kinds of definitions are simultaneous speech
and silence. Simultaneous speech includes overlaps and interruptions. Regarding simulta-
neous speech, Fries (1952) definition runs into problems as a speaker’s turn can be ended
before he has finished pronouncing his utterance.

There is general agreement among researchers that silence should be classified as a
“pause” if it occurs within a turn of a single speaker or as a “gap” if it occurs between
turns of two speakers (Sacks et al., 1974; Goodwin, 1981). Conversation may also be
discontinued which is manifested by a silence resulting after a current speaker has stopped
and no other speaker starts or continues. These kind of silence is referred to as “lapse”
(Sacks et al., 1974, p. 714). In terms of silence, the cited definition Haris (1951), for
example, causes that pauses are treated as gaps. Furthermore, the same silence may
lead to different classifications at different moments of speech and from the perspective of
different participants (Goodwin, 1981).

< 1 > (from (Goodwin, 1981, p.18))

1 John Well I, I took this course
(0.5)

2 Ann In h ow to quit?
]

3 John which I really recommended

When Ann starts to talk, the silence between John’s and her turns is considered as
a gap as it is a silence between turns of two different speakers. However, John’s talk a
moment later is the continuation of the turn in progress that started before the silence.
Since it is placed within the turn of a single speaker, it is considered as a pause.

Determination of turn boundaries is not only elusive for analysts but also for partic-
ipants in conversation. As can be seen from the previous examples, turn-boundaries are
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changeable: at different points in talk, different boundaries can be assigned to the same
turn. Thus, a definition of a turn as a static unit with accurate boundaries does not accu-
rately describe the turn structure; it should rather be defined as a time-bounded process
(Goodwin, 1981).

Approaching the problem from this perspective, many researchers defined the structural
elements of turns i.e. the turn boundaries as implicated in the turn-taking process itself.
Two solutions have been proposed as to how turn-taking actually works. One solution is
that turn-taking is organized by a set of rules that operate on turn-by-turn basis (Sacks
et al., 1974). The other solution is that turn-taking is regulated by a set of discrete signals
(Duncan, 1972; Jaffe and Feldstein, 1970).

Rule-based turn-taking system Sacks et al. (1974) proposed a simple turn-taking
system for conversation that consists of two components and a set of rules that operate on
those components (henceforth, the SSJ system).

• The turn-constructional component- refers to the type of units out of which
turns can be constructed. The key feature of such a unit is projectability. It denotes
possibility that participants project, as the turn construction unit proceeds, what
kind of a unit it is and what roughly will be needed to bring it to a possible comple-
tion. Such “unit-types” can be sentential, clausal, phrasal and lexical. Some turns
are compounded of a single turn constructional unit while others of several.

The property of projectability has been criticized in the literature (see O’Connell
et al., 1990, p. 351). The main remark regarding Sacks et al. (1974)’s definition
of turn-constructional unit is that the accomplishment of the projection is based
solely on syntactic analysis. As has been discussed by Lerner (1996a), the term
turn-constructional unit merely registers the fact that there are some units of which
turns can be constructed. However, it does not imply that identification of a unit
type is purely syntactical. Participants in conversation can rely on turn position
(e.g. sequential environment) as well as turn composition (e.g intonation, structure,
content) to identify which type of unit it is and thus, what will be needed to reach a
possible completion of the turn (Lerner, 1996a, p. 306).

The projectability has two main consequences. First, the end of a turn-constructional
unit specifies a point where a speaker change can occur. It is termed a transition-
relevant place (TRP). Second, the projectability specifies the limits of the speaker’s
current right to talk: the speaker is initially entitled, in having a turn, to one such
unit; at TRP speaker transition becomes relevant (Goodwin, 1981).

• The turn-allocation component- The turn-allocation components consist of two
groups of allocation techniques:

1. ‘current-selects-next’ techniques are techniques in which the next turn is
distributed by the current speaker selecting a next speaker. An example of such
techniques is the use of the first-pair part of an adjacency pair (e.g. question)



2.3. Conversational organization 17

that employs certain addressing practices such as the affiliation of an address
term (e.g. a personal name or a categorical term of address (e.g. ‘teacher’)).
For example, the question Ann, are you coming tomorrow? not only constrains
that in a next turn an answer should be provided, but also selects Ann as the
next speaker who should provide that answer.

2. ‘self-selection’ techniques are techniques in which the next turn is distributed
by self-selection of participants other than the current speaker. The basic tech-
nique of this kind is ‘starting first’. It denotes that after a brief gap, only one
speaker starts. “The single starter should be thought of as ‘first starter’ suc-
ceeding in being single because of the ‘first starter’ provision [incorporated in
Rule 1b, forthcoming], and being ‘dispensable’ in that, if he had not started
fast, someone else would have” (Sacks et al., 1974, p. 719). Being pressured
to start as early as possible in competing for next turn, a self-selector would
have to start in many cases while the current turn is still in progress, close to
its TRP.

• Rules - The following set of rules governs operation of turn-taking in conversation.

1. Rule 1 operates at an initial TRP of any turn.

(a) if a current-selects-next technique is used in the current turn, then the
selected speaker has the right and is obliged to take the next turn. The
transition occurs at the initial TRP.

(b) if such an allocation technique has not been used, then self-selection for
next speakership is allowed, but not required, at this place; first starter
gets rights to next turn and transition occurs at this place.

(c) If a current-selects-next technique has not been used nor another self select,
the current speaker may, but need not, continue.

2. Rule 2 operates at all other TRPs

If current speaker continues into a new turn-constructional unit applying Rule
1c, then Rules 1a-1c reapply at the next TRP and all subsequent TRPs until a
transition to a new speaker occurs.

Properties of the SSJ turn-taking system The proposed system has the following
properties: (1) it is locally managed as it deals with a single transition at a time, organizing
thereby only two turns - current and next; (2) it is party-administrated as the control over
its operations and products is subjected to participants in conversation; and (3) it is
interactionally managed as constructions of turns and determination of their boundaries
involve tasks distributed among participants (Sacks et al., 1974).

The turn-taking rule set provides an ordering of applications of two groups of turn-
allocation techniques which supports the ‘one speaker at a time’ characteristic of conversa-
tion. For example, if both group of techniques could be applied on any occasion they would
permit more than one speaker to be selected (Sacks et al., 1974). Claiming this, however,
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Sacks et al. (1974) did not consider some instances of ‘current-selects next’ techniques when
more than one speaker is selected, and thus both groups of techniques, regardless of their
pre-specified ordering, may be applied on the same occasion effecting simultaneous talk.
We will elaborate on this later when we discuss the limitations of the turn-taking system.

The turn-taking rules also support localization and minimization of overlap. As transi-
tions between speakers occur at TRPs, overlaps in a large number of cases occur at TRPs
and their immediate environment. This is one reason why overlaps are brief. There are sev-
eral systematic bases for overlaps. Overlaps may occur either (1) when several self-starters
compete for a next turn, when each of them projects his start to be earliest possible at some
TRP or (2) when TRPs are incorrectly projected due to systematic reasons. For example,
the current speaker may add an addressed term after the first possible completion without
intending continuation as he has already applied a ‘current-selects-next’ technique (Sacks
et al., 1974).

The turn-taking rules also describe some properties of the structure of the turn itself.
A turn is not defined as a static unit but through a time-bounded process with discrete
but alterable boundaries (the application of Rule 2). These rules also enable different
classifications of silences. For example, the silence after the application of Rule 1a can be
classified as a gap. Furthermore, the rules enables transformation of one type of silence into
another one. For example, if a developing silence occurs at a TRP, and is thus a potential
gap, it may be ended by the talk of the speaker of the previous turn-constructional unit,
becoming thus a pause (Sacks et al., 1974, p. 715, f. 26).

Sacks et al. (1974, p. 699) state that the proposed turn-taking organization for con-
versation is a ‘context-free’ organization that is capable of ‘context-sensitivity’. The term
‘context’ is employed to refer to various places, times and identities of parties in inter-
action. The system is context-free in the sense that it is insensitive to these parameters
of the context. Although the system is context-free, it defines how and where context-
sensitivity can be displayed (i.e. it shapes particularities of the context). For example,
some current-selects-next techniques employ addressing practices that are context-sensitive
(see Section 2.7.2).

Some limitations of the SSJ turn-taking system for conversation Analyzing
conversations among Americans, Sacks et al. (1974) observed, among other properties, that
(1) most of the time only one speaker talks, (2) occurrences of more than one speaker are
common but brief and (3) smooth transitions, with no gap and no overlap or with slight gap
and slight overlap, constitutes a vast majority of transitions and (4) the number of parties
in conversation can vary. The SSJ model is designed to support all these characteristics for
conversation. It is supposed to be a context-free system in the sense that it is insensitive
to places, times and individuals involved in interaction. However, many researchers run
into problems trying to apply the formal SSJ model on the actual data. The reasons for
this are threefold:

1. conversational conditions assumed in the system are oversimplified

2. the system’s components and rules are simplified (see O’Connell et al., 1990, 360)
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3. the varieties of turn-taking situations that occur in multi-party cases have not been
investigated at all

There are several reasons for occurrences of overlap and interruptions in conversation.
First, occurrences of overlap and interruptions are influenced by culturally determined con-
versational style. In American culture, speakers talk in turns (O’Connell et al., 1990). As
mentioned above, the SSJ model is based on an underlying rule of an American English
conversations that mostly one speaker talks at time. In contrast, some other cultures have
preference for simultaneous speech. Italians, for example, tend to interrupt one another as
“everybody gets all excited and tries to make his views prevail by preventing the other from
speaking” ((Eco, 1986) as cited in (O’Connell et al., 1990)). Second, overlap and interrup-
tions are influenced by participants emotional state and relationship among them. It is to
be expected that an agonistic relationship leads rather to an overlap than to smooth turn-
taking (O’Connell et al., 1990). All of these elements are part of conversational settings
and must be taken into account while analyzing conversation. Some analyses of simultane-
ous talk in conversation show that the frequency of overlaps and interruptions significantly
increases when more than two participants are involved in interaction (Shriberg et al.,
2001; Kerbrat-Orecchioni, 2004).

Not all instances of overlap and interruptions are always degenerate, brief, or something
that need to be repaired. On the contrary, they can be functional and acceptable for
the current speaker. Lerner (1996a) identified some cases of turn constructions where a
turn of one speaker can be completed by another speaker - the anticipatory completion.
Investigating complex turn constructional units that are constructed out of a multi-clausal
sentence, Lerner (1991) defined compound TCU that projects completion in a different way.
The compound turn constructional unit has a multi-component structure that consists of at
least a preliminary and a final component. Some common types of compound TCU include
“if X + then Y” or “when X + then Y”. According to the SSJ system, a compound TCU can
reach its completion only after the final component is produced. Therefore, participants
must examine the emerging talk to determine whether the final component has begun.
Only after the final component has begun, will participants examine the proceeding talk
to search for the upcoming TRP. As in the course of the preliminary component participants
can project where the final component could start and what form the final component will
take, the turn can be completed by another speaker. Turn sequences produced in such a
way, are called collaborative turn sequences. According to Lerner (1996a), the collaborative
turn sequences imply a relaxation and not violation of the SSJ turn-taking system.

Multi-party interaction features violations of speaker-selects-next rules. Applications
of Rule 1a assume that the selected speaker is required and obliged to take the next
turn. However, it multi-party interaction it can happen that the participant who takes
the turn is not the one who is selected by the current speaker. One example of such
interaction patterns is piggybacking (Goodwin and Goodwin, 1990). Piggybacking is a
form of interaction when someone “readdresses the prior target as a way of affiliating with
prior speaker” as it is presented in the following example:
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< 2 >
1 A: Are you coming with us?

=⇒ 2 B: to the cinema
3 C: Yes sure.

In multi-party conversation, a speaker can also use current-selects-next techniques to
address more than one participants. For example, Ann and John, where did you go yes-
terday?. If more than one participant is addressed, the SSJ system does not provide for a
selection of a person among the addressed participants to speak next. The reason for this
is that the SSJ turn-taking model organizes distribution of talk not between participants
but between parties (Schegloff, 1995). Parties can be composed of more than one person.
Multi-participant parties may coincide with units of social organization such as couples
or classmates. Furthermore, momentary associations of participants into a party is also
possible during the course of interaction (Lerner, 1993).

Signal-based turn-taking systems Another view to turn-taking organization is
that turn-taking is regulated, by a set of discrete signals (Jaffe and Feldstein, 1970; Duncan,
1972). According to a signal-based turn-taking system, the current speaker will provide
a signal when he wants to relinquish the floor - ‘end-of-the message’ signal (Jaffe and
Feldstein, 1970), ‘turn-yielding-signal’ (Duncan, 1972). However, the other participant is
not required to speak after one or more of these signals are displayed.

Based on empirical observations of dyadic conversations, Duncan (1972) described a set
of six turn-yielding signals: rising or failing pitch at the end of the clause, drawl, termina-
tion of any hand gesticulation during a speaking turn, use of stereotyped expressions such
as you know or or something, a drop in pitch or loudness in combination with stereotyped
expressions and the completion of a grammatical clause. Regardless of the number of
turn-yielding signals displayed, the speaker can neutralize them by displaying an ‘attempt-
suppressing-signal’, also called ‘gesticulation signal’ (Duncan and Niederehe, 1974). This
signal consists of the speaker maintaining gesticulation of his hands during a turn-yielding
signal. According to empirical analysis presented in (Duncan, 1972), participants almost
never attempt to take a turn when attempt-suppressing-signal has been displayed. Fur-
thermore, it is more likely that a participant will take a turn if more turn-yielding signals
are displayed at a specific moment.

The presented signal-based system has several disadvantages in comparison to the SSJ
turn-taking system. As discussed in (Goodwin, 1981) and (Levinson, 1983), it is not clear
how signal-based mechanisms regulate some observable patterns of turn-taking such as
lapses and gaps. Duncan (1972, p.286) states that avoidance of the turn by both partic-
ipants was not present in the data he used in analysis. As the system is limited to ter-
mination points of turn-constructional units, it does not make a clear distinction between
current-selects-next and self-selection techniques. Furthermore, the SSJ system provides
some systematic possibilities of overlap at TRP, whereas for Duncan (1972, p. 286), over-
lap means that “the turn-taking mechanisms may be said to have broken down” . As
the signal-based turn-taking system does not support many phenomena that characterize
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conversation, it would not easily accomplish the turn-taking mechanisms in multi-party
interaction.

Turn vs. Floor In most of the cited work on turn-taking, the terms turn and
floor are used interchangeably. Furthermore, the cited definitions of the turn are based
mostly on speaker exchange. This technical approach in defining turn does not take into
account either a participant’s intuition as to what constitutes turn or the speaker’s intention
(Edelsky, 1981). Approaching the problem from this perspective, Edelsky (1981) makes a
clear distinction between turns and floors.

Turn is according to Edelsky defined as “an on-record “speaking” (which may include
nonverbal activities) behind which lies an intention to convey meaning and to convey a
message that is both referential and functional.”

Many researchers agree that not all talk is considered as a turn. Common off-records are
side comments that are not meant for public hearing. Produced usually with a lower voice
tone, they are intended to be observed by a single participant or a subgroup of participants.
The definition of turn also excludes those utterances in which a speaker intends to provide
only a feedback but not a referential message (e.g. yeah, hm, okay). In many cases, they
are actually encouragements to the speaker to continue talking. Aborted utterances that
do not convey a part of a referential message are not considered as turns either (e.g but
I ). The definition of turn requires also that the speaker’s intention is taken into account in
determining turn-boundaries as it should convey a functional message. Edelsky’s definition
of turn is adopted in this thesis for developing models for automatic detection of who is
being addressed by the current speaker.

Edelsky defines a floor as the “the acknowledged what’s-going-on within a psychological
time and space”. What’s-going-on can be, for example, the development of a topic or an
interaction between a subgroup of participants. It is acknowledged if participants can
describe what is going on as he is talking about the remote control or we are agreeing with
her. A floor can, therefore, consist of several turns. On the other hand, it is possible to take
a turn without having the floor. A person may also hold the floor while not talking. For
example, while explaining a complicated formula, a speaker can write down the formula
without saying anything for some period of time. The floor can be controlled by one
person (single developed floor) or by several persons simultaneously or in succession (group
developed floor).

Adjacency pairs

In addition to turn-taking organization, conversation is locally organized by adjacency
pairs. Adjacency pairs, as defined in (Schegloff and Sacks, 1973), are sequences of two
utterances that have the following properties:

• adjacent positioning of component utterances

• each utterance is produced by a different speaker
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• utterances are relatively ordered as ‘first pair part’ and ‘second pair part’; first pair
parts precede second pair parts

• a particular first pair part requires and constrains a range of possible second pair
parts

Prototypical instances of adjacency pairs include ‘question-answer’,‘greeting-greeting’
and ‘offer-accept/refusal’.

The properties that characterized adjacency pairs are inappropriate in two aspects
(Levinson, 1983). First, the requirement for the strict adjacency is too strong. Second, the
range of acceptable second-parts for a given first part do not constitute a small set.

Very often in conversation one adjacency pair can be embedded within another adja-
cency pair forming the following sequence A1(A2-B2)B1, where Ai and Bi represent the
first and second part of the i-th adjacency pair, respectively. The embedded adjacency
pair is called an insertion sequence. Insertion sequences can be nested. In the following
example one question-answer pair is embedded within another:

< 3 >
1 C: Where did you buy your jacket? (A1)
2 D: The black one? (A2)
3 C: Yes (B2)
4 D: In Italy (B1)

In multi-party conversations, even more, adjacency pairs do not impose a strict adja-
cency requirement, since a speaker has more opportunities to insert utterances between two
elements of an adjacency pair. For example, an offer can be followed by either acceptances
or refusals from multiple speakers. Piggybacking is also an example of violation of the
strict adjacency condition in interactions involving more than two participants (Goodwin
and Goodwin, 1990): a speaker insert his talk within an adjacency pair environment pro-
duced by another speakers by affiliating his talk to the first pair part and readdressing the
addressee of that part.

The second problem regarding adjacency pair conditions is the range of acceptable
second parts for a particular first part (Levinson, 1983). For example, there are many
responses to a question other than answers that can be viewed as acceptable second parts
including refusals to provide an answer, postponements, statements of ignorance, sugges-
tions for asking someone else or denials of the relevance of the question. However, not all
second parts relevant to a given first part are of equal standing. There can be some second
parts that are preferred and some that are dispreferred. For example, if requests or offers
are realized by the first part, acceptance is the preferred and the refusal is the dispreferred
second part. This ranking of second parts as preferred or disprefered is encompassed in
the concept of preference organization(Levinson, 1983).

It is to be noted that not all utterances in conversations are marked as a first or second
pair part of an adjacency pair. Furthermore, there are also sequences produced in conver-
sation that are not characterized as adjacency pairs (e.g. story-telling sequences (Sacks,
1992)).
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2.3.2 Overall organization of conversation

Overall organizations organize the totality of exchanges within some specific kind of
conversation in a structural way. There are three parts of the overall organization of the
unit ‘a single conversation’: opening, topical structure and closing (Schegloff and Sacks,
1973; Schegloff, 2002). These aspects of overall organization have been extensively studied
in the context of phone conversations (Schegloff and Sacks, 1973; Schegloff, 2002, 1986;
Levinson, 1983).

Openings of phone conversations are constructed from the following four types of open-
ing sequences (Schegloff, 1986): (1) the summons-answer sequence - (phone rings-Hello),
(2) the identification sequence possibly followed by the recognition sequence - receiving
and calling party identify each other and display each other’s recognition of the other, (3)
the greeting-greeting sequence (Hi -Hi) and (4) the how are you sequence - (How are you? -
Fine. And you? ). After the ending of the opening section, the calling party announces
the reason for the call which is referred to as ‘first topic’ (Schegloff and Sacks, 1973, p:
300-301). The first topic is a topic that can be characterized by participants as the reason
for conversation. As such, it is a “preservable and reportable feature of the conversation”.
The announcement of the first topic is followed by topic closing and shifting to next topic.
Finally, a topical sequence is followed by a closing section that may consist of elements
such as closing down of some topic, exchange of turns such as Okay or All right, identifying
the type of call ( e.g. I just call to check how you feel) followed by a further exchange of
messages and the terminal exchanges of elements such as Bye or See you (Levinson, 1983).

It is to be noted that the term topical organization can refer both to the organization
of the unit ‘a topic’ and to the organization of a set of such units within the unit ‘a single
conversation’. Though closing down the topic can be relevant for closing conversation as
its initiator, the topical organization as an aspect of the overall organization is mostly
considered with the latter.

Opening and closing sections as well as topical organization as described in this sec-
tion are applicable with some modifications to other similar kinds of conversation such as
conversation during a chance meeting on the street or internet chatting.

2.4 Conversations and meetings - two forms of talk-

in-interaction

To provide more technical definition of conversation, Levinson (1983) makes a dis-
tinction between conversational activity and the unit ‘a conversation’. Conversational
activity is characterized in terms of local organizations that operate on turn-by-turn bases
- especially in terms of turn-taking systems. There are, however, many forms of talk-in-
interaction that cannot be characterized as conversational activities. Examples include
lessons and sermons, where a lecturer or a preacher speaks with little or no opportunities
for interruption by members in the audience. On the other hand, there are some forms of
talk-in-interaction that have properties of conversational activities - such as courtroom or
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classroom interrogation - but that are clearly not conversations. According to Levinson
(1983), conversation as a unit is characterized not only by the use of conversational ac-
tivities such as turn-taking of the kind presented in Section 2.3.1, but also by the overall
organization of the sort presented in Section 2.3.2.

Meetings are usually devoted to business and scientific or political matters. They can
be highly formal such as chaired city council meetings on the one hand, or informal such
as some brainstorming meetings of working groups on the other hand. Participants in
a meeting may have been assigned certain roles regarding the meeting as a whole (e.g
chairmen) or regarding particular activity type taking place in a meeting (e.g. presenter,
demonstrator). Meetings are usually planned in advance. In many cases, especially in
formal settings, there is an agenda setting up the phases and activities that the meeting
will contain and topics that will be discussed. Some highly formal meetings can also
strongly constrain participants’ turn-taking behavior such that participants have to rise a
hand to ask for the word and that the chairman is the one who allocates the next speaker.
In contrast, informal meetings pose less restrictions on participants’ behavior of this kind.

Conversations and meetings as two forms of talk-in-interaction may differ across several
dimensions. In this section, we focus only on turn-taking design and overall organizations.

The turn-taking system for conversation, as presented in (Sacks et al., 1974), supports
the local allocation of turns. Who talks and what is talked about is decided on turn-by-
turn basis, by the participants in the conversation. On the other hand, meetings may
pose some restrictions to the turn-taking design. In meetings with chair persons, turns
are partially pre-allocated. The chair person is authorized to control the turn-taking: he
has the right to talk first, to talk after each speaker and to use such turns to select a
next speaker (Sacks et al., 1974, p. 729). It is to be noted that in chaired meetings
not all turns are pre-allocated. The participants can be engaged in a discussion that
resembles ordinary conversation in a sense that turns at speaking are locally allocated.
Investigating the organization of turn-taking in a chaired political meeting, Larrue and
Trognon (1992) observed that the turn-taking system for that meeting contained the SSJ
turn-taking system for conversation. The turn-taking design in meetings can be restricted
in other ways as well. For example, a presenter during the presentation can take over a
leading role for that part of the meeting coordinating the turn-taking process in a similar
way as a chairman. As noted in (Clark, 1996), turns in informal business meetings may be
allocated by explicit agreement among participants. Participants may agree upon who is to
talk on what and for how long. The distinction in local allocation and partial pre-allocation
of turns effects the difference in the size of turns allocated in such way: “turn-size increases
with increasing the degree of pre-allocation” (Sacks et al., 1974, p. 730).

Meetings also differ from conversations in the way they are structurally organized.
Meetings can be formally structured according to the agenda. During the meetings partic-
ipants can perform various types of group activities that are not common for conversation
such as giving a presentation or a demonstration or voting for or against a proposal.
Opening and closing of meetings are activities more complex compared to the correspond-
ing activities of conversation. Opening a meeting may consists of taking attendance by
a chairman (“Hello everybody”), presenting or setting up an agenda, discussing the time
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schedule, presenting goals of the meeting. Similarly, closing may consists of planning the
next meeting by setting the date and distributing of the tasks among participants for the
next meeting, and of terminal exchanges at the end of the meeting. Structural organiza-
tions of meetings may have an influence on participation frameworks as we shall discuss in
Section 2.10.

2.5 Units of analysis of conversational interaction

When participants are engaged in spoken interaction, what they produce with their talk
are utterances rather than sentences. The term ‘sentence’ is often used to refer to written
form. Bloomfield (1946) defines sentences as “an independent linguistic form, not included
by virtue of any grammatical construction in any larger linguistic form” (cited in Goodwin
(1981)). Sentences are abstracted away from the context that refers to particular speakers,
listeners, times and places. On the other hand, utterances are the result of producing
words on a particular occasion, by a particular speaker for a particular purpose (Clark,
1996).

Similar to the disagreement among investigators as to what should be defined as a turn,
there is no general agreement regarding the definition of an utterance. Some researchers
equate turns and utterances as a result of defining turns based on isolated speech (Haris,
1951). Goodwin (1981, p.7) defines an utterance as an “actual stream of speech actually
produced by a speaker in conversation”. It includes “the entire vocal production of the
speaker - that is, not only those sounds that could be placed in correspondence with el-
ements of sentences, but also phenomena such as midword plosives, inbreaths, laughter,
crying, “uh’s” and pauses”. Goodwin (1981, p.7-8), however, does not separate an ut-
terance into subunits that have sentence-like properties allowing the possibility that an
utterance consists of several sentences as well as the possibility that a sentence is com-
pounded of several utterances. Goodwin’s definition of utterance is used in this study. It
is to be noted, that not all utterances are considered as turns. Backchannels, side comments
and aborted speech are examples of utterances that are not turns (see Section 2.3.1).

Producing their talk, speakers intend not only to convey a message but also to perform
certain actions toward the particular others such as asking a question or suggesting an
action to be taken. This aspect of speaker intention should be taken into account for
interactional analysis of conversation. What we are concerned with is not sequences of
turns per se but sequences of actions produced in talk. As Goffman (1981d) has noted,
utterances cannot be used as a basic unit of interactional analysis because of the following
reasons:

1. with an utterance a speaker may perform several different actions (e.g. yes I will
come ‖but what about you? ).

2. talk during two different turns can function as one interactional unit. For example,
a question may be shared by two different persons as in the following example:
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< 4 >

1 A to C: Do you have time?
2 B to C: to visit us tomorrow
3 C to A and B: Yes sure

3. within one utterance two different parties’ contributions can be combined. A speaker
may step in to help the pervious speaker to find a word that he was looking for to
complete a question and then immediately provide a response. In this case, within
an utterance contributions of the previous and the current speakers are combined.

To overcome the listed problems, Goffman (1981d) suggested the use of a notion of
‘move’, although without providing a precise definition of that notion. In a broad sense, a
move refers to

“any full stretch of talk or of its substitutes which has a distinctive unitary bear-
ing on some set or other of circumstances in which participants find themselves
... such as a communication system, ritual constraints, economic negotiating,
character contests,“teaching cycles” (...), or whatever.” (Goffman, 1981d, p.
24)

From this, it follows that an utterance that is a move in one game may also be a move
in another, or be a part of a move of another game or contain two or more moves of another
game (Goffman, 1981d). In the following example, B’s response can be seen as a move
in three different games: (1) the requested information is provided, (2) the question was
correctly heard and (3) it was not impolite to ask such question (Goffman, 1981d):

< 5 >
A: Is this the book you advised me to read?
B: Yes

Goffman’s notion of interactional move encompasses different types of “doings” that
participants perform in conversational interaction within certain occasions. One dimension
along which the interactional moves can be classified is the speech act dimension that refers
to a number of acts that are performed by speaking (Austin, 1962; Searle, 1969).

2.5.1 Speech acts

According to Austin (1962), with each utterance a speaker is performing three types of
acts:

• locutionary act: uttering a sentence with a certain meaning.

• illocutionary act: uttering a sentence that has a certain conventional force e.g.
asking, informing or offering.

• perlocutionary act: uttering a sentence that produces certain effects upon feel-
ings, thoughts, attitudes or actions of the addressee such as misleading, insulting,
convincing or forcing.
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However, the term speech act is used mostly to describe illocutionary act. Searle (1969)
suggested the following five classes of speech acts (as described in Levinson (1983)):

• representatives - committing the speaker to the truth of the expressed proposition
(e.g. asserting, concluding or boasting).

• directives - attempts by the speaker to get the addressee to do something, namely, to
carry out a course of actions expressed by the propositional content (e.g. requesting,
questioning, advising or ordering).

• commissives - committing the speaker to some future course of actions (e.g. offering,
promising, planning or threatening).

• expressives - expressing a psychological state of the speaker (e.g. thanking, wel-
coming or apologizing).

• declarations - effecting an immediate change in the current state of affairs in the
world (e.g. declaring a war, firing from employment).

Searle’s taxonomy of speech acts is based on the illocutionary force which determines
a goal and a reason for communication. A speaker actually intends to produce a certain
illocutionary effect by means of getting the hearer to recognize his intention to produce that
effect. However, the relation between the surface form of an utterance and its underlying
purpose is not always straightforward. With an utterance, a speaker may perform one
speech act indirectly by performing another. This indirectly performed act is called indirect
speech act (Searle, 1975). Indirect speech acts are performed by the means of direct ones
aimed at the same speaker. For example, the utterance Can you open the window? is
expressed in a form of question. Usually, the main purpose of a question is to get an
answer. This kind of illocutionary force that is incorporated into sentence form is called
the literal force (Levinson, 1983). However, the main purpose of this utterance is requesting
the addressee to open the window, which represents an inferred indirect force. Indirect force
clearly dominates over literal force.

The problem of indirect speech acts is not the only difficulty in form-to-force mapping
between utterance or utterance units and speech acts. An additional problem is that the
same utterance can have different forces within different conversational contexts, as it is
illustrated in the following examples:

A: What time is it? A: We shall meet tomorrow A: We can meet later
at five o’clock at the same place

B: five o’clock B: five o’clock? B: five o’clock
A: Thanks. A: yes, five o’clock A: Great. See you then

at five o’clock

B’s utterance five o’clock has been used for a different purpose in all three examples. In
the first example, B’s utterance is an answer to A’s question. In the second example, B’s
utterance reveals the speaker’s intention to verify whether he understood or heard correctly
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what the previous speaker had just said. The main purpose of B’s utterance in the last
example is to suggest to the other participant that they meet at five o’clock.

The traditional speech act theory fails to provide for more than two illocutionary forces
- literal and indirect, as an utterance is observed in isolation of the conversational context.
One solution to a pragmatic theory of speech act has been proposed as the context-changed
theory of speech acts (see Levinson, 1983, p. 276). The basic intuition can be explained
as follows: “when the sentence is uttered more has taken place than merely the expression
of its meaning; in addition, the set of background assumptions has been altered. The
contribution that an utterance makes to this change in the context is its speech act force
or potential”. It is to be noted that Goffman’s definition of moves also highlights the
importance of the context.

A similar rationale has been explored by computational linguists in more recent work on
dialogue modelling where a notion of dialogue act has been introduced. The term dialogue
is used as a synonym for conversation. As the dialogue act is used as the basic unit of
analysis in this study, it will be introduced in more detail in the following section.

2.5.2 Dialogue acts and interactional moves

According to Bunt (2000, p.5), dialogue acts can be defined as “functional units used
by the speaker to change the context”. A dialogue act has a ‘semantic content’ and
a ‘communicative function’. Semantic content represents certain information that is of
particular importance for the new context. Communicative function defines the importance
of this information by “specifying in what way the context should be updated to take this
information into account” Bunt (2000, p. 5-6). In the literature, the terms conversational
moves (Carletta et al., 1997) or conversation acts (Traum and Hinkelman, 1992) are used as
an alternative for dialogue acts. The definition of dialogue act by itself does not assume that
dialogue acts are of verbal character only. Shaking hands or nodding are also functionals
unit used by the speaker to change the context.

Speech acts are just one aspect of communicative function. The notion of dialogue act
covers the different kinds of functions that an utterance can fulfill in conversation. Popescu-
Belis (2005) discusses the following seven dimensions of communicative function: speech
acts, turn management (e.g. floor grabber or floor holder), adjacency pairs (e.g. question-
answer), topical organization (e.g. opening, closing or topic-continuer), politeness (e.g.
encouragement, self-depreciation or neutral) and rhetorical relations (e.g. elaboration,
evaluation or purpose). These dimensions are not mutually exclusive. For example, an
utterance may be a question as a speech act and as the first part of an adjacency pair.
Furthermore, an utterance can be multi-functional in a sense that it has various functions
across different dimensions.

In last years, there has been an ongoing effort to develop dialogue act taxonomies that
enumerates the possible functions that an utterance can fulfill in dialogue - dialogue act
types. An overview of several widely used dialogue act taxonomies is presented in (Popescu-
Belis, 2005). In Chapter 3, we will describe in more detail two dialogue act taxonomies
employed in the designing of the M4 and AMI meeting corpora.
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It is to be noted that the notion of interactional move introduced by Goffman (1981d)
is more similar to the notion of dialogue act than to the notion of speech act. Although the
notion of dialogue act is used as the basic unit of analysis in this study, the terms move or
interactional move will be used in the remainder of this chapter for the explanation of the
phenomena that are to be introduced. The term dialogue act will be employed starting
from Chapter 3.

Introducing the move as the basic unit of interactional analysis requires a revision of
the notion of adjacency pairs in a way that the first and second parts of adjacency pairs
refer to moves instead of to utterances. More generally, we can say that the conversation
is organized as a sequence of moves rather than as a sequence of turns.

2.5.3 Utterance-events and interactional moves

In addition to interactional moves, which segment an utterance into utterance units that
have certain communicative functions, Levinson (1987) introduced the notion of ‘utterance-
events’ that segment an utterance into utterance units based on the changes in the partic-
ipation framework. According to Levinson (1987, p. 168), an ‘utterance-event’ is defined
as “that stretch of talk over which there is a constant set of participants’ roles mapped
into the same set of individuals - i.e. that unit within which the function from the set
of participant roles to the set of individuals is held constant”. Therefore, utterances can
be segmented into utterance units based on two criteria: communicative function and
participation framework. In some cases, the move boundaries may coincidence with the
utterance-event boundaries whereas in other cases, moves and utterance-events may over-
lap. The following examples of conversations among three participants illustrate some of
the possible relations between utterance-events and moves:

1. John: I agree with you ‖ but what shall we do about that?
two moves of different types (agreement ‖ question); two utterance-events (addressed
to the previous speaker ‖ addressed to the group)

2. John: Ann, give me the book ‖ and you, Mike, give me the pen.
two moves of the same type (request ‖ request) that can be marked as one move as
well; two utterance-events (addressed to Ann ‖ addressed to Mike)

3. John: Mike, please open the window ‖ it is too warm.
two moves (request ‖ assertive); one utterance-event (addressed to Mark)

These examples indicate that the notion of move and the notion of utterance-event
in multi-party conversations should be combined. In other words, what characterized a
functional unit i.e. a move is not only its communicative function but also its participation
framework. Two requests in the second example are clearly two different types of moves as
they change the context in different ways by influencing actions of the different participants.
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2.6 Participation roles in conversation - production

format and participation framework

Goffman (1981b, p.3) uses the term ‘participant ’ to refer to any individual who is “in
perceptual range of the event”. As the ‘perceptual range’ involves visual and auditory
co-presence of interacting participants, the term does not encompass other types of com-
munication for which either of these two channels is excluded, such as phone conversations
or written discourse. On the other hand, the term is too broad as it includes not only official
participants in interaction but every person who is present in the situation. When persons
are mutually present, they all or some of them can be communicated merely by virtue
of their copresence and therefore can be considered as participants in interaction. Com-
munication channels include, among others, gestures, emotional expressions, movements,
positions, clothing and bearing. Goffman’s notion of participant applies to conversation,
or some other form of talk-in-interaction, as a whole. Defining participation at the level
of conversation, Goodwin (1981), opposite to Goffman, defines as participants only those
individuals that are engaged in a conversation. Someone not part of relevant conversation
is referred to as a ‘nonparticipant ’. Highlighting that the distinction between participants
and nonparticipants in some cases may be unclear and ambiguous, Goodwin suggested
that the notion of participant should be used in a broad enough sense to include those
individuals who are momentarily disengaged. Levinson (1987), however, defines the term
‘participant’ at the level of conversation as well as at the level of utterance-event. At the
level of conversation, only ratified participants, in Goffman’s sense of ratification, are con-
sidered to be participants. The notion of ratification will be introduced in Section 2.6.2.
It is possible to be a participant even being non-attentive or momentarily not being in
audible range of the speaker. However, at the level of utterance-event, only those who
are ratified and attentive are considered as participant. Similar to Levinson, Clark and
Carlson (1992) define participants on the level of illocutionary act performed by a speaker,
as those hearers who are intended by the speaker to take part in the illocutionary act he
is performing towards the addressees.

In contrast to approaches mentioned above where participation is seen as a product of
collaborative actions between speaker and hearers, Clark and Carlson (1992) describe par-
ticipation in terms of speaker’s activities: the speaker “defines his own role as speaker; he
defines who is to “take part in” his illocutionary act”. Taking account, first and foremost,
that turn-taking system is interactionally managed, Clark and Carlson (1992)’s approach
can be considered as oversimplified. Furthermore, many researchers have shown that the
audience should be treated as active participants in conversation so that most aspects
of interaction, including participation, are truly interactive and not merely outcomes of
speaker activities projected in a field of participants (Goodwin, 1981; Duranti, 1986; Hav-
iland, 1986; Goodwin, 1986).
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2.6.1 Levels of participation

In defining participants in conversation, three different levels of analysis can be consid-
ered (Goodwin, 1981):

• the activity of conversation - The two most important positions for participants
provided by the activity of conversation are speaker and hearer. These two positions
are related to the activities of speaking and being silent.

Goffman (1981a) uses the term ‘speaker’ to refer to an individual active in the role
of utterance production - ‘the talking machine’. Some researchers define the term
‘speaker’ in terms of turn. For example, Goodwin (1981) refers to a speaker as a
“party whose turn is in progress at a particular moment of time”. As pauses may
occur within a turn, a party can be a speaker although he is not saying anything at
the moment. However, simultaneous talk may pose problems for this definition. The
term ‘hearer’, at this level of analysis, is used to refer to a complementary position
to the position of speaker - a ‘non-speaking’ participant.

• individual actions - Distinct from the position of speaker and hearer provided by
the activity of conversation are the actions of individuals that display their incum-
bency in these positions. Participants, for example, may not be listening while being
in the position of hearer or even more so while being addressed. Goodwin (1981)
gives an example of the situation where A is addressing an utterance to B who is,
however, paying attention to another speaker C. The proper description of A’s action
includes B as the addressee regardless whether B displays hearership to A. On the
other hand, the description of actions of B relevant to the position of hearer includes
C as a speaker he is being attentive to.

• collaborative actions - As mentioned above, many aspects of conversational in-
teractions are truly interactive in a sense that they include actions of more than
one individual. The process of ratification (Section 2.6.2) and the process of design-
ing a talk for different types of participants (Section 2.7) are defined at this level
of analysis. For example, speakers’s design of a talk for a particular participant in
conversation is influenced by the orientation and attentiveness of that participant
towards the speaker.

2.6.2 Ratification

Defining participants in conversation based on the mere co-presence, Goffman makes a
distinction between ratified (or official) and unratified (or unofficial) participants. Ratified
participants are those participants who “have declared themselves officially open to one
another for purposes of spoken communication and guarantee together to maintain a flow
of word.” (Goffman, 1967, p. 34). Therefore, the process of ratification is not conducted at
the level of individual actions but at the level of collaborative actions of all participants in
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conversation. Furthermore, participants are ratified not to spoken interaction as ongoing
process but to a state of talk as a naturally bounded unit.

Unratified participants are treated as someone not formally participating in conver-
sation. Examples include spectators during a trial or an audience of a TV talk show.
Although they are not intended to contribute to the discussion, in some situations they
may provide some information, verbal or non-verbal feedback. Therefore, it is sometimes
very difficult to maintain the border between official and unofficial participants. There
is also a large disagreement among researchers regarding this issue. Kerbrat-Orecchioni
(2004) illustrates this in the example of ratification of spectators and juries of a trial. Some
investigators consider spectators and juries of a trial as unratified participants as they are
forbidden to speak. Others, however, consider jury as very loosely speaking ratified par-
ticipants and spectators as unratified participants. Kerbrat-Orecchioni (2004) claims that
spectators can be also treated as a ratified participant to a certain extent given the le-
gitimacy of their presence, their displayed interest in the trial, and the fact that they are
also intended recipients of what is being said. For that reason, Kerbrat-Orecchioni (2004)
introduces different:

• degrees of ratification - witnesses are ‘more ratified’ than jury who are nevertheless
more ratified than spectators.

• modes of ratification - complete ratification in both production and reception
formats vs. ratification in reception only.

• levels of ratification- global level of ratification that is defined based on the script
as, for example, in a case of some institutional conversations (e.g. a city council
meeting or a court trial) vs. local level of ratification related to a particular episode
or task.

As a state of talk, in Goffman’s terminology, consists of “the total activity that occurs
during the time that a given set of participants have accredited one another for talk and
maintain a single focus of attention ” (1967, p.35), Goffman’s notion of ratification defined
at the level of a state of talk may refer to both global and local levels of ratification.

The process of hearing what a speaker says should be distinguished from the official
status as a ratified participant in interaction (Goffman, 1981a). One might not be listening
though having the status of ratified participant in interaction. Similarly, one might be
following the talk closely while being an unofficial participant in interaction.

2.6.3 Categories of participation

Criticizing traditional approaches to analysis of conversational interaction based on
dyadic models, Goffman emphasized the insufficiency and simplicity of the traditional
notions of speaker and hearer and suggested that these terms should be decomposed into a
set of categories that provide a better insight into the structure of interaction. Though the
proposed categorization has some disadvantages, it has been employed as a starting point
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for most of the theoretical and practical research into analysis and modeling of multi-party
interaction in various domains.

In this section, we first present Goffman’s categorization of participation in conversa-
tion. Then, we describe several other existing taxonomies comparing them with Goffman’s
categorization. Finally, we present the categorization of participation roles that is used in
our study.

Goffman’s categorization of participation

Goffman (1981a) distinguished three basic kinds of hearers to talk: addressed recipients,
unaddressed recipients and bystanders. Addressed and unaddressed recipients are ratified
participants in interaction that are differentiated based on whether or not they are being
specifically addressed by the speaker. Bystanders, on the other hand, are unofficial partic-
ipants in interaction whose access to the conversation, however minimal, is perceivable by
the official participants. As Goffman has emphasized, their presence should be considered
the rule, not the exception. Bystanders can follow the talk in two different ways. In some
situations, they can briefly follow the talk, catching some pieces of it, without much effort
or intent and thus becoming overhearers. In other circumstances, they can use the access-
ability they have to listen to the conversation carefully and thus becoming eavesdroppers,
not dissimilar to those who secretly follow the conversation electronically.

When considering the notion of speaker, Goffman (1981a) suggested a decomposition
into three categories. First, the animator, someone involved in the role of utterance pro-
duction. Second, the author, “the agent who puts together, composes and scripts the lines
that are uttered” (Goffman, 1981c, p. 226). Third, the principal, someone who is commit-
ted to what has been said, someone whose beliefs have been told and whose position has
been established. The term speaker mostly implies to the case where all three categories
are used together. Nevertheless, the animator can recite someone else’s text or speak
for someone else and in someone else’s words (Goffman, 1981a, p. 145). Furthermore,
speaking participants can switch between these three roles during the course of utterance
production.

It is to be noted that animator and hearer are parts of the same level of analysis. They
are “not social roles in the full sense as much as functional nodes in a communication
system”(Goffman, 1981a, p. 144). Therefore, the animator and three kinds of hearers
represent participation statuses that an individual can have relative to the utterance being
produced.

Animator, author and principal, taken together, comprise the production format of
an utterance. Another basic element in the structure of an utterance is the participa-
tion framework. It represents the collection of participation statuses of all participants in
interaction, one of which is that of animator. Goffman’s categorization of participation
(participation statuses and production formats) as well as its relation to the participation
framework are presented in Figure 2.1.

Some investigators, however, consider the production format and the participation
framework as parts of the same level of analysis linking the production format to the
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Figure 2.1: (a)Participation statuses and production formats (b) Participation framework

notion of speaker and participation framework to the notion of hearer only (Levinson,
1987; Kerbrat-Orecchioni, 2004). Considering the animator as a part of the participation
framework allows that the party who is uttering words is also at the receiving end of the
utterance.

Levinson (1987) pointed out several disadvantages of Goffman’s categorization. First,
the proposed categories are empirically inadequate as they do not provide sufficient dis-
tinctions: Barbara’s status related to Ann’s utterance in the example below, remains
undesignated in the Goffman’s categorization system. Clearly, in telling Charles that Bar-
bara knows what’s playing at the theater, Ann indirectly asks Barbara to answer Charles’
question.

< 6 > (from Clark and Carlson (1992): p. 211 )
1 Charles to Ann: Ann, what’s playing at the theatre next week?
2 Ann to Charles: Sorry, I don’t know. But Barbara does.
3 Barbara to Charles: “Much Ado About Nothing”.

Second, the categories are not sufficiently characterized in a way that renders their
applications feasible. Third, the proposed categorization is considered relevant only for
ordinary conversation whereas for other forms of talk-in-interaction other categorizations
are required. Levinson (1987) explains this with Goffman’s failure to make a crucial dis-
tinction between application of these terms at the level of utterance event and at the level
of speech event. Speech event, in Levinson terminology, refers to a unit of a specific form
of talk in interaction as a whole (e.g. meetings or conferences).

Other categorizations of participation

Clark (1996) proposed categorization of participation roles similar to Goffman’s cat-
egorization. This taxonomy can be considered as a modified version of categorization of
participation roles proposed in (Clark and Carlson, 1992). According to Clark (1996),
all people around an action can be divided into those who truly participate in the action
and those who do not: participants and nonparticipants. Participants in conversation en-
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compass speaker, addressees as well as others taking part in conversation but currently
not being addressed, so called side-participants. All other listeners to conversations are
called overhearers. There are two basic kind of overheares: bystanders and eavesdroppers.
Bystanders are those who are openly present and the speaker is aware of their presence
but they are not part of the conversation. Eavesdroppers are those who are listening to
conversation without the speaker’s awareness.

Clark’s and Goffman’s taxonomies differ mainly in two ways. First, Clark’s taxonomy
is applicable to other forms of conversations (e.g. phone conversation) as participation
is not based on mere copresence. Second, the notions of overhearers, bystanders and
eavesdroppers are treated differently. In Clark’s taxonomy, all listeners that are not a part
of conversation are identified as overhearers. They are differentiated as bystanders and
eavesdroppers based on the speaker’s awareness of their presence and involvement in the
process of auditing. In Goffman’s taxonomy, all unofficial participants in conversation are
designated as bystanders. Their presence is considered as the rule. They are differentiated
as overhearers and eavesdroppers based on the way they are following the talk.

Levinson (1987) suggested further classification of both production format and recipient
roles by introducing further categories with finer distinctions. He proposed two ways of
developing a systematic set of relevant categories. One way is to define a basic set of
primitive categories and then to derive other participation roles in terms of basic ones.
A simple schema of this kind proposed by Levinson is presented in Table 2.1. Another
way to develop a systematic set of empirically adequate categories is to decompose the
basic categories into terms of defining features and then use them to define more complex
categories. Levinson’s proposal for this kind of categorization regarding recipient roles in
shown in Table 2.2.

PARTICIPANT as an underlying dimension of the categorization system has already
been discussed in Section 2.6. CHANNEL-LINKAGE is considered with ability to receive a
message. The feature of RECIPIENTSHIP informally refers to “someone whom a message
is for; it is thus perhaps essentially a role defined by the pertinence of the informational
(or attitudinal) content” (p. 178). Recipients are, therefore, designated destinations of the
messages. Levinson emphasized that the ways in which recipients as well as addressees
are distinguished from other participants are “both subtle and hardly understood”. The
notion of ADDRESS is also presented as puzzling. Levinson listed a set of explicit and
tacit features of ADDRESS that are used to distinguish addressees from other participants.
We will provide the detailed analysis of the notion of addressee, and thus the feature of
address as well, in Section 2.6.5.

Categorization of participation in our study

For better understanding of the notion of addressee, it seems preferable to make a clear
distinction between addressees and targets as two forms of destination of a message. The
notion of target in our study excludes those persons that are intended recipients of speaker
utterances but are not present in the conversational situation - ultimate destination in Table
2.2. Therefore, the notion of target encompasses indirect target and targeted overhearer
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Basic categories
source = informational/illocutionary origin of message
target = informational/illocutionary destination of message
speaker = utterer
addressee = proximate destination
participant = a party with a ratified channel-link to other parties

Derived categories
producers = sources or speakers
recipients = addresses or targets
author = source and speaker
relayer = speaker who is not the source
goal = an addressee who is the target
intermediary = an addressee who is not the target
audience = participants who are not producers nor recipients
etc.

Table 2.1: Basic and derived categories of participation - Levinson(1987)

Reception roles ADDRESS RECIPIENT PARTICIPANT CHANNEL-LINK

(a)Participant roles
interlocutor + + + +
indirect target - + + +
intermediary + - + +
audience - - + +

(b)Non-participant roles
overhearer - - - +
targeted overhearer - + - +
ultimate destination - + - -

Useful subordinate classes:
recipient = +RECIPIENT

addressee = +ADDRESS

participant = +PARTICIPANT

hearers= +CHANNEL-LINK

etc.

Table 2.2: Reception roles - Levinson(1987)
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(see Table 2.2).
Introducing target as a participation role, provides also for the extension of the tradi-

tional notion of indirect speech acts in a sense that they can be performed by means of
direct ones not only at the same, but also at different, hearers. In the latter case the in-
tended recipient of the direct act is marked as the addressee whereas the intended recipient
of an indirect act is marked as the target. Clark and Carlson (1992) used the terms linear
and lateral addressees to refer to addressees of indirect acts that are directed to the same
and different hearers, respectively, as direct illocutionary acts.

As listeners’ roles are the main focus of our study, we do not decompose the notion
of speaker into different production roles. In summary, our categorization is based on the
following distinctions:

• speaker

• addressee

• side-participant

• bystander: overhearer or eavesdropper

• target

2.6.4 Structural instability of the participation framework

Constant changes in production formats and participation statuses can be observed
throughout interaction. However, interactions involving more than three official partici-
pants and/or bystanders make changes in the framing of participation possible in several
ways. These changes result in what Goffman (1981a), calls “structural instability” of the
participation framework.

A complete change can be observed when a conversation is split off into two or more
conversations as well as when several conversations are merged together. This kind of
instability is often found in interactions involving a large number of participants. These
conversations may be dependent as one person can participate in several of them. In
some circumstances, two differently managed conversations may occur under conditions of
mutual accessability each bystanding the other. The right to leave and to join a conver-
sation implies situations in which participants may shift from one conversation to another
(Goffman, 1981a, p.135).

Partial changes in framing are observed when subordinate communication occurs in the
process of dominate communication. Goffman (1981a) distinguish three forms of subordi-
nate communication:

• byplay- subordinate communication between ratified participants

• crossplay-communication between ratified participants and bystanders across the
boundaries of dominate conversation
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• sideplay- communication among bystanders

Those who take part in subordinate communication may attempt to conceal that they
are communicating. Goffman refers to this kind of subordinate communication as ‘collu-
sion’.

2.6.5 Addressee

The notion of addressee as well as relations among addressed and unaddressed par-
ticipants are presented in the literature as complicated, puzzling and not much explored
(Goffman, 1981a; Levinson, 1987; Clark and Carlson, 1992).

Goffman (1981d, p.9-10) defines addressees as those ratified participants “oriented by
the speaker in a manner that suggest that his words are particulary for them, and that
some answer is therefore anticipated from them more so than from the other ratified par-
ticipants”. According to this, the addressee is the one who is expected by the speaker to
react on what the speaker says by for example, providing verbal or nonverbal feedback,
by taking the turn and providing a reply or by performing a required nonverbal action.
In the speaker orientation towards the addressee, Goffman insists in particular on visual
cues referring to the addressee as to “the one to whom the speaker addresses his visual
attention” (Goffman, 1981a, p.133).

There are two main drawbacks to Goffman’s definition. First, Goffman fails to make
a distinction between the feature of address and the feature of recipientship (see Section
2.6.3) and in line with that between addressee and target of a speaker’s message. In the case
when the addressee and the target of the message are two different ratified participants,
the speaker sometimes expects that the target, and not the addressee, reacts on what
he says. Second, gaze directional cues are just one means of addressing: a speaker may
address someone who is not within the focus of his visual attention. Furthermore, looking
at someone does not always imply addressing the gazed person. This is due to context-
sensitivity of gaze-directional addressing which will be discussed in Section 2.7.2.

Similar to Goffman, Clark and Carlson (1992, p.220) identify the notion of addressee
with the notion of targets, defining addressees as “ostensible targets of what is being said.
Ordinarily, they are the participants for whom the speaker has the most direct and obvious
goals in designing his utterance”.

Following Levinson’s (1987) approach in defining participation roles in terms of defining
features, we distinguish the following notions: “the message is directed to X ” and “the
message is intended for X ”. A speaker may employ a variety of mechanisms to show
explicitly or implicitly to whom he is directing his speech. These mechanisms can be
of three kinds: verbal (language use and language structure), nonverbal ( e.g. gaze and
gestures) or contextual (e.g. sequential organization of talk or a state of the knowledge of
co-participants). They will be discussed into more details in Section 2.7.2. Directing his
speech to X, a speaker is actually giving primary attention to X. Addressees are, therefore,
defined as those participants to whom the speaker is directing his speech. In a large
number of cases, participants to whom a message is directed are also intended recipients
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of the message. However, addressed participants can be someone who is not the intended
receiver of the message. For example, knowing that Ann is the only one responsible for
cooking in the house and that her husband John has no experience with cooking, Mike’s
remark addressed to John: “Fresh basil would be a perfect additional ingredient to this
meal” is not intended for John but for Ann. Similarly, Mike’s question addressed to
John: “Is this prepared with ginger?” is intended for Ann who is currently chatting with
Mike’s wife. In the case that Mike’s intention is that John passes the question to Ann,
John is considered as intermediary for the ultimate destination of the message - Ann (see
Table 2.2).

In the case when a speaker’s message is not directed to anyone in particular (i.e. it is
broadcast), those official participants in conversations for whom the message is intended
are considered as addressees. Speaker may also broadcast his message to others without
knowing which of them he is addressing. Consider an utterance of the sort “The last of you,
please close the door”: though the speaker explicitly direct his utterance to the last one to
leave the room by means of vocatives, he is treating all participants as equally potential
addressees. Clark and Carlson (1992, p.235) term this kind of process as “addressing by
attribution”.

2.7 Recipient design and role assignment

Having defined a set of categories for participation roles, the main problem for analysts
arise as to how to assign these categories to participants during the course of an utterance.
This may pose problems not only for analysts but also for people who are themselves
involved in interaction (Levinson, 1987; Kerbrat-Orecchioni, 2004). Detailed explorations
and understanding of mechanisms that speakers use to designate which hearers are to take
which roles is therefore required.

The role assignment is a critical part of one of the most general principles organiz-
ing talk within conversation - recipient design. According to Sacks et al. (1974, p.727),
the recipient design represents “a multitude of respects in which the talk by a party in a
conversation is constructed or designed in ways which display an orientation and sensitiv-
ity to the particular other(s) who are co-participants”. Clark and Carlson (1992) employ
the term audience design to extend the notion of recipient design to include overhearers
in addition to official participants in conversation. Speakers design their utterances with
different types of hearers in mind though dealing with them in different ways. Therefore,
Clark and Carlson (1992) divide audience design into participants design, addressee design
and overhearers design. The notion of participants, in Clark and Carlson’s terminology,
encompasses addressees and side-participants. In designing their utterances, speakers focus
their attention primarily on addressees. Participants are intended to be informed about
the act the speaker is performing towards addressees and to recognize the meaning of that
act (Clark and Schaefer, 1992, p. 260). Overhearers are generally not meant to under-
stand how an utterance has been designed for them. In dealing with overhearers, speakers
may choose among a range of attitudes such as indifference, disclosure, concealment and
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disguisement (Clark and Schaefer, 1992). Levinson (1987) also investigated the recipient
design principle for indirectly targeted utterance focusing on targeted participants who are
not being addressed.

In this study, we are concerned only with addressee design - primarily, with under-
standing of mechanisms that speakers use to show “orientation and sensitivity” towards
their addressees. Some major addressing mechanisms will be listed in Section 2.7.2 and
elaborated in Section 2.10 regarding addressing in meetings.

2.7.1 Forms of addressing

Addressing represents a form of orientation and directionality of the act the current
speaker performs toward the particular other(s) who are involved in interaction.

Two forms of addressing can be distinguished: explicit addressing and tacit addressing.
Explicit addressing includes, for example, the use of address terms such as names or titles,
where the speaker unambiguously identifies the addressee of his utterance. Tacit addressing
is a manner of addressing which recipients draw upon diverse features of the content and
context of the action performed by the speaker (Lerner, 2003). For instance, sequential
organization of talk can provide the circumstances for accomplishing tacit addressing as it
is illustrated in the following example:

< 7 > (participants A, B, C )
1 A to B Have you ever been there?
2 B to A No
3 =⇒ A to B Why?

As the question at line 3 represents a follow-up question to the question at line 1, it
can be seen as tacitly addressed to the same participant (B). Similarly, in the conversation
involving three participants, a speaker can tacitly address one participant by referring to
another participant by name and thus excluding him as a possible addressed participant:
“Did you know that Ann is very good in cooking?”.

2.7.2 Addressing behavior

Addressing behavior is behavior that speakers show to express to whom they are ad-
dressing their speech. It depends on the course of the conversation, the status of attention
of participants, their current involvement in the discussion as well as on what the partici-
pants know about each other’s state of knowledge, whether explicit addressing behavior is
called for. In this section we present various aspects of addressing behavior that are rele-
vant for face-to-face conversations. However, in Section 2.10 we will discuss how different
addressing practices are affected by the meeting context.

In face-to-face conversation, addressing is carried out through various communication
channels such as speech, gaze and gestures. As addressing denotes a form of orientation
and directionality of the act the speaker performs toward particular others, those aspects
of verbal and nonverbal behavior that bear deictic reference to the participants present
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may be considered as explicit addressing mechanisms. However, as we will discuss later,
these mechanisms may also serve different purposes in conversation and may be context
sensitive. Moreover, the success of nonverbal addressing behavior of a speaker is contingent
on the behavior and the attention of his co-participants.

As previously discussed, speakers may accomplish addressing tacitly by means of se-
quential organization operating in conversation. In many cases, the person addressed will
be the person who last spoke or even more so, the person whose speech was the stimulus
for the present response. Participants’ physical arrangement and individual or group non-
verbal activities in which they are involved during the conversation can also be added to
the shared particularities of circumstances and context that are employed in the process
of tacit addressing.

The state of a participant’s knowledge about the reported event can also play an im-
portant role in the addressee design. Analyzing conversations where both knowing and
unknowing participants were co-present, Goodwin (1981) found that an unknowing partic-
ipant, the one who lacked relevant information about the event, was addressed while the
knowing recipient was asked to monitor what the speaker was saying for its correctness.
However, when the speaker moved his gaze towards the knowing participant, he displayed
uncertainty about what he was saying by producing a request for verification appropriate
for a knowing recipient.

In the following sections, we present in more detail verbal and non verbal addressing
practices.

Verbal aspects of addressing behavior

Addressing can be accomplished partially or completely by using resources obtained
from an utterance’s content. In the case of partial addressing, the content indicates that
someone is being addressed without revealing who that participant is. Furthermore, this
manner of addressing is not limited only to utterances addressed to an individual; it can
also be employed for addressing a group of participants. In addition to the utterance
content, a type of activity the speaker is performing with his speech can be an additional
resource for distinguishing among addressing types (see Section 2.8): some types of moves -
such as agreements or disagreements - tend to be addressed to an individual rather than to
a group. More information about the addressee of a move can be induced by combining the
information about the type of the move with so-called “lexical markers” within the move
that are denoted as addressee “indicators”. In this section, we discuss several addressing
practices which make use of utterance content.

Address terms The strongest method of addressing available is the use of address
terms. They encompass the usage of personal names, terms of endearment (e.g. ‘darling’)
or categorical terms (e.g. ‘boss’, ‘mother’) in the vocative form (Lerner, 2003). It is to be
noted that these categories when not used as address terms are employed for refereing to
a third person, that is to a person other than the speaker and the addressee or to a person
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who belongs to the addressed group though not being explicitly addressed, as illustrated
in the following example:

< 8 > (participants Ann, John, Mike)
1 Ann to John Mike can help you with that
2 Ann to John and Mike We should discuss John’s proposal
3 Ann to John Send my regards to Tom

Speakers employ address terms when they want to unambiguously direct their speech
to a particular participant or to a group of participants. However, the usage of the address
term is not always sufficient for designating who is being addressed. A ‘situationally
shared address term’ (e.g. ‘son’ in some occasion) is an incomplete addressing method
since it requires additional sources of information to be employed for determining who of
the participants referred to is the addressed one (Lerner, 2003).

Although being the most explicit addressing method, address terms are not widely used.
Moreover they seem to be used primarily under specific circumstances in which they are
employed to do more than just simple addressing (Lerner, 2003). The additional usages of
address terms are mostly manifested through different positioning of address terms within
a turn. For example, pre-positioned terms of address in many situations are employed
for verifying or establishing the availability of the recipient in situations where this may
be problematic. To ask Ann, who is currently taking notes, to give him a book, John
may address Ann in the following way “Ann, can you give me the book next to you”.
Post-positioned terms of address are often used as repairs, that is, when the success of
other methods over the course of turns is doubtful. Those and other usages of pre- and
post-address terms are described in more detail in (Lerner, 2003).

Linguistic markers Addressing a single participant or a group of participants often
encompasses the use of personal pronouns as an example of person deixis. More precisely,
the second person deixes (e.g. you, your, yours) and the first person deixes (e.g. we, us,
our, ours) are employed as a means for partially accomplishing addressing. In multi-party
conversation, the use of the first and second person references do not automatically resolve
who is being referred to. Therefore, additional sources of information are required for
resolving the ambiguity.

The second person deixis (henceforth, you) refers to a single participant or to a group
of participants excluding the speaker. Commonly, the referred participant is the addressed
one. However, you, may have usages other than referring to the addressee. An overview
of such usages is given in (Schegloff, 1996). You can be used explicitly for addressed
summoning (e.g. “Hey you!”). Also, you is sometimes used for referring to a category of
persons or to everyone. The following example illustrates this kind of so-called impersonal
usage of you:

< 9 >
1 A: People like to be recognized for the quality of their work.
2 B: Sure. A positive feedback motivates you to do your job even better.
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When you is employed for the conjoined task of person reference and establishing ad-
dressing, you is said to be an addressee indicator but not an addressee designator (Lerner,
2003). Various practices for determining the referent of you are described in (Lerner,
1996b). The reference can be sometimes resolved from the specifics of the situation, iden-
tities, and particularities of content and context of the talk. In some instances, sequential
positioning of a turn may provide sufficient information for determining who is being
addressed by you. Visible aspects of interaction including participants’ visible group or
individual actions can also be employed for resolving the reference of you. In addition to
all these features of the talk and its circumstances, who is the person referred to by you
is in most cases determined by explicit addressing practices such as gazing at the person.
As will discussed below, gaze, when used alone, can be a weak or troublesome addressing
device. However, it can be seen as an ‘enhanced’ addressing method when combined with
you (Lerner, 1996b). As presented in (Jovanovic and op den Akker, 2004), additional lin-
guistic resources such as determiners, numerals and indefinite pronouns can be employed
for distinguishing whether you refers to a single participant or to a group of them (e.g.
two of you, some of you, all of you or anyone of you).

A speaker uses the first person deixis I (and its variants such as me or mine) for self-
reference and we (and its variants us or our) for referring to a group of people including
the speaker. The latter is of particular importance for determining who is being addressed
by the speaker. There are two main issues concerning the recognition of the referents of
we other than the speaker: the size and members of the group referred to. The group
referred to with we may include: (a) the speaker and the addressee(s), (b) the speaker, the
addressee(s) and other persons who may or may not be participants in the conversation
and (c) the speaker and non-addressed persons who may or may not be participants in the
conversation. The following example illustrates all three types of usages of we:

< 10 > participants Ann, John and Mike
1 a Ann to John We can visit Mike tomorrow.
2 a Ann to John and Mike Shall we meet in one hour?
3 b Ann to John We have to go with your car,

as Mike’s car needs to be repaired.
4 b Ann to John and Mike Tom will arrive tomorrow.

So, we can together go out for a dinner
5 c Ann to John and Mike Yesterday I saw an old friend of mine.

We haven’t seen each other for years.
6 c Ann to John I had discussed with Mike and

we agreed not to go to the cinema.

Features of the talk and its circumstances similar to those used for determining the
referent(s) of you listed above, may be relevant for identifying whether the group re-
ferred to with we includes participants in conversation and even more so, the addressed
participant(s). Furthermore, the type of the act performed in speaking can be useful in
distinguishing whether or not the participants are referred to. For example, when we is
used in combination with suggestions or in combination with elicitation of any kind of
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verbal or non-verbal action, we refers to a group containing co-participants (see (1), (2),
(3) and (5) in the example 10).

Nonverbal aspects of addressing behavior

Gaze Analyzing dyadic conversations, researchers into social interaction observed
that gaze in social interaction is used for several purposes: to control communication (e.g.
turn-taking), to provide a visual feedback, to communicate emotions and to communicate
the nature of relationships among interacting participants (Kendon, 1967; Argyle, 1973).

Recent studies into multi-party interaction emphasized the relevance of gaze as a means
of addressing. Vertegaal (1998) investigated to what extent the focus of visual attention
might function as an indicator for the focus of “dialogic attention” in four-participants face-
to-face conversations. “Dialogic attention” refers to attention while listening to a person
as well as attention while talking to one or more persons. Empirical findings have shown
that when a speaker is addressing an individual, there is 77% chance that the gazed person
is addressed. When addressing a triad, speaker gaze seems to be evenly distributed over
the listeners in the situation where participants are seated around a table. It is also shown
that on average a speaker spends significantly more time gazing at an individual when
addressing the whole group, than at others when addressing a single individual. When
addressing an individual, people gaze 1.6 times more while listening (62%) than while
speaking (40%). When addressing a triad the amount of speaker gaze increases significantly
to 59%. According to all these estimates, it is to be expected that gaze directional cues
are good indicators for addressee identification in face-to-face conversation.

However, these findings cannot be generalized in the situations where some objects of
interest are present in the conversational environment, since it is expected that the amount
of time spent looking at the persons will decrease significantly. As shown in (Bakx et al.,
2003), in a situation where a user interacts with a multimodal information system and
in the meantime talks to another person, the user looks most of the time at the system,
both when talking to the system (94%) and when talking to his co-participant(57%). Also,
another person looks at the system in 60% of cases when talking to the user.

A physical or seating arrangement of interacting participants is implicated in organi-
zation of gaze as a means of addressing. Moreover, it specifies a so-called visible area of
each participant. During a turn, a speaker mostly looks at the participants who are in his
visible area. Moreover, the speaker frequently looks at a single participant in his visual
area when addressing a group. However, when he wants to address a single participant
outside his visual area, he will often turn his body and head toward that participant.

Lerner (2003) has investigated the context sensitivity of gaze as an explicit addressing
device when combined with a speaker initiating action, that is, with a first pair part of an
adjacency pair for the selection of the next speaker. It has been shown that a gaze as an
addressing device is vulnerable to looking practices of recipients: (1) it may not be seen
by the addressed recipient and (2) it may not be seen by a side participant although the
speaker and the addressee have established mutual gaze which in turn may cause that the
side participant speaks next.
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Gestures Deictic hand and head gestures are usually employed by a speaker to ex-
plicitly demonstrate to co-participants that his utterance is being directed to a particular
participant. However, the addressee of a speaker’s utterance is not necessarily the same
person as the person whom the speaker points at.

Commonly, non-verbal deictic devices are accompanied with a verbal reference to the
person the speaker is pointing at, that is, with a person deixis. Examples include the
second and third person deixis, the name or the title of the person. When a deictic gesture
is accompanied by a second person deixis or by an addressed term referring to the target
of the gesture, the targeted person is the addressee of the speaker utterance. Furthermore,
the deictic gesture is accompanied with gazing at the same target. In all other cases, deictic
gestures are employed for referring to a person without explicitly addressing that person:
the person pointed at is the one the speaker is talking about having the role of a side
participant or of a target or belonging to the addressed group though not being explicitly
addressed. Furthermore, when talking about the person a speaker is pointing at, it is not
always the case that the speaker is gazing at that person. The following example illustrate
the discussed usages of hand and head deictic gestures:

< 11 >
1 John to Ann: Is this your [pointing at Ann, gazing at Ann] book?
2 Ann to John: No, it is his [pointing at Mike, gazing at Mike].
3 Mike to John: I suggest that Ann

[pointing at Ann, gazing at John]
read first my book and then give it to you.

4 John to Ann and Mike: Okay, then we agreed first she
[pointing at Ann, gazing at Ann] and then me.

Non verbal aspect of speech Addressees can also be designated by the manner of
speaking (Clark and Carlson, 1992). For example, by whispering, a speaker can select a
single participant or a group of participants as addressees. Similarly, by raising his voice, a
speaker can denote that he is addressing a particular participant or a group of participants
who are not in close proximity.

2.8 Addressing types

A speaker may address his speech to the whole group of official participants, to a
subgroup of them or to a single participant in particular in an explicit or tacit manner.
In that regard, we distinguish three types of addressing: individual addressing, subgroup
addressing and group addressing. As will be presented in Chapter 4, observers of meeting
conversations had particular difficulties in distinguishing subgroup from group addressing
indicating that the concept of subgroup addressing is rather vague.

Utterances addressed to more than one participant can be further classified as being
distributively and collectively addressed. The question “Do you have children?” addressed
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to a couple is an example of collective addressing whereas the same question addressed
to participants who are not married is considered as distributed among participants. A
response to a collectively addressed question is expected from any of the addressed par-
ticipants whereas a response to a distributively addressed question is expected from each
participant being addressed. Lerner (1993) has extensively investigated various types of
collectivities that can be constituted in conversation as well as different practices for es-
tablishing relevance for conjoined participation. He uses the term “association” to refer
to any assembly of co-present individuals that are in any of various ways classified as a
collectivity.

It is also possible that the incumbent of speaker and addressee roles is the same person.
Uttering softly “What else do I want to say?” while trying to evoke more details about
the issue that he is presenting, a speaker is talking to himself without really addressing
other than himself. Furthermore, other participants are not considered as recipients of
the message as it was not formulated for them. This kind of addressing is refereed to as
self-addressing.

Levinson (1987) pointed out that there are certain types of utterances that do not
seem to presuppose any role other than speaker. Certain expressives such as “Oops!”,
“Ouch!”, “Eek!” do not seem to be addressed to self or others though they may have
indirect targets. Levinson (1987) calls these vocalization ‘out-louds’ whereas Goffman
(1981e) uses the term ‘response cries’. According to Goffman (1981a), when uttering these
kinds of ‘response cries’, one may intend to provide information to everyone in the range
seeking some response from them, but not a specific reply. The intended recipients in these
situations are not hearers but overhearers - targeted overhearers in Levinson’s terminology
(see Table 2.2). Further examples of utterances that do not require co-present addressee
or side-participants are conventional blessings or curses (Levinson, 1987).

In our study on addressing presented in this thesis, we do not consider the distinction
between collectively and distributively addressed utterances. The study also excludes self-
addressing and ‘out-louds’.

2.9 Relations among recipient design, turn-taking and

adjacency pairs

As a speaker designs his utterance with different types of hearers in mind, he actually
performs different doings to parties present. Therefore, a multi-party situation is seen as
one “where we are dealing with the relationship of activities - not sequentially [...]- but
across the parties present, given an activity done directed to some other person” (Sacks,
1992, p.530). In this section, we are concerned with analysis of relations among turn-taking
organization, sequential organization of actions and organization of actions across parties.

As discussed in section 2.3.1, one of the ‘current-selects-next’ techniques is the use of
the first-pair part of an adjacency pair that employs certain addressing practices. First-
pair parts contribute to current speaker’s techniques for selecting next speaker as they
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set constraints on what should be done in a next turn. They, however, do not allocate
by themselves a next turn to any specific participant. Also, addressing someone does not
necessarily imply that the addressed participant is selected to speak next. For example, a
speaker may address his answer to the participant who asked a question without selecting
him to speak next. Therefore, only the use of first-pair parts in combination with addressing
practices leads to the selection of the next speaker (Sacks et al., 1974).

The current-selects-next techniques are workable only in situations when addressing
practices limit eligible responder to a single participant. As previously discussed, the turn-
taking model does not provide for the selection of the next speaker when subgroup and
group addressing practices are employed. Furthermore, utterances directed to a particular
individual can be designed in a way that indicates that some other party is indirectly
targeted. In some cases, indirect targets seem to be the immediate responder and not
the one who was addressed. Thus, when first-pair part is designed in this way, targeted
participants and not the selected one may speak next.

The SSJ turn-taking model has been designed as being context-free but capable of
context-sensitivity. Recipient design, as the most general principle that particularizes con-
versation, is a place where “aspects of situatedness, identities and particularities of con-
tent and context” (Sacks et al., 1974, p.699) can shape ‘current-selects-next’ allocation
techniques. Lerner (2003) described a context-sensitive operation of addressing practices
employed by the current speaker to select the next speaker. Regarding explicit address-
ing, Lerner emphasized context-specific limitations of gaze-directional addressing used in
combination with first-pair parts in the selection of the next speaker (see Section 2.7.2).

However, relations among recipient design, turn-taking and adjacency pairs are best de-
scribed through the accomplishment of tacit addressing and thereby tacit selection of next
speaker. Sometimes an utterance that is designed as a first-pair part can be understood
as being addressed to a single recipient based on the design and content of the utterance
or the circumstances relevant for its production such as identities, situation, course of ac-
tions or sequential position. This form of recipient design tacitly accomplishes addressing
and thereby contributes to the tacit selection of the next speaker. On the other hand,
sequential organization of talk and turn-taking design that locally operate on the current
and next turn can provide circumstances for accomplishing tacit addressing. Lerner (2003)
illustrates this with ‘next-turn repair initiators’ such as “What?” or “Hm?”. These kind
of first-pair parts detect a source of a problem in the prior turn and makes a repair of that
problem relevant for next turn. In locating the problem in the prior turn, ‘next-turn repair
initiators’ address the problem in the production of the prior turn, addressing in this way
the producer of that turn. In these kinds of situations, the turn-taking features such as
‘just prior turn’ and ‘just prior speaker’ provide the context for accomplishing addressing
tacitly (Lerner, 2003).

So far, we have been focused only on the first-pair parts of adjacency pairs and their
contributions to the selection of the next speaker. However, adjacency pairs by themselves
may provide the relevant context for accomplishing tacit addressing. In many cases, the
second-pair parts are addressed to the speaker of the first-pair part: an answer addressed
to the person who asked a question, an acceptance addressed to the person who offered



48 Chapter 2. Addressing in the context of interaction research

to perform an action. However, it does not imply that the speaker of the first-pair part is
always the addressee of the second-pair part. For example, A can address a question to
B whereas B’s reply to A’s question can be addressed to the whole group. In this case,
the speaker of the first-pair part is only one of the incumbents of the addressee role of the
second-pair part. There may also be cases, when the speaker of the first-pair part is not
addressed in the second-pair part, as in the following examples:

< 12 >
John to Ann and Mike: We might want to have the TV remote control

in red.
Ann to John: Yes, that’s a very good idea.

=⇒ Mike to Ann: I don’t agree with you, Ann.

< 13 >
John to Mike: You should prepare a presentation for tomorrow.
Ann to John: with much more details

=⇒ Mike to Ann: I will do that, Ann.

Although Mike’s utterances in both examples are second-pair parts of adjacency pairs
with John’s utterances as first-pair parts, they are both explicitly addressed to Ann. With
his utterance in the first example, Mike is performing two actions across parties: in dis-
agreeing with Ann’s agreement to John’s proposal, Mike is actually disagreeing with John
who is thereby the intended recipient of Mike’s message though not being addressed. The
second example is an example of piggybacking, where Ann’s utterance is built upon John’s
proposal. More precisely, the action that Ann performs with her utterance is an elabora-
tion to John’s proposal directed to the addressee of the proposal - Mike. Though Mike’s
utterance is explicitly addressed to Ann, it is also intended for John as John’s proposal
and Ann’s elaboration can be seen as a collaborative action performed to Mike.

2.10 Participation framework and recipient design in

face-to-face meetings

As presented in Section 2.4, face-to-face meetings and conversations are two forms of
talk-in-interaction that may differ across several dimensions. We have previously described
differences in turn-taking organization and overall structural organization. They are mostly
influenced by the formality of meetings that can vary on the scale from highly formal to
informal. In general, meetings are more tightly structured than ordinary conversations,
with clear purpose of gathering and with a ratified set of participants who may have been
assigned different roles in meetings (Goffman, 1983). In this section, we discuss how the
overall organization of meetings and varieties of tasks in which participants may be involved
during meetings can affect the participation framework and the recipient design.

In meetings, participants may perform various kinds of group activities that are charac-
terized with a single speaking slot of a participant who has been given an exclusive claim to
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the floor for some period of time. Examples include presentations, demonstrations, opening
or closing a meeting. These kinds of meeting activities have some properties of those social
arrangements that Goffman (1981a) called podium events or stage events. Podium events
such as a platform monologue or a play are performed by orators or actors. Opposite to
a speaker in conversation who has fellow conversationalists, actors and orators have an
audience.

An audience hears a talk in a different way than conversationalists in conversations, in
which organization of talk is performed on turn-by-turn bases. The role of the audience
is to examine and appreciate the talk, not to reply in any direct way. Their contributions
to the talk in progress are mostly limited to verbal and non-verbal feedbacks. However, in
some cases, the audience or some audience members may get the floor (Goffman, 1981a).
In some less formal meetings, a presenter may ask the audience member(s) a question and
similarly, the audience members may interrupt the presenter by asking him a question.

In a similar way, the talk for conversationalists in conversation is designed differently
than for the audience of stage events. Regarding, for example, presentations in meetings, a
presenter shows a different kind of addressing behavior than a speaker during a discussion:
regardless of the fact that a presenter has turned his back to a participant in the audience
during a presentation, he is most probably addressing his speech to the whole audience
including that participant, whereas the same behavior during a discussion, in many situa-
tions, indicates that that participant is unaddressed. Similarly, the relevance of the gaze
as an aspect of addressing behavior is influenced by the meeting activity currently being
performed. For example, when giving a presentation, a presenter may only look at a single
participant in the audience although addressing everyone present.

Examining further the notion of audience, Goffman (1981a) distinguished the audience
that hears the talk on TV or radio from the live audience i.e. live witnesses. Live witnesses
are considered as addressed co-participants, not addressed conversationalists. Radio or TV
talk is usually not addressed to the audience, who is considered as overhearer, but to some
imagined recipients according to whom the speaker styles his talk. There are also cases
where two or more actors are on the stage preforming speech by addressing each other
(e.g. a play). A live audience in these situations is considered as overhearer. In meetings,
the live audience consisting of ratified participants is addressed. However, there may be
some unofficial participants present in the meeting environment who overhear the talk (e.g.
technical support staff).

In addition to podium events, meetings are also characterized by activities that resem-
ble an ordinary conversation such as brainstorming discussions, problem solving, decision
making, or negotiations. The participation framework and the recipient design for these
types of activities are similar to those of conversations.

At any point in meetings, participants may also be engaged in some sort of tasks such as
finding the folder that contains presentation slides of the following presenter or distributing
hand notes among participants. Words spoken in these occasions are an integrated part of
the activity in progress. Verbal directives are usually answered with non-verbal activities
and non-verbal activities are often answered with verbal responses; an utterance is hardly
context of another utterance (Goffman, 1981a). In the following example, A is trying to
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find a folder that contains B’s presentation slides; the organization of a folder is projected
on the projector screen; B is located in front of the projector screen; C and D are sitting
and looking at the screen:

< 14 >
1 B to A: Go to the folder AMI-Meeting.
2 A: (opening the folder AMI-Meeting)
3 C to A: Okay. And now the folder Presenter1.
4 A: (dragging the mouse over the folder Presenter2)
5 D to A: a bit up
6 A: (opening the folder Presenter1)
7 B to A,C,D: Here it is finally.

This example shows that the coordinated task, not conversation, is the relevant context
of words. As such, it is employed for accomplishing tacit addressing.

In summary, “the notion of a conversational encounter does not suffice in dealing with
the context in which words are spoken; a social occasion involving a podium event or no
speech event at all may be involved, and in any case, the whole social situation, the whole
surround, must always be considered”. (Goffman, 1981a, p.144)

As discussed in Section 2.6.3, Levinson (1987) criticized Goffman’s approach in defining
the basic categories of participation as applicable only to ordinary conversation and intro-
ducing other kinds of participation roles such as actor and audience for podium events. He
explains this with Goffman’s failure to make distinction between application of the basic
categories at the level of utterance event and at the level of speech event. We agree to
Levinson’s criticism regarding the assignment of participation roles to moves performed
while speaking. However, we believe that Goffman’s distinction between the audience of
podium events in meetings and conversationalists in conversation-like meeting activities
is important from the aspect of recipient design and thus for manual (see Chapter 3) as
well as automatic (see Chapter 5) assignments of participation categories to interactional
moves.

2.11 Participation in conversation from conversational

analysis and small group research perspectives

Conversation is characterized as (a) rule governed and (b) a venue in which participants
are differentiated in how they act and they are acted toward (Gibson, 2003). The rule
governed aspect of conversation is presented in previous sections regarding the operation
of sequential rules that limit who can speak, what they can say and whom they can
address in the next turn. However, not all participants in conversation are dealt with in
the same way in terms of opportunities to speak and to be addressed. These two features
of conversation, are “in tension, and the tension is the greatest at the structural level of
participation” (Gibson, 2003, p.1336).

Two traditions in interaction research, conversational analysis (CA) and small group
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research (SGR), have addressed these two aspects of conversation separately. On the one
hand, conversational analysts have explored rules that organize conversational interaction
and ensure a basic level ordering (e.g. turn-taking and sequence organization). Regarding
the concept of participation, conversational analysis contributed to the understanding of
how talk is organized across parties. The basic object of their study is the structure of
interaction per se. On the other hand, small group researchers are mainly focused on the
functioning and structure of small groups. They exploit the quantitative patterns - for
example, how frequent participants speak and are addressed over some period of time -
in order to gain insights into matters such as differentiation of roles, leadership or group
dynamics (Bales, 1950; Shaw, 1981; Hollander, 1985). In SGR tradition, interaction is
examined as a carrier of other social phenomena.

2.11.1 P-shifts - bridging a gap between CA and SGR

Gibson (2003) proposed a framework for the analysis of interaction sequences that cap-
tures both aspects of conversations: operations of conversational rules and conversational
differentiation of participants. The framework is based on the concept of participation
shift (P-shift), that refers to “the moment-by-moment shuffling of individuals between
participation statuses” of speaker, target and unaddressed recipients” (p. 1335). In other
words, it represents moment-by-moment reshuffling of the participation framework. A
complete list of P-shifts, as described in (Gibson, 2003), is given in Table 2.3. The notion
of target in Gibson’s terminology refers to the notion of addressee in our categorization
system. However, Gibson does not clarify whether the notion of group addressing includes
any number of participants or whether it refers only to the group as a whole.

As shown in Table 2.3, Gibson (2003) classify P-shifts according to the way in which
the second speaker (speaker2) acquires his turn:

• turn receiving - a person takes the turn after being addressed

• turn claiming - a person takes the turn after someone else addressed the group

• turn usurping - a person takes the turn after someone else has been addressed

• turn continuing - a person who has the floor changes the addressee of his speech.

P-shifts reflect any change in the position of speaker or addressee and in line with that
in the position of unaddressed participant. Moreover, they are distinguished by the precise
transformation of the participation framework that each of them reflects. Furthermore,
P-shifts reflect not only the actions of taking, giving and losing the turn, but also different
types of actions people do in speaking and addressing and things that are done to them
(Gibson, 2003, p.1343). For example, AB-BA is the structural form of adjacency pairs in
which the addressee of the second part is the speaker of the first part and AB-XB is the
structural form of piggybacking. However, most of P-shifts are empirically unexplored in
terms of interactional patterns that each of them govern.
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P-shift Example

Turn receiving

AB-BA John talks to Mary, then Mary replies
AB-B0 John talks to Mary, then Mary addresses the group
AB-BY John talks to Mary, then Mary addresses Irene

Turn claiming

A0-X0 John talks to the group, then Frank talks to the group
A0-XA John talks to the group, then Frank talks to John
A0-XY John talks to the group, then Frank talks to Irene

Turn usurping

AB-X0 John talks to Mary, then Frank talks to the group
AB-XA John talks to Mary, then Frank talks to John
AB-XB John talks to Mary, then Frank addresses Mary
AB-XY John talks to Mary, then Frank addresses Irene

Turn continuing

A0-AY John talks to the group, then John addresses Mary
AB-A0 John talks to Mary, then John makes a remark to the group
AB-AY John talks to Mary then to Irene

The initial speaker is always labelled A, the initial target B, unless the group is addressed (or target

was ambiguous), in which case the target is labelled 0. A shift has the form [speaker1][target1]-

[speaker2][target2] with A and B appearing after the hyphen only if initial speaker or target serves

in one of these position after the shift. When the speaker after the shift is someone other than A

or B, then X is used. When the target after the shift is someone other than A, B or group, Y is

used

Table 2.3: P-shifts - Gibson (2003)
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Gibson (2003) also discussed how participants can be differentiated in terms of their
quantitative involvement in particular P-shifts - P-shift roles. A person’s P-shift involve-
ment can be summarized as a P-shift profile that has the form of a vector of conditional
probabilities that particular P-shift will be completed upon its first part, when the in-
dividual in question appears as speaker or target at least once in P-shift. For example,
P (BA|AiB) represents conditional probability that person i after having addressed some-
one will be immediately addressed by that person. The index i is used to denote the
individual in question. For each P-shift, there are several possibilities for an individual to
be involved in it. These possibilities are referred to as P-slots. For example, AB-XA has
three P-slots: AiB-XA, ABi-XA and AB-XiA where the index i is used to denote the first
occurrence of the individual in the P-shift. Having defined P-shift profiles for each partic-
ipant, P-shift roles can be identified inductively by determining how people are typically
differentiated from one another in their P-shift profiles. Applying some clustering algo-
rithms leads to the identification of similar P-shift profiles, and thus P-shift roles, along a
set of relevant dimensions. As conversational differentiation is not an object of our study,
we will not elaborate further on it.

The P-shift framework is a powerful means for analyzing conversational sequences. It
provides better insight into the structure of conversation comparing to models for exam-
ining sequences of speaking turns in group discussions (Parker, 1988; Stasser and Taylor,
1991). To make it as a more powerful tool for exploring conversational structure, the
framework can be extended to capture not only changes in the participation framework
but also changes in types of moves the speaker is performing towards the addressees. As
Goffman (1981e) noted, the classification of moves performed in speaking provides us with
an opportunity to unfold the structure of interaction that is represented as sequences of
moves. Gibson (2003) also emphasized that coding of actions might be useful to advance
the understanding of what precisely P-shifts are used to do. However, using a complete set
of categories that can be employed to classify moves, such as speech act types, increases the
number of P-shifts considerably. Within a turn, a speaker may also perform several moves
of the same or different types without changing the participation framework. Moreover,
with a move, a speaker may perform different types of doings and thereby have several
categories assigned to it. Therefore, the future work on the P-shift framework may include
a formalization of the changes in the type of actions participants are performing with their
talk and its incorporation in the defined P-shifts.

2.12 Summary

This chapter discusses the concept of participation in conversational interaction taking
place in a face-to-face setting. Since a great amount of research into conversational orga-
nization is based on the two-party model, the concept of participation has been somehow
put aside, although many researchers were aware of its importance.

Starting from Goffman’s theory of the participation framework which provides a gen-
eral but incomplete insight into the concept of participation in multi-party conversation,
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we tried to go a step further by (1) refining Goffman’s categorization system based on the
method proposed in (Levinson, 1987), (2) providing a more detailed and more operational
definition of the notion of addressee, (3) providing a better understanding of how address-
ing actually works, that is, which addressing mechanisms speakers employed in order to
designate which participants are to take the addressee role and how these mechanisms are
sensitive to context. We also discussed relations among addressing practices, turn-taking
design and adjacency pairs organization. As the main domain of our study on address-
ing behavior presented in this thesis is face-to-face meetings, we described the influence
of the meeting context on all relevant aspects of participation introduced for face-to-face
conversation.

The operational definition of addressee, the identified aspects of addressing behavior
used for accomplishing not only explicit but also tacit addressing in face-to-face meetings
and identified relations between addressing on the one hand and turn-taking and adjacency
pairs on the other hand are the outcomes of the analysis presented in this chapter that are of
particular importance for our research on addressee identification in face-to-face meetings
presented in the following chapters. They are utilized for the design of addressee annota-
tion schemas employed in the creation of the M4 and AMI meeting corpora (Chapter 3).
The findings are also exploited for motivating the selection of the features for automatic
addressee identification (Chapter 5).



Chapter 3

The M4 and AMI meeting corpora

Our study on modeling addressing behavior in multi-party interaction is based on
two multi-modal meeting corpora collected in the research programs of the M4 and AMI
projects.

The AMI meeting corpus was developed to support multi-disciplinary research in the
AMI project (Carletta et al., 2005a). Addressing is just one of a range of research topics
covered in the context of AMI. As addressee annotation as well as annotation of phenomena
relevant to addressing are time-consuming and expensive tasks, only a small part of the
large AMI data collection has been annotated with addressee information. Since that
part of the AMI corpus has recently become available for our research on addressing, we
previously developed a small multi-modal corpus of hand-annotated meetings collected
mostly in the context of the M4 project - the M4 corpus. The choice for using the M4
meetings, although they are short and scripted, was influenced by the fact that the meeting
corpora available at that moment - ICSI (Janin et al., 2004) and ISL (Burger and Sloane,
2004) corpora - were based on audio data only.

The M4 and AMI meeting corpora were created using the NITE XML Toolkit (NXT),
an open source library that supports the creation and analysis of highly structured multi-
modal language corpora (Carletta et al., 2005b). This chapter starts with a brief description
of NXT (Section 3.1). To make annotated data credible for obtaining valid research results,
it is important to measure reliability of annotation schemas. Theoretical considerations on
how to assess reliability of annotation schemas are presented in Section 3.2.

The design of the M4 annotation schemas was motivated by analysis of the addressing
practices presented in Chapter 2. Although various aspects of addressing practices have
been identified, the M4 scheme contains only annotations of dialogue acts, adjacency pairs,
addressees, gaze direction and meeting actions. The M4 corpus is described in detail
in Section 3.3. Apart from the corpus description which includes the description of the
meeting data and annotation scheme, we also report the reliability of the overall annotation
scheme.

The AMI corpus was developed to enhance research in various areas including speech
recognition, computer vision, discourse and dialogue modeling, content abstraction, human-
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human and human-computer interaction modeling. It contains a range of annotations in-
cluding, among others, speech transcription, dialogue acts, addressee, topic segmentation,
focus of attention, individual actions and summaries. The AMI corpus is presented in
Section 3.4. After providing a short overview of the entire AMI corpus, we focus only on
the description of the parts of the AMI corpus that have been employed for our research
on automatic addressee classification in meetings. This also includes detailed depictions of
those schemas that were used for annotation of the features employed in our classification
models that will be presented in Chapter 5. In addition, we overview the reliability analysis
of the presented schemas. A comparison between the AMI and M4 corpora is presented in
Section 3.5.

3.1 NXT

NXT is an open source software implemented in Java that provides library support for
the creation, display and analysis of highly structured and cross-annotated multi-modal
language corpora.

NXT supports the representation of (1) time-aligned annotated data, such as words or
gaze elements, directly related to signals and (2) hierarchically structured annotated data
organized using different types of relationships. Annotated data can be organized into
hierarchies by structural dominance, that is, using the parent-child relationship or into more
complex structures using pointers with specified roles (Carletta et al., 2005b). In the latter
case, annotations may point not only to other annotations but also to entities that specify,
for example, entries in a dialogue act type ontology or objects in the meeting room at
which participants can look. These entities are also modelled in NXT. Furthermore, NXT
provides for intersections of hierarchies as an element can have as parents elements from
several distinct hierarchies. For example, words that make up an orthographic transcription
may have as parents both dialogue act and named entity elements. Annotations that are
built on top of other annotations may have an implicit timing information that is derived
from time-aligned annotations on which they are based. Timing information is coherent
across the data set.

NXT stores data in a stand-off XML data format which is represented as a set of inter-
related XML files. The structures and the locations of the files as well as the relationships
between them are specified in a “metadata” file. The metadata file, which formally de-
scribes a corpus, is based on the NXT Data Set Model. For the detail description of the
data model, we refer to (Carletta et al., 2005b).

To gain an insight into the way a corpus is specified according to the model and the
way data are stored in NXT, we provide in Figure 3.1 an illustration of a segment of the
metadata file that describes the M4 corpus as well as some segments of the corresponding
XML files in which data are stored1. The metadata file presented in Figure 3.1 shows that
annotations (“dact” and “word”) are organized into layers (“da-layer” and “word-layer”).

1For clarity and simplicity purposes, we provide a modified version of the original M4 metadata file;
the original metadata file specifies word-layer to point to asr-layer
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Figure 3.1: An example of the M4 corpus



58 Chapter 3. The M4 and AMI meeting corpora

The dialogue act layer is defined as a structural layer in which annotations have children
drawn from the word layer. The word layer, on the other hand, is defined as a time-aligned
layer in which elements have timing information. These two layers contain annotations of
the same type. However, layers may contain annotations drawn from a set of related types
that together cover an observation. For example, a transcribed speech can be covered with
words, vocal sounds (e.g. laughs and coughs) and so on. Annotations layers are further
organized into codings (“dialogue-act” and “word-segmentation”). Although each of the
presented codings consists of a single layer, codings in general may contain sequences of
layers where each layer takes children from the next layer in the sequence ending either
with a layer that does not have children or with a layer that is the top layer of another
coding (Carletta et al., 2003). All layers in a coding are either for a particular agent (agent
coding) or for the interaction as a whole (interaction coding). Both codings described here
are agent codings. For agent codings, there is one coding file per agent. Figure 3.1 shows
the dialogue-act and word-segmentation codings for agent “p2”. Furthermore, codings for
each observation - each meeting in our case - are stored in separate files. The example
presented in Figure 3.1 is an excerpt from the meeting named “m4-7”. It is to be noted
that the dialogue act ontology as a corpus resource is stored in a separate XML file that can
be referenced from codings (“da-types.xml”). The links between files are specified using
XLink syntax.

This kind of representation has a number of advantages that are listed in (Carletta
et al., 2003, 2005b). One of the advantages of using NXT storage format is that it enables
data to be further processed and analyzed using a query language integrated in NXT -
NXT Query Language (NQL)(Evert and Voormann, 2002; Carletta et al., 2005b). NXT
provides a query library - NXT Search - that is used to evaluate queries expressed in NQL.
The results are returned as list structures that can be further processed. Furthermore,
query results can be saved in an XML format as well as in the Excel spreadsheet format.
The query library also provides a graphical user interface, NXT Search GUI, that enables
search over a corpus stored in the NXT format.

The AMI and M4 meeting corpora were created using a set of distinct annotation tools,
some of which were developed using NXT2 (Reidsma et al., 2005). Remaining tools store
data in different formats. Annotations produced using these tools were translated in the
NXT stand-off XML format.

3.2 Reliability

Krippendorff (1980) proposed three tests for assessing reliability of annotated data:
stability (intra-annotator reliability), reproducibility (inter-annotator reliability) and ac-
curacy.

Stability is the degree to which an annotator’s judgments remain unchanged over time.
It is measured by giving the same annotator a set of data to annotate twice, at different
times. Reproducibility is the degree to which different annotators can produce the same

2tools are freely available as a part of NXT
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annotation. It is measured by giving several annotators the same data to annotate in-
dependently, following the same coding instructions. Accuracy is the degree to which an
annotator’s judgments conforms to a known standard. It is measured by comparing anno-
tations of one coder with what is known to be standard. A standard can be, for example,
the annotation produced by the schema’s designer. Assessing the accuracy against such
a standard, is useful for testing the performances of annotators in the course of training.
However, in many cases the standards against which the accuracy should be established
are not available. Therefore, for obtaining valid research results data on which they are
based should be “at least reproducible, by independent researchers, and at different times,
using the same instructions for coding the same set of data” (Krippendorff, 1980, p.132).

Reliability is a function of agreement achieved among annotators. In the dialogue and
discourse processing community, the Kappa agreement coefficient (κ) has been adopted as
a standard (Cohen, 1960; Carletta, 1996). In recent years, there have been some discus-
sions about the usage of Kappa as an appropriate reliability metric (Krippendorff, 2004b).
Krippendorff’s Alpha (α) has been suggested as a more suitable measure (Krippendorff,
1980).

Kappa and Alpha are chance-corrected agreement coefficients that measure the extent
to which observed agreements among annotators differ from random agreement, that is,
agreement by chance. Both agreement coefficients can be expressed in α’s general form3:

Agreement = 1−
Observed Disagreement

Expected Disagreement
= 1−

Do

De

(3.1)

When Do = 0, Agreement=1; when Do = De Agreement=0. As a result, De is the zero
point of this agreement measure. Furthermore, if the observed disagreement is greater than
the expected disagreement (Do > De), Agreement< 0. Kappa and Alpha differ in a way
the expected disagreement is calculated. For a detailed description on how to calculate α
and κ expected disagreements, we refer to (Krippendorff, 2004b).

To assess the reliability of most of the annotation schemas presented in this thesis, we
applied both agreement coefficients. As the obtained Kappa and Alpha values were nearly
identical, we report only Kappa values. The Alpha coefficient has been used for assessing
the reliability of annotation schemas that take into account partial agreement between
annotators.

For the evaluation of Alpha and Kappa values, the Krippendorff’s (1980) scale has been
adopted as standard in the discourse and dialogue processing community. According to
that scale, any variable with an agreement coefficient below .67 is disregarded as unreliable,
between .67 and .8 allows drawing tentative conclusions and above .80 allows drawing
definite conclusions. However, there are also some less strict scales used for inferring
reliability from agreement measures in various fields (Landis and Koch, 1977; Fleiss, 1981).
According to the cited scales an agreement coefficient below 0.40 denotes poor agreement.
All these scales were proposed with considerable hesitations. From all these, it may be
concluded that there is no single threshold against which agreement values can be measured

3κ’s canonical form is κ = P (A)−P (E)
1−P (E) = Observed Agreement-Expected Agreement

1-Expected Agreement
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in order to estimate reliability of any annotation schema. Krippendorff (2004a, p.242)
claims that “the choice of reliability standards should always be related to the validity
requirements imposed on the research results, specifically to the cost of drawing wrong
conclusions”. Currently, novel approaches to reliability analysis are being examined that
focus more on the analysis of the use of the annotated data than to biasing reliability
estimation to a particular agreement coefficient and inferring data reliability from it. In this
chapter, we present reliability analysis of annotation schemas performed in the traditional
way.

3.3 The M4 corpus

In this section, we present the M4 corpus that was primarily designed for studying
addressing behavior in face-to-face meetings. First, we describe the corpus design where
we present the meetings collection and annotation scheme. Then we present the analysis of
the reproducibility and stability of the annotation scheme. A set of the corpus’ annotations
of the M4 meetings is available as a part of the M4 meeting collection4.

3.3.1 Meeting data

The corpus consists of 12 meetings recorded at the IDIAP smart meeting room (Moore,
2002). The meeting recordings are available through the Media File Server5. The IDIAP
meeting room is equipped with fully synchronized multi-channel audio and video recording
devices (see Figure 3.2). Of the 12 meetings, 10 were recorded within the scope of the
M4 project. In these meetings, participants were gathered together to discuss personal
experiences regarding various issues such as a book, a movie or a trip. The meetings
were scripted as to which actions the participants should undertake, but not as to what
they should say. Although the meetings are inappropriate for research into richer meeting
analysis due to their constrained nature, they allow us to examine observable patterns of
addressing behavior in small group discussions. In addition, one of the AMI pilot meetings
recorded at the IDIAP meeting room is included in our corpus. The last meeting in our
corpus is one of a series of meetings recorded at IDIAP for the exploration of argumentative
structures in meeting dialogues.

There are 23 participants in the corpus. Each meeting consists of 4 participants. The
total amount of recorded data is approximately 75 minutes.

3.3.2 Annotation schemes

The M4 scheme contains annotations of dialogue acts, adjacency pairs, addressees and
gaze direction. We also considered annotation of deictic hand gestures but instances of

4http://mmm.idiap.ch/M4-Corpus/annotations/NXTbasedAnnotation/
5MMM File Server http: //mmm.idiap.ch
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Figure 3.2: The configuration of the IDIAP meeting room (M4 data collection)

this type were found to occur very rarely in the data. Annotations of meeting actions that
were made available to us, were converted into the NXT format and added to the corpus6.

Dialogue acts

Annotation of dialogue acts involves two types of activities: marking of dialogue acts
segment boundaries and marking of dialogue acts themselves.

Utterances within speech transcripts, also known as prosodic utterances, were seg-
mented in advance using prosody, pause and syntactical information. In the M4 scheme,
a dialogue act segment may contain a part of a prosodic utterance, a whole prosodic ut-
terance, or several contiguous prosodic utterances of the same speaker.

The dialogue act tag set employed for the corpus creation, the M4 dialogue act tag set,
is based on the MRDA (Meeting Recorder Dialogue Act) set Dhillon et al. (2004). The
MRDA tag set represents a modification of the SWDB-DAMSL tag set (Jurafsky et al.,
1997) for an application to multi-party meeting dialogues. Each functional utterance in
MRDA is marked with a label, made up of one or more tags from the set. The analysis of
the MRDA tag set presented in (Clark and Popescu-Belis, 2004) shows that the number
of possible labels reaches several millions. For that reason, the usage of the complete set
may lead to a low quality of manual annotations.

Unlike MRDA, each utterance in the M4 annotation scheme is marked as Unlabeled or
with exactly one tag from the tag set that represents the most specific utterance function.

6annotations of meeting actions stored in the ANVIL XML format are available
http://www.idiap.ch/mmm/corpora/m4-corpus/m4 annotations
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For addressee identification, it is less important whether an utterance is a suggestion in
the form of a question or in the form of a statement. More important is that the speaker
suggests to the addressee to perform an action, informing all other participants about that
suggestion.

The M4 dialogue act tag set was created by grouping some of the MRDA tags into 17
categories that are divided into seven groups, as follows:

• Statements

• Statement [MRDA: Statement]

The Statement tag marks utterances that are objective and factual statements
as well as utterances that are opinions and other subjective statements.

• Acknowledgments and Backchannels

• Acknowledgement [MRDA: Acknowledgement, Backchannel]

The Acknowledgment tag is a common tag used for acknowledgments and back-
channels. Acknowledgments are utterances in which a speaker acknowledges
a previous speaker’s utterances or a significant portion of a previous speaker’s
utterance. They are neither positive nor negative. Backchannels have a function
to show that a listener is paying attention. They are made in the background
by a speaker who does not have the floor.

• Assessment/Appreciation [MRDA:Assessment/Appreciation]

The Assessment/Appreciation tag marks utterances that are acknowledgments
directed to another speaker’s previous utterance with slightly more emotional
involvement. They can be positive, such as “that’s great”, “wow!”, “, or nega-
tive, such as “not good enough”, “that’s impossible”.

• Questions

• Information Request [MRDA: Wh-Question, Y/N Question, OR-Question, Or

Clause After Y/N Question]

The Information Request tag marks questions that require specific answers.
Examples include “what kind of preprocessing are you using?” or “but do you
often cook at night?”

• Open-ended Question [MRDA: Open-ended Question ]

The Open-ended Question tag marks questions that do not require a specific
answer; they are asked in a rather broad sense (e.g. “What about you?” or
“anything else?”).

• Rhetorical Question [MRDA: Rhetorical Question ]

The Rhetorical Question tag marks questions that are used for rhetorical effects.
No answer is expected to those questions. Examples include “who knows?” or
“who would have thought that it was possible?”



3.3. The M4 corpus 63

• Responses

• Positive Response [MRDA: (Partial) Accept, Affirmative Answer ]

The Positive Response tag marks utterances that exhibit a (partial) agreement
to or a (partial) acceptance of or an affirmative answer to a previous speaker’s
proposal, statement or question.

• Negative Response [MRDA: (Partial) Reject, Dispreferred Answer, Negative An-

swer ]

The Negative Response tag marks utterances that exhibit a (partial) disagree-
ment to or a (partial) rejection of or an explicit or implicit negative answer to
a previous speaker’s proposal, statement or question.

• Uncertain Response [MRDA: Maybe, No Knowledge ]

The Uncertain Response tag marks utterances that express a lack of a speaker’s
knowledge regarding some subject or that a speaker’s utterance is probable, yet
not definite (e.g. “maybe”, “I am not sure”).

• Action Motivators

• Influencing-listeners-action [MRDA: Command, Suggestion]

The Influencing-listeners-action tag marks utterances that influence the listen-
ers’ communicative or non-communicative future actions such as commands,
suggestions, proposals.

• Committing-speaker-action [MRDA: Command, Suggestion]

The Committing-speaker-action tag marks utterances which indicate that a
speaker has committed himself, in varying degrees of strength, to some future
course of action. The speaker can explicitly commit himself that he will execute
an action at some point in the future, such as “I will prepare a presentation for
the next meeting”, or he can suggest that he will do so if listeners accept it,
such as “I can say something about that”.

• Checks

• Follow Me [MRDA: Follow Me ]

The Follow Me tag marks utterances by which a speaker wants to ensure that
what he is saying has been understood by listeners (e.g. “Do you understand?”,
“okay?”, “this is clear?”).

• Repetition Request [MRDA: Repetition Request ]

The Repetition Request tag marks utterances in which a speaker wants another
speaker to repeat all or a part of a previous utterance. This is mostly the case
when a speaker could not hear or could not interpret what another speaker has
said and wants to hear it again.

• Understanding Check [MRDA: Understanding Check]

The Understanding Check tag marks utterances in which a speaker wants to
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make sure whether he understands what a previous speaker has said or whether
he understands some sort of information. Examples include “you said that
machine learning techniques are applicable?”, “so this part is new, right?”.

• Politeness Mechanisms

• Thanks [MRDA: Thanks]

The Thanks tag marks utterances in which a speaker thanks another speaker(s).

• Apology [MRDA: Apology]

The Apology tag marks utterances in which a speaker apologizes for something
he did (e.g. coughing, interrupting another speaker) or he plans to do (e.g. to
leave meeting earlier, to make a phone call during the meeting).

• Other polite [MRDA: Welcome, Downplayer, Sympathy ]

The Other polite tag marks all other acts of politeness that do not contribute
to the overall discussion but rather have a social impact such as, “you’re wel-
come”,“I’m kidding”,“good luck”, “success”, “you are so nice”.

The MRDA scheme also allows the annotation of turn-taking (e.g. floor grabber) and
turn-maintaining (e.g. floor holder) mechanisms. The turn managing dimension of utter-
ances’ functions is excluded from our scheme. Utterances that function only as turn taking,
turn giving or turn holding signals are marked as Unlabeled. The scheme also excludes
(1) a set of MRDA tags that are related to restating information such as repetitions and
corrections, (2) a set of MRDA tags that are related to rhetorical roles such as explanations
or elaborations and (3) a set of MRDA tags that provide further descriptions of utterance
functions such as self-talk, third party talk, jokes, meeting agendas or topic change.

Adjacency pairs

As discussed in Chapter 2, adjacency pairs are units that consist of paired utterances
such as question-answer or statement-agreement. The paired utterances are produced by
different speakers. Utterances in an adjacency pair are ordered with the first part (A-part,
the initiative) and the second part (B-part, the response). In multi-party conversations,
adjacency pairs do not impose a strict adjacency requirement, since a speaker has more
opportunities to insert utterances between two elements of an adjacency pair.

In the M4 schema, adjacency pairs are labelled at a separate level from dialogue acts.
Labelling of adjacency pairs, as a form of relational labelling, consists of marking dialogue
acts that occur as their A-part (marked as the source) and B-part (marked as the target). If
a dialogue act is an A-part with several B-parts, for each of these B-parts, a new adjacency
pair is created.

Addressees

Addressee annotation in the M4 schema is concerned with distinguishing whether the
whole group, a subgroup of participants or an individual is addressed and in the case of
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subgroup or individual addressing which subgroup or individual it is. The schema specifies
several sources of information that should be taken into account while determining who
is being addressed: (1) content and type of dialogue act performed by the speaker, (2)
conversational situation including, for example, information as to who has been previously
talking, (3) the speaker gaze, postures and gestures and (4) meeting context relating to
types of group activities participants perform in the meeting. Furthermore, when the
speaker is indirectly addressing an individual while talking to another individual or to a
group, the individual the speaker is talking to or the group is marked as the addressee. This
relates to distinction between the target and addressee roles presented in Section 2.6.5.

Given that each meeting in the corpus consists of four participants, the addressee tag
set contains the following values:

• a single participant: Px

• a subgroup of participants: Px,Py

• the whole group: Px,Py,Pz

• Unknown

x, y, z ∈ {0, 1, 2, 3}; Px denotes speaker at the channel x. The Unknown tag is used
when the annotator cannot determine to whom the dialogue act is addressed. It is also
used for utterances marked as Unlabeled.

Gaze direction

Annotation of gaze direction involves two types of activities: labeling the changes in the
gazed targets and labeling the gazed targets themselves. The tag set contains tags that are
linked to each participant (Px) where x ∈ {0, 1, 2, 3} and the NoTarget tag that is used
when the speaker does not look at any of the participants. The annotation schema does
not impose any requirements regarding the precision of marking the changes in the gazed
target.

Meeting actions

For labelling group actions in meetings the following set of meeting actions has been
employed7:

• monologue - one participant speaks continuously without interruption

• discussion - all participants engage in conversations

• presentation - one participant at the front of the room makes a presentation using
the projector screen

• whiteboard - one participant at the front of the room talks and makes notes on the
white-board

7see http://www.m4project.org/publicDelivs/D1-2.pdf
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• consensus - all participants express consensus

• disagreement - all participants express disagreement

• note-taking - all participants write notes

The listed definitions of meeting actions are taken from (McCowan et al., 2003).

3.3.3 Assessment of reliability of the M4 annotation schemas -
an overview

To measure reliability of the annotation schemas, we have performed stability and re-
producibility tests (see Section 3.2). To estimate reliability of dialogue act, addressee and
gaze annotation we applied the Kappa test. In contrast to dialogue act and addressee anno-
tation, adjacency pairs annotation cannot be considered as a simple labeling of annotation
units with categories. Therefore, we developed our own approach that represents anno-
tated APs in a form of categorical labeling and measures agreement on APs annotation
using Alpha.

3.3.4 Inter-annotator reliability

Six trained annotators were involved in the corpus creation. They were divided into
two groups: the DA (Dialogue Act) group and the VL (Video Labeling) group. The DA
group, involving 4 annotators, annotated dialogue acts, addressees and adjacency pairs.
The VL group, involving 2 annotators, annotated gaze direction. The corpus was divided
into two sets of meetings. The DA group was divided into 2 subgroups of 2 annotators:
the B&E group and the M&R group. Each of these subgroups annotated exactly one set
of meeting data. Each annotator in the VL group annotated one set of meeting data.
Additionally, two meetings were annotated by both annotators in the VL group in order to
test reliability of gaze annotation. In summary, each meeting in the corpus was annotated
with dialogue acts, addressees and adjacency pairs by exactly two annotators, and with
participants’ gaze directions by at most two annotators.

Reliability of dialogue acts annotation

We first measured agreements among annotators on how they segmented dialogues into
dialogue act segments. Then, we tested reliability of dialogue act classification on those
segments for which annotators agreed on their boundaries.

Segmentation reliability In the discourse and dialogue community, several ap-
proaches have been proposed for assessing segmentation reliability using various metrics:
percent agreement (Carletta et al., 1997; Shriberg et al., 2004), precision and recall (Pas-
sonneau and Litman, 1997), and κ (Carletta et al., 1997; Hirschberg and Nakatani, 1996).
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Since there is no standardized technique to estimate segmentation agreement, we devel-
oped our own approach based on percent agreement. We defined four types of segmentation
agreement:

• Perfect agreement (PA)- Annotators completely agree on the segment boundaries.

• Contiguous segments of the same type (ST)- A segment of one annotator is
divided into several segments of the same type by the other annotator. Segments are
of the same type if they are marked with the same dialogue act tag and the same
addressee tag. An additional constraint is that segments are not labeled as parts of
adjacency pairs.

• Unlabeled-DA (UDA)-A segment of one annotator is divided into two segments
by the other annotator where one of those segments is marked as Unlabeled and the
other one with a dialogue act tag.

• Conjunction-Floor(CF)- Two adjacent segments differ only in a conjunction or a
floor mechanism at the end of the first segment. The following example shows the
segmentation agreement of this type:

1. I can do that—but I need your help

2. I can do that but— I need your help

The approach takes one annotator’s segmentation as a reference (R) and compares it
with the other annotator’s segmentation (C) segment by segment. As a result, it gives
a new segmentation (C ′) that represents the modification of (C) to match the reference
segmentation (R) according to identified types of agreement. In addition to measuring
segmentation agreement, the modified segmentation (C ′) is used for assessing reliability of
dialogue act classification, addressee classification and adjacency pairs annotation. Table
3.1 shows overall segmentation results for each annotation group.

Agreement types

R-C PA ST UDA CFM Agree Total Agree %

B-E 326 22 16 2 366 406 90.15
E-B 326 32 17 2 377 411 91.73
M-R 317 29 10 2 358 419 85.44
R-M 317 33 15 2 367 426 86.14

Table 3.1: Segmentation agreement (R-C pair: Reference annotator (R)-Comparison an-
notator (C))

Most of the segmentation disagreements are of the following three types. First, while
one annotator labeled a segment with the Acknowledgment tag, the other one included the
segment in the dialogue act that follows. Second, while one annotator marked a segment
with one of the response tags, the other annotator split the segment into a response and a
statement that has a supportive function such as explanation, elaboration or clarification.
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Third, while one annotator split a segment into two or more segments labeled with the
same dialogue act tag but different addressee tags, the other annotator marked it as one
segment.

Reliability of dialogue act classification Reliability of dialogue act classification
is measured over those dialogue act segments for which both annotators agreed on their
boundaries. Since the number of agreed segments for each R-C pair is different, we calcu-
lated reliability of dialogue act classification for each pair. The results are shown in Table
3.2. According to Krippendorff’s scale annotators in each DA group reached an acceptable
level of agreement.

Group R-C pair N κ

M&R
M-R 358 0.70
R-M 367 0.70

B&E
B-E 366 0.75
E-B 377 0.77

Table 3.2: Inter-annotator agreement on DA classification

We applied a single-category reliability test for each dialogue act tag to assess the
extent to which one dialogue tag was confused with the other tags in the set (Krippendorff,
1980). Single-category reliability was measured by grouping the remaining categories into
one category and measuring the agreement among annotators regarding the assignment of
units to these two categories. Table 3.3 shows the results of performing single-category
tests for only one R-C pair in each DA group.

Annotators in the B&E group used different ranges of categories. For that reason,
Kappa values of the categories that are used by only one annotator are zero. Negative
Kappa values for Understanding Check and Follow me categories indicate that annota-
tor agreement is below chance: in all cases where one annotator identifies one of these
two categories, the other annotator does not. The results show a very low agreement on
Assessment/Appreciation and Understanding Check categories in both groups. The Assess-
ment/Appreciation category was mainly confused with Positive Response and Statement
categories. The Understanding Check category was mostly confused with Information Re-
quest and Statement categories. Annotators in the M&R group reached a lower agreement
on the responses tags than annotators in the B&E group. The responses tags were mostly
confused with the Statement tag. Additionally, annotators in the M&R group had a little
more difficulty distinguishing Positive Response from Assessment/Appreciation and Ac-
knowledgment. The low Kappa value for the Influencing-listener-actions category in the
B&R group is a result of the confusion with the Statement category.

Reliability of addressee annotation

As for dialogue act classification, reliability of addressee annotation is measured over
those dialogue act segments for which both annotators agreed on their boundaries. The
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Category B-E M-R

Statement 0.82 0.72
Acknowledgment 0.87 0.75
Assessment/Appreciation 0.32 0.39
Information Request 0.70 0.84
Open-ended Question 0.74 0.84
Repetition Request 1.00 1.00
Rhetorical questions 0.00 0.66
Influencing-listeners-action 0.58 0.70
Committing-speaker-action 0.86 0.74
Positive Response 0.70 0.52
Uncertain Response 0.80 0.50
Negative Response 0.67 0.61
Understanding Check 0.32 -0.01
Other polite 0.00 -
Thanks 1.00 1.00
Follow me - -0.003

Table 3.3: Single-category reliability for DA tags (Kappa values)

Kappa values for addressee annotation are shown in Table 3.4.

Group R-C pair N κ

M&R
M-R 358 0.68
R-M 367 0.70

B&E
B-E 366 0.79
E-B 377 0.81

Table 3.4: Inter-annotator agreement on addressee annotation

The results show that annotators in the B&E group reached good agreement on ad-
dressee annotation, whereas annotators in the M&R group reached an acceptable level of
agreement.

Annotators mainly disagreed on whether an individual or a group had been addressed.
When annotators agreed that an individual had been addressed, they agreed in almost all
cases which individual it had been. There were only a few instances in the data labeled
with categories that represent subgroup addressing. In both DA groups, annotators failed
to agree on those categories. Annotators had problems distinguishing subgroup addressing
from addressing the group as a whole.

Reliability of adjacency pairs annotation

According to the M4 scheme for annotation of adjacency pairs, each dialogue act can be
marked as a B-part of at most one and as an A-part of an arbitrary number of adjacency
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pairs. The sets of adjacency pairs produced by two annotators may differ in several ways.
First, the annotators may disagree on dialogue acts that are marked as A-parts of adjacency
pairs. Second, they may assign a different number of B-parts as well as different B-parts
themselves to the same A-part.

Since there seems to be no standard associated metric for agreement on APs annotation
in the literature, we developed a new approach that resembles a method for measuring
reliability of co-reference annotation proposed in (Passonneau, 2004). The key of the
approach is to represent annotated data as a form of categorical labeling in order to apply
standard reliability metrics.

Adjacency pairs annotation can be seen as assigning to each dialogue act a context that
represents the relations that the dialogue act has with surrounding dialogue acts. To encode
the contexts of dialogue acts, we define a set of classes that contain related dialogue acts.
For each A-part, all its B-parts are collected in one class. Therefore, a class is characterized
with its A-part and a set of B-parts (b-set): 〈a, bset(a)〉 where bset(a) = {b|(a, b) ∈ AP}.
A dialogue act can belong to at most two classes: a class containing the dialogue act as an
A-part (A-class) and a class containing the dialogue act as a B-part (B-class). Thus, the
complete context of a dialogue act is encoded with an AP label (L) that is compounded of
its A-class and B-class (L = A− class|B − class).

Given a list of dialogue acts DA = [da1, . . . , dan], a class can be represented in two
different ways: with fixed or relative position of the dialogue acts. The former encodes
each dialog act in the class with the index of the dialog acts in the list. The latter encodes
the dialogue acts in the class with relative positions to the dialogue act representing the
A-part of the class. In this paper, we use the approach with relative positions because it
significantly decreases the number of possible classes. In our encoding, each class of the
labeled dialogue act dai (A-class and B-class) has the form 〈−n,O〉, where n is an offset
of the labeled DA dai from the A-part of the class and O is a set of offsets of the dialogue
acts in the b-set from the A-part of the class. Note that for the A-class, n is always 0 since
the labeled dialogue act is the A-part of the class. For the B-class, n is always positive
because the labeled dialogue act is in the b-set and the A-part always precedes dialogue
acts in the b-set. Thus, −n refers to the dialogue act that is the A-part of the class. In
the case where the labeled dialogue act is not an A-part or a B-part of an adjacency pair,
one or both of the A-class and the B-class can be empty (〈0, {}〉).

43 47464544

Figure 3.3: A graphical representation of the context of dialogue act 45. The label that
encodes this context is 〈0, {2}〉 | 〈−2, {1, 2}〉

The proposed encoding makes patterns of disagreements between annotators directly
visible. For example, (1) if one annotator marks the dialogue act 43 as an A-part of two
adjacency pairs with B-parts 44 and 45 respectively, and the dialogue act 45 as an A-part
of an adjacency pair with the B-part 47, and (2) the other annotator marks the dialogue
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act 44 as an A-part of an adjacency pair with the B-part 45 and the dialogue act 45 as an
A-part of two adjacency pairs with B-parts 46 and 47 respectively, then the dialogue acts
will be labeled as presented in Table 3.5. Figure 3.3 illustrates the relation between the
context of the dialogue act 45 and the AP label that encodes this context.

DA C1 C2 C1(1) C2(1)

43 1a2a 〈0, {1, 2}〉|〈0, {}〉 〈0, {}〉|〈0, {}〉
44 1b 1a 〈0, {}〉|〈−1, {1, 2}〉 〈0, {1}〉|〈0, {}〉
45 3a2b 2a3a1b 〈0, {2}〉|〈−2, {1, 2}〉 〈0, {1, 2}〉|〈−1, {1}〉
46 2b 〈0, {}〉|〈0, {}〉 〈0, {}〉|〈−1, {1, 2}〉
47 3b 3b 〈0, {}〉|〈−2, {2}〉 〈0, {}〉|〈−2, {1, 2}〉

Table 3.5: An example of adjacency pairs annotation (C1 and C2: original AP annotations;
C1(1) and C2(1): AP labels)

Agreement on APs annotation is measured over those dialogue acts for which anno-
tators agreed on their boundaries. For computing agreement between annotators we use
Krippendorff’s α measure. This measure allows the usage of an appropriate user defined
distance metric on the AP labels. For nominal categories, the usual α distance metric (δ)
is a binary function: δ = 0 if categories are equal, otherwise δ = 1. We need to use a
more refined distance metric, one that is sensitive for partial agreement of annotators on
the context they assign to a dialogue act. The agreement on the contexts is translated to
agreements on the corresponding A-classes and B-classes. When annotators disagree, their
disagreement should be penalized based on the difference between classes.

The intuition is that similarity of two classes with the same A-part depends on the
number of elements in the intersection as well as on the number of elements in the union
of their b-sets. Therefore, we define a distance metric δ′ that uses the following similarity
measure on sets 8:

sim(c1, c2) =
2|c1 ∩ c2|

|c1|+ |c2|
(3.2)

The distance metric (δ′) between the corresponding A-classes (or B-classes) of two APs
label is defined as:

δ′(〈−n1, O1〉, 〈−n2, O2〉) = 1, n1 6= n2 (3.3)

δ′(〈−n,O1〉, 〈−n,O2〉) = 1− sim(O1, O2) (3.4)

The distance between two AP labels, L2 = A1|B1 and L2 = A2|B2, is defined as:

δλ(L1, L2) = λ · δ′(A1, A2) + (1− λ)δ′(B1, B2), (3.5)

where λ ∈ [0, 1] is a factor that determines the relative contribution of the distance between
the corresponding classes the labels consist of.

8The defined similarity measure is known as Dice coefficient Manning and Schutze (1999)
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Applying δ0.5 to the data of exactly one R-C pair in each group gave the following
results: M-R: α = 0.71 (N = 260), B-E: α = 0.83 (N = 322). The most frequently
occurring disagreement is when one annotator marks a dialogue act with the empty label,
the other annotator marks with a non-empty one. If annotators agreed that a dialogue act
is an A-part of an adjacency pair, they mostly agreed, either partially or fully, on the B-set
of this dialogue act. In most cases, the confusion between (1) an AP label with both A-class
and B-class non-empty and (2) an AP label with one of the classes empty is related to the
disagreement on the DA tags assigned by annotators. This concerns the confusion between
(i)Statement and Assessment/Appreciation tags, (ii) Statement and Response tags and
(iii) Understanding Check and Information Request tags.

Reliability of gaze annotation

To evaluate reliability of gaze annotation, we first measured annotators agreement on
marking the changes in gazed targets. Then, we measured agreement on labeling of time
segments with gazed targets.

The segmentation agreement is measured over all locations where any of the annotators
marked a segment boundary. The number of locations where both annotators agree to some
tolerance level is averaged over the total number of locations marked as a boundary. A
tolerance level is defined to adjust the difference in whether a change is marked at the
moment when the speaker starts changing the gaze direction or at the moment when the
new target has been reached. It also adjusts the difference in the reaction of the annotators
to the observed changes. Empirical analysis of the data shows that two points of the time-
line can be considered equal with a tolerance level of 0.85 s.

The agreement on locations where any coder marked a segment boundary is 80.40%
(N = 939). Annotators mostly disagreed on marking the cases when a participant briefly
changes the gaze direction and then looks again at the previous target. Annotators reached
very good agreement on gaze labelling (κ = 0.95) measured over those segments where
boundaries were agreed.

3.3.5 Intra-annotator reliability

Intra-annotator reliability measures whether the results of a single annotator remain
consistent over time. We assessed intra-annotator reliability of dialogue act and addressee
annotation. One meeting from each data subset has been annotated twice by each anno-
tator in the DA group over a period of three months. The results presented in Table 3.6
show that agreement on dialogue act annotation was good for each annotator indicating
intra-annotator consistency in applying the dialogue act scheme. Furthermore, the results
show that annotator R had a little more difficulty with addressee annotation than other
annotators who reached good agreement.
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Coder Total Agree Segmentation DA(κ) ADD(κ)

E 110 104 94.54 % 0.83 0.88
B 107 104 97.20 % 0.89 0.81
M 73 64 87.67 % 0.81 0.87
R 77 72 93.51 % 0.85 0.76

Table 3.6: Intra-annotator agreement

3.4 The AMI corpus

The AMI meeting corpus is a multi-modal corpus consisting of 100 hours of meeting
recordings. For a detail description of the corpus, we refer to (Carletta et al., 2005a). A
large proportion of the AMI data collection contains scenario-driven meetings involving
design teams focused on the development of a remote control prototype. The corpus also
contains natural meetings collected mostly for validation and generalization of findings
from the elicited data. To facilitate research in a wide range of research communities, the
AMI meetings were annotated for many different phenomena including speech transcrip-
tion, dialogue acts, addressee, topics, named entities, summaries, argumentation, emotions,
individual actions and focus of attention.

As previously discussed, only a small part of the AMI scenario-based data was annotated
with addressee information. In this section, we, therefore, describe the AMI scenario-based
collection. Then, we give an overview of those annotation schemas that had been used
for annotation of phenomena employed as features in our addressee classification models.
Finally, we report results on reliability analysis of those annotation schemas.

3.4.1 Meeting data - scenario-based collection

The AMI meetings were recorded in three meeting rooms constructed at different
project sites: IDIAP, the University of Edinburgh, the TNO institute. The rooms are
relatively similar but differ in shape, construction and configuration of recording equip-
ment (see Carletta et al., 2005a). The data were captured using a wide range of fully
synchronized multi-modal recording devices including close-up and room view cameras,
close-talking and far-field microphones, and instruments that capture data presented in
meetings such as slides, the whiteboard content and individual note-taking. The rooms
were also equipped with artifacts such as laptops or remote control prototypes.

According to the AMI meeting scenario (Post et al., 2004), meeting participants, who
play roles of employees in an electronic company, constitute a design team responsible for
the development of a new remote control prototype. They are assigned to roles of project
manager (PM), industrial designer (ID), user interface designer (UI) and marketing expert
(ME) with different types and degrees of responsibility regarding the design project as
a whole. A design process is carried out through a series of four meetings each of which
representing one phase in the design process: project kick-off, functional design, conceptual
design and detailed design. Meetings are on average approximately 30 minutes long; each
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meeting consists of 4 participants.

3.4.2 Annotation schemas

This section overviews several AMI annotations schemas that are employed for anno-
tating phenomena relevant to addressing: dialogue acts, addressee, named entities, topics
and focus of attention. All these schemas are available at the AMI Meeting Corpus public
release website9. The AMI individual action schema specifies annotation of hand and head
deictic gestures. Empirical analysis of the data have shown that these types of gestures oc-
cur very rarely in the data. Moreover, annotation of hand gestures for most of the meetings
annotated with addressee information are not yet available.

Dialogue acts and addressees

Segmentation Transcribed speech is segmented into dialogue act segments accord-
ing to the speaker’s intention. If within a turn the speaker performs, for example, two
subsequent questions each question denotes different intentions and therefore is marked as
a separate segment. Similarly, if during a speech, a change in addressee occurs the speech is
segmented into two segments each of them denoting different intentions. Although collab-
orative dialogue acts - dialogue acts produced by two or more speakers - represent a single
intention, they are split over segments assigned to each speaker. Each of these segments is
marked with the same dialogue act and addressee label.

Dialogue act tag set The AMI dialogue act tag set is a one-dimensional tag set:
each dialogue act segment is marked with exactly one tag from the set. The tags in the
AMI schema are grouped into several classes as follows:

• Special classes to allow complete segmentation - the AMI schema imposes
that the transcription is completely segmented. However, not everything present in
the transcript conveys speakers’ intention, that is, not everything is considered as a
dialogue act. The segments that do not convey speaker intention are labelled with
one of the following tags:

• Backchannel - marks utterances produced in the background by someone who
has just been listening to a speaker, expressing merely that the listener is fol-
lowing the conversation.

• Stall - this tag pertains to mechanisms of grabbing or maintaining the floor.
Stalls are also used to mark valid starts to what the speaker actually wants to
say (“That is — that is really unacceptable”).

• Fragment - marks those segments that do not convey a speaker intention but
that are neither Stalls nor Backchannels. They include, among other things,

9http://www.idiap.ch/amicorpus/documentations/guidelines-1/
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incomplete contributions that do not convey a speaker’s intentions (e.g “I think
we”).

• Acts about information exchange

• Inform - the Inform act is employed by a speaker to give information.

• Elicit-Inform - marks the speaker’s request for some other participant(s) to
provide some information.

• Acts about possible actions- this group of dialogue acts refers to possible actions
that could be performed by a meeting participant or a group of participants, or some
person or group in the wider environment (e.g marketing team of the company).

• Suggest - marks the speaker’s intention regarding the actions of another indi-
vidual or to the actions a group in the meeting or in the wider environment.

• Offer - marks the speaker’s intention regarding his own actions.

• Elicit-Offer-Or-Suggestion - marks the speaker’s request for someone present
at the meeting or for some person or a group in the wider environment to make
an offer or suggestion.

• Commenting on previous discussion

• Assess - marks any evaluation of something the group is discussing. The evalua-
tion can refer to another dialogue act, to something present in the meeting room
or to some actions performed by members of the group. Assessments include,
among other things, agreement or disagreement with something previously said,
acceptance or rejection of an offer, or any opinion about information provided.

• Comment-About-Understanding - is used for those kinds of comments in
which the speaker indicates that he did or did not understand or hear what a
previous speaker said.

• Elicit-Assessment - marks the speaker attempts to elicit assessments about
something previously discussed or done.

• Elicit-Comment-About-Understanding - marks the speaker attempts to
elicit a comment about whether something that was previously said or done has
been understood.

• Social acts - this group contains acts that do not contribute to the overall discus-
sion but rather have a social impact, that is, have an affect on the interpersonal
relationship in the group.

• Be-Positive - marks those social acts that express positive feelings towards
an individual or the group and in that way improve relationships in the group
itself.
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• Be-Negative - marks those social acts that express negative feelings towards
an individual or the group (e.g. hostile jokes, criticisms).

• Bucket class

• Other - is used to mark all other dialogue acts that cover the speaker intention
but do not fit any other categories in the AMI tag set. They include, among
other things, self-addressed speech.

Relations The AMI schema imposes labelling of the responsive aspects of dialogue
acts. Dialogue acts can be a response to something someone previously has said or done or
to something present in the environment. The responsive aspect of a dialogue act is labelled
by marking a relationship with the dialogue act as its target. The source of the relationship
can be a dialogue act performed by another speaker (e.g. Elicit-Inform - Inform) or by the
same speaker (e.g. when the speaker is assessing his own contribution). When a dialogue
act is related to something that is not expressed verbally or to more than one previous
dialogue act, the source of the relationship is not specified.

In addition to marking the source and the target of a relationship, the schema specifies
labelling of a type of the relationship as Positive, Negative Partial or Uncertain based on
whether the target supports, rejects, partially supports or expresses uncertainty about the
source, respectively.

Reflexivity Dialogue acts in the AMI schema are also distinguished as to whether
they are ‘reflexive’ or not. A dialogue act is marked as reflexive if its content is about how
the group carries out the task. Examples include acts concerned with how to conduct the
meeting (e.g. a suggestion to start a meeting with a presentation) or how to divide the
work (e.g. a suggestion that the user interface designer and the industrial designer should
cooperate).

Addressees The addressee in the AMI schema is labelled for each dialogue act that
is not mark as Backchannel, Stall, Fragment or Other. Addressee annotation is concerned
with distinguishing whether an individual or a group is addressed and in the case when
an individual is addressed which individual it is. The schema does not make a distinction
between addressing a subgroup of participants or addressing the whole group. In both
cases, dialogue acts are marked as addressed to the group. Similarly to the M4 schema,
when a speaker is indirectly addressing an individual while talking to another individual
or to a group, the individual to whom the speaker is talking or the group is marked as the
addressee.

The addressee tag set consists of the following tags:

• Individual: A, B, C, D

• Group - is used when more than one participant is addressed
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• Unclassifiable - is used when annotators cannot determine who is being addressed

Participant’s labels A, B, C and D are related to speech channels in the AMI corpus.

Named Entity

The AMI named entity annotation schema is based on NIST “1999 Named Entity
Recognition Task Definition”10 with some modifications made for the particular needs of
the AMI corpus. It codes entities (people, locations, organizations, artifacts), quantities
(money, measures, percents, numbers), temporal information (dates, times, durations),
materials, shapes and colours. The named entity tags are organized into the following
classes: Enamex, Timex, Numex, Artifact, Colour, Shape, Materials.

Out off all categories, Enamex is the only category employed for the experiments on
addressee identification present in this thesis. It comprises several subcategories that mark
references to named persons or family (Person), name of politically or geographically
defined locations (Location) and organizational entities (Organization). In the AMI
schema, the Person category is further subdivided into the Participant, Experimenter
and Other Person categories. The Participant category consists of four tags that refer to
participant roles in the AMI scenario: Project Manager, Interface Specialist, Mar-
keting and Industrial Designer. The Experimenter category marks references to anyone
in the research team who gives instructions to the participants or sets up recording devices.
Any other person referred to by participants is marked with the Other Person category.
Regarding the Person category, not only proper names, but also other types of designators
to individuals are annotated. For example, in the scenario meetings all occurrences of
scenario roles are marked with the corresponding Participant category.

Topic annotation for scenario-based meetings

The AMI topic annotation schema specifies segmentation of meetings into coherent
topic segments as well as labeling of those segments with a proper topic description.

Topic segments in the AMI schema can be nested: a topic may contain subtopics that
are related to that topic. Each topic segment is labeled with a short topic description.
Although the schema offers a predefined set of topic descriptions that are expected to
occur in the scenario-based meetings, annotators were also allowed to introduce a new topic
description, if needed. The standard topic descriptions are divided into three categories:

• Top-Level Topics refers to topics whose content mainly reflects the meeting struc-
tures defined according to the scenario. Examples include “project specification and
roles of participants”, “marketing expert presentation”, “drawing animals”, “discus-
sion” or “evaluation of project process”.

• Sub-Topics refer to more specific topics that top-level topics are made of. They
reflect largely things the group is discussing such as “look and usability”, “existing
products”, “user requirements” or “project budget”.

10http://www.nist.gov/speech/tests/ie-er/er 99/doc/ne99 taskdef v1 4.pdf
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• Functional topics refer to those parts of meetings that are not real topics as they do
not contain useful information regarding the design process itself. They reflect either
the actual process and flow of meetings (“opening”, “closing”, “agenda/equipment
issues”) or they are irrelevant (“chitchat”). Functional topics can be either top-level
topics or subtopics, but they are not further refined into subtopics.

Focus of Attention (FOA)

FOA annotation reflects annotation of gaze direction of meeting participants. It consists
of labeling of changes in the gazed target as well as labeling of gazed targets themselves.
The gazed targets are labeled with the following tags:

• one tag for each participant: PM, ID, UI, ME 11

• Whiteboard

• Slide-screen

• Table - is used when participants are looking at something on the table such as their
hands, documents or the laptop

• Unspecified - is used when the participant is not focusing on anything in particular
or focusing on something that is not covered with the other tags (e.g. the bookshelf).

In the case of ambiguity between focusing on a participant and focusing on the slide
screen or the whiteboard, the participant is labeled as focus of attention. Changes in the
gazed targets are labeled with a high precision; changes are marked in the middle of eye
movement between old and new target.

3.4.3 Reliability of annotation schemas

Reliability analysis of the AMI schemas is ongoing work carried out by various project
sites. For most annotation schemas, the results have not yet become available. Up to now,
only the reliability analysis of the named entity annotation schema has been published. In
this section, we present analysis of reliability of the addressee and FOA annotation12.

Reliability of addressee annotation

The reliability of the addressee annotation schema was evaluated by comparing the sets
of annotations of one of the AMI meetings provided by four annotators. Inter-annotator
agreement was measured for each pair of annotators using the Kappa coefficient. Although
one of the trained annotators (annotator d in Table 3.7) did not take part in the corpus

11only scenario based meetings were annotated with focus of attention
12This analysis is based on joint unpublished work with Dennis Reidsma and Rieks op den Akker
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creation, we made use of annotations provided by this annotator to evaluate the reliability
of the annotation schema.

As discussed in Section 3.4.2, addressees in the AMI schema are labeled for each dialogue
act segment that is not marked as Backchannel, Stall, Fragment or Other. Agreement on
addressee classification was thus measured over those dialogue act segments for which
both annotators agreed on their boundaries and neither of the annotators labeled them as
Backchannel, Stall, Fragment or Other. Furthermore, we performed a reliability test for
the real addressee tags which mark individual (A, B, C, D) or group addressing. Hence,
segments marked with the Unclassifiable addressee tag by any of two annotators were also
excluded from the analysis. The results of the test are summarized in Table 3.7.

Annotators pair N ADD(κ)

a-b 353 0.63
a-c 301 0.48
a-d 427 0.67
b-c 349 0.50
b-d 400 0.59
c-d 340 0.45

Table 3.7: Inter-annotator agreement on addressee annotation. N -number of agreed seg-
ments. Total number of segments per annotator: a:814, b:715, c:701, d:816. Addressee tag
set: A, B, C, D, Group

The results indicate an overall low agreement between annotators on addressee annota-
tion on the AMI data. Annotator c, as the result shows, is the most problematic annotator.
Inspection of the confusion matrices for this annotator has shown that he tends to use the
Group category more than the other annotators. In general, all annotators had difficulties
in determining whether a dialogue act was addressed to a group or to some individual.
When annotators agreed that an individual was addressed in almost all cases they agreed
who that individual was. We will discuss the impact of this type of confusion on the per-
formances of addressee classifiers in Chapter 5. It is to be noted that the same type of
confusion has been observed for addressee annotation on the M4 data (see Section 3.3.4).
The addressee annotators had most difficulties distinguishing addressees of those dialogue
acts that were marked as Inform or Assess.

We have also measured agreement between annotators on addressee annotation using
the complete addressee tag set that includes the Unclassifiable category. As presented in
Section 3.4.2, this category is used when annotators cannot decide who is being addressed
by the speaker. Informal inspection of the confusion matrices have shown that annotators
hardly agree on labelling a dialogue act with this category which leads to a significant
decrease of Kappa values for each pair of annotators (0.33 ≤ κ ≤ 0.57). Since most of
the confusions were between individual and group addressing, we can conclude that the
Unclassifiable category was used when annotators were unsure whether a group or an in-
dividual was addressed. Due to high disagreement between annotators on this category,
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we may also conclude that the use of the Unclassifiable category reflects more the annota-
tors’ personal opinion about his uncertainty than some class of items that was difficult to
annotate with addressee information.

Reliability of FOA annotation

Inter-annotator agreement on FOA annotation was estimated among six annotators on
the annotations produced for one meeting participant (PM) in one of the AMI meetings.
The approach applied for measuring agreement first aligns segments for a certain threshold
to adjust differences in annotators’ perceptions of the timing of changes in the gazed tar-
gets. Then, it estimates annotators agreement on FOA labeling over the aligned segments.
Informal visual inspection of the results of the alignment has shown that aligned segments
are indeed sensible in a sense that they represent the same event. Various thresholds were
considered in the alignment procedure ranging from 0.1s to 0.8s. It was observed that for
thresholds higher than 0.5s the number of aligned segments do not change significantly;
for some annotator pairs, the segments were already pretty well aligned at the threshold
0.3s.

Table 3.8 summarizes the percentage agreement on segmentation for each pair of an-
notators for the alignment threshold of 0.5s.

a b c d e f
a – 91% 91% 85% 80% 95%
b 77% – 84% 79% 64% 87%
c 71% 77% – 75% 61% 79%
d 72% 80% 82% – 68% 77%
e 77% 74% 76% 77% – 76%
f 75% 82% 80% 72% 62% –

Table 3.8: Percentage agreement on segmentation - (x,y) entry denotes the percentage of
segments for annotator x that were aligned with segments of annotator y

Agreement on FOA labelling was estimated on the aligned segments using the Kappa
measure. The pairwise Kappa values range between 0.84 and 0.95 which indicates very
good agreement on FOA labeling.

Reliability of named entity annotation

Reliability of the AMI named entity annotation schema is reported in Karaiskos (2005).
Segmentation agreement was measured over all text segments which any of the annotators
marked as a named entity. The reported result showed that in 90.1% of cases annotators
fully agreed on segment boundaries whereas in 91.3% of cases annotators agreed on at
least one word of a segment. Furthermore, annotators reached very good agreement on
named entity classification (κ = 0.98, N = 374) that was measured over those named entity
segments for which annotators agreed on at least one word.
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3.5 Comparison between the M4 and AMI meeting

corpora

In this section, we compare the M4 and AMI meeting corpora with respect to meeting
data collections as well as with respect to annotation of phenomena that were annotated
on both data sets. Regarding the AMI corpus, we focus only on the scenario-driven part
of the data collection.

Data collection

The M4 corpus consists mostly of the short - approximately 5 minutes long - discussion
meetings recorded in the context of the M4 project whereas the AMI corpus contains longer
- approximately 30 minutes long - task-oriented meetings, where the task is the design of
a new remote control prototype. Each meeting is concerned with a particular phase in the
design process that is carried out through the series of four meetings. The M4 meetings
are scripted at the level of the sequence of group activities that participants perform, but
content is natural and unconstrained. The AMI meetings, on the other hand, are more
natural meetings structured according to the AMI scenario.

The M4 and AMI meetings consist of 4 participants. In contrast to the the M4 meetings,
participants in the AMI meetings are assigned particular roles. Meetings from the M4
collections were recorded in the IDIAP room whereas meetings from the AMI collection
were recorded in the IDIAP, TNO and Edinburgh instrumented meeting rooms. Although
the layouts of the IDIAP room in the M4 and AMI collection are similar, the room in the
AMI collection was equipped with additional recording equipment and attention distracters
(e.g. laptops, a remote control prototype). In all three rooms, the seating arrangement
includes two participants at each of two opposite sides of the table.

Dialogue act annotation

Table 3.9 summarizes the mapping between the dialogue tag sets employed for the
creation of the M4 and AMI meeting corpora.

The Fragment tag in the AMI schema is used when the speaker starts saying something
but did not get far enough to express his intention because he was either interrupted or he
changed his mind and said something else or stopped altogether. Interrupted or abounded
incomplete contributions of this kind are marked as Unlabeled in the M4 schema. However,
if the speaker continues talking, the incomplete contribution that is considered as the “false
start” is merged with the segment that follows. Similarly, utterances marked as Stall in
the AMI schema are marked as Unlabeled in the M4 schema if they occur alone, that is,
if the speaker does not take the floor and continue talking. In all other case, they are not
segmented into separate segments.
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M4 DA Tag Set AMI DA Tag Set

Statement Inform, Assess, Be-Negative, Be-Positive
Information-Request Elicit-Inform, Elicit-Assessment
Open-ended Question Elicit-Offer-Suggestion, Elicit-Assesment
Rhetorical Question Other
Acknowledgement Backchannel, Other
Assessment/Appreciation Assess, Be-Positive, Be-Negative
Positive Response Inform, Assess
Negative Response Inform, Assess
Uncertain Response Assess
Influencing-listeners-action Suggest
Committing-speaker-action Offer
Follow Me Elicit-Comment-About-Understanding
Repetition Request Comment-About-Understanding
Understanding Check Elicit-Inform, Elicit-Assessment, Comment-About-Understanding
Apology Be-Positive
Thanks Be-Positive
Other polite Be-Positive
Unlabelled Fragment, Stall, Other

Table 3.9: Mapping between the M4 and AMI dialogue act tag sets

Addressee annotation

As the AMI addressee annotation schema does not make a distinction between address-
ing a subgroup of participants and addressing the group as a whole, the Group addressee
tag is employed for marking that a group is addressed regardless of the number of par-
ticipants in the group. The M4 schema, on the other hand, contains separate tags for
addressing a subgroup and addressing the whole group.

Labeling relations between dialogue acts

Labeling relations between dialogue acts in the M4 schema is considered with labeling
adjacency pairs as classically defined. As adjacency pairs represent units that contain
paired utterances produced by different speakers, a dialogue act of one speaker is marked
as related to a dialogue act of another speaker or as not being related at all.

The AMI schema, on the other hand, encompasses a more general notion of relation
between dialogue acts that reflects different kinds of responding aspect of a dialogue act,
namely: a dialogue act of one speaker can be related to a dialogue act of another speaker
(e.g. adjacency pairs), or to a dialogue act of the same speaker (e.g. rhetorical relations)
or even to something that is not expressed verbally. In the later case, the source of the
relation is left unspecified. In addition to marking the source and the target of a relation,
the AMI schema requires a type of relation to be classified as positive, negative, partial or
uncertain.
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Gaze annotation

Gaze direction of participants in the M4 meetings was labelled using the simple set
that includes one tag for each individual and NoTarget. In the AMI schema, the NoTarget
category is further refined in the table, whiteboard, slide-screen and unspecified categories.
Furthermore, in the AMI schema, person A is considered as looking at B, only when A
looks at the face of B. The M4 schema, on the other hand, does not impose this kind of
restriction when labeling an individual as a gazed target: looking at a participant’s hands
or back is marked as looking at that participant. In contrast to the M4 schema, the AMI
schema imposes the requirement for a high precision on labelling changes in the gazed
targets.

3.6 Summary

In this chapter, we presented the M4 and AMI corpora that were employed for the
experiments on addressee identification described in Chapter 5. Regarding the AMI corpus,
we focused only on those parts that have been used in our study. Three aspects of the
corpora were discussed and compared: data collection, annotation schemas and reliability
of the annotation schemas.

Reliability analysis of the annotation schemas have shown that annotators involved in
the design of both meeting corpora were able to reproduce the gaze labeling reliably. The
annotations of dialogue acts and addressees on the M4 data were somewhat less reliable
but still acceptable. The annotators involved in the design of the AMI corpora achieved
lower agreement on addressee annotation than the annotators involved in the design of
the M4 corpora. An important overall conclusion regarding addressee annotation is that
human observers of meeting conversations mostly had difficulties distinguishing individual
from group addressing. Analysis of subgroup addressing on the M4 data have shown that
instances of this type occur rarely in the data and annotators failed to agree on subgroup
categories. On the AMI data, annotation of subgroup addressing was not considered due to
the same reasons. Therefore, subgroup addressing was not taken into account in developing
models for automatic addressee identification.





Chapter 4

Bayesian Networks as Classifiers

We consider the problem of identifying the addressee of the speaker’s dialogue act as
a classification problem where classes are possible addressee values. There are numerous
techniques for classification such as decision trees, neural networks or support vector ma-
chines. To model our problem domain, we have chosen Bayesian Networks (BNs). BNs
are a class of models that graphically encode probabilistic relationships among a set of
variables. They are a well-known tool for knowledge representation and reasoning under
uncertainty. As such, BNs have been successfully exploited in numerous expert systems
and decision support applications. In the context of classification, they have been applied
for various tasks similar to addressee identification such as speaker detection or dialogue
act recognition (Keizer and op den Akker, 2006; Rehg et al., 1999; Choudbury et al., 2002).
In these tasks, multiple sources of information are combined. One advantage of BNs in
comparison to other classification models is that, when learned from data, they provide
an understanding of the domain being modeled. In other words, they extract explicit
knowledge from data reflected in probabilistic causal relationships between variables that
represent the domain. Another advantage of BNs is that they allow for the combination
of data and domain knowledge.

This chapter is organized as follows. Section 4.1 describes the problem of classification.
Section 4.2 first provides a brief introduction to BNs and then overviews various techniques
for learning and inference in BNs (Section 4.2). Section 4.3 focuses on the use of BNs as
classifiers. It provides an overview of several Bayesian Network (BN) classifiers that were
employed for the experiments on addressee classification presented in Chapter 5. Dynamic
Bayesian Networks (DBNs) are presented in Section 4.4. The chapter concludes with a
discussion on the methodology for the evaluation of classifiers’ performances (Section 4.5).

4.1 Classification

Classification can be viewed as a process of assigning a predefined set of class labels
C to data instances described in terms of a set of attributes or features A. A model or a
function F : A ⇒ C which maps a data instance into a corresponding class label is referred

85
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to as a classifier. If the function is unknown, a classifier can be induced from a data set D
consisting of pre-classified instances D = {(ai, ci)|i = 1, . . . , n} where ai ∈ A represents
a vector of attributes which describes the i-th instance and ci ∈ C is its corresponding
class label. In the literature, this set is usually referred to as a training set. The inferred
classifier is then used for assigning the class label to new, so far unseen, data instances.

A key concept in classification is that of uncertainty. Classification deals with uncer-
tainty in several ways. First, data instances may be derived from a process which is not
completely known. Second, the instances of the real world are represented with a set of the
selected attributes that represents an approximation of the real instances which leads to
the loss of information in perceiving that problem. Moreover, there may be some unwanted
anomalies, so-called noise, caused by imprecision in collecting the attributes (e.g. errors in
recoding, measuring or labelling). Although the underlying process can be deterministic,
there can be some pieces of information that are not accessible - so-called unobservable at-
tributes - which have also been used by the deterministic function in determining the class
labels. Due to uncertainty, the underling process is modeled as a random process whose
outcome is a random variable C. The random variable does not describe the actual outcome
of the process but describes the quantified uncertainty of each possible outcome. A com-
mon framework used for the quantification and manipulation of uncertainty is probability
theory.

Classification is concerned with making optimal decisions under uncertainty: the goal
is to decide which of the class labels Ci is to be assigned to a particular data instance
described with a set of attributes a based on the estimated probabilities of each possible
outcome P (Ci|a). Optimality is concerned with minimizing the chance of assigning a

to a wrong class. If the goal is to minimize misclassification error, the class label with
the highest conditional probability P (Ci|a) is chosen (Duda and Hart, 1973). However,
in many applications, the consequences of making wrong decisions may have different
impacts regarding different class labels. Those impacts are formalized in terms of loss
functions which is a measure of the loss λkj incurred by assigning the class label Cj instead
of the correct class label Ck to the new instance a. The optimal decision in this case
is concerned with minimizing the expected loss, that is, with choosing Cj for which the
expected loss defined as

∑
k λkjP (Ck|a) is minimal. In this thesis, classification is concerned

with minimizing misclassification error.
From all these, it follows that we need to have a model for determining the conditional

class probabilities P (Ci|a) in order to make optimal decisions. The classification problem
can thus be divided into two stages: the learning stage in which the training data is used
to learn a model for estimating P (Ci|a) and the subsequent decision stage in which these
probabilities are used to make optimal class assignments (Bishop, 2006).

BNs are probabilistic graphical models that represent a full joint probability distribution
over a set of random variables. Therefore, they can be used to model the joint distribution
P (C, a) from which P (C|a) can be inferred. As they can also be learned from data using
various statistical techniques, BNs provide a framework for performing classification. In the
following section, we introduce BNs and discuss various methods for learning and inference
in BNs.
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4.2 Bayesian Networks

4.2.1. Definition. A Bayesian Network1 is a probabilistic model over a set of random
variables X = {X1, . . . Xn} which consists of two parts:

Qualitative part (G) - a directed acyclic graph (DAG) represented as an order pair
G=(X,E) where

• X is a set of random variables {X1, . . . , Xn} that form the nodes of the network.

• E is a set of direct edges which encode influential links between the pairs of
nodes they are connecting. An edge from Xi to Xj denotes that the node Xi

directly influences the node Xj. Xi is called the parent of Xj. The set of all
parents of the node Xj is marked as Pa(Xj).

Quantitative part (θ)- a set of conditional probability distributions assigned to
each node in the network {P (Xi|Pa(Xi))|Xi ∈ X}. A conditional probability distri-
bution assigned to the node Xi quantifies the effects that its parents Pa(Xi) have on
the node.

Each variable in a BN can have either a finite set of possible values (discrete variable) or
an infinite number of possible values (continuous variable). In this chapter, we focus only
on BNs over a set of discrete random variables. An example of BNs is given in Figure 4.1.

Definition 4.2.1 specifies the syntax of BNs. Regarding the semantic properties, BNs
can be seen in two different ways. First, a BN can be seen as an encoding of conditional
independence statements among the random variables represented with its nodes (topolog-
ical semantics). Second, a BN can be viewed as a factorized representation of the full joint
probability distributions over its random variables (numerical semantics).

Topological semantics

In the probability theory, two random variables X and Y are considered as condition-
aly independent given the variable Z if P (X|Y, Z) = P (X|Z). A relation between this
quantitative notion of conditional independence and the qualitative properties of a BN
is established in the concept of d-separation2 (Pearl, 1988). Informally, the concept of
d-separation is based on “blocking” the information flow between two variables X and
Y in a network by some third variable Z. If the information flow between X and Y is
blocked then changes in the certainty of X have no influence on changes in the certainty
of Y, that is, X and Y are conditionaly independent given Z. One example of d-separation
in the BN presented in Figure 4.1 is the following: if the values of RoadPassable? and
MaxSpeed are known then information flow between OnTime? and RoadWork? is blocked;
thus, OnTime? and RoadWork? are conditionally independent given RoadPassable? and

1also known as a belief network or a causal network
2‘d’stands for ‘directed’
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Figure 4.1: An example of Bayesian Networks

MaxSpeed. The same is valid for OnTime? and Accident?. The formal specification of
d-separation can be found in (Pearl, 1988; Bishop, 2006).

There is also a more intuitive and simpler way to specify the topological semantics in
BNs that is based on the notion of the Markov blanket (Pearl, 1988): a node in a BN
is conditionally independent of all other nodes in the network given its Markov blanket
which consists of the node’s parents, children and children’s parents. In other words, the
Markov blanket of a node X is a set of nodes that isolates X from the rest of the graph.
In our example of BNs, Accident? is independent of MaxSpeed and OnTime? given
RoadPassable? and Roadwork?.

Numerical semantics

As previously mentioned, a BN over a set of random variables {X1, . . . , Xn} represents
a specific decomposition of a full joint probability distribution over the variables. The full
joint probability distribution is given by the product, over all nodes in the graph, of a
conditional probability distribution of each node given its parents in the graph:

P (X1, . . . , Xn) =
n∏

i=1

P (Xi|Pa(Xi)) (4.1)

A detailed explanation of the equivalence between topological and numerical semantics
of BNs expressed through the d-separation criterion can be found in Bishop (2006).

The general formula for calculation of the full joint probability distribution over a set
of random variables X = {X1, . . . , Xn} is given by:
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P (X1, . . . , Xn) = P (X1)P (X2|X1) . . . P (Xn|X1, . . . Xn−1) =
∏n

i=1
P (Xi|X1, . . . , Xi−1)

(4.2)
It requires a large number of conditional probabilities to be estimated: assuming that all
variables have at most k values, we need to assess at mostO(kn) numbers. The equation 4.1
provides more compact representation of the full joint probability distribution as it requires
O(nkm) conditional probabilities to be estimated, assuming that each variable has at most
m ≤ n− 1 parents.

Comparing the equation (4.1) with the general formula for the calculation of joint
probability distribution (4.2), we see that the specification of the probability distribution
provided by a BN is equivalent to general assertion if for every variable Xi the following
holds.

P (Xi|X1 . . . Xi−1) = P (Xi|Pa(Xi)) (4.3)

given that Pa(Xi) ⊂ {X1 . . . Xi−1} which can be obtained by labeling nodes in an ordering
consistent with the order implicit in the graph structure. From this equation, it follows
that a BN is a correct representation of a domain only if each node Xi is conditionally
independent of its predecessors given its parents. This property serves as a guideline for
designing BNs: the parents of node Xi should contain those nodes in X1, . . . Xi−1 that
directly influence Xi. Furthermore, it is also important to provide a correct node ordering
in a way that nodes that directly influence other nodes are added first in the list, and
then nodes they influence until the nodes which do not have any influence on the other
nodes are reached. If the variables are ordered incorrectly, the resulting network structure
may fail to reveal many conditional independencies among variables. In the final step of
constructing a BN, conditional probabilities for each node are assessed. They represent a
person’s degree of belief regarding the occurrence of the encoded events in the domain3.
For detail specification of the procedure how to design BNs from the prior knowledge about
the domain, we refer to (Heckerman, 1995; Russell and Norvig, 2003; Jensen, 1996). In
this chapter, we are concerned with techniques as to how to learn BNs from data including
both the structure learning and conditional probability distributions, also referred to as
parameters, learning. These techniques as well as the techniques for performing inference
in BNs will be discussed in detail in following sections.

The central formula to probabilistic inference in BNs is Bayes’ rule:

P (X|Y ) =
P (Y |X) · P (X)

P (Y )
(4.4)

It is used to update probabilities of variables in BNs when new information is entered in
the network by setting some of the variables to particular values.

Some of the statistical techniques for learning BNs from data are based on the Bayesian
approach. In the Bayesian approach to learning the Bayes’ rule is applied for combining

3The concept of probability defined as the degree of belief a person has in an uncertain proposition is
specified in Bayesian probability theory
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prior knowledge and data. The prior knowledge about possible hypotheses X (P (X)) is
combined with information obtained from data Y given hypotheses X (P (Y |X)) to derive
new posterior knowledge about hypotheses P (X|Y ).

In the common notation, P (X|Y ) is referred to as the posterior, P (Y |X) is referred to
as the likelihood, P (X) is the prior and P (Y ) is the evidence.

4.2.1 Learning BNs from data

The problem of learning a BN from data can be stated as follows. Let X = {X1, . . . , Xn}
be a set of random variables. Given a training set D = {x1, . . . ,xN} where each xi is an
instantiation of the variables in X, the task is to find a BN B = (G, θ) that best matches
the data.

Learning a BN consists of two tasks: learning the BN structure and learning the con-
ditional probability distributions (henceforth, parameters) given the structure. The com-
plexity of both learning procedures increases with partial observability which refers to both
having some unobservable or hidden variables in the model as well as having some observ-
able variables which do not have values for all instances in the training set. In discussing
the structure learning task, we assume full observability, that is, no missing data nor hid-
den variables. However, for parameters learning, we will present approaches regarding
both complete and incomplete data sets. As in previous discussions, we focus on BNs over
multivalued discrete random variables.

Structure learning

There are two general classes of approaches for learning the structure of a BN: the
CI-based4 approaches and search&score approaches. In CI-based approaches, the learning
is seen as a constraint satisfaction problem. First, conditional independence properties are
estimated among the variables on D using some statistical test such as the χ2 or mutual
information tests. Then, a network is designed consistent with identified dependencies and
independencies among variables. An overview of some of the existing CI-based algorithms
can be found in (Cheng et al., 1998). In search&score approaches, the learning is seen
as an optimization problem. It consists of searching for a structure, through the space of
possible structures, that maximizes an a priori defined scoring metric. The scoring metric
describes the fitness of each possible structure to the data. As search&score approaches
are widely used and they were also applied for the experiments presented in Chapter 5, we
will discuss them in more detail.

Scoring metrics Scoring metrics, also referred to as quality measures, can be based
on different approaches including a Bayesian approach (Cooper and Herskovits, 1992; Heck-
erman et al., 1995), a minimum length principle (MDL) approach (Lam and Bacchus, 1994)
or an information criterion approach (Schwarz, 1978; Akaike, 1974). Further discussion on

4CI stands for conditional independence
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score&search methods will be based on a Bayesian approach since it is used for the exper-
iments presented in the Chapter 5. For a detailed discussion on the Bayesian approach
for estimating the quality of a BN structure, we refer to (Cooper and Herskovits, 1992;
Heckerman et al., 1995; Bouckaert, 1995).

The main idea of a Bayesian approach is the following: assuming that we are uncertain
about the network structure that encodes the full joint probability distribution over the
variables X, we encode this uncertainty by defining a variable G whose values correspond
to the possible network structures. Then, we specify our degree of belief regarding the
network structures with prior probability distribution P(G). When the training set D is
available, the quality of the structure is estimated using the posterior probability of the
network structure G given the data set D which is computed using the Bayes’ rule as
follows:

P (G|D) =
P (D|G)P (G)

P (D)
5 (4.5)

Since P (D) is equal for all network structures it can be treated as a constant and
omitted from the estimation of quality measures. Therefore, it is sufficient to estimate
the numerator in the right-hand side of the equation P (G,D) = P (D|G)P (G). This
probability can be computed as follows (Cooper and Herskovits, 1992):

P (G,D) = P (G)

∫
P (D|θ,G)P (θ|G)dθ (4.6)

As θ represents a set of parameters that are continuous variables, P (θ|G) denotes
a conditional probability density function over θ given the network structure G. Since
the integral in the equation (4.6) is calculated over all possible parameter assignments
θ for the given structure G, it is actually estimated over all BNs with that structure.
For practical reasons, the logarithm of the posterior probability is often used as a score
function: log P (G,D) = logP (D|G) + logG.

Several quality measures presented in the literature have been derived using the Bayesian
approach. Cooper and Herskovits (1992) derived the following formula for estimating
P(G,D) based on the assumption that no set of parameters is preferred for a given network
structure, that is, the density function P (θ|G) is uniform:

P (G,D) = P (G) ·
n∏

i=1

qi∏
j=1

(ri − 1)!

(Nij + ri − 1)!
·

ri∏
k=1

Nijk! (4.7)

where ri denotes the cardinality of the value set of the node Xi (1 ≤ i ≤ n), qi is the
cardinality of Pa(Xi), that is, the number of different values to which parents of Xi can

5In order to compare the posterior probabilities of two network structures, the following equivalent
criterion is often used:

P (G1|D)

P (G2|D)
=

P (D|G1)P (G1)

P (D|G2)P (G2)
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be instantiated: qi =
∏

Xj∈Pa(Xi)
rj. Assuming that values in the Xi value set as well as

configurations of the Pa(Xi) are ordered, Nijk (1 ≤ i ≤ n, 1 ≤ j ≤ qi, 1 ≤ k ≤ ri) denotes
the number of instances in D for which Xi takes its k -th value and Pa(Xi) takes its j -th
configuration; Nij =

∑
k Nijk denotes the number of instances in D for which Pa(Xi) takes

its j -th configuration. The score metric defined with the equation (4.7) is referred to as
the K2 metric.

Assuming that the density function, P (θ|G) is not uniform, but Dirichlet distributed,
Heckerman et al. (1995) derived the Bayesian metric, also known as the Bayesian Dirichlet
(BD) metric, that has the following form:

P (G,D) = P (G) ·
n∏

i=1

qi∏
j=1

Γ(N ′
ij)

Γ(N ′
ij + Nij)

·

ri∏
k=1

Γ(N ′
ijk + Nijk)

Γ(N ′
ijk)

(4.8)

where Γ(.) is the gamma-function which satisfies the condition that Γ(1) = 1 and
Γ(n + 1) = nΓ(n); N ′

ij and N ′
ijk represent choices of priors on counts that satisfy the

condition that
∑ri

k=1 N ′
ijk = N ′

ij. It is to be noted that the K2 metric is the special
case of the BD metric where N ′

ijk = 1 and consequently N ′
ij = ri. One disadvantage of

the BD metric is that it assigns different score measures to likelihood equivalent networks
(Heckerman et al., 1995): two network structures are considered as equivalent if they encode
the same conditional independence relations between nodes (e.g. X−→Y and X←−Y); two
equivalent network structures G1 and G2 are considered likelihood equivalent if P (D|G1) =
P (D|G2). Heckerman et al. (1995) proposed a likelihood-equivalent specialization of the
BD metric called the BDe metric in which N ′

ijk = N/ri · qi and N ′
ij = N/qi where N is the

user’s equivalent sample size, that is, the size of a data set that is equivalent to a user’s
knowledge.

The prior of the network structure P(G) as well as the priors on the parameters N ′
ijk

specify a users’ knowledge about the domain. A structure learning process that makes use
of these priors is thus based on the combination of the prior knowledge and data. The
prior of the network structure can incorporate, for example, information about the ‘real’
network: a domain expert, for example, can suggest the existence of the specific edge with
the specific orientation. Those network structures that closely resemble the real network
will be given higher prior probabilities (Heckerman et al., 1995). If no prior information
on network structure is available, P(G) is chosen to be uniform and thus can be omitted
from the estimation of the quality of the network structure.

Search methods Having specified a quality measure, the goal is to find a network
with the highest quality. In general, there may be more than one structure with the highest
quality. For the purpose of simplicity, we assume that there is only one structure that
maximizes the score metric. To find such a structure, one must search in the space of all
possible structures. However, the number of possible structures grows exponentially with
the number of variables, which indicates that it may not be feasible to find the structure
with the highest quality in polynomial time. Moreover, it has been proven that finding such
a structure is a NP-hard problem even when some restrictive assumptions are made such
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as that each node has at most k > 1 parents (Chickering, 1996; Chickering et al., 2004).
Therefore, in past years, a significant amount of work in the machine learning community
has been focused on developing heuristic-search methods for finding a good model.

Heuristics gain their computational efficiency by partially estimating the quality of each
structure. This is made feasible due to decomposability of score metrics: a score metric
is considered as decomposable if it can be represented as a product6 of variable specific
scores (Heckerman, 1995):

Q(G,D) =
∏

i

q(Xi, Pa(Xi), Di) (4.9)

where Di is the data restricted to the variables Xi and Pa(Xi).
Due to decomposability each node can be considered independent of every other. This

implies that instead of the complete network structure only a node and its parents need
to be considered. Most commonly used heuristic search algorithms include greedy search
with or without restarts, best-first search, simulated annealing and Monte Carlo search.

For the experiments presented in Chapter 5, we made use of the K2 heuristic search
algorithm which is based on the greedy search strategy (Cooper and Herskovits, 1992).
In the original version, the algorithm employs the K2 score metric for measuring the
quality of a structure. However, other score metrics can be applied as well. The algorithm
assumes that an ordering of the variables is given. This assumption reduces the number
of possible alternatives since only predecessors of a variable are taken into consideration
when determining its parents. The algorithm also assumes that an upper bound u on the
number of parents that any node may have is specified. Given these assumptions, the K2
algorithm proceeds by making an assumption that a node has no parents and then adds
incrementally the parent whose addition increases the most the probability of the given
structure calculated by means of the q function in the equation (4.9). When the addition
of no single parent can increase the probability of the given structure or the number of
added nodes reaches the parent thresholds, the process of adding nodes to the parent set
of the current node is terminated. The procedure is applied to all variables.

Parameter learning

Having designed the structure G of a BN from the prior knowledge about the domain,
data or a combination of both, the next step in specifying the BN is the assignment of
conditional probability distributions to each node in the network. In this section, we
present methods for learning the conditional probabilities from the data with and without
the use of prior knowledge.

Let ΘG denote a multivalued variable whose values θ represent a set of real numbers
which correspond to possible true values of the physical conditional probability distribu-
tions assigned to each node in the network G over the random variables X = {X1, . . . , Xn}:
θ = (θ1, . . . , θn). Similar to the structure learning, we assume that we have given a training

set of N instances D = {x(1), . . . ,x(N)} where x(i) = {x
(i)
1 , . . . , x

(i)
n }.

6or a sum in a case where log is employed
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where G denotes the given information that the full joint probability distribution over
X is encoded in the network structure G.

In this section, we present two widely used approximation methods for assessing param-
eters when a complete data set is employed: the Maximum Likelihood (ML) and Maximum
A-Posteriori(MAP) estimates. We also discuss the Expectation Maximization (EM) algo-
rithm for estimating parameters for an incomplete data set.

Similar to the previous discussion, we assume that each variable Xi ∈ X is a multinomial
discrete variable having ri possible values x1

i , . . . , x
ri

i . Furthermore, Pa(Xi) is the parent
set of the node Xi having qi possible configurations pa1

i , . . . ,paqi

i where qi =
∏

Xj∈Pa(Xi)
rj.

ML Estimation Seeing the data set D as a sample derived from an unknown true
distribution, the ML estimator approximates this distribution by choosing the parameter
set θ∗ that maximizes the data likelihood:

θ∗ = argmax
θ

L(θ) = argmax
θ

P (D|θ,G) (4.10)

Assuming that given the true probability distribution represented with the BN B =
(G, θ) the instances in the data set are independent, the likelihood in the equation (4.10)
can be calculated as follows:

P (D|θ,G) =
N∏

l=1

P (x(l)|θ,G) =
N∏

l=1

n∏
i=1

P (x
(l)
i |pa

(l)
i , θi) (4.11)

The formula on the right-hand side is a result of the estimation of the probability of
each instance in the data set. This probability is estimated from the probability distribu-
tion factorized according to the structure G in terms of conditional probabilities that are
specified by the parameter set θ.

A common approach in the ML estimation is to use the log likelihood instead of the
likelihood:

LL(θ) = log P (D|θ,G) =
N∑

l=1

n∑
i=1

log P (x
(l)
i |pa

(l)
i , θi) =

n∑
i=1

LLi(θi) (4.12)

where LLi(θi) =
N∑

l=1

log P (x
(l)
i |pa

(l)
i , θi). Each LLi(θi) can be maximized independently

as a function of θi. In our case where X is a set of multinomial discrete random variables
θ∗i is a normalized conditional probability table containing counts of each value of Xi given

each configuration of its parents Pa(Xi): P (Xi = xk
i |Pa(Xi) = paj) =

Nijk

Nij
.

The main problem when employing the ML estimator for learning parameters is that
it is sensitive to the sparse data in a sense that there may be certain combinations of a
variable’s values and its parents’ configurations that are not observed in a data (Nijk = 0)
which leads to the ML estimate of 0 for those combinations. The problem of defining some
configurations as impossible because they are not observed on the training data can be
prevented by adding the prior information to the network parameters. For that purpose,
the MAP estimator can be employed.
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MAP Estimation The MAP Estimation of the parameters of BNs is based on the
Bayesian approach. The parameters θ are seen as an unknown variable governed by prior
probability distribution P (θ|G) which represents some prior belief regarding the parame-
ters given the information that the joint probability distribution over X can be encoded
according to structure G. When the training set D is available, this belief is updated
according to Bayes’ rule as follows:

P (θ|D,G) =
P (D|θ,G)P (θ|G)

P (D|G)
(4.13)

The MAP estimate of θ is the expectation of θ with respect to our posterior belief about
its values (Heckerman, 1995):

EP (θ|D,G)(θ) =

∫
θP (θ|D,G)dθ (4.14)

Since P (D|G) in the equation (4.13) is not dependent on θ, it can be treated as a
constant and P (θ|D,G) can be approximated as follows:

P (θ|D,G) ≈ P (D|θ,G)P (θ|G) (4.15)

Let us first extend the notation introduced in this section. As previously defined θ is
a vector containing a parameter set for each variable θi. Each θi can be represented as a
vector of parameter settings (θi1, . . . , θiqi

). Denoting P (Xi = xk
i |Pa(Xi) = paj

i ) = θijk, θij

can be represented as the vector of parameters (θij1, . . . , θijri
).

Assuming that the parameter vectors θij are mutually independent, the parameter prior
can be estimated as follows:

P (θ|G) =
n∏

i=1

qi∏
j=1

P (θij|G) (4.16)

Under the same assumptions the parameters remain independent given the data set D:

P (θ|D,G) =
n∏

i=1

qi∏
j=1

P (θij|D,G) (4.17)

This indicates that each vector of parameters θij can be updated independently

P (θij|D,G) ≈ P (D|θij, G)P (θij|G) (4.18)

A common approach to modeling prior belief over multinomial variables is to use the
Dirichlet distribution which has a property that the posterior distribution belongs to the
same conjugate family as the prior distribution. For each vector of parameters θij, the
Dirichlet prior distribution is defined as follows:

P (θij|G) = Dir(θij|αij1, . . . , αijri
) =

Γ(αij)

Γ(
ri∏

k=1

αijk)

ri∏
k=1

(θijk)
αijk−1 (4.19)
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The parameters αijk are often called hyperparameters in order to distinguish them from
the parameters of the multinomial distribution θijk. The parameters αijk can be seen as
‘prior observation counts’ for events governed by θijk: the number of times that an expert

has previously observed the instantiation of Xi = xk
i and Pa(Xi) = paj

i. As previously
mentioned, the posterior probability of the parameters θij is also Dirichlet and can be
estimated using the equation (4.18)

P (θij|D,G) ≈

ri∏
k=1

(θijk)
Nijk

ri∏
k=1

(θijk)
αijk−1 ≈

ri∏
k=1

(θijk)
αijk+Nijk−1 (4.20)

Therefore, the posterior distribution P (θij|D,G) is the Dirichlet distribution Dir(θij|αij1+
Nij1, . . . , αijri

+ Nijri
)

Under the assumption of the parameter independence, the expectation of the parame-
ters in respect to the posterior distribution as defined in (4.14) can be estimated as follows:

θ∗ijk =
αijk + Nijk

αij + Nij

(4.21)

where αij =
∑ri

k=1 αijk and Nij =
∑ri

k=1 Nijk. For detailed derivation of this formula, we
refer to (Heckerman, 1995). In practice however, it is difficult to specify hyperparameters
αijk for each combination of a variable’s values and its parents configuration (xk

i ,paj
i ).

Several types of Dirichlet priors widely used in specifying network parameters, although
less informative, have been described previously when different variants of the BD score
metric were introduced.

EM The EM algorithm is the most well-known and widely used algorithm for learning
parameters of BNs from incomplete data (Dempster et al., 1977). It is an iterative algo-
rithm where each iteration is performed in two steps: the expectation (E) step followed by
the (M) maximization step. In its original form, the algorithm converges towards the ML
parameter estimates although it can also be used for finding MAP estimates by performing
the MAP estimation in the M step instead of the ML estimation.

Let Y denote incomplete data consisting of the values of observable variables and Z
denote either missing data or hidden variables. Y and Z form together the complete data
set D = {Y, Z}. Since it is not feasible to estimate the complete data set log likelihood
required for the ML estimate (see 4.10), we can calculate the expected log likelihood of
the complete data set using our state of the knowledge regarding unobservable variables
Z given by the posterior distribution P (Z|Y, θ). This calculation corresponds to the E
step of the EM algorithm. In the subsequent M step, the ML estimates of the parameters
are performed by maximizing the expected likelihood found on the E step. The estimated
parameters in the M step are then used in the subsequent E step.

A more formal and comprehended specification of the EM algorithm can be found in
(Bishop, 2006). Given the joint distribution over Y and Z governed by parameters θ, the
goal of the EM estimate is to maximize likelihood function P (Y |θ) given by:
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P (Y |θ) =
∑

Z

P (Y, Z|θ)

or equivalently:

log P (Y |θ) = log {
∑

Z

P (Y, Z|θ)}

The EM algorithm, as described in (Bishop, 2006), consists of the following steps

1. Choose an initial set of parameters θold in some way.

2. E step: Calculate P (Z|Y, θold).

3. M step: Estimate θnew by maximizing conditional expectation of the complete data
log-likelihood with respect the posterior probability distribution found in the E step

θnew = argmax
θ

Q(θ, θold) = argmax
θ

∑
Z

P (Z|Y, θold) log P (Y, Z|θ) (4.22)

4. If neither the convergence criterion of the log-likelihood nor of the parameter values
is satisfied then let θnew = θold and repeat the step 2.

The E step can be seen as representing the unknown value of Z by a distribution of
values, and the M step as performing the ML estimation for the joint data obtained by
combining this with the known value of Z. As previously mentioned, the EM algorithm
can be used for the MAP estimation instead of the ML estimation by applying the MAP
estimates in the M step, that is, by maximizing Q(θ, θold) + log P (θ).

4.2.2 Inference in BNs

One of the main applications of probabilistic models in general and thus of BNs in
particular is the derivation of the probabilities of interest regarding the domain being
modeled. A computation of probabilities of interest in a probabilistic model is known as a
probabilistic inference. Since a BN denotes a representation of the full joint probability dis-
tribution over all variables in the domain P (X1, . . . , Xn), it contains sufficient information
for computing the probabilities of interest.

In a general form, inference can be specified in the following way. Let E ⊂ X denote
a set of variables for which evidence e has been obtained, or in terms of a graphical
representation, a set of nodes whose values are observed. The probability distribution of a
set of variables Y ⊂ X given the observed evidence e can be computed from the full joint
probability distribution as follows:

P (Y |e) =
P (Y, e)

P (e)
=

∑
z

P (Y, z, e)

∑
y,z

P (y, z, e)
(4.23)



98 Chapter 4. Bayesian Networks as Classifiers

where z denotes values of all other variables in X, excluding Y and E. Variables in Y
are often referred to as query variables.

Although BNs determine a compact representation of the joint probability distribution
which enables a more efficient computation of the numerator and the denominator in the
equation (4.23), the inference in BNs has been shown to be a NP-hard problem (Cooper,
1990b). Moreover, it has also been proven that approximate probabilistic inference in BNs
is NP-hard (Dagum and Luby, 1993). Therefore, it is unfeasible to develop an exact or an
approximate inference algorithm that can be applied to all classes of BNs.

As to the exact inference, the simplest approach that sums out all non-query variables
from the full joint probability distribution factorized in terms of a BN is known as infer-
ence by enumeration7. A more efficient approach based on a similar idea is the variable
elimination technique. It is based on the interleave of sums and products in a way which
enables that repeated calculations are cached and saved for future use. Furthermore, a
variable elimination process may also include pruning of the irrelevant variables as it was
found that every variable that is not an ancestor of a query variable or evidence variable
in the network is irrelevant for the query (Zhang and Poole, 1994; Dechter, 1996).

Instead of viewing inference as an elimination process, we can see inference as a message-
passing process where messages are passed locally among surrounding nodes. Pearl (1982)
introduced the message-passing8 algorithm applicable to a simple class of graphs called
trees: graphs in which there is one and only one undirected path between any two nodes
in the graph. Receiving a message from its children, a node sends a message, that is, an
updated probability distribution to its parent and other children. Similarly, an information
received from the node’s parent is updated and sent to its children. For each edge in a
network, the message is passed only once in each direction: from a parent to a child and vice
versa. The algorithm proceeds by entering evidence on the evidence variables and passing
messages locally through the network. The message passing algorithm has been extended
by (Pearl, 1986, 1988) for single-connected networks, also known as polytrees : graphs in
which there is at most one undirected path between any two nodes in the network.

However, the most problematic class of graphs from the inference perspective are graphs
with undirected cycles - multiple-connected networks. There are two main approaches de-
veloped for the exact inference in the multiple-connected graphs: junction tree propaga-
tion approach and cutset conditioning approach. The junction tree propagation algorithm
(Lauritzen and Spiegelhalter, 1988; Jensen et al., 1990) is based on transforming a multiple-
connected network into a probabilistic equivalent tree - a so-called junction tree - where
each node in a tree contains a subset of the variables from the original set. Then, the
message-passing algorithm is applied on the created junction tree for deriving conditional
and marginal probabilities of interests. The cutset conditioning algorithm (Pearl, 1986),
on the other hand, transforms a multiple-connected network into a set of single connected
networks by instantiating variables to the definite values. The probability of interests,
conditional or marginal, are computed as a weighted average over the values computed by

7the term taken from (Russell and Norvig, 2003)
8also known as the belief propagation or the sum-product algorithm
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each polytree. Additional approaches to exact inference proposed in the literature comprise
recursive decomposition (Cooper, 1990a) and symbolic inference (Shachter et al., 1990).

In many situations, however, exact inference may be intractable. This could be, for
example, because of the large number of hidden variables included in a model or because
of the complex form of the posterior probability distribution, in a case of the continu-
ous variables, which prohibit analytical or numerical computation being applied. In such
situations, the approximate inference can be applied.

Approximate approaches can be classified as deterministic or as stochastic. Determinis-
tic approaches include variational inference techniques which are concerned with approxi-
mating true posterior probability distribution with a simpler variational distribution which
is chosen in a way to be tractable and to converge to the posterior in reasonable time. For
an overview of the existing variational inference techniques, we refer to (Jordan et al., 1999;
Bishop, 2006). Minka (2001) proposed another deterministic approximate inference known
as expectation propagation.

Stochastic approaches are based on numerical sampling techniques also called Monte
Carlo algorithms. Samples are generated using BN either from conditional or from uncon-
ditional probabilities. The sampling approaches can be categorized as direct sampling or
as Markov chain sampling approaches. The direct sampling approach comprises rejection
sampling, importance sampling and likelihood weighting. The rejection sampling first gen-
erates samples from a BN in the topological order without consideration of the evidence
and then rejects those samples that do not match evidence. For the discrete variables,
P (Xi = xi|e) is estimated by counting how often the event Xi = xi occurs in the remain-
ing samples. The main disadvantage of this method is that it may reject a large number of
samples, especially if the evidence contains a large number of variables. Importance sam-
pling, on the other hand, does not reject samples but generates samples consistent with
the evidence weighted with importance weights. Likelihood weighting is an improvement
of importance sampling in which all evidence variables are instantiated to their values and
all other variables Xi are sampled from P (Xi|Pa(Xi)) in which the variables Pa(Xi) are
set to their sampled values. Each event is weighted by the likelihood that the event accord
to the evidence which is calculated as the product of conditional probability distribution
of each evidence variable given its parents.

Another group of sampling methods are Markov Chain Monte Carlo (MCMC) methods.
In contrast to previously mentioned approaches, these methods generate each sample by
making a random change in the previously generated sample by changing a value for
one of the query variables condition on the current sampled values of the variables in its
Markov blanket. In this way, a sequence of generated samples forms a Markov chain in a
sense that the probability distribution of the next event is conditionally dependent only on
the current event given all previously generated events. Detailed descriptions of different
MCMC algorithms can be found in(Bishop, 2006).
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4.3 BNs as Classifiers

In the previous sections, we described BNs as powerful tools for knowledge representa-
tion and inference in the domains that deal with uncertainty. In this section, we discuss
their usage for the classification task.

Using the learning methods described in the previous section, a BN which encodes the
full joint probability distribution P (A1, . . . , An, C) can be induced from the data and then
used as a classifier by inferring posterior probability distribution of the class variable C
given the values {a1, . . . , an} of attributes {A1, . . . , An}: P (C|a1, . . . , an). This procedure
is often referred to in the literature as unsupervised in the sense that the learning proce-
dure does not distinguish the class variable from the attributes. In the decision stage of
classification, the class with the highest posterior probability is assigned to {a1, . . . , an}.

BNs had not been considered as classification tools until (Langley et al., 1992) found
that simple BNs, called Naive Bayes (NB), which assume that all attribute nodes are
conditionally independent given the class variable, show good classification performances
in comparison to performances of some other classification algorithms. Friedman et al.
(1997) have shown that unrestricted BNs, which relax the strict and in many cases un-
realistic requirements for conditional independence encoded in NB networks, in a large
number of cases fail to outperform NB classifiers when used in an unsupervised way. The
reason for poor classification performances of unrestricted BNs, as theoretically explained
by Friedman et al. (1997) and Greiner et al. (1997), lies in the mismatch between functions
that score-based learning algorithms, on the one hand, and classification algorithms, on
the other hand, aim to maximize. The learning algorithms maximize scoring functions ex-
pressed in terms of the data likelihood which specifies how well a BN structure fit the data
whereas the classification algorithms maximize prediction accuracies expressed in terms of
the conditional likelihood.

As shown in the equation (4.5), a score metric contains a term that measures likelihood
of the structure G given the data set D which can be written as follows:

L(G|D) = P (D|G) =
N∏

i=1

P (ci|ai
1, . . . , a

i
n, G)P (ai

1, . . . , a
i
n|G) (4.24)

or in terms of log-likelihood:

L(G|D) = P (D|G) =
N∑

i=1

log P (ci|ai
1, . . . , a

i
n, G) +

N∑
i=1

log P (ai
1, . . . , a

i
n|G) (4.25)

where each instance xi in the data set D = {x1, . . . ,xN} contains assigned values to
the attributes A1, . . . , An and to the class variable C: {ai

1, . . . , a
i
n, ci}

The first term in the equation 4.25 measures how well the network G estimates P (C|A1, . . . , An).
It is thus related to the score of the network as a classifier. The second term represents
the joint probability distribution over the attributes estimated according to network G.
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Friedman et al. (1997) have shown that the first term is dominated by the second term
when there are many attributes. This implies that relatively large error in the first term
may not be reflected in the total score function. Comparing unrestricted BN classifiers
with the NB classifiers over various data sets, Friedman et al. (1997) found that cases
in which NB classifiers outperform BN classifiers although having the worse total scores,
are cases in which the Markov blanket of the class variable contains a small number of
attributes. From all these, it follows that a network with a better score is not necessarily
a better classifier.

One solution to this problem proposed by (Friedman et al., 1997) is to restrict the score
metric only to the first term estimating in this way conditional-log likelihood :

CLL(G|D) =
N∑

i=1

log P (ci|ai
1, . . . , a

i
n)

However, this score, as opposed to the log-likelihood, is not decomposable over the network
structure (see 4.9). Since it is not feasible to maximize the choice of each conditional
probability distribution in the network separately, the computation of the network that
maximize CLL(G|D) becomes unfeasible. Therefore, Friedman et al. (1997) abandoned
this solution leaving as an open issue the search for some heuristic approaches that will
allow effective learning of BN classifiers by maximizing the conditional log likelihood score.
Recently, the research on developing more accurate BN classifiers has begun to develop in
this direction (Grossman and Domingos, 2004; Jing et al., 2005).

Friedman et al. (1997) proposed another approach in learning BN classifiers that is
concerned with augmenting the NB structure with edges among attributes. It ensures
that all attributes are in the Markov blanket of the class node. Following this approach
several types of BN classifiers have been developed among which are the Tree Augmented
Naive Bayes (TAN) classifier and the Bayesian Augmented Naive Bayes (BAN) classifiers.
Those classifiers in addition to the NB and general Bayesian Network (GBN) classifiers
were employed for the experiments presented in Chapter 5. All four types of classifiers
are presented in more detail in the following sections. These classifiers differ based on the
structures that are permitted. Once the structure is known, any of the learning algorithms
presented in Section 4.2.1 can be applied for estimating the network parameters. Therefore,
in the following sections, we will discuss only methods for learning the structure of each
classifier.

Naive Bayes (NB)

A NB classifier is a simple BN which encodes the class variable as the parent of all
attribute variables. It also imposes a strict conditional independence among the attribute
variables given the class prohibiting in that way any connections between the attribute
nodes in the network (see Figure 4.2). Since the structure is known in advance, learning
NBs from data is concerned only with the parameter learning. Due to the strict conditional
independence requirement, the posterior distribution of the class given the attributes is
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Figure 4.2: An example of a NB structure

� �� �

Figure 4.3: An example of a TAN structure

estimated in the following way:

P (C|a1, . . . , an) ≈ P (C)
n∏

i=1

P (ai|C)

Although the independence criterion among attributes is unrealistic in many domains,
NB classifiers have shown surprisingly good performances in comparison to more sophisti-
cated classifiers over a large number of data sets especially in those cases where attributes
are not strongly correlated. For a detailed technical explanation of the reasons for the
surprisingly good performances of NBs classifiers we refer to (Friedman, 1997a).

Tree Augmented Naive Bayes (TAN)

A TAN classifier is an extension of a NB classifier which allows the attribute nodes
to form a tree. The algorithm for learning TANs introduced by Friedman et al. (1997),
first learns a tree structure over D \ {C} by applying conditional mutual information tests
I(Ai; Aj|C) defined as:

IP (Ai; Aj|C) =
∑

ai,aj ,c

P (ai, aj, c) log
P (ai, aj|c)

P (ai|c)P (aj|c)
(4.26)

This function measures how much information Aj provides about Ai when C is known.
The tree is created in three steps as stated in (Friedman et al., 1997). First, it builds a
complete undirected graph in which vertices are attribute variables. An edge that connects
nodes Ai and Aj is annotated with the weight IP (Ai; Aj|C). Second, the algorithm forms
a maximum weighted spanning tree. Finally, it transforms the created undirected tree to
a direct one. After the tree has been created, the class node is added as a parent to each
attribute node forming in this way a structure similar to the NB structure (see Figure 4.3).
It is to be noted that this algorithm can be classified as a supervised CI-based structure
learning approach (see Section 4.2.1) - supervised in the sense that the class node is treated
differently than the attribute nodes.
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Figure 4.4: An example of a BAN struc-
ture

�

�� �

Figure 4.5: An example of a GBN struc-
ture

Bayesian Augmented Naive Bayes (BAN)

BAN classifiers extend NB classifiers by allowing attributes to create an arbitrary graph
(see Figure 4.4). The algorithm for learning BAN classifiers is similar to the TAN learning
algorithm. The only difference is that a BAN learner applies an unrestricted BN structure
learning algorithm instead of tree learning algorithm. Both CI-based and score-based
methods can be applied for learning BNs over the attributes variables (Friedman et al.,
1997; Cheng and Greiner, 1999).

General Bayesian Network (GBN)

In contrast to the NB and augmented NB classifiers, GBN classifiers treat the class
node as an ordinary node applying in that way an unsupervised approach for learning the
network structure over the class and attribute variables (see Figure 4.5). The GBN learner
finds the Markov blanket of the class node performing in that way the attribute selection.

4.4 Dynamic Bayesian Networks

In the previous section, we presented BNs as probabilistic models that assume the
static environment, that is time-invariant distribution and time-invariant data generation
models. In this section, we discuss Dynamic Bayesian Networks (DBNs) which represent
general probabilistic models of sequential data. Sequential data may be either time-series
data generated by a dynamic system or sequence data. The term “dynamic” is used to
denote that a dynamic system is being modeled and not that the network is being changed
over time. DBNs can be seen as an extension of BNs especially aimed at probabilistic
sequential modeling.

DBNs belong to a family of so-called state-space models which assume that there is some
underlying hidden state of the world which generates observations (or outputs) and that
hidden state evolves over time (Murphy, 2002). Additionally, the evolution of a hidden state
can be determined as a function of some input variables. The two most common state-space
models are Hidden Markov Models (HMMs) and Kalman Filter Models (KFMs). DBNs
are a more general and expressive framework for representing state-space models. They
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generalize HMMs and KFMs by allowing complex interdependencies among variables in
the networks; HMMs and KFMs have a restricted topology and they can be seen as simple
forms of DBNs. The difference between a DBN and a HMM is that the hidden state in a
DBN is represented in terms of a set of random variables whereas in a HMM it is modeled
as a single discrete random variable. DBNs and KFMs differ regarding the type of nodes
allowed in the network: all nodes in KFMs are required to be linear-Gaussian whereas
DBNs do not impose any restriction on the node types.

4.4.1 Representation

Let Z = Z1, Z2, . . . denote semi-infinitive collections of random variables each of which
denoting a random variable at particular time t, represented as Zt = (Xt, Yt) where Xt

represents a set of hidden variables, often referred to as states, and Yt represents a set of
observational variables. Additionally, Zt may also include the control variables Ut used for
modeling controlled dynamic systems. As controlled variables are not considered in this
thesis, we omit Ut from further discussion in order to simplify the notation. Furthermore,
for the same reasons, we will assume that a DBN is a first-order Markov model, that is,
the state of the model at the time t is dependent only on the state of the model at time
t-1. However, a DBN can also be specified as a higher-order Markov model. As stated in
(Murphy, 2002), a DBN over Z can be formally defined as follows:

4.4.1. Definition. A DBN over semi-infinite collections of random variables Z1, Z2, . . .
is a pair (B1, B−→) where B1 is a prior BN that specifies a prior distribution over the ini-
tial set of states and observations P (Z1) and B−→ is a two-slice temporal BN (2TBN),
so-called transition network, which specifies P (Zt|Zt−1) by means of a directed acyclic
graph as follows:

P (Zt|Zt−1) =
n∏

i=1

P (Zi
t |Pa(Zi

t)) (4.27)

where Zi
t represent i-th node at time t which can be either from Xt or from Yt. Pa(Zi

t)
is a set of parents of the node Zi

t which can be either from the same time-slice or from the
previous time-slice. The nodes in the first slice of a 2TBN do not have any parameters
assigned to them. However, each node in the second slice of the DBN has an associated
conditional probability distribution specified as P (Zi

t |Pa(Zi
t)) for t > 1.

The provided definition covers the general case in which the prior network may have
a quite different independence structure than the transition network. However, very often
a DBN is represented using only the transition network assuming that all slices have the
same structure. An example of such a network is given in Figure 5.3. Connections between
variables within a time slice are referred to as intra-slice connections whereas connections
between time slices are known as inter-slice connections.

In general, it can be assumed that parameters are time-invariant, that is, P (Zi
t |Pa(Zi

t)) =
P (Zi

t+l|Pa(Zi
t+l)). If parameters do change over time they can be added to a model in terms
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Figure 4.6: An example of a DBN structure

of random variables. Since parameters are tied across time slices, it is possible to model
sequences of unbounded length by unrolling the 2TBN into a BN structure. Given a DBN
model, the full joint probability distribution over a set of variables that form a sequence
of length T is represented as follows:

P (Z1:T ) =
T∏

t=1

n∏
i=1

P (Zi
t |Pa(Zi

t)) (4.28)

4.4.2 Learning DBNs from data

The techniques for learning DBNs from the data are mostly straightforward extensions
of the techniques for learning BNs described in Section 4.2.1. In contrast to the static
case, the training set D consists of Ns observational sequences. The k-th such sequence
having the length Nk specifies values {zk

1 , . . . , z
k
Nk
} for the variables Zk

1 , . . . , Zk
Nk

. Such a
data set provides Ns instances of initial slices Zi

1 used for training the prior network B1

and N =
∑

k Nk instances of transitions from which B−→ can be estimated. If there are
neither hidden states Xt involved in the model nor missing observations for observational
variable Y k

t , the data set D is considered as complete.

Structure learning

Friedman et al. (1998) proposed methods for learning structures of DBNs from complete
as well as from incomplete data designed as an extension of the techniques developed for the
static case. Regarding the complete data set, Friedman et al. (1998) defined extensions of
the BDe criterion as well as of an information criterion known as BIC (Bayesian Information
Criterion) for the application to DBNs (see Section 4.2.1). Similar to static BNs, a greedy
search can be employed for searching for a structure that maximizes the specified score
metrics. An additional constraint is that the network structure needs to be repeated over
time. For learning the structure from an incomplete data set, Friedman et al. (1998)
proposed an extension of the structural EM algorithm (SEM), originally developed for
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static BNs by Friedman (1997b), for DBNs. The SEM algorithm is a modification of the EM
algorithm which in the M-step performs not only re-estimation of the network parameters
but also uses the expected counts according to the current structure to evaluate any other
candidate structure. In addition to the complete structure learning which comprises both
learning the intra-slice and inter-slice connectivity, it is also common to specify intra-slice
connectivity in advance and to reduce the learning problem to learning connections across
the slices.

Parameter learning

Given the structure of a DBN, learning the network parameters can be performed offline
and online. In this thesis, we made use of the offline learning approach. Similar to learning
parameters of static BNs, the offline learning assumes that the data set D containing Ns

sequences of the same or different lengths is given in advance. The same techniques as those
used for parameter learning in the static case can be applied in the dynamic case: the ML
or MAP estimator if D is complete; otherwise, the EM estimator. The parameters of the
prior network are often taken to represent the initial state of the dynamic system being
modelled. In this case, these parameters are estimated independently of the parameters for
the transition network. Very often, especially when Ns is very small, these parameters are
fixed a priori. However, if the parameters represent stationary distribution of the system,
then their estimation is coupled with estimation of the parameters of the transition network.

4.4.3 Inference in DBNs

The general inference problem in DBNs it to compute the probability distribution
P (X i

t |y1:t1) where X i
t denotes the i-th unobserved variable at slice t and y1:t1 is a set of

t1 consecutive observations, that is, evidence between starting time and t1. The general
inference problem can be refined into the following specific inference tasks.

• Filtering: P (Xt|y1:t)

• Smoothing: fixed-leg smoothing P (Xt−l|y1:t) and fixed-interval or offline smoothing
P (Xt|y1:T ), where T is the number of the slices in the observed sequence.

• Prediction: P (Xt+l|y1:t)

• Viterbi decoding: x∗
1:t = argmaxx1:t

P (x1:t|y1:t)

The ways these types of inferences are calculated are dependent on the models and
algorithms used. The term model at this instance refers to the general DBNs discussed so
far as well as to different types of specialized DBNs which have a specific network structure
and an assigned set of properties.

Similar to static BNs both exact and approximate inference methods can be applied. A
common approach to exact inference in a DBN is to unroll the DBN for T slices and thus
apply any inference algorithm to the resulting static BN. Murphy (2002) presented the
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application of the junction tree algorithm to the unrolled DBN for the offline smoothing.
If the DBN contains discrete state nodes, it can be first converted to a HMM and then the
well-known forwards-backwards (FB) algorithm for smoothing in HMM can be applied.
To estimate P (Xt = i|y1:T )9 the FB algorithm combines αt(i) = P (Xt = i|y1:t) computed
in the forward pass and βt(i) = P (yt+1,T |Xt = i) computed in the backward pass. In this
thesis, we made use of the junction tree algorithm.

As to the approximate inference in DBNs, both deterministic and sampling approaches
as defined in Section 4.2.2 can be applied. Standard deterministic approaches for approxi-
mate inference for discrete DBNs are the Boyen-Koller algorithm (Boyen and Koller, 1998)
and the Factored Frontier algorithm (Murphy and Weiss, 2001). Examples of the sampling
approaches include the importance sampling and MCMC methods (see Section 4.2.2). For
a detailed overview of the existing approximate inference algorithms, we refer to (Murphy,
2002).

4.5 Classifier evaluation

Once a classifier has been learned using a training data set, we need to estimate how
predictive the classifier is, that is, how well the classifier performs on new unseen data. In
this section, we discuss different metrics and methods used for the evaluation of classifiers’
performances.

4.5.1 Evaluation metrics

There are several criteria that can be used in assessing a classifier’s performance such as
success rate, risk of making incorrect predictions, accuracy of probability estimates, inter-
pretability, time and special complexity regarding both training and testing (Witten and
Frank, 2000). Which of these criteria are to be used depends on the particular application
of the classifier.

A natural measure for assessing the overall performance of a classifier is the accuracy,
also known as success rate defined as the proportion of correctly classified instances in a
data set10. However, it has been shown in the literature that overall accuracy may not be an
accurate estimator of a classifier’s performances if class values are unequally distributed in
the data set. Therefore, a number of different performance measures has been proposed in
the literature for a more reliable assessment of classifiers’ qualities. For a detailed overview
of some of existing standard evaluation metrics, we refer to (Witten and Frank, 2000). In
this thesis, we made use of the precision, recall and F-measure for estimating how well

9Since HMMs contain one discrete hidden node per slice the event Xt = i denotes that Xt takes the i-th

value. A DBN, on the other hand, may have several hidden nodes and so far, Xi
t has been used to denote

the i-th node in the slice t. However, in this particular case, the DBN is converted to HMM. Therefore,
the HMM notation is employed

10alternatively, the error rate is used defined as 100%− Sr where Sr is the success rate
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classifiers perform regarding the prediction of a particular class value:

RecallCi
=

number of correctly classified Ci

total number of Ci in data
(4.29)

PrecisionCi
=

number of correctly classified Ci

total number instances classified as Ci

(4.30)

F-measureCi
=

2× RecallCi
× PrecisionCi

RecallCi
+ PrecisionCi

(4.31)

4.5.2 Evaluation methodology

To predict a classifier’s performance on unseen data, performance measures need to be
estimated on a new data set, referred to as a test set, which contains instances that were
not used in the learning process. When a large amount of data is available, the common
practice is to divide the data set into a training set and a test set where the training set
forms a larger data partition; usually, two-thirds of the data are used for training and one-
third for testing. However, when the amount of data for training and testing is limited, it
is desirable to apply the cross-validation technique. Cross-validation assumes that the data
set is divided into n approximately equal data partitions, so-called folds, each of which is
used for testing the classifier trained on the remaining n − 1 folds. This process is called
n-fold cross validation. Repeating the evaluation process n times using non-overlapping
test sets reduces the bias caused by the choice of the instances included in the training
and test sets. The overall error estimate is computed as an average of the error estimates
obtained on each fold.

An important issue when splitting the data set into a training and test sets or into n
folds, is to ensure that class values are almost equally distributed in the training and test
set. This process, known as stratification, reduces the variance of the estimated measures.
As discussed in (Witten and Frank, 2000), empirical tests on various data sets using a wide
range of classifiers have shown that the most accurate estimates of classifiers performances
are obtained using stratified 10-fold cross validation. In some cases, an additional data
set, a so-called validation set, can be employed for the optimization of parameters of a
classifier.



Chapter 5

Addressee classification in meetings using
Bayesian Networks

In this chapter, we present results on addressee classification in four-participants face-
to-face meetings using several types of static BN classifiers as well as using DBN classifiers.

The experiments presented in this chapter were conducted on the M4 and the AMI
meeting corpora described in Chapter 3. A part of the M4 corpus that consists of the
annotated M4 meetings is used in our experiments. As discussed in Chapter 3, the M4
meetings are discussion meetings that are scripted in terms of type and schedule of meeting
activities, but the content is natural and unconstrained. The AMI corpus, on the other
hand, is a large collection of (1) scenario-based meetings involving a design team focused on
the development of a TV remote control prototype and (2) naturally occurring meetings in
a wide range of domains. A part of the AMI scenario-based collection that was annotated
with addressee as well as with phenomena relevant to addressing was employed in our
experiments. The M4 and most of the selected AMI meetings were recorded at the IDIAP
smart meeting room; only two AMI meetings recorded in the TNO and Edinburgh meeting
rooms were annotated with addressee information and thus exploited in our experiments.
Although the layout of the rooms is similar for both collections, in the AMI scenario, the
rooms were equipped with additional “attention distracters” such as the task object, in the
first place, and laptops. Furthermore, participants in the AMI meetings, in contrast to the
M4 meetings, were assigned the roles of project manager (PM), industrial designer (ID),
user interface designer (UI) and marketing expert (ME) with different types and degrees
of responsibilities concerning the design project as the whole.

The experiments presented in this chapter were conducted using five sorts of features:
utterance features, gaze features, conversational context features, meeting context features
and participant roles features. The selection of the features was motivated by the analysis
of addressing mechanisms presented Chapter 2. Although it was shown that deictic hand
and head gestures are used as means of addressing, instances of this type were found to
occur very rarely in the data.

First, we conducted experiments on the M4 data using NB and BAN classifiers. The
experiments should be seen as preliminary explorations of appropriate features and models

109
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for addressee identification in face-to-face meetings. The results of the experiments are
reported in Section 5.3. Second, we performed experiments on the AMI data using several
static BN classifiers and the DBN classifier. The results are presented in Section 5.4. In
addition to the NB and BAN classifiers, we evaluated performances of the TAN and GBN
classifiers for the task of addressee prediction. These static BN classifiers were trained and
tested on the AMI data, first, using the set of features employed for the experiments on
the M4 data (henceforth, the M4 feature set) (Section 5.4.2). Then, they were evaluated
using a modified set of contextual, gaze, utterance, meeting context and role features
referred to as the AMI feature set (Section 5.4.3). Finally, as the contextual feature set
includes information about the addressee of the immediately preceding dialogue act, we
investigated how well the addressee of the current dialogue act can be predicted using the
classified instead of hand labeled value for the addressee of the previous dialogue act. For
that purpose, the DBN classifier was employed. The evaluation of the performances of the
DBN classifier on the AMI data is presented in Section 5.4.4. The overall experimental
setup is summarized in Figure 5.1. At the end of this chapter, we address the issue of
further automation of the addressee classification using automatically extracted instead of
manually annotated features (Section 5.5). Concluding remarks regarding the presented
results as well as recommendations for future research on addressee identification are given
in Section 5.6.
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Figure 5.1: Experimental setup and an overview of the structure of this chapter
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5.1 Tools

Experiments with the static BN classifiers presented in this chapter were conducted
using various BN classifier learning algorithms implemented in WEKA (Witten and Frank,
2000) whereas experiments with the DBN classifiers were performed using the Bayes Net
Toolbox (BNT) for MATLAB (Murphy, 2001). Additionally, we conducted experiments
with the static BN classifiers using BNT in order to compare performances of dynamic and
static BN classifiers.

As both meeting corpora are stored in the NXT stand-off XML format, we made use
of the NXT Query Language to extract relevant features from various annotation layers
(see Section 3.1). For the experiments on the M4 data, we created a number of data sets
using the NXT Search engine. The queried results were stored in the Excel format and
further processed using Visual Basic for Applications, an implementation of Visual Basic
that is built into Microsoft Excel. For the experiments on the AMI data, we developed
a NXT based application, Feature Extractor, implemented in Java that is employed for
feature extraction and the creation of various data sets. Generated data sets are stored in
the WEKA file format - Attribute-Relation File Format (ARFF)(Witten and Frank, 2000,
p.49).

5.2 Classification task

In a dialogue situation, which is an event that lasts as long as the dialogue act per-
formed by the speaker in that situation, the class variable is the addressee of the dialogue
act (ADD). We define addressee classifier to identify for each relevant dialogue act whether
the act is addressed to a particular individual or to a group. For addressee classification,
irrelevant dialogue acts in the M4 schema are those dialogue acts that are marked as Unla-
beled whereas in the AMI schema are those dialogue acts that are marked as Backchannel,
Fragment, Stall or Other. These dialogue acts were not labeled with addressee information.

As discussed in Chapter 3, the IDAP, TNO and Edinburgh meeting rooms are relatively
similar but differ in shape, construction and placement of the recording devices. As a
result, meeting participants identified as A, B, C and D in the AMI corpus are located at
different seating positions in different meetings rooms. Since the impact of gaze behavior
on addressee prediction is affected by the seating arrangement of meeting participants,
it is important to have a consistent identification of meeting participants across different
meeting rooms. Therefore, in our model, participants in the meetings are identified based
on the seating positions that are determined relative to the presentation screen in each
meeting room: Px denotes the participant at seating position x, where x ∈ {0, 1, 2, 3} (see
Figure 5.2). Clearly, this representation is plausible if participants do not switch seating
positions during a meeting. In our data set, participants do not change seating positions.
The mapping between participant’s labels A, B, C and D that are related to speech channels
in the AMI corpus and participant labels introduced in our model is performed using the
resource file meetings.xml, which is available as a part of the AMI corpus. The file contains,
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among other things, the mapping between meeting participant labels, roles and audio/video
channel IDs. The participant labels in the M4 corpus Px, which denotes the speaker at the
channel x, coincide with labels introduced here for the purpose of addressee identification.
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(b) Edinburgh Room (c) TNO Room

Figure 5.2: AMI Instrumented Meeting Rooms - the numbers in the triangles denote close-
up camera IDs

Using the notation introduced in this section, the following class values are distin-
guished: individual Px where x ∈ {0, 1, 2, 3} and Group. As group and subgroup addressing
are not distinguished in the AMI annotation schema, both types of addressing are marked
as Group. However, the M4 annotation schema makes a distinction between addressing
the whole group and addressing a subgroup of participants. Since there are only a few
instances of subgroup addressing in the M4 data and annotators failed to agree on the
subgroup categories, we excluded those instances from the data set. Therefore, the Group

class value encompasses the whole audience in the M4 experiments whereas in the AMI
experiments, it refers to any group of participants. Furthermore, both schemas allow for
dialogue acts to be labelled with the Unknown/Unclassifiable addressee tag which denotes
that annotators could not determine who is being addressed. These instances of dialogue
acts were employed for deriving contextual information used for predicting the addressee
of the dialogue act at hand, as will be explained later in this chapter.

5.3 Addressee classification on the M4 data

The goals of the experiments presented in this section are:

1. to find relevant features for addressee classification in meetings using information
obtained from multi-modal resources - gaze, speech and conversational context

2. to explore to what extent the performances of classifiers can be improved by com-
bining different types of features obtained from these resources

3. to investigate whether information about meeting context modeled in terms of meet-
ing activities can aid the performances of addressee classifiers
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4. to compare performances of the NB and BAN classifiers for the task of addressee
prediction over various feature sets.

5.3.1 Feature set

To identify the addressee of a dialogue act we initially used three sorts of features:
conversational context features (later referred to as contextual features), utterance features
and gaze features. Additionally, we conducted experiments with an extended feature set
including a feature that conveys information about meeting context.

Contextual features Contextual features provide information about the preceding
relevant dialogue acts. We experimented with using information about the speaker, the
addressee and the type of the immediately preceding dialogue act regardless of whether it
is by the same or a different speaker (SP-1, ADD-1, DA-1) as well as information about
the related dialogue act (SP-R, ADD-R, DA-R). A related dialogue act is the dialogue
act that is the a-part of an adjacency pair with the current dialogue act as the b-part.
The information about the speaker of the current dialogue act (SP) has also been included
in the contextual feature set. If a dialogue act is unrelated SP-R, DA-R and ADD-R
are assigned to NULL value. Similarly, if the previous relevant dialogue act does not exist
corresponding contextual information is marked as NULL. Furthermore, the same value is
assigned to ADD-1 and ADD-R if the relevant dialogue act is marked with the Unknown
addressee tag.

Utterance features The utterance feature set comprises the following set of binary
lexical features:

• PP - does the utterance contain personal pronouns “we” or “you”, both of them, or
neither of them?

• PPA - does the utterance contain possessive pronouns or possessive adjectives
(“your/yours” or “our/ours”), their combination or neither of them?

• IP - does the utterance contain indefinite pronouns such as “somebody”, “someone”,
“anybody”, “anyone”, “everybody” or “everyone”?

• Name-Px does the utterance contain the name of participant Px where x ∈ {0, 1, 2, 3}?

Utterance features also include information about the utterance’s conversational func-
tion (DA-Type) and information about utterance duration, that is, whether the utterance
is short or long (Short). In our experiments, an utterance is considered as a short utter-
ance, if its duration is less than or equal to 1 sec. The value set for the DA-Type feature
and in line with that for DA-1 and DA-R features includes the complete set of relevant DA
tags that was used in the corpus creation (see Section 3.3.2). As discussed in Section 5.2,
irrelevant dialogue acts are marked as Unlabelled.
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Gaze features We experimented with a variety of gaze features. In the first exper-
iment, for each participant Px we defined a set of features in the form Px-looks-Py and
Px-looks-NT where x, y ∈ {0, 1, 2, 3} and x 6= y ; Px-looks-NT represents that partici-
pant Px does not look at any of the participants. The value set represents the number of
times that participant Px looks at participant Py or looks away during the time span of the
utterance: zero for 0, one for 1, two for 2 and more for 3 or more times. In the second
experiment, we defined a feature set that incorporates only information about the gaze
direction of the current speaker (SP-looks-Px and SP-looks-NT) with the same value
set as in the first experiment.

Meeting context As to meeting context, we experimented with different values of
the feature that represents the meeting actions (MA-Type). First, we used a full set of
speech based meeting actions that was applied for the manual annotation of the meetings in
the corpus: monologue, discussion, presentation, whiteboard, consensus and disagreement.
As the results on modeling group actions in meetings presented in McCowan et al. (2003)
indicate that consensus and disagreement were mostly misclassified as discussion, we have
also conducted experiments with a set of four values for MA-Type, where consensus,
disagreement and discussion meeting actions were grouped in one category marked as
discussion.

5.3.2 Models, data set and evaluation method

Models Addressee classification on the M4 data has been performed by means of the
NB and BAN classifiers. BAN has been chosen as a representative of more general BN
classifiers in comparison to NB classifiers. Furthermore, we limited the maximal number
of parents for each node in the BAN structure to 3. For learning the BAN structure, we
applied the K2 algorithm explained in Chapter 4. The algorithm requires an ordering of
the observable features; different ordering leads to different network structures. We con-
ducted experiments with several orderings regarding feature types as well as with different
orderings regarding features of the same type. In all orderings, the contextual features
were first in the list and variations were based on the the positions of the remaining fea-
tures in the set. The obtained classification results for different orderings were nearly
identical. Parameters of the network were estimated using MAP estimates by setting all
hyperparameters αijk to 0.5 (see Section 4.2.1, equation (4.21)).

Data set After we had discarded the instances labeled with Unknown or subgroup ad-
dressee tags, there were 781 instances left available for the experiments1. The distribution
of the class values in the selected data is presented in Table 5.1.

1According to the M4 addressee annotation schema, dialogue acts marked as Unlabeled are assigned
the Unknown addressee tag
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Group P0 P1 P2 P3

40.20% 13.83% 17.03% 15.88% 13.06%

Table 5.1: Distribution of class values - M4 data set

Evaluation method Performances of the addressee classifiers on the M4 data were
evaluated in terms of accuracy. To evaluate performances of the addressee classifiers per
class value we made use of precision, recall and F-measure. The performance measures are
estimated using the stratified 10-fold cross validation (see Section 4.5).

5.3.3 Results and discussions

Experiments without meeting context

The performances of the classifiers are measured using different feature sets. First, we
measured the performances of classifiers using utterance features, gaze features and contex-
tual features separately. Then, we conducted experiments with all possible combinations
of different types of features. As a simple baseline we used the classifier which always
predicts the majority class. As shown in Table 5.1 the classifier tags all instances in the
data set as addressed to the group which is correct in 40.20% of cases.

Table 5.2 summarizes the accuracies of the NB and BAN classifiers (with 95% confidence
interval) for different feature sets (1) using gaze information of all meeting participants
(Gaze ALL) and (2) using only information about speaker gaze direction (Gaze SP).

NB BAN

Feature sets Gaze ALL Gaze SP Gaze ALL Gaze SP

All Features 78.10 (±2.90) 78.49 (±2.88) 81.05 (±2.75) 82.59 (±2.66)
Context 68.12 (±3.27) 73.11 (±3.11)

Utterance+SP 52.50 (±3.50) 52.62 (±3.50)
Gaze+SP 64.53 (±3.36) 59.02 (±3.45) 66.45 (±3.31) 62.36 (±3.40)

Gaze+SP+Short 65.94 (±3.32) 61.46 (±3.41) 67.73 (±3.28) 66.45 (±3.31)
Context+Utterance 72.21 (±3.14) 76.82 (±2.96)

Context+Gaze 74.90 (±3.04) 77.59 (±2.92) 79.00 (±2.86) 80.03 (±2.80)
Utterance+Gaze+SP 69.78 (±3.22) 68.63 (±3.25) 70.68 (±3.19) 70.04 (±3.21)

Table 5.2: Accuracies of the BAN and NB classifiers using gaze information of all meeting
participants (Gaze All) and using speaker gaze information (Gaze SP). The results for the
feature sets without gaze features are summarized in the columns Gaze ALL

The results show that the BAN classifier outperforms the NB classifier for all feature
sets, although the difference is significant only for the feature sets that include contextual
features. Furthermore, both classifiers significantly outperform the baseline over all feature
sets.
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For the feature set that contains only information about gaze behavior combined with
information about the speaker (Gaze+SP), both classifiers perform significantly better
when exploiting gaze information of all meeting participants. In other words, when using
solely focus of visual attention to identify the addressee of a dialogue act, listeners’ focus
of attention provides valuable information for addressee prediction. The same conclusion
can be drawn when adding information about utterance duration to the gaze feature set
(Gaze+SP+Short), although for the BAN classifier the difference is not significant. For all
other feature sets, the classifiers do not show a significant difference in the accuracies when
including or excluding the listeners gaze information. Moreover, both classifiers perform
better using only speaker gaze information in all cases except when combined utterance
and gaze features are exploited (Utterance+Gaze+SP).

The BAN and NB classifiers show the same changes in the performances over different
feature sets. The results indicate that the selected utterance features are less informative
for addressee prediction compared to contextual features (BAN:73.11%; NB:68.12%) or
features of gaze behavior (BAN:66.45%, NB:64.53%). The results also show that adding
the information about the utterance duration to the gaze features, slightly increases the
accuracies of the classifiers (BAN:67.73%, NB:65.94%). This confirms findings presented
in (Bakx et al., 2003) which have shown that some improvement in addressee detection in
the context of mixed human-human and human-computer interaction can be achieved by
combining utterance duration with gaze. Combining the information from the gaze and
speech channels significantly improves the performances of the classifiers (BAN:70.68%;
NB:69.78%) in comparison to performances obtained from each channel separately. Fur-
thermore, higher accuracies are gained when adding contextual features to the utter-
ance features (BAN:76.82%; NB:72.21%) and even more to the features of gaze behavior
(BAN:80.03%, NB:77.59%). As is to be expected, the best performances are achieved by
combining all three types of features (BAN:82.59%, NB:78.49%), although not significantly
better compared to combined contextual and gaze features.

Likewise using information about the speaker of the a-part of an adjacency pair for
detecting the addressee of its b-part, information about addressee of the b-part can be
employed as a useful cue for identifying the speaker of the a-part and thus the related
dialogue act. Therefore, we also explored how well the addressee can be predicted ex-
cluding information about the related utterance. The best performances are achieved by
combining speaker gaze information with contextual and utterance features (BAN:79.39%;
NB:76.06%). The decrease in the performance of about 3% can be considered as small since
contextual information provided by the related dialogue act is shown to be a strong indi-
cator for addressee detection: using only contextual information obtained from the related
dialogue act both classifiers scores are around 66%. Therefore, it can be concluded that
remaining contextual, utterance and gaze features capture most of the useful information
provided by the related dialogue act.

Precision, recall and F-measures presented in Tables 5.3 and 5.4 indicate that each
classifier performs almost equally well over all class values according to F-measures. The
confusion matrixes of the best performed BAN and NB classifiers presented in Tables 5.5
and 5.6 show that most misclassifications were between addressing types (individual vs.
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Class Precision Recall F-measure

P0 0.765 0.843 0.802
P1 0.831 0.850 0.840
P2 0.829 0.823 0.826
P3 0.918 0.765 0.834

Group 0.821 0.831 0.826

Table 5.3: Evaluation per class value for the
BAN classifier using utterance, contextual
and speaker gaze features

Class Precision Recall F-measure

P0 0.781 0.759 0.770
P1 0.789 0.789 0.789
P2 0.858 0.734 0.791
P3 0.831 0.676 0.746

Group 0.751 0.847 0.796

Table 5.4: Evaluation per class value for
the NB classifier using utterance, contex-
tual and speaker gaze features

group): each Px was more confused with Group than with Py where x, y ∈ {0, 1, 2, 3}.
The same type of confusion is observed between human annotators regarding addressee
annotation (see Section 3.3.4). Out of all misclassified cases for each classifier, individual
types of addressing were, on average, misclassified with addressing the group in 73% cases
for NB, and 68% cases for BAN.

P0 P1 P2 P3 G

P0 91 2 4 0 11
P1 4 113 2 0 14
P2 6 3 102 0 13
P3 3 1 1 78 19
G 15 17 14 7 261

Table 5.5: Confusion matrix for the BAN
classifier; rows - ground truth values;
columns - classified values; G - Group

P0 P1 P2 P3 G

P0 82 5 6 0 15
P1 4 105 1 2 21
P2 5 2 91 1 25
P3 1 4 1 69 27
G 13 17 7 11 266

Table 5.6: Confusion matrix for the NB
classifier; rows - ground truth values;
columns - classified values; G - Group

Similar to using Kappa for measuring agreement between human annotators on how
they classify dialogue act segments into a set of addressee categories (see Section 3.2),
Kappa can be used to assess how well an automatic annotator, that is, an automatic
classifier, agrees with a human annotation of the material, which is taken as the ground
truth. Kappa values for the best performing BAN and NB classifiers are 0.71 and 0.77,
respectively. These values are in line with the Kappa values achieved by trained human
annotators reported in Section 3.3.4 (κ = 0.70 and κ = 0.81).

Experiments with meeting context

We examined whether information about meeting context can aid the classifiers’ per-
formances. First, we conducted experiments using the six value set for the MA-Type
feature. Then, we experimented with the reduced set containing four types of meeting
actions (see Section 5.3.1). The accuracies of the classifiers obtained by combining the
MA-Type feature with contextual, utterance and gaze features are presented in Table
5.7.



118 Chapter 5. Addressee classification in meetings using Bayesian Networks

NB BAN

Feature sets Gaze All Gaze SP Gaze All Gaze SP

MA-6+All 78.74 79.90 81.82 82.84
MA-4+All 78.23 79.13 81.69 83.74

Table 5.7: Accuracies of the NB and BAN classifiers using the MA-Type feature combined
with the utterance, gaze and contextual features

The results indicate that adding meeting context information to the initial feature set
improves the classifiers’ performances slightly, but not significantly. The highest accuracy
(83.74%) is achieved using the BAN classifier by combining the four-values MA-Type
feature with contextual, utterance and the speaker’s gaze features.

5.3.4 Summary of findings

In summary, we can draw the following conclusions from the experimental results pre-
sented in this section:

• Contextual information aids classifier performances over gaze and utterance informa-
tion

• Selected utterance features are the most unreliable cues for addressee prediction.

• Listeners’ gaze direction provides useful information only in the situation where gaze
features are used alone.

• Combinations of features from various resources improve classifiers’ performances in
comparison to performances obtained from each resource separately

• The highest accuracies are achieved by combining contextual and utterance features
with the speaker’s gaze directional cues.

• Addressee classifiers show a small decrease in the accuracy when information about
the related dialogue act is excluded from the contextual feature set, which indicates
that the most useful information provided by the related dialogue act is captured by
remaining contextual, utterance and gaze features.

• Addressee classifiers show little gain from information about meeting context

• The BAN classifier outperforms the NB classifier over all feature sets, although the
difference is significant only when contextual features are exploited.

• Addressee classifiers mostly misclassified individual and group addressing
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5.4 Addressee classification on the AMI data

The experiments on the AMI data were conducted with the following goals:

• to explore how well the addressee of a dialogue act can be predicted on the AMI data
using the feature set defined in Section 5.3.1 (M4 feature set)

• to investigate whether the performances of addressee classifiers can be improved using
a modified set of contextual, utterance and gaze features (AMI feature set)

• to explore the impact of meeting context modelled in terms of topical structure on
the classifiers’ performances.

• to examine the effect of using knoweldge about the roles participants perform in
meetings on the performances of the addressee classifers

• to compare performances of the TAN and GBN classifiers in addition to the NB and
BAN classifiers for the task of addressee prediction on the AMI data over various
feature sets.

• to explore the impact of using the classified instead of the hand-annotated value for
the addressee of the immediately preceding dialogue act on the classifiers’ perfor-
mances.

5.4.1 Models, data sets and evaluation methods

Models Addressee classification on the AMI data was performed by means of several
static BN classifiers as well as by means of the DBN classifier. As to static classifiers, we
experimented with the NB, TAN, BAN and GBN classifiers. The NB and BAN classifiers
have also been employed for the comparison of classification results on the M4 and AMI
data sets.

Structures of the static BN classifiers were learned from the data whereas structures of
the DBN classifier were designed based on the learned static structures. For the comparison
of the DBN and static BN classifiers, we experimented not only with the learned but also
with the specified structure of the static BN classifiers. The K2 algorithm was applied for
learning the structure of the BAN and GBN classifiers using the same ordering of feature
types as in the M4 experiments. The structure of the TAN classifier was learned using the
algorithm developed by Friedman et al. (1997)(see Section 4.3). Regarding the BAN and
GBN classifier, we experimented with several thresholds for the maximal number of parents
for each node. In addition to three as the parent threshold that was employed on the M4
data, we conducted experiments with setting the maximal number of parents to four and
five. As the accuracies obtained for different parent thresholds were nearly identical, we
report the classification results for the best performing BAN and GBN classifiers.

For learning parameters of the static BN classifiers in the experiments where structures
were learned from the data, we used the same method as in the M4 experiments: the MAP



120 Chapter 5. Addressee classification in meetings using Bayesian Networks

Data Description Total P0 P1 P2 P3 Group

A set - IS1006d 5380 13.61% 11.08% 9.28% 9.80% 56.25%
B set + IS1006d 6077 14.30% 10.70% 9.13% 11.14% 54.73%

Table 5.8: AMI data sets

estimation with αijk = 0.5. For learning parameters of the DBN classifier, we applied the
EM algorithm with uniform Dirichlet priors on network parameters (see Section 4.2.1).
The MAP algorithm with uniform Dirichlet priors was employed for learning parameters
of the static BN classifiers with the fixed structure.

Data sets Only a small part of the AMI scenario-driven collection has been annotated
with addressee information. For the experiments presented in this chapter, we selected 14
meetings that were annotated with addressees and focus of attention2: ES2008a, TS3005a,
IS1000a, IS1001a, IS1001b, IS1001c, IS1003b, IS1003d, IS1006b, IS1006d, IS1008a, IS1008b,
IS1008c, IS1008d. Most of the selected meetings were recorded in the IDIAP meeting room.
As the IS1006d meeting was not annotated with all types of information that we used in
some of our experiments, we created two data sets to experiment with: the A set that
excludes the IS1006d meeting and the B set that contains all 14 meetings. For each data
set, the distribution of class values is given in Table 5.8. The total numbers of instances
presented in the column Total denote the total numbers of relevant dialogue act segments
that are marked with a class label.

Evaluation methods For evaluating performances of the static BN classifiers, we
performed stratified 10-fold cross validation on the A set. For the experiments with DBNs,
we made use of the larger B data set because the features selected for those experiments
were annotated for all meetings included in the B set. Moreover, we divided the data set
into 5 folds, 4 of which contained 3 meetings and one contained 2 meetings, ensuring that
folds contain approximately similar number of instances. Due to uneven distribution of
addressee values across the meetings, it was not feasible to specify the data set partition
into n folds containing the meetings that completely satisfy the stratification criterion. In
our partition, the average difference between the distribution of the addressee values in
corresponding training and test folds is 2.5% with the maximal difference of about 10%
for the group addressee value in one of the folds. A detailed specification of the data
set partition is given in Appendix A. To compare performances of the DBN and static
BN classifiers, the static classifiers were also evaluated using 5-fold cross validation on the
defined folds.

In addition to the overall accuracy, the detailed accuracies per class value have been
estimated in terms of precision, recall and F-measure. As discussed in Section 5.2, rele-
vant dialogue acts marked with the Unclassifiable addressee tag were employed for deriving

2There are several meetings in the AMI corpus annotated with addressee information for which focus
of attention annotations are not available
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contextual information used for predicting the addressee of the dialogue act at hand. In
the static case, those instances were removed from the data set after the contextual in-
formation obtained from them had been encoded in the feature set for the dialogue act
that follows. In the dynamic case, however, the instances of relevant dialogue acts marked
with Unclassifiable addressee labels were not removed from the data set as in that case the
preceding dialogue act for the dialogue act that follows would be modeled differently than
in the static case: the dialogue act that precedes the dialogue act marked as Unclassifi-
able would be marked as the immediately preceding dialogue act for the dialogue act that
follows the Unclassifiable one. In the DBN model, addressee values for the Unclassifiable
dialogue acts were treated as missing. However, instances of dialogue acts in the test set
with missing addressee values were not considered in the estimation of the classifier’s per-
formance. In other words, the accuracies of the DBN classifier were calculated as the ratio
between correctly classified test instances and the total number of the instances in the test
set that were annotated with a class value.

5.4.2 Addressee classification using static BN classifiers - M4
feature set

The performances of the static BN classifiers on the AMI data were estimated using
the initial feature set that was shown to score the highest accuracy on the M4 data. The
set contains contextual, utterance and speaker gaze features described in Section 5.3.1.

As the AMI and M4 dialogue act tag sets contain different categories, the features
exploited for the experiments on the AMI data differ from the original feature set in the
value set for the DA feature and in line with that for the DA-1 and DA-R features.
Similar to the experiments on the M4 data, the complete set of relevant dialogue act tags
was employed as the value set for the DA feature on the AMI data (see Section 3.4.2). As
discussed in Section 5.2, irrelevant dialogue act types for addressee prediction on the AMI
data are Backchannel, Stall, Fragment and Other. The mapping between the M4 and AMI
dialogue act tag sets is presented in Section 3.5.

In addition to the M4 schema where a dialogue act can be marked either as unrelated
or as related to a previous dialogue act produced by a different speaker, a dialogue act
in the AMI schema can also be related to a previous dialogue act produced by the same
speaker or to something that is not expressed verbally (see Section 3.5). The contextual
feature set encompasses only those related dialogue acts that are produced by a different
speaker. In all other cases, the dialogue act is considered as unrelated.

Table 5.9 summarizes the accuracies of the static BN classifiers estimated on the AMI
data using the M4 feature set. The baseline classifier, which tags all instances as addressed
to the group, has an accuracy of 56.25%. The results show that the accuracies for the
augmented NB classifiers and the GBN classifier do not differ significantly although the
BAN classifier performs the best. Furthermore, all three classifiers outperform the NB
classifier. To evaluate whether the difference in the accuracies between the NB classifier on
one hand and the BAN and GBN classifiers on the other hand is significant we performed
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Feature sets NB TAN BAN GBN

M4 Feature Set 74.33 76.36 76.73 76.60

Table 5.9: Accuracies of static BN classifiers estimated on the AMI using the M4 feature
set

a pairwise T-test based on ten times 10-fold cross validation with the significance level
α = 0.05. The results presented in Appendix A show that the TAN, BAN and GBN
classifiers significantly outperform the NB classifier when the M4 feature set is employed
for the addressee prediction on the AMI data.

The results presented in Table 5.9 indicate a significant decrease in the performances
of the NB and BAN classifiers on the AMI data in comparison to their performances on
the M4 data (see Table 5.2, All Features, Gaze SP). As shown in Tables 5.3 and 5.10
as well as in Tables 5.4 and 5.11 this decrease in performances is reflected in significantly
worse performances regarding the prediction of individual addressee values. However, both
classifiers perform similarly on both data sets regarding the group classification.

Class Precision Recall F-measure

P0 0.719 0.697 0.708
P1 0.735 0.708 0.721
P2 0.684 0.681 0.683
P3 0.729 0.740 0.734

Group 0.805 0.815 0.810

Table 5.10: Evaluation per class value for
the BAN classifier using the M4 feature set

Class Precision Recall F-measure

P0 0.686 0.582 0.630
P1 0.773 0.629 0.694
P2 0.689 0.591 0.636
P3 0.760 0.632 0.690

Group 0.754 0.849 0.799

Table 5.11: Evaluation per class value for
the NB classifier using the M4 feature set

To investigate the reasons for the decrease in the performances on the AMI data re-
garding individual addressee values, we estimated how well the addressee of a dialogue act
can be predicted using each feature type separately. The mean F-measure was used as an
indicator of the classifiers’ performances regarding the recognition of individual addressee
values. The obtained results have shown that utterance and gaze features are even less
effective cues for addressee prediction on the AMI data than on the M4 data.

When utterance features are used alone in combination with speaker information, the
NB and BAN classifiers score considerably lower F-measures regarding individual address-
ing on the AMI data (NB: mean F-measure=0.172, BAN: mean F-measure=0.183) in
comparison to the M4 data (NB: mean F-measure=0.288, BAN: mean F-measure=0.296).
Considerably worse performances on the AMI data regarding the individual addressee val-
ues when using solely utterance features may be, among other reasons, due to the difference
in value sets of the DA feature: the M4 dialogue act tag set provides more valuable in-
formation for distinguishing group from individual addressing as it contains, for example,
acknowledgement or response categories that are on the M4 data in many cases addressed
to a previous speaker. As discussed in Chapter 3, some of utterance conversational func-
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tions that are captured with the M4 response categories (e.g. agreement, disagreement)
are marked in the AMI schema with the assessment category. This category, on the other
hand, is a very broad category in the AMI schema. It captures other aspects of an utter-
ance’s conversational function (e.g. expressing an opinion), which causes this category to
be, in the substantial number of cases, addressed to the group.

Likewise using solely utterance features, the NB and BAN classifiers show substan-
tially worse performances in predicting individual addressee values on the AMI data (NB:
mean F-measure=0.445, BAN:mean F-measure=0.407) than on the M4 data (NB: mean
F-measure=0.581, BAN: mean F-measure=0.591) when gaze features are used alone in
combination with speaker information. One of the reasons for this drop of effectiveness of
the gaze features on the AMI data regarding identification of single addressed dialogue acts
can be influenced by the presence of additional attention distracters in the meeting room
such as remote control prototypes or laptops. Furthermore, the impact of gaze behavior on
the classifier performances can also be influenced by the manner in which focus of attention
was annotated in the AMI corpus: a person A is considered as looking at B, only when
A looks at B’s face. As an example, looking at a participant who is writing something on
the whiteboard is annotated as looking at the whiteboard. Therefore, when a participant
in the audience asks the participant at the whiteboard a question, gaze information alone
does not provide valuable information for detecting the addressee of that question.

5.4.3 Addressee classification using static BN classifiers - AMI
feature set

Feature set

In the previous section, we have shown that utterance and speaker gaze features as
specified in the M4 feature set, are less reliable cues for addressee identification on the
AMI data. Aiming to improve classification results, we defined a modified feature set of
utterance, gaze and contextual features focusing mostly on better exploitation of contextual
information as it was shown that conversational context contributes to the largest extent to
addressee prediction. Additionally, we conducted experiments with an extended feature set
that includes a feature that conveys information regarding the meeting context in terms
of topical organization. Finally, we explored the impact of the background knowledge
about the roles participants play in meetings modeled in terms of role features on the
performances of the addressee classifiers on the AMI data.

Contextual features Two notions of conversational context - namely, local and
global - have been employed for modelling contextual information obtained from the dia-
logue acts that precede the current one. In both cases, only relevant preceding dialogue
acts were taken into account.

The local context encompasses contextual information obtained from the relevant
dialogue acts from the same or a different channel that most recently precede the current
dialogue act. In other words, it comprises n-grams of the preceding dialogue acts. In
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addition to the immediately preceding dialogue act (1-gram) that was modelled in the M4
feature set, we also experimented with the extended context that includes two (2-gram)
and three (3-gram) preceding dialogue acts. Contextual information obtained from the i-th
preceding dialogue act encompasses information about the speaker (SP-i), the addressee
(ADD-i) and the type (DA-i) of that dialogue act.

As to the global context, we distinguished contextual information obtained from a
previous turn from the contextual information obtained from the turn in progress. A turn
is defined as a sequence of successive dialogue acts DAi for i = 1, . . . , N, produced by the
same speaker that satisfy one of the following conditions:

• start(DAi+1)− end(DAi) = 0

• 0 < start(DAi+1)− end(DAi) ≤ T, where T is a defined threshold, and there are no
“turn-relevant” dialogue acts produced by other speakers that occur within the gap
between DAi and DAi+1. In our experiments, irrelevant dialogue acts for the definition
of turns are those dialogue acts marked as Backchannel, Stall or Fragment.

The i-th preceding turn (Ti) of the dialogue act DAx is defined as a turn that contains the
first relevant dialogue act DAy preceding DAX that is not part of previous turns T1, . . . , Ti−1.
Turns containing only irrelevant dialogue acts are considered as irrelevant turns.

The second condition in the definition of a turn specifies three types of silence defined
in Chapter 2: pause, gap and lapse. If the condition is satisfied, the silence is considered
as a pause and DAi+1 is included in the current turn. If the difference is greater than T,
the silence is classified as a lapse if there are no turn-relevant dialogue acts produced by
different speakers occurring within the gap, otherwise it is classified as a gap. In both
cases, DAi+1 is marked as the first dialog act of the next turn. It is to be noted that the
definition of the turn also supports simultaneous speech.

As discussed in Chapter 2, pauses in ordinary conversations are brief. In meetings,
a speaker, however, can make longer pauses while, for example, working on a laptop or
while drawing something on the whiteboard. In this situation, according to Edelsky’s
(1981) distinction between floor and turns, the speaker is having the floor that consists of
several turns. In our experiments, this type of having the floor is considered as one turn.
Empirical analysis of the data shows that the maximal duration of silences of this type of
holding the floor was around 5 sec; most of them are actually less than 3 sec. Therefore,
we experimented with T=5 sec.

Contextual information of a preceding turn encompasses information about the speaker,
the addressee and the type of the relevant dialogue act of that turn which most recently
preceded the current dialogue act. Contextual information of the current turn comprises
information about the addressee and the type of a preceding relevant dialogue act of that
turn. We conducted a number of experiments with various window-sizes regarding the
number of preceding turns as well as regarding the number of preceding dialogue acts within
the same turn. Additionally, we explored the performances of addressee classifiers when
previous turns of the current speaker were both included and excluded from the contextual
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feature set. The results reported in this section are achieved using two contextual feature
sets:

• C11- contains contextual information obtained from the immediately preceding turn
(SP-T-1, ADD-T-1, DA-T-1) and contextual information obtained from immedi-
ately preceding dialogue act within the same turn (ADD-1, DA-1)

• C21-contains contextual information obtained from two preceding turns (SP-T-1,
ADD-T-1, DA-T-1, SP-T-2, ADD-T-2, DA-T-2) and contextual information
obtained from immediately preceding dialogue act within the same turn (ADD-1,
DA-1)

In both cases, the preceding turns of the current speaker were taken into account. The
reasons for choosing these two feature sets are two-fold: (1) addressee classifiers achieved
the highest accuracies when those features are combined with gaze and utterance features
and (2) the obtained results are comparable to those achieved using the selected n-gram
local context features.

Information about the related dialogue act (SP-R, ADD-R, DA-R) and information
about the speaker of the current dialogue act (SP) have also been included in the con-
textual feature set both when experimenting with the local context features and when
experimenting with the global context features. Related dialogue acts are defined in the
same way as in the M4 feature set (see Section 5.4.2).

For any contextual features included, the NULL value has been introduced to account
for instances in which a previous dialogue act segment, as specified in the local or global
context, does not exist. The same value is assigned to addressee contextual features that
were marked with the Unclassifiable addressee tag.

Gaze features Based on the finding summarized in Section 5.3.4 that listeners’ gaze
direction provides valuable information for addressee prediction only in the situation when
gaze features are used alone, we experimented solely with speaker gaze directional cues on
the AMI data.

The experiments were conducted using two groups of gaze features. The first group
consists of the features defined in the M4 feature set: SP-looks-Px and SP-looks-NT,
where x ∈ {0, 1, 2, 3}; SP-looks-NT represents that the speaker does not look at any of
the participants. The second group of features includes all categories that are labelled as
gazed targets in the AMI schema: participants (SP-looks-Px), whiteboard (SP-looks-
WB), presentation slides (SP-looks-PS) and table (SP-looks-T). As in the first feature
group, SP-looks-NT is used to denote that the speaker does not look at any of the labelled
gazed targets.

We also experimented with two different value sets for both groups of features. First,
we defined gaze features as binary features that mark whether or not the speaker looks
at the particular gazed target or whether or not he looks away during the time span of
the current dialogue act. Then, we experimented with the value set that represents the
number of times the speaker looks at a gazed target or looks away in the course of the
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current dialogue act. The extension of the target set to include other objects in the meeting
room had an effect on the distribution of the speaker gaze over the targets. An analysis
of the AMI data has shown that instances where the speaker looks three or more times
at a particular gazed target occur less frequently in the data. Therefore, we defined the
following value set: zero for 0, one for 1, more for 2 or more.

We have found that the addressee classifiers perform slightly better using the limited
feature set. Furthermore, when gaze features are used alone in combination with speaker
information higher accuracies have been achieved using the value set that denotes qualita-
tive account of the number of times a feature occurs during the time span of the current
dialogue act. However, when gaze features are combined with other types of features, the
classifiers perform better using the binary gaze features. For that reason, binary features
SP-looks-Px and SP-looks-NT have been employed for the experiments presented in
this section.

Utterance features Using the available annotations of dialogue acts and named
entities, we experimented with a variety of utterance features that are considered with the
content, duration and the conversational function of the current dialogue act. Some of the
features have already been introduced in the M4 feature set.

• PP$ feature set encompasses subjective and objective personal pronouns, posses-
sive pronouns and possessive adjectives. It consists of the following binary features:
1.sing, 1.pl, 2.sing/pl and 3.pl/sing. For example, 1.pl denotes whether or not
the utterance contains “we”, “us”, “our” or “ours”. In the M4 feature set, PP$ is
partially defined with four-values PP and PPA features that contain information
about we and you person categories.

• IP- whether or not the utterance contains indefinite pronouns such as “somebody”,
“someone”, “anybody”, “anyone”, “everybody” or “everyone”?

• ParticipantRef feature set includes the features that mark reference to meeting
participants:

• Name-Px- whether or not the utterance contains the name of participant Px

where x ∈ {0, 1, 2, 3}. In order to distinguish the usage of the name as an ad-
dressed term from other usages, we also included the BeginOrEnd-Px feature
in the set. It denotes whether or not the name of participant Px occurs at the
beginning or at the end of the utterance.

• Role-Px - whether or not the utterance contains the role of the participant Px.

• NameOrRole-Px - whether or not the utterance contains the name or the role
of participant Px. NameOrRole-Px is mutually exclusive with Name-Px as
well as with Role-Px.

• Short- whether or not the utterance duration is less than or equal to 1 sec.
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• NumWords- qualitative description of the number of words in the utterance: one

for 1, few for 2, 3, 4 words, many for 5 or more words. As these NumWords and
Short features provide almost redundant information, we decided to select one of
those features in the final model.

• Reflexivity - whether or not the utterance is reflexive.

• DA-Type - the conversational function of the current dialogue act. In defining a
value set for the DA-Type feature, we experimented with different groupings of
the dialogue act categories. The results presented in this chapter were obtained
using the following value set: inform, assess, social, elicit, offer, suggest,
comment-about-understanding

Out of all listed utterance features, PP$, DA-Type and NumWords were shown to
be the most informative when combined with selected contextual and utterance features.
The results presented in this chapter are obtained using this subset of utterance features.

Meeting context Meeting context is modelled in terms of the Topic feature. Al-
though the AMI topic segmentation schema allows topics to be nested up to several levels,
we experimented only with top-level topics, which reflect largely the meeting structures
based on the meeting scenario (see Section 3.4.2). Functional topics, as defined in the AMI
schema, can also be labeled as top-level topics. As they reflect the actual process and flow
of meetings (e.g opening, closing), they were also taken into account in modeling meeting
context. Although the schema provides a pre-defined set of topic descriptions for top-level
topics, annotators were allowed to introduce their own descriptions when necessary. How-
ever, we considered only pre-defined topic descriptions; all other descriptions were grouped
into the other category.

The value set for the Topic feature contains the following descriptions:
agenda/equipment, opening, closing, project specification, new requirements,
P0-present, P1-present, P2-present, P3-present, discussion, prototype present-

ation, prototype evaluation, project evaluation, costing, drawing and other. Re-
garding the topics that refer to presentations, the AMI annotation schema contains the
descriptions that refer to participant roles such as marketing expert presentation or indus-
trial designer presentation. However, in the data processing step we mapped these values
into corresponding values P0-present, P1-present, P2-present, P3-present incorporating in
that way the background knowledge of the participant roles into the classification models.

Participant roles In addition to incorporating the background knowledge about the
roles participants play in the AMI meetings in an implicit way by mapping some of the
features or feature values defined in terms of participant roles into corresponding features
or feature values specified in terms of the participants that play these roles (e.g. Name-Px

or Topic), we also modeled this knowledge in an explicit way by defining new features that
bear information about participant roles.
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The experiments were conducted using solely information about the speaker role mod-
eled in two different ways. First, we introduced the Dominant feature which denotes
whether or not the speaker is the participant with the dominant role in the meeting, that
is, project manager. Second, we experimented with the SP-Role feature which marks one
of four AMI scenario roles the speaker fulfils in a meeting: PM, ID, UI or ME. The motivation
for using the Dominant feature is that the participant with the dominant role in a meeting
is expected to address the whole audience on average more than is case with the other
meeting participants. However, as discussed in Section 2.4, the leading role in the meeting
can also be determined by the current meeting activity. For example, a presenter during
the presentation can take over the leading role for that part of the meeting or a partici-
pant with a particular role may become the dominant speaker when a topic related to his
work and knowledge is being discussed. For some types of activities defined in the AMI
meetings, such as presentations, this type of information has already been encoded in the
data processing step. Introducing the SP-Role feature, we aimed to investigate whether
the information about the dominant role for other types of activities and topics can be
extracted from the SP-Role feature. However, we have found that the knowledge about
the particular role that the speaker performs in the meeting does not provide any addi-
tional information in comparison to the information provided by the Dominant feature.
This can also be caused by the fact that the meeting context is modeled in terms of the
Topic feature which bears information about meeting structure specified more in terms of
meeting activities (e.g. discussion or opening) than in terms of the particular topic being
discussed (e.g. look and usability, components and materials, trend watching). The latter
is captured mostly with the subtopics specified in the AMI topic annotation schema. The
results presented in this section were obtained using the Dominant feature.

Experiments with utterance, gaze and contextual features

Table 5.12 summarizes the accuracies of the static BN classifiers evaluated on the A set
using utterance, gaze and local context features. The comparison of the accuracies of the
BN classifiers for the 1-gram model and the accuracies obtained using the M4-feature set
(see Table 5.9) shows that using the simplified set of utterance and gaze features as defined
in the AMI feature set all BN classifiers score the accuracies similar to those obtained using
the M4 feature set. Furthermore, the results show that when extending the local context,
that is, when going from the 1-gram model to the 2-gram model, all classifiers show a
slight improvement in performance, although the NB classifier gain the most (about 2%).
However, further extension of the local context leads to a decrease in the accuracies for
all classifiers except for NB. This may be due to increase in dimensionality of the models
by adding more features, which requires more parameters to be estimated. For reliable
estimates of the parameters, more data are needed.

To compare performances of the static BN classifiers for each feature set we performed
a pairwise T-test based on ten times 10-fold cross validation with the significance level
α = 0.05. The results of the tests are presented in Appendix A. The results indicate
that for all three feature sets there is no significant difference in the performances among
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Context NB TAN BAN GBN

1-gram 73.96 76.91 77.10 76.36
2-gram 75.86 77.49 78.05 76.93
3-gram 76.56 77.36 76.99 76.91

Table 5.12: Accuracies of the static BN classifiers using utterance, gaze and local context
features

the TAN, BAN and GBN classifiers. For 1-gram model, all three classifiers significantly
outperform the NB classifiers. However, for the 2-gram model, the GBN classifier does
not show a significant difference in the performance in comparison to the NB classifier.
The further extension of the local context to the 3-gram model results in the classification
accuracies of the TAN, BAN and GBN classifiers that do not differ significantly in respect
to the classification accuracies of the NB classifier.

Tables 5.13 and 5.14 show the detail evaluation per class value and the confusion matrix
for the best performing addressee classifier - namely, the BAN classifier which employs
utterance, gaze and 2-gram context features.

Class Precision Recall F-measure

P0 0.713 0.754 0.733
P1 0.727 0.767 0.746
P2 0.687 0.687 0.687
P3 0.728 0.782 0.754

Group 0.836 0.805 0.820

Table 5.13: Evaluation per class value for
the BAN classifier using utterance, gaze and
2-gram context features

P0 P1 P2 P3 G

P0 552 7 9 7 157
P1 9 457 11 10 109
P2 9 17 343 14 116
P3 5 7 8 412 95
G 199 141 128 123 2435

Table 5.14: Confusion matrix for the BAN
classifier using utterance, gaze and 2-gram
context features; rows - ground truth val-
ues; columns - classified values

The comparison of the performances of the BAN classifiers presented in Tables 5.13 and
5.10 indicates that the extension of the local context from the 1-gram model (Table 5.10,
the M4 feature set) to the 2-gram model (Table 5.13) somewhat improves the classifier
performances regarding individual addressee values. As presented in the confusion matrix,
most misclassifications were between individual and group addressing. The same type
of the confusion has been observed between human annotators on the AMI data (see
Section 3.4.3). Furthermore, the best performing addressee classifier reaches κ = 0.64
whereas the worse performing addressee classifier - namely, the NB classifier which employs
utterance, gaze and 1-gram context features (see Table 5.12) - scores κ = 0.57. These
Kappa values are in line with pairwise Kappa values between human annotators who took
part in the corpus creation 0.50 ≤ κ ≤ 0.63 (see Section 3.4.3). The type of confusion
as well as the Kappa values indicate that although agreement between human annotators
on addressee annotation was somewhat low, automatic addressee classifiers did not show
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unexpected behavior with the respect to the type and amount of confusion when trained
and evaluated on the hand annotated data.

The accuracies of the static BN classifiers obtained using the utterance, gaze and the
global context featured set are summarized in Table 5.15.

Context NB TAN BAN GBN

C11 75.35 78.42 78.53 77.14
C21 76.13 78.81 78.81 76.67

Table 5.15: Accuracies of the static BN classifiers using the utterance, gaze and global
context features

The classification accuracies obtained using the C11 context feature set combined with
utterance and gaze features are comparable to the accuracies obtained using the 2-gram
local context model. However, the C11 model contains the smaller number of features
as the information obtained from the turn in progress exclude speaker information. On
the other hand, for the first dialogue act of each turn, the C11 model provides the same
information as the 1-gram model although represented with a reduced feature set. The
same comparison holds for the C22 model, on the one hand, and 3-gram and 2-gram models,
on the other hand.

The results presented in Table 5.15 indicate that modelling conversational context in
a global way which distinguishes information obtained from the previous turns from the
conversational information obtained from the turn in progress does not significantly change
classifier performances in comparison to performances obtained using the local context (see
Table 5.12). However, the TAN and BAN classifiers show the largest gain from modelling
context in the global way: comparing the C21 model with the 3-gram model, the TAN
and BAN classifiers increase their accuracies for 1.45% and 1.82%, respectively. The NB
classifier, on the other hand, scores lower accuracies when the global context is employed
for addressee detection than when the local context is considered. The results presented
in Table 5.15 also indicate that extending the global context from the C11 model to C21
model increases slightly but not significantly the performances of the NB and augmented
NB classifiers. This kind of the change in the performances regarding the augmented
NB classifiers is different from the change in the performances that was observed when
extending the local context from 2-gram model to 3-gram model (see Table 5.12).

Likewise comparing the performances of the static BN classifiers using the local context
features, the pairwise T-test was performed for the comparison of the classifiers using the
global feature set (see Appendix A). The results show that the augmented NB classifiers
significantly outperform the NB and GBN classifiers for both feature sets. For the C11
model, the GBN classifier significantly outperforms the NB classifier. However, for for
the C21 model, the difference in the classification accuracies between the NB and GBN
classifiers is not significant.

We also explored how well the addressee classifiers perform on the AMI data when
information about related dialogue act is excluded from the contextual feature set. The
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Context NB TAN BAN GBN

Local context

1-gram 71.52 74.57 75.50 74.09
2-gram 73.55 76.15 75.97 73.66
3-gram 74.13 75.97 75.39 72.49

Global context

C11 72.66 76.43 76.04 74.96
C21 72.88 77.14 76.45 74.35

Table 5.16: Accuracies of the static BN classifiers using utterance features and gaze features
combined with the contextual feature sets that exclude information about the related
dialogue act

results of the experiments are given in Table 5.16. The results indicate that when contextual
information obtained from the related dialogue act is not considered, all classifiers show
a decrease in the performances for all feature sets. Comparing to classification results
presented in Tables 5.12 and 5.15 for the corresponding feature sets, the decrease ranges
from 1.3% for the TAN classifier using the 2-gram model to 4.4% for the GBN classifier
using the 3-gram model with an average decrease of about 2%. As discussed in Section 5.3.2,
the decrease of about 2% in the accuracies when information about related dialogue act
is excluded can be considered as small indicating in that way that remaining contextual,
utterance and gaze features cover the most useful information provided by the related
dialogue act.

The TAN and BAN classifiers are the most resistant to excluding information about
the related dialogue from the both local and global contextual feature sets. The GBN
classifier, however, is the most affected when local context features are employed for ad-
dressee prediction. Furthermore, the drop in the accuracies of the GBN classifier when
excluding information provided by the related dialogue act increases with the extension of
the local context. This is somewhat surprising as it would be expected that the extension
of the context could capture the valuable information provided by the related dialogue
act since related dialogue acts in multi-party conversations are not always adjacent. How-
ever, modelling context in the global way provides more valuable information for addressee
prediction in respect to the GBN classier when contextual features obtained from the re-
lated dialogue act are excluded in comparison to information provided by the local context
without related dialogue act features. Likewise the GBN classifier, the augmented NB clas-
sifiers show better performances using the global representation of the context. The NB
classifier, on the other hand, achieves considerably lower accuracies when using the global
context features than when using the local context features. Analysis of the accuracies of
the addressee classifiers per class value have shown that the decrease in the performances
when information about related dialogue act is excluded is reflected in the significantly
worse performances regarding the individual addressee value.
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Disadvantages of the global context Modelling context in the global way has
several disadvantages. First, the definition of the turn is dependent on the threshold
parameter T which is employed for distinguishing three types of silence - gap, pause and
lapse - i.e. for determining whether two successive dialogue acts produced by the same
speaker with a silence in between are to be merged into one turn. Second, the determination
of turns is affected by the reliability of manual or automatic annotation of turn-irrelevant
dialogue acts. Third, for identifying the addressee of a speaker utterance in real-time
applications, the sequential modeling approach which encompasses the n-gram contextual
model is more appropriate. Therefore, the experiments presented in the following sections
are based on the initial feature set that contains utterance, gaze and local context features.

Experiments with meeting context

Table 5.17 summarizes the accuracies of the static BN classifier obtained by combining
the Topic feature with utterance, gaze and local context features.

Context NB TAN BAN GBN

1-gram 74.67 77.68 77.84 76.39
2-gram 76.73 77.94 77.64 77.01
3-gram 77.19 77.83 77.38 76.65

Table 5.17: Accuracies of the static BN classifiers using utterance, gaze, local context and
Topic features

The results given in Table 5.17, compared to the results presented in Table 5.12, indicate
that all addressee classifiers show a little gain from the information about meeting context
modeled in terms of the Topic feature. The average gain is about 0.5% although the
GBN classifier shows the smallest increase in the accuracies whereas the NB classifier
gains the most from the topic information. Moreover, the BAN and GBN classifiers score
slightly lower accuracies when the Topic feature is combined with the 2-gram and 3-gram
models, respectively, than when the Topic feature is not taken into consideration. Similar
impact of the meeting context on the classifier performances has been observed on the M4
data where the meeting context feature was modelled in terms of meeting activities. The
results also indicate that when the meeting context information is employed for addressee
prediction, the augmented NB classifiers are somewhat less sensitive to the extension of
the conversational context when the meeting context is taken into account than in the case
when it is not considered.

Experiments with participant roles

Table 5.18 shows the accuracies of the static BN classifiers achieved by combining the
Dominant feature with the initial feature set containing utterance, gaze and local context
features as well as with the extended feature set that encompasses the Topic feature.
Moreover, we present here the results for the 2-gram context features as it was previously
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shown that most of the addressee classifiers score the highest accuracies using the 2-gram
contextual feature set.

Feature set NB TAN BAN GBN

2-gram+Dominant 75.89 77.47 78.18 77.03
2-gram+Topic+Dominant 76.65 78.10 77.90 77.01

Table 5.18: Accuracies of the static BN classifiers using utterance, gaze, 2-gram context,
topic and role features

Comparing the classification accuracies presented in Table 5.18 and the accuracies pre-
sented in Tables 5.12 and 5.17 for the 2-gram model, we can conclude that knowing whether
the speaker plays the dominant role in a meeting or not, does not provide valuable informa-
tion for the addressee prediction on the AMI data set in addition to information provided
by utterance, gaze, contextual and topic features. This can be due to fact that about 88%
of the dialogue acts in the data for which the speaker has the dominant role in the meeting
are dialogue acts performed by P0.

Another way to include the background knowledge about the participant roles in the
classification models is to redefine the classification task in a way that addressee classifiers
identify whether a participant with a particular role in the meeting or a group has been
addressed by the speaker. Obviously, this approach does not make it possible to incorporate
the knowledge about the seating arrangement in a classification model since participants
who play the same role in different meetings are in a number of cases seated at different
positions.

5.4.4 Addressee classification using DBN classifiers

In the experiments with the static BN classifiers, we investigated how well the addressee
can be predicted using, among other features, information regarding the addressees of
preceding dialogue acts. The following notions of a ‘preceding dialogue act’ were taken
into account:

• the immediately preceding dialogue acts from the same or a different channel

• the last dialogue act of a previous turn that precede the current dialogue act

• the preceding dialogue act of the same turn

• the related dialogue act

Considering the addressee information of a preceding dialogue act as given, we aimed
to estimate the upper bound for the performances of the BN classifiers for the task of
addressee prediction over the M4 and AMI feature sets. In this section, we present results
on addressee classification where the classified instead of hand annotated value for the
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addressee of a preceding dialogue act is used as a feature for identifying the addressee of
the current dialogue act. For that purpose, the DBN classifier has been employed.

Seeing this as a sequential modelling task, we experimented with the complete con-
textual information provided from the immediately preceding relevant dialogue act from
the same or different channel (SP-1, ADD-1, DA-1). As shown in the experiments with
the static BN classifiers, the augmented BN classifiers and the GBN classifier score higher
accuracies for the 2-gram model than for the 1-gram model although the improvement is
not significant. In DBNs, the information is propagated through the wider history, that
is, the information provided from the dialogue act segment at time slice T-2 influences the
addressee of the dialogue act at slice T implicitly through the information provided by the
dialogue act at slice T-1. Since there is no significant improvement between 1-gram and
2-gram models, explicitly modeling relations between dialogue act segments at T-2 and T
may just unnecessarily increase the complexity of the network and thereby require more
data for learning the parameters.

Besides excluding information about the addressee of the related dialogue act (ADD-
R) from the contextual feature set as it represents the class variable, we also excluded
the information about the type of the related dialogue act (DA-R), experimenting in
this way only with the information about the speaker of the related dialogue act (SP-R).
Additionally, we conducted experiments without the SP-R feature aiming to develop the
model for addressee prediction which outcome can be used for the detection of the related
utterance. Utterance and gaze features as defined in the AMI feature set have also been
employed for addressee classification using DBN.

As discussed in Section 5.4.1, the structures of the DBN classifier were designed based
on the learned static structures, which provide visual insight into relationships between
features and the class variable as well as between features themselves. We experimented
with a variety of static structures, and their modifications, that were learned using the
feature set selected for the experiments presented in this section by performing 10-fold
cross validation on the B-set. The highest accuracies, which are reported in this section,
are obtained using the designed structure presented in Figure 5.3.

As shown in Figure 5.3, the static classifiers have learned dependencies between the
speaker looking at participants seated at the same side of the table (e.g. SP-looks-P0 and
SP-looks-P2). In this way, the background knowledge regarding the seating arrangement
is incorporated in the network structure. The structure also captures dependencies among
contextual features as well as among utterance features, in particular DA-1 and DA fea-
tures, between two adjacent slices. We did not model dependencies between corresponding
gaze features of two adjacent dialogue act segments due to two main reasons. First, as the
gaze information is modeled in terms of the speaker gaze features, a speaker change has
the effect that the dependencies between corresponding gaze features (SP-looks-Px(t-1)
and S-looks-Px(t)) does not model the probability that the same target is gazed in two
adjacent slices as is the case if the speaker change did not occur. Second, as the sequence
of the relevant dialogue acts is modeled in DBN, there can be a time gap in between two
adjacent relevant dialogue acts which may have an influence on the speaker gaze behavior.
It is to be noted, that SP-R is modeled as a static variable whereas the SP-1 feature is



5.4. Addressee classification on the AMI data 135

���

��������������

������	������


�������

���

��

��

������

����


�����	�����

���

���

��������������

������	������


�������

���

��

��

������

����


�����	�����

���

��� �

Figure 5.3: The structure of the DBN classifier
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modeled as a dynamic variable in the network (SP(t-1)).
As discussed in Section 5.4.1, we considered contextual information provided by relevant

dialogue acts that are marked with the Unclassifiable addressee label for the prediction of
the addressee of the dialogue act at hand. In the dynamic case, as opposed to the static
case, we did not exclude dialogue acts marked with the Unclassifiable addressee label from
the data set as it would affect some other dialogue act to precede the current one and
thus contextual information to be derived from that dialogue act. Therefore, a larger
number of instances is employed for training the DBN classifier with some of them having
missing addressee values. However, for evaluating the performances of the DBN classifier,
we considered only those instances in a test set that were annotated with a class value (see
Section 5.4.1). About 4% of all instances in the B set were labelled as Unclassifiable. Due
to incompleteness of the data set, the EM algorithm with uniform Dirichlet prior has been
employed for computing the MAP estimates of the network parameters (see Section 4.2.1).

The performances of the DBN classifier were evaluated by performing 5-fold cross vali-
dation on the B set (see Section 5.4.1). To gain an insight into how well the DBN classifier
performs in comparison to the static BN classifiers, we evaluated the performances of the
static BN classifiers using the same evaluation method. The static BN classifiers were
developed in two different ways:

1. static condition - using the K2 algorithm for the structure learning and the MAP
estimator with αijk = 0.5 for parameters learning.

2. dynamic condition - using the the MAP algorithm with uniform Dirichlet priors
for learning the parameters of the network with the fixed structure - the structure
presented in Figure 5.3 transformed into a static network.

The static classifier with the fixed network structure similar to the one presented in
Figure 5.3 was designed in a way that the addressee node is treated as a root node in the
network. Furthermore, the addressee node was defined as a parent of all feature nodes.
Since feature nodes form an arbitrary graph, the addressee classifier with such a structure
is defined as the BAN classifier. Therefore, out of all static BN classifiers employed in
Sections 5.4.3 and 5.4.2, we report only the results for the BAN classifier for the static
condition. Table 5.19 summarizes classification accuracies of the DBN classifier as well as
of the static BN classifiers for both static and dynamic conditions.

Feature set DBN BAN(1) BAN(2)

All Features 71.83 75.63 75.58
All Features\{SP-R} 68.25 73.21 73.45

Table 5.19: Accuracies of the DBN classifier and the static BN classifiers under (1) static
and (2) dynamic conditions

The results indicate that for both feature sets, the static BN classifiers significantly
outperform the DBN classifier. Furthermore, both static and dynamic addressee classifiers
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significantly outperform the baseline classifier which always predicts the majority class
(54.73%). Although the classification results for the dynamic and static BN classifiers are
not quite comparable due to different treatment of the Unclassifiable addressee value, from
the presented results we can conclude that the usage of classified instead of the hand anno-
tated value has a negative impact on the classifier performances. Furthermore, both static
and dynamic BN classifiers show a decrease in the performances when information about
the speaker of the related dialogue act is excluded from the contextual feature set (DBN:
about 3.5%, BAN: less than 2.5%). These results are comparable to the results obtained
using the static BN classifiers on the A set when information about related dialogue act
was excluded from the contextual feature set (see Section 5.4.3). It is to be noted, that the
static BN classifier with the designed structure shows similar performances as the static
BN classifier which structure was learned on each training fold.

Further analysis of the misclassified data instances has shown that the DBN classifier
failed in a considerable number of cases to detect a change in addressing within a turn,
especially when the speaker changes from talking to an individual to talking to a group
and vice versa. This can be due to the fact that this type of change in many cases is not
marked by the change in gaze behavior but by specific features of the utterance content
that are not captured with the selected feature set.

5.4.5 Summary of findings

In summary, the following conclusions can be drawn from the experiments performed
on the AMI data:

M4 and AMI:

• Using the M4 feature set containing utterance, contextual and speaker gaze features,
the addressee classifiers score significantly lower accuracies on the AMI data than on
the M4 data.

• The addressee classifiers show significantly worse performance regarding recognition
of individually addressed dialogue acts on the AMI data, which is caused by insuffi-
cient information provided by utterance and gaze features.

Features:

• Extending the conversational local context from the 1-gram model to the 2-gram
model improves slightly the performances of the static BN classifiers on the AMI data.
However, further extension of the conversational context decreases the performances
of all static BN network classifiers except of the NB classifier which show a little gain
from the extension of the conversational context.

• Modeling conversational context in the global way does not significantly change clas-
sifier performances in comparison to performances obtained using the local context.
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However, the augmented NB classifiers show the largest gain from modeling context
in the global way.

• Addressee classifiers, both static and dynamic, show a small decrease in the per-
formances when contextual information obtained from the related dialogue act is
excluded from the contextual feature set. This indicates that remaining contextual,
utterance and gaze features cover the most useful information for addressee prediction
provided by the related dialogue act.

• Addressee classifiers show a little gain from information about meeting context mod-
eled in terms of the Topic feature

• Information about the speaker role has no significant impact on addressee prediction
when combined with utterance, gaze and contextual features as well as with the Topic
feature.

Models:

• For all classifiers, the accuracies are significantly higher compared to the baseline.

• Augmented NB classifiers show the best performances over all feature sets.

• The NB classifier performs significantly worse than the augmented NB and GBN
classifiers for the 1-gram model and significantly worse than the augmented NB
classifiers for the 2-gram model. In all other cases, there is no significant difference in
the accuracies among addressee classifiers when local context features are employed.

• The augmented NB classifiers significantly outperform the NB and GBN classifiers
for both the C11 and C22 models. For the C11 model, the GBN classifier significantly
outperforms the NB classifier. For the C21 model, the NB and GBN classifiers do
not show significant difference in the performances.

• Static BN classifiers which use as a feature the hand annotated value for the addressee
of the preceding dialogue act significantly outperform the DBN classifier which em-
ploys the classified value for the addressee of the preceding dialogue act.

• Addressee classifiers on the AMI data show the same type of misclassifications as
human annotators: individual versus group.

5.5 Can addressee classification be further automated?

Experiments presented in this chapter were conducted using a set of manually anno-
tated utterance, gaze, conversational context and meeting context features. Some of the
features can be easily extracted (e.g NumWords) whereas another require complex com-
putational modelling for their automatic detection (e.g. DA-Type, SP-R, SP-Looks-Px,
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etc.). Moreover, we assumed that the dialogue act segment boundaries are given consider-
ing in that way the addressee classification task as a task of assigning the correct addressee
labels to pre-segmented units. However, the ultimate goal for the application of addressee
classification models in real systems is to perform this process fully automatically starting
from audio and video signals. It requires, on one hand, that dialogue act segment bound-
aries as well as the utterance features and some of the contextual features are extracted
from the output of an automatic speech recognizer (ASR) and on the other hand, that gaze
features are estimated from visual information. Furthermore, most of the features can be
better detected by combining multimodal - audio and video - cues.

Several issues that arise at this point are: (1) whether there are technologies available
for automatic recognition of the features for addressee identification in the context of
meetings (2) if so, what is the quality of the extracted features and (3) to what extent
the quality of automatic feature extraction decreases the performances of the addressee
classifiers achieved using the hand-annotated features.

In this section, we give answers to the first two questions by reviewing some existing
work done on automatic recognition of the features used for the experiments with DBN
(see Section 5.4.4) in the context of meetings. Furthermore, we highlight the existing work
performed on the AMI data. However, the third question is not addressed in the scope
of this thesis and it remains an open issue for the future work on automatic addressee
modeling in face-to-face meetings.

5.5.1 An overview of the existing work on automatic detection
of the features used in the DBN addressee classification
model

Automatic identification of contextual features

Regarding contextual features, the main issue is how to automatically identify con-
textual information regarding the related dialogue act. To our knowledge, there is not
much work done on automatic adjacency pairs identification in multi-party dialogues. Re-
cently, Galley et al. (2004) reported the results on AP detection in multi-party meeting
dialogues using the maximum entropy ranking model. The results indicate that given the
b-part of an adjacency pair, the speaker of the a-part can be detected with accuracy of
90.12% using a set structural, durational and lexical features. This accuracy is achieved
using “backward-looking” and “forward-looking” features. However, when excluding for-
ward looking features, which concern the closest utterance of the potential speaker of the
a-part that follows the b-part, the model performs worse (86.99%). It is to be noted, that
the classification task for the experiments presented in (Galley et al., 2004) concerns the
detection of the speaker of the a-part without identifying to which dialogue act of that
speaker the b-part is related: the basic unit of analysis is a spurt which represents a period
of speech that has no pauses greater than 0.5 sec. Therefore, for the experiments with
the DBN presented in Section 5.4.4 we excluded the DA-R feature from the contextual
feature set in addition to the ADD-R feature that was primarily excluded for the purpose
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of sequential modelling.

Automatic identification of utterance features

Recent development of the ICSI and AMI meeting corpora that are annotated with
dialogue act (DA) information, has enabled significant work to be done on automatic
dialogue act recognition in meeting dialogues. The DA recognition tasks consists of two
subtasks - segmentation and classification - that can be performed either sequentially or
jointly. In the sequential approach, segmentation and classification are implemented as two
independent modules with the classification module using as its input the output of the
segmentation module. The joint approach, however, implements both tasks simultaneously.
Most of the past work on DA recognition was focused on DA classification using the hand
segmented dialogues as the input. Recently new approaches have been proposed for fully
automatic DA recognition encompassing both sequential and joint tasks. As a dialogue act
segment is the basic unit for addressee classification and a dialogue act category is used as
a feature for addressee prediction, the output of a DA recognition system should be used
as an input for the addressee classification model.

So far, almost all reported work on DA recognition was performed on the ICSI meeting
corpus (Janin et al., 2004). However, there are several ongoing studies on automatic DA
annotation of the AMI corpus that are being carried out by the several sites in the AMI
project. Some preliminary results reported in the AMI deliverable3 are presented here.

The ICSI meetings have been automatically annotated using the following DA tag sets:

• the original MRDA tag set (Dhillon et al., 2004)

• different variants of the MRDA “classmap 1” that contain five categories: statement,
question, backchannel, floor, and disruption

• the MALTUS (Multidimensional Abstract Layered Tagset for Utterances) tag set
(Clark and Popescu-Belis, 2004).

In contrast to the AMI dialogue act annotation schema, the MRDA and MALTUS
schemas allow for an utterance to be marked with a label made up of one or more tags
from the set. This, however, effects a large number of the possible labels to be used for
the automatic DA tagging of meeting dialogues. As the MALTUS tag set represents an
abstraction of MRDA which is made by grouping some of the MRDA tags into classes
and assigning mutually exclusive constraints among them, the number of possible labels
is significantly reduced in comparison to the MRDA schema: the number of possible DA
labels in MRDA reaches several millions whereas in MALTUS it amounts to 770 (Popescu-
Belis, 2003; Clark and Popescu-Belis, 2004). The decrease in the number of the possible
labels may have an effect on the performances of a dialogue act classifier. The MRDA
“classmap 1”, on the other hand, is a one-dimensional tag set containing 5 DA tags: each

3AMI Deliverable - D5.2 Implementation and Evaluation Results
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utterance is labeled with exactly one tag from the set. In that regard, it is comparable to
the AMI tag set which contains 15 DA classes.

Tables 5.20 and 5.21 list the performances of some of the existing DA segmentation,
DA classification and DA recognition (segmentation and classification) systems evaluated
on the ICSI and AMI data. Giving an overview of the performances of the existing systems
for the DA recognition task and its subtasks, we do not aim to compare those systems in
terms of the models and features used. Our goal is to gain some impression of how difficult
these tasks actually are since the performances of addressee classification models can be
influenced by the imperfection of these systems, especially by DA segmentation systems.

Condition System DSER

Ref
1 40.8
2 36.8
3 66.5

ASR
1 49.4
2 47.4

1: Ang et al. (2005) - ICSI
2: Zimmermann et al. (2006b) - ICSI
3: AMI Deliverable D5.2 - AMI

Table 5.20: An overview of the performances of DA segmentation systems in multi-party
meetings

.

The performances of the DA classification systems reported in Table 5.21 are evaluated
in terms of the classification error rate which is defined as the percentage of incorrectly
classified DA segments. DA segmentation and DA recognition are usually evaluated us-
ing a range of metrics which refer to different units: words, boundaries and dialogue act
segments. For an overview of the existing metrics we refer to (Ang et al., 2005; Zimmer-
mann et al., 2006a). The performances for DA segmentation and DA recognition systems
presented here are measured using two dialogue act based metrics that are introduced in
(Zimmermann et al., 2006a): DSER (DA Segmentation Error Rate) and DER (DA Error
Rate). The DSER metric measures the percentage of the misclassified DA segments, that
is, the segments for which at least one of the boundaries does not correspond exactly to the
reference boundaries. DER is a dialogue act based metric which not only requires for the
candidate DA segment to exactly match the boundaries of the reference segment but also
to be tagged with the correct DA label. Where available, the results are reported for both
reference orthographic transcription (Ref) and the output of automatic speech recognizer
(ASR).

The presented results show that automatic DA classification, DA segmentation and
especially DA recognition are very difficult tasks to perform automatically. The results
also indicate that using the ASR output instead of the true sequence of the spoken words
has a negative impact on the performances of all three types of system. The comparison
of the results for Classmap 1 and AMI tag sets show that the performances of the DA
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Condition System MRDA MALTUS Class 1 AMI

Manual segmentation

Ref
1 27.7 22.1
2 49.0 39.2 21.3
3 18.1
5 34.1

ASR 3 25.5

Automatic segmentation

Ref
3 54.4
4 51.0
5 61.4 83.4

ASR
3 64.3
4 62.6
5 72.1

1: Clark and Popescu-Belis (2004) 2: Lesch et al. (2005)
3: Ang et al. (2005) 4: Zimmermann et al. (2006b)
5: AMI deliverable D5.2

Table 5.21: An overview of the performances of the DA classification and the DA recog-
nition systems in meeting dialogues. The DA classification systems are evaluated in terms
of classification error (Manual segmentation). DA recognition systems are evaluated using
the DER metric (Automatic segmentation).

classification and DA recognition systems on the AMI data are lower than the performances
on the ICSI data. This can be due to the increase in the number of DA tags that was
used for the automatic annotation of the AMI data. However, as previously mentioned,
the results reported on the AMI data are preliminary. The ongoing work is focused on
the improvement of both DA segmentation as well as DA classification systems and in line
with that DA recognition systems on the AMI data.

From all these, we may conclude that at this moment the technology is not quite ready
for handling a fully automatic dialogue act recognition, and in line with that addressee
classification system.

Automatic identification of gaze features

Since it is very difficult to record eye gazing of meeting participants, the informa-
tion about visual focus of attention can be automatically induced from head orientation.
Experimental results presented in (Stiefelhagen and Zhu, 2002) indicate that estimation
of focus of attention based solely on head orientation achieve the accuracy of 88.7% in
four-participants meetings. In their previous work, Stiefelhagen et al. (2002) presented a
system for estimating focus of attention based on multimodal cues: gaze directions and
sound resources. First, participants’ gaze direction was estimated from their head orien-
tation. The gaze detected estimations are then used to predict focus of attention given a
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head pose. The scored accuracy using this approach is 74%. Adding audio information to
video information increased the accuracy to 76%.

Preliminary results on recognition of focus of attention based on the head pose orien-
tation on the AMI data are reported in (Al-Hames et al., 2006). In contrast to the work
reported in (Stiefelhagen and Zhu, 2002) that was restricted to recognition of meeting par-
ticipants as focus of attention targets, the recognition task presented in (Al-Hames et al.,
2006) was considered with the recognition of the extended focus of attention label set that
includes also table, slide screen and unfocused label. The obtained classification rate was
68% and 47%. As the authors claim, the lower recognition results are mainly due to the
usage of more complex setting and the extended label set. The current research on the
focus of attention recognition on the AMI meetings is concerned with adaptation of the
approach to include information from other modalities in order to improve the classification
results.

5.6 Conclusions

In this chapter, we presented results on addressee classification in four-participants
face-to-face meetings using several types of static BN classifiers as well as using the DBN
classifier. The classifiers were evaluated on the M4 and AMI meeting corpora using features
obtained from multiple resources: speech, gaze, conversational context, meeting context
and background knowledge about participant roles. As the features used in the classi-
fication models are based on hand annotated information, the experiments presented in
this chapter concern establishing the upper bounds for the task of addressee prediction in
face-to-face meetings.

The M4 and AMI meetings have different properties ranging from the short, informal,
discussion meetings scripted in terms of meeting activities to the longer, more formal,
task oriented meetings structured according to the AMI scenario that elicit more natural
behavior of meeting participants. These differences have an impact on addressing behavior
of meeting participants as well as on the distribution of addressing types in meetings.
The former is also influenced by the layout of a meeting room. In the AMI scenario, the
rooms are equipped with additional attention distracters such as remote control prototypes
or laptops. There are two parameters that we kept invariant for both corpora: seating
arrangement and the number of participants. Conducting experiments on the M4 and
AMI meeting corpora, we also explored how well the findings regarding the addressee
classification in a less realistic meeting scenario can be generalized to a more natural
meeting scenario.

The experiments on the M4 data were conducted with the goal to explore relevant fea-
tures for addressee detection in face-to-face meetings and to investigate how well the NB
and BAN classifiers perform for this type of task. We have found that contextual infor-
mation aids classifiers’ performances over utterance and gaze information. Furthermore,
utterance features were shown to be the most unreliable cues for addressee prediction. The
exploration of the impact of listeners’ gaze information on the performances of the ad-
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dressee classifiers’, leads us to the conclusion that listeners’ gaze direction provides useful
information only in the situation where gaze features are used alone. The addressee classi-
fiers reach the highest accuracies when combining utterance and contextual features with
the speaker’s gaze directional cues. Combining information about meeting context mod-
eled in terms of the current meeting activity with the utterance, contextual and speaker
gaze features improves slightly but not significantly the classifiers’ performances. Further-
more, we have shown that the BAN classifier outperforms the NB classifier although the
difference is significant only when contextual features are employed. Each classifier shows
similar performances regarding the classification of individual and group addressee values.

To gain an insight into how well the addressee classifiers perform on the AMI data in
comparison to the M4 data, we evaluated the performances of the NB and BAN classifiers
on the AMI data using the M4 feature set. In addition to the NB and BAN classifiers, we
evaluated performances of the TAN and GBN classifiers for the task of addressee prediction
on the AMI data. The results of the experiments indicate a considerable decrease in the
performances of the NB and BAN classifiers on the AMI data which is reflected in signif-
icantly worse performances regarding the identification of individually addressed dialogue
acts. Further explorations of the reasons for this decrease in the accuracies have shown
that utterance and gaze features are even less effective cues for distinguish individual from
group addressing on the AMI data than on the M4 data.

In contrast to Vertegaal (1998) and Otsuka et al. (2005) findings, where it is shown that
gaze can be a good predictor for addressee in four-participants face-to-face conversations,
the results of our experiments on both data sets, indicate that in four-participants face-to-
face meetings, gaze is less effective as an addressee indicator. This can be due to several
reasons. First, they used different seating arrangements which is implicated in the orga-
nization of gaze. Second, our meeting environments contain attention distracters. Finally,
during a meeting, in contrast to an ordinary conversation, participants perform various
meeting activities which may have an effect on gaze as an aspect of addressing behavior.

Since conversational context provides the most useful information for addressee predic-
tion, we explored whether the performances of addressee classifiers on the AMI data can be
improved by better exploitation of the contextual information. The conversational context
has been modeled in two ways: local and global. The local context concerns n-grams of
the preceding dialogue acts from the same or different channel. The global context, on the
other hand, distinguishes contextual information obtained from the preceding turns from
the contextual information obtained from the turn in progress. From the results concerning
the local context, an important conclusion to be drawn was that the extension of the local
context to include not only the immediately preceding dialogue act but also the dialogue
act that precede that one, slightly improves performances of all static BN classifiers al-
though the NB classifier gains the most. However, further extension of the conversational
context decreases the performances of all addressee classifiers with the exception of the NB
classifier which shows a small increase in the accuracies. From the experiments concerning
the global context, we found that modeling context in the global way does not significantly
change the performances of the addressee classifiers in comparison to the performances
obtained using the local context although the augmented NB classifiers gain the most from
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the global representation of the context.
Exploring the impact of meeting context on classification results, we found that the

addressee classifiers show little gain from the information about meeting context modeled
in terms of the Topic feature which largely reflects the meetings structure according to the
AMI scenario. This finding is in line with the findings related to the impact of meeting
context on the classifiers’ performances on the M4 data. It was also shown that information
about the speaker role is an irrelevant cue for addressee prediction on the AMI data when
combined with contextual, gaze, utterance as well as with topic features.

The overall conclusion that can be drawn regarding the performances of the static BN
classifier on the AMI data over various feature sets is that the augmented NB classifiers
outperform the NB and GBN classifiers for the task of addressee prediction. Furthermore,
addressee classifiers evaluated both on the M4 and on the AMI meeting corpora mostly
had problems in distinguishing between individual and group addressing.

This chapter also addressed the issue of the further automation of the addressee clas-
sification process. The DBN classifier was employed for modelling the first step in this
process which comprises the usage of the classified instead of the hand annotated value for
the addressee of the preceding dialogue act. The comparison of the performances between
the DBN and static BN classifiers has shown that using the classified instead of the hand
annotated value has a negative impact on the classifiers’ performances: the observed de-
crease in the performance is about 4%. Further automation of the classification process
comprises (1) automatic segmentation of meeting conversations into dialogue act segments
and (2) automatic extraction of the remaining contextual, utterance and gaze features for
each of those segments. The overview of the existing work in corresponding research areas
has shown that both processes require complex computational modeling which currently
produce considerable error rates. In this thesis, however, we did not explore the impact of
these errors on the performances of addressee classifiers.

As addressee information can be used as a useful cue for the detection of the related
utterance, we estimated the performances of addressee classifiers when information about
related dialogue act was excluded from the contextual features set. It was found that the
static BN classifiers evaluated on both meeting corpora and the DBN classifier evaluated
on the AMI data show a similar decrease in the accuracies (about 3%) when information
about related dialogue act is not taken into account. Since this information is a strong
indicator for addressee prediction, this decrease in the performances indicates that remain-
ing contextual, utterance and gaze features cover the most useful information provided by
the related dialogue act.

5.6.1 Future recommendations

The addressee classification models presented in this chapter are concerned with real-
time addressee detection. Therefore, the experiments presented in this chapter were con-
ducted using the “backward looking” features which result from the analysis of the con-
versational context preceding the current dialogue act. However, for off-line addressee
identification that can be applied for automatic meeting processing applications such as
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meeting browsers, contextual information provided from the dialogue acts following the
current one may provide useful information for addressee detection: in many situations,
the addressed participants is the one who speaks next. As discussed in Chapter 2, the first
pair part of an adjacency pair when addressed to a particular individual is used as a tech-
nique for the selection of that individual as the next speaker. Therefore, the future work
on addressee identification for the application in off-line systems can be concerned with the
exploration of the usefulness of the “forward looking” features for addressee prediction.

The future work can also be focused on the exploration of additional sources of infor-
mation that may be valuable for addressee detection on the AMI data such as information
about locations of meeting participants as well as about the activities they are performing.
Examples include sitting, writing on the whiteboard, standing by the projector screen while
giving a presentation or taking notes using a laptop. This information is partially encoded
in the AMI individual action annotation schema. Unfortunately, at the time when the ex-
periments presented in this thesis were being performed this information was not available
to us. As discussed in Section 5.4.3, the limitation of the gaze for addressee identification
on the AMI data was partially influenced by the lack of this knowledge. Therefore, it is
advisable for the future work on addressee identification on the AMI data to investigate
the impact of using information about participants’ location combined with the extending
feature set that includes not only participants as gazed target but also the remaining focus
of attention targets labeled in the AMI schema - namely, whiteboard, slide screen and
table.

As the addressee classifiers had problems in detecting the changes in addressing within
a turn, it would be valuable for the further research on this task to explore whether there
are specific and observable patterns in addressing behavior of a speaker as well as in the
behavior of the other participants that mark these changes. In the case that such patterns
are detected, identification and modeling of the features of the detected behavior may help
in better recognition of the changes in addressing within a turn.

The addressee classification task defined in this thesis supports the flat classification
models which treat each class value separately. However, the classification task can be
decomposed into two classification problems: first, the problem of distinguishing individ-
ual from group addressing and then, in the case of individual addressing, the problem of
distinguishing among meeting participants who is the one being addressed by the speaker.
Taking into account that the addressee classifiers mostly had problems in distinguishing in-
dividual from group addressing, defining the addressee classification task in the hierarchical
manner may help in a more accurate distinction between these two categories. Moreover,
some features that were shown to be less useful discriminators in the non-hierarchical
representation (e.g. utterance features) may be potentially better discriminators in the
hierachical representation. Therefore, the future work may also focus on the hierachical
addressee classification and its comparision with the flat classification process.
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Conclusions

This chapter summarizes the thesis and brings some recommendations for future re-
search.

6.1 Research summary and conclusions

As specified in Chapter 1, one of the goals of the present study was to gain knowl-
edge in how addressing is accomplished in face-to-face meetings, that is, to understand the
phenomenon under study. Chapter 2 has been devoted to this research goal. To achieve
this, we drew heavily on the findings of studies on the organization of multi-party interac-
tion conducted mostly in the area of conversational and interaction analysis. We pursued
our analysis from the viewpoint of a two-dimensional organization of conversation: orga-
nization of conversation as sequences of actions and organization of conversation across
participants. From our point of view, a conversation proceeds as a sequence of acts par-
ticipants perform in speaking, each of them having assigned its participation framework.
Participation framework, as defined by Goffman (1981a), is an ensemble of all of the par-
ticipation roles of all participants in a conversation at a particular moment of speech, one
of the roles being addressee.

We have distinguished two forms of addressing: explicit and tacit addressing. The latter
refers to a manner of addressing which recipients draw upon diverse features of the content
and context of the act performed by the speaker. Speakers may use various addressing
devices to make clear to whom they are addressing their speech such as address terms,
gaze, deictic hand and head gestures. We have shown that gaze and gestures when used
alone can be troublesome and weak addressing devices as they may serve various purposes
in conversation other than addressing. Speakers also employ various devices to make clear
that someone is explicitly addressed without revealing who that person is (e.g. the usage
of “you”). These partial devices need to be enhanced with other sources of information to
accomplish addressing.

In many occasions in face-to-face conversation, addressing is, as our study reveals,
carried out not explicitly but tacitly. Two-dimensional organization of conversation -
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sequential organization and organization across participants - is what provides the con-
text for accomplishing addressing tacitly. In Chapter 2, we discussed two practices that
sequentially organize conversational interaction: turn-taking design and adjacency pairs
organization. It was shown that they are highly interrelated with addressing practices. On
the one hand, features of turn-taking and adjacency pairs organization provide context for
tacit addressing. On the other hand, addressing and the initiative part of adjacency pairs
are used in combination in the selection of the next speaker.

Meetings as a special form of talk in interaction differ from conversations in many
aspects. We have shown that structural organization of meetings and activities in which
participants are involved during a meeting have an influence on addressing behavior. More-
over, in meetings many utterances are broadcast. In many situations, the content of what
has been said is relevant to all participants present. This brings difficulties in distinguish-
ing whether a speaker addresses his speech to a particular individual or to the group as
whole especially in situations where no explicating addressing devices are employed by the
speaker.

As presented in Chapter 3, human observers having all the information available -
namely, audio, video and speech transcriptions of meeting conversations - had mostly
difficulties distinguishing between individual and group addressing. Moreover, determining
whether a particular individual or a group is being addressed was found to be a more
difficult task for human observers of the AMI meetings than of the M4 meetings. This was
partially influenced by the meeting types. The AMI meetings, on the one hand, are task-
oriented meetings where participants function as a team concerned with making decisions
regarding the design of a new TV remote prototype. In these meetings, many of the
utterances are intended and relevant for all participants present. The M4 meetings, on the
other hand, are scripted and less interactive meetings in which people are gathered together
to discuss personal experiences regarding various issues such as plans for the next holiday,
a book or a movie. An initial exploration of annotation of subgroup addressing on the
M4 data, brings us to the conclusion that this type of addressing is difficult to distinguish
from addressing the whole group. More qualitative research thus needs to be conducted
in that respect. Therefore, in our computation approaches to addressee identification, we
have focused only on determining whether a particular individual or a group is addressed.

The second goal of our study, as stated in Chapter 1, was to develop a computational
model for automatic addressee identification in meetings. We have chosen a Bayesian
Network approach to this problem. The experiments were conducted with two main goals:
finding relevant features for addressee identification obtained from various resources and
finding appropriate BN models for this type of task. The detailed summaries of findings
and general conclusions regarding the outcomes of the experiments are given in Chapter 5
(Sections 5.3.4, 5.4.5, 5.6). The most prominent findings are listed here.

The most important conclusion regarding the features employed is that conversational
context features are essential for addressee prediction in face-to-face meetings. Utterance
features, which contain a set of lexical features extracted from the utterance content as well
as the type of dialogue act performed with the utterance, have shown to be the least reliable
cues for addressee detection. Compared to empirical findings presented in the literature,
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gaze features were found to be less reliable cues for addressee predication in face-to-face
meetings than in ordinary conversations. Relying only on gaze information, addressee
classifiers show significantly lower performances compared to performances obtained using
contextual features. The combination of features from all three resources leads to the best
performances of addressee classifiers. Somewhat surprising is the finding that information
about meeting context does not provide useful information for addressee identification in
addition to contextual, utterance and gaze features.

Various approaches were taken to the extension of the conversational context. Ex-
periments conducted in that regard have shown different changes in the performances for
different BN classifiers. In general, all BN classifiers gain in accuracy from the extension
of the conversational context that encompasses recent conversational history (e.g. contex-
tual information obtained from the immediately preceding turn). However, with further
extension of the conversational history addressee classifiers show a slight improvement or
no improvement at all.

We also explored the relevance of the present work in another pragmatic research fo-
cusing on multi-party dialogues - namely, identification of adjacency pairs. Contextual
features we considered include, among other things, contextual information provided by
the related utterance. Likewise using information provided by the related utterance for
addressee detection, addressee information can be employed as a cue for identifying the
related utterance. A small decrease in the accuracies of the addressee classifiers when in-
formation about related utterance is not taken into account lead us to the conclusion that
the present work may be useful for adjacency pairs identification.

Our exploratory study has shown that BNs are effective computational models for
addressee identification in meetings. Evaluating several static BNs classifiers described in
Chapter 4, we found that over all feature sets augmented NB classifiers - namely, the TAN
and BAN classifiers - achieve the best results. Furthermore, the TAN and BAN classifiers
hardly differ in their performances. The highest accuracies of 83.74% and 78.81% for the
BAN classifier reported on the M4 and the AMI data, respectively, indicate quite high
upper bounds for this type of task taking into account the complexity and ambiguity of
the phenomena modeled. Another important conclusion is that the BN annotators show
similar performances to human annotators in terms of the misclassifications made: most
confusions were between individual and group addressing. Moreover, agreement between
the BN annotators and human annotators is in line with agreement achieved between
human annotators on addressee classification.

The features used to model addressing are in a sense ideal because they are obtained
from human-annotated data. As the first step in the automation of addressee detection
process we proposed a DBN model based on the previously listed findings regarding both
relevance of the features and appropriateness of the static BN models. The model uses a
classified instead of a hand-annotated value of the preceding addressee for the identification
of the current addressee. Moreover, the model was designed to include only those relevant
features for which there are existing technologies to be recognized automatically. The
results of the evaluation of DBN classifier on the AMI data have shown that it achieves a
significantly lower accuracy (about 4%) than the static BN classifiers which make use of
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hand-annotated features only.

6.2 Future work

Given that making a distinction between individual and group addressing was most
problematic for both human and BN annotators, more theoretical research needs to be
conducted with respect to better understanding and clarification of these two types of
addressing. This would result in providing more reliable annotation instructions for human
coders and in line with that in better performances of addressee classifiers.

As already discussed in Section 5.6.1, the future work regarding the experiments pre-
sented in this thesis may include the exploration of additional sources of information such
as location of meeting participants and non-verbal activities in which they are involved
(e.g. writing on the whiteboard or taking-notes using a laptop). It would be worthwhile to
investigate whether this information provides valuable resources for the better exploitation
of gaze features for addressee prediction. In this thesis, we were concerned with on-line
addressee detection based on the features which result from the analysis of the conversa-
tional context preceding the current dialogue act. Human annotators also relied on the
discussion preceding the dialogue act being labeled. However, for off-line meeting process-
ing, the use of forward-looking features may be beneficial because the addressed person is
in many situations the one who speaks next.

Two parameters were kept invariant in our study: the number of participants and
seating arrangement. As they influence addressing behavior of meeting participants, it is
advisable to investigate the effects these parameters have on addressee identification. Since
the M4 and AMI meeting corpora do not suffice for this research purpose, annotation of new
meetings containing different numbers of participants and various seating arrangements is
required.

The natural next step in this research should be concerned with automation of the
addressee classification process by using automatically identified instead of manually an-
notated features. Because automatic addressee classification is based, in the first place,
on the outcome of a dialogue act segmentation system, new evaluation metrics for the
performances of addressee classifiers should be defined similar to those for the evaluation
of automatic dialogue act classification (see Ang et al., 2005; Zimmermann et al., 2006a).

The addressee classifiers presented in this thesis were evaluated by minimizing misclas-
sification errors without taking into account the cost of making wrong decisions. In some
meeting oriented applications such as automatic meeting minutes, it may be of greater
importance to predict individual addressee values more accurately than group addressee
values. Furthermore, the cost of failing to recognize that someone is addressed may be
greater than recognizing that someone is addressed when he actually was not. Therefore,
cost-sensitive evaluation of addressee classifiers may be desirable for their applications in
real systems.

Recent advances in the context of automatic meeting analysis have enabled the shift
of research focus from conventional meetings to live meetings with remote participants
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and from off-line to on-line meeting analysis. The recently started AMIDA (Augmented
Multiparty Interaction with Distance Access) project1 represents a challenging shift in
that direction. The quality of technology used in computer mediated communication cer-
tainly has an influence on which aspects of face-to-face conversation can be reproduced in
computer mediated communication. The usage of inexpensive devices such as web cams
with the limited resolution affects the size of the window in which a remote participant is
visible. This has an effect on the accomplishment of those aspects of conversational interac-
tion that are maintained through non-verbal communication channels such as turn-taking,
grounding and addressing. With respect to addressing in the remote meeting scenario,
several interesting issues arise: (1) which addressing mechanisms remote participants use
to address participants in meetings and vice versa?, (2) do addressing patterns in the live
meetings change when the remote participant actively participates in conversation?

1AMIDA: http://www.amiproject.org/amida-scientific-portal





Appendix A

Experimental data

B set partition

B data set contains all AMI meetings that were annotated with addressee and FOA
information. It is described in Section 5.4. Table A.1 outlines the partition of the B data
set into 5 folds used for the experiments with the DBN addressee classifier presented in
Section 5.4.4

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Test

P0 159 12.44% 181 15.08% 225 18.70% 129 10.69% 175 14.72%
P1 116 9.08% 129 10.57% 108 8.98% 145 12.01% 152 12.78%
P2 132 10.33% 93 7.75% 117 9.73% 106 8.78% 107 9.00%
P3 169 13.22% 121 10.08% 188 15.63% 117 9.69% 82 6.90%

Group 702 54.93% 676 56.33% 565 46.97% 710 58.82% 673 56.60%
Total 1278 1200 1203 1207 1189

Training

P0 710 14.79% 688 14.11% 644 13.21% 740 15.20% 694 14.20%
P1 534 11.13% 521 10.68% 542 11.12% 505 10.37% 498 10.19%
P2 423 8.81% 462 9.47% 438 8.99% 449 9.22% 448 9.17%
P3 508 10.59% 556 11.40% 489 10.03% 560 11.50% 595 12.17%

Group 2624 54.68% 2650 54.34% 2761 56.65% 2616 53.72% 2653 54.28%
Total 4799 4877 4874 4870 4888

Meetings
IS1003d IS1006b IS1006d ES2008a IS1001c
IS1008b IS1008a IS1008c IS1000a IS1003b

IS1008d IS1001a IS1001b TS3005a

Table A.1: The partition of the B set into 5 folds used for 5-fold cross validation of addressee
classifiers
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Comparison between addressee classifiers on the AMI

data

Table A.2 summarizes the results of the pairwise two-tailed t-tests that were performed
to test the statistical significance of differences in performance between the NB, TAN,
BAN, GBN classifiers over various feature sets. The results are obtained by performing 10
times 10-fold cross validations on the AMI data. The chosen significance level is α = 0.05.
The confidence limit for Student’s t-distribution with 9 degrees of freedom for α = 0.025
is 2.262.

Feature sets TAN-NB BAN-NB GBN-NB BAN-TAN GBN-TAN GBN-BAN

M4 features 4.03∗ 4.60∗ 3.84∗ 1.52 0.45 -0.97

1-gram 5.25∗ 5.51∗ 4.27∗ 0.43 -1.21 -1.71
2-gram 3.74∗ 3.29∗ 1.98 0.28 -1.59 -2.07
3-gram 1.86 0.83 0.45 -0.86 -1.30 -0.53

C11 6.46∗ 5.90∗ 3.26∗ -0.62 -3.42∗ -3.25∗

C21 5.37∗ 4.82∗ 0.51 -0.34 -4.69∗ -5.04∗

Table A.2: Results of the pairwise two-tailed T-tests for each pair of BN classifiers based
on 10 times 10-fold cross validations. The results that are significant at the significance
level 0.05 are marked with (*)



Bibliography

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transaction
on Automatic Control, AC-19(6):716–723.

Al-Hames, M., Hain, T., Cernocky, J., Schreiber, S., Poel, M., Muller, R., Marcel, S., van
Leeuwen, D., Odobez, J., Ba, S., Bourlard, H., Cardinaux, F., Gatica-Perez, D., Janin,
A., Motlicek, P., Reiter, S., Renals, S., van Rest, J., Rienks, R., Rigoll, G., Smith,
K., Thean, A., and Zemcik, P. (2006). Audio-visual processing in meetings: Seven
questions and current AMI answers. In Proceedings of Workshop on Machine Learning
for Multimodal Interaction (MLMI), Washington, DC, USA.

Ang, J., Liu, Y., and Shriberg, E. (2005). Automatic dialog act segmentation and
classification in multiparty meetings. In Proceedings of 30th International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), Philadelphia, PA, USA.

Argyle, M. (1973). Social Interaction. London: Tavistock Publications.

Austin, J. L. (1962). How to Do Things with Words. Cambridge: Harvard University
Press.

Bakx, I., van Turnhout, K., and Terken, J. (2003). Facial orientation during multi-party
interaction with information kiosks. In Proceedings of 9th IFIP TC13 International
Conference on Human-Computer Interaction (INTERACT), Zurich, Switzerland.

Bales, R. F. (1950). Interaction Process Analysis: A method for the studyof small groups.
Cambridge: Addison-Wesley.

Banerjee, S., Rose, C., and Rudnicky, A. I. (2005). The necessity of a meeting recording
and playback system, and the benefit of topic-level annotations to meeting browsing.
In Proceedings of the 10th International Conference on Human Computer Interaction,
Rome, Italy.

155



156 BIBLIOGRAPHY

Banerjee, S. and Rudnicky, A. I. (2006). You are what you say: Using meeting partic-
ipants’ speech to detect their roles and expertise. In Proceedings of the NAACL-HLT
2006 workshop on Analyzing Conversations in Text and Speech, New York, NY, USA.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Bloomfield, L. J. (1946). Language. New York: Henry Holt and Co.

Bouckaert, R. (1995). Bayesian Belief Networks: from Construction to Inference. PhD
thesis, University of Utrecht, The Netherlands.

Boyen, X. and Koller, D. (1998). Tractable inference for complex stochastic processes.
In Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, Madison,
WI, USA.

Bunt, H. C. (2000). Dynamic interpretation and dialogue theory. In Taylor, M., Neel,
F., and Bouwhuis, D., editors, The Structure of Multimodal Dialogue, Volume 2, pages
139–166. Amsterdam: John Benjamins.

Burger, S. and Sloane, Z. (2004). The ISL meeting corpus: Categorical features of
communicative group interactions. In Proceedings of NIST ICASSP Meeting Recognition
Workshop, Montreal, Canada.

Carletta, J. (1996). Assessing agreement on classification tasks: The kappa statistic.
Computational Linguistics, 22(2):249–254.

Carletta, J., Anderson, A. H., and Garrod, S. (2002). Seeing eye to eye: an account of
grounding and understanding in work groups. Bulletin of the Japanese cognitive science,
9(1):1–20.

Carletta, J., Ashby, S., Bourban, S., M. Flynn, M. G., Hain, T., Kadlec, J., Karaiskos,
V., W. Kraaij, M. K., Lathoud, G., Lincoln, M., Lisowska, A., McCowan, I., Post, W.,
Reidsma, D., and Wellner, P. (2005a). The AMI meeting corpus: A pre-announcement.
In Renals, S. and Bengio, S., editors, Proceedings of Workshop on Multimodal Interaction
and Related Machine Learning Algorithms (MLMI), Edinburgh, UK. Springer-Verlag
LNCS.

Carletta, J., Evert, S., Heid, U., and Kilgour, J. (2005b). The NITE XML Toolkit: Data
Model and Query Language. Language Resources and Evaluation Journal, 39(4):313–
334.

Carletta, J., Isard, A., Isard, S., Kowtko, J., Doherty-Sneddon, G., and Anderson, A.
(1997). The reliability of a dialogue structure coding scheme. Computational Linguistics,
23(1):13–31.



BIBLIOGRAPHY 157

Carletta, J., Kilgour, J., O’Donnell, T., Evert, S., and Voormann, H. (2003). The NITE
Object Model library for handling structured linguistic annotation on multimodal data
sets. In Proceedings of the EACL Workshop on Language Technology and the Semantic
Web (3rd Workshop on NLP and XML, NLPXML-2003), Budapest, Hungary.

Cheng, J., Bell, D., and Liu, W. (1998). Learning Bayesian Networks from data: An
efficient approach based on information theory. Technical report, University of Alberta.

Cheng, J. and Greiner, R. (1999). Comparing Bayesian network classifiers. In Proceedings
of the 15th Annual Conference on Uncertainty in Artificial Intelligence (UAI-99), pages
101–108, San Francisco, CA, USA.

Chickering, D. M. (1996). Learning Bayesian networks is NP-complete. In Fisher, D.
and Lenz, H., editors, Learning from Data: Artificial Intelligence and Statistics V, pages
121–130. Springer-Verlag.

Chickering, D. M., D.Heckerman, and Meek, C. (2004). Large-sample learning of
Bayesian networks is NP-hard. Journal of Machine Learning Research, 5:1287–1330.

Choudbury, T., Rehg, J. M., Pavlovic, V., and Pentland, A. (2002). Boosting and
structure learning in Dynamic Bayesian Networks for audio-visual speaker detection. In
Proceeding of 16th International Conference on Pattern Recognition (ICPR), Quebec,
Canada.

Clark, A. and Popescu-Belis, A. (2004). Multi-level dialogue act tags. In Proceedings of
5th SIGdial Workshop on Discourse and Dialogue, Cambridge, MA, USA.

Clark, H. H. (1996). Using language. Cambridge: Cambridge University Press.

Clark, H. H. and Carlson, T. B. (1992). Hearers and speech acts. In Clark, H. H.,
editor, Arenas of Language Use, pages 205–247. Chicago: University of Chicago Press
and CSLI.

Clark, H. H. and Schaefer, F. E. (1992). Dealing with overhearers. In Arenas of language
use. Chicago: University of Chicago Press.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psy-
chological Measurement, 20:37–46.

Cooper, G. F. (1990a). Bayesian belief-network inference using recursive decomposi-
tion. Technical Report KSL 90-05, Knowledge Systems Laboratory, Medical Computer
Science, Stanford University.

Cooper, G. F. (1990b). The computational complexity of probabilistic inference using
Bayesian belief networks. Artificial Intelligence, 42(3):393–405.



158 BIBLIOGRAPHY

Cooper, G. F. and Herskovits, E. (1992). A bayesian method for the induction of prob-
abilistic networks from data. Machine Learning, pages 309–347.

Cremers, A. H. M., Hilhorst, B., and Vermeeren, A. P. O. S. (2005). “What was discussed
by whom, how, when and where?” personalized browsing of annotated multimedia
meeting recordings. In Proceedings of HCI International, Nevada, USA.

Dagum, P. and Luby, M. (1993). Approximating probabilistic inference in Bayesian
belief networks is NP-hard. Artificial Intelligence, 60(1):141–153.

Dechter, R. (1996). Bucket elimination: A unifying framework for probabilistic inference.
In Proceedings of 12th Conference on Uncertainty in Artificial Intelligence, Portland, OR,
USA.

Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society (Series B), 39(1):1–
38.

Dhillon, R., Bhagat, S., Carvey, H., and Shriberg, E. (2004). Meeting Recorder project:
Dialogue act labeling guide. Technical Report TR-04-002, International Computer Sci-
ence Institute (ICSI), Berkeley, CA, USA.

Duda, R. O. and Hart, P. E. (1973). Pattern classification and scene analysis. New
York: John Wiley and Sons.

Duncan, S. J. (1972). Some signals and rules for taking speaking turns in conversations.
Journal of Personality and Social Psychology, 23(2):283–292.

Duncan, S. J. and Niederehe, G. (1974). On signalling that it’s your turn to speak.
Journal of Experimental Social Psychology, 23:234–247.

Duranti, A. (1986). The audience as co-author: An introduction. Text special issue,
6(3):239–247.

Eco, U. (1986). Eine palettte von grautoenen. die Zeit.

Edelsky, C. (1981). Who’s got the floor? Language in Society, 10:383–421.

Evert, S. and Voormann, H. (2002). The nite query language - version 2.1. Techical doc-
ument. Available at http://www.ltg.ed.ac.uk/NITE/documents/NiteQL.v2.1.pdf.

Fleiss, J. (1981). Statistical Methods for Rates and Proportions. New York: John Wiley
& Sons.

Friedman, J. H. (1997a). On bias, variance, 0/1 loss, and the curse of dimensionality.
Data Mining and Knowledge Discovery, 1(1):55–77.



BIBLIOGRAPHY 159

Friedman, N. (1997b). Learning belief networks in the presence of missing values and
hidden variables. In ICML ’97: Proceedings of the Fourteenth International Conference
on Machine Learning, San Francisco, CA, USA.

Friedman, N., Geiger, D., and Goldszmidt, M. (1997). Bayesian network classifiers.
Machine Learning, (29):131–163.

Friedman, N., Murphy, K., and Russel, S. (1998). Learning the structure of dynamic
probabilistic networks. In Proceedings of the Fourteenth Conference on Uncertainty in
Artifical Intelligence (UAI), San Francisco, CA.

Fries, C. C. (1952). The Structure of English. New York: Harcourt, Brace and Company.

Galley, M., McKeown, K., Hirschberg, J., and Shriberg, E. (2004). Identifying agree-
ment and disagreement in conversational speech: Use of Bayesian networks to model
pragmatic dependencies. In Proceedings of the 42nd Annual Meeting of the Association
for Computational Linguistics (ACL-04), Barcelona, Spain.

Gatica-Perez, D., Zhang, D., and Bengio, S. (2005). Extracting information from multi-
media meeting collections. In Proceedings of 7th ACM SIGMM International Workshop
on Multimedia Information Retrieval (MIR), Hilton, Singapore.

Gibson, D. R. (2003). Participation shifts: Order and differentiation in group conversa-
tion. Social forces, 81(4):1335–1381.

Goffman, E. (1963). Behavior in Public Places: Notes on the Social Organization of
Gatherings. New York: Free Press of Glencoe.

Goffman, E. (1967). On Face-Work. In Interaction Ritual: Essays on Face to Face
Behavior, pages 5–45. New York: Doubleday Anchor.

Goffman, E. (1981a). Footing. In Forms of Talk, pages 124–159. Philadelphia: University
of Pennsylvania Press.

Goffman, E. (1981b). Forms of Talk. Philadelphia: University of Pennsylvania Press.

Goffman, E. (1981c). Radio talk. In Forms of Talk, pages 197–327. Philadelphia: Uni-
versity of Pennsylvania Press.

Goffman, E. (1981d). Replies and responses. In Forms of Talk, pages 5–77. Philadelphia:
University of Pennsylvania Press.

Goffman, E. (1981e). Response cries. In Forms of Talk, pages 78–1123. Philadelphia:
University of Pennsylvania Press.

Goffman, E. (1983). The interaction order (American Sociological Association 1982
Presidential Address). American Sociological Review, 48(1):1–17.



160 BIBLIOGRAPHY

Goodwin, C. (1981). Conversational Organization: Interaction Between speakers and
hearers. New York :Academic Press.

Goodwin, C. (1986). Audience diversity, participation and interpretation. Text, 6(3):283–
316.

Goodwin, C. and Goodwin, M. H. (1990). Interstitial argument. In Grimshaw, A. D., ed-
itor, Conflict Talk: Sociolinguistic Investigations of Arguments in Conversations, pages
85–117. Cambridge: Cambridge University Press.

Greiner, R., Grove, A. J., and Schuurmans, D. (1997). Learning Bayesian nets that
perform well. In Proceedings of the Thirteenth Conference on Uncertainty in Artificial
Intelligence, Providence, RI, USA.

Grossman, D. and Domingos, P. (2004). Learning Bayesian network classifiers by max-
imizing conditional likelihood. In Proceedings of the 21st International Conference on
Machine Learning (ICML’04), Banff, Alberta, Canada.

Haris, Z. (1951). Methods In Structural Linguistics. Chicago: Chicago University Press.

Haviland, J. B. (1986). ‘Con buenos chiles’: Talk, targets and teasing in Zinacantan.
Text, 6(3):249–282.

Heckerman, D. (1995). A tutorial on learning with Bayesian networks. Techical report
MSR-TR-95-06, Microsoft Research.

Heckerman, D., Geiger, D., and Chickering, D. (1995). Learning bayesian networks: The
combination of knowledge and statistical data. Machine Learning, 20:197–243.

Hirschberg, J. and Nakatani, C. H. (1996). A prosodic analysis of discourse segments in
direction-giving monologues. In Proceedings of the 34th Annual Meeting of the Associa-
tion for Computational Linguistics, Santa Cruz, California.

Hollander, E. P. (1985). Leadership and power. In Lindzey, G. and Aronson, E., editors,
The handbook of social psychology. New York: Random House, 3th edition.

Hymes, D. H. (1974). Foundations in Sociolinguistics: An Ethnographic Approach.
Philadelphia: University of Pennsylvania Press.

Jaffe, J. and Feldstein, S. (1970). Rhythms of dialogue. New York: Academic Press.

Jaimes, A., Omura, K., Nagamine, T., and Hirata, K. (2004). Memory cues for meeting
video retrieval. In Proceedings of the the 1st ACM workshop on Continuous archival and
retrieval of personal experiences (CARPE’04), New York, USA.



BIBLIOGRAPHY 161

Janin, A., Ang, J., Bhagat, S., Dhillon, R., Edwards, J., Macias-Guarasa, J., Morgan,
N., Peskin, B., Shriberg, E., Stolcke, A., Wooters, C., and Wrede, B. (2004). The ICSI
Meeting Project: Resources and Research. In Proceedings of NIST ICASSP Meeting
Recognition Workshop, Montreal, Canada.

Jensen, F. V. (1996). An Introduction to Bayesian Networks. New York: Springer-Verlag.

Jensen, J., Lauritzen, S., and Olesen, K. (1990). Bayesian updating in recursive graphical
models by local computations. Computational Statistical Quarterly, 4:269–282.

Jing, Y., Pavlovic, V., and Rehg, J. M. (2005). Efficient discriminative learning of
bayesian network classifier via boosted augmented naive bayes. In Proceedings of the
22nd International Conference on Machine Learning (ICML’05), pages 369–376, Bonn,
Germany.

Jordan, M., Ghahramani, Z., Jaakkola, T., and Saul, L. (1999). An introduction to
variational methods for graphical models. Machine Learning, 37(2):183–233.

Jovanovic, N. and op den Akker, R. (2004). Towards automatic addressee identification
in multi-party dialogues. In Proceedings of 5th SIGdial Workshop on Discourse and
Dialogue, Cambridge, MA, USA.

Jovanovic, N., op den Akker, R., and Nijholt, A. (2006a). Addressee identification in
face-to-face meetings. In Proceedings of 11th Conference of the European Chapter of the
Association for Computational Linguistics (EACL), Trento, Italy.

Jovanovic, N., op den Akker, R., and Nijholt, A. (2006b). A corpus for studying ad-
dressing behavior in multi-party dialogues. Language Resources and Evaluation Journal,
40(1):5–23.

Jurafsky, D., Shriberg, L., and Biasca, D. (1997). Switchboard SWBD-DAMSL shallow-
discourse-function annotation coders manual, Draft 13. Technical Report TR-97-02,
University of Colorado, The Institute of Cognitive Science, Boulder, CO.

Karaiskos, V. (2005). Reliability test for the AMI named entity an-
notation scheme (scenario meetings). Techical document. Available at
http://mmm.idiap.ch/private/ami/annotation/NamedEntityReliabilityTest.pdf.

Katzenmaier, M., Stiefelhagen, R., and Schultz, T. (2004). Identifying the addressee in
human-human-robot interactions based on head pose and speech. In Proceedings of the
6th International Conference on Multimodal Interfaces (ICMI), State College, PA, USA.

Keizer, S. and op den Akker, R. (2006). Dialogue act recognition under uncertainty
using Bayesian networks. Natural Language Engineering, pages 1–30. in Press.

Kendon, A. (1967). Some functions of gaze direction in social interaction. Acta Psycho-
logica, 26:22–63.



162 BIBLIOGRAPHY

Kerbrat-Orecchioni, C. (2004). Introducing polylogue. Journal of Pragmatics, 36(1):1–
24.

Krippendorff, K. (1980). Content Analysis: An Introduction to Its Methodology. Beverly
Hills, CA: Sage Publications.

Krippendorff, K. (2004a). Content analysis: An Introduction to Its Methodology. Thou-
sand Oaks, CA: Sage, 2nd edition.

Krippendorff, K. (2004b). Reliability in content analysis: Some common misconceptions
and recommendations. Human Communication Research, 30(3):411–433.

Lam, W. and Bacchus, F. (1994). Learning Bayesian belief networksan approach based
on the MDL principle. Computational Intelligence, 10(4):269–293.

Landis, J. and Koch, G. (1977). The measurement of observer agreement for categorical
data. Biometrics, 33:159–174.

Langley, P., Iba, W., and Thompson, K. (1992). An analysis of Bayesian classifiers.
In Proceeding of the 10th National Conference on Artificial Intelligence, San Jose, CA,
USA.

Larrue, J. and Trognon, A. (1992). Organization of turn-taking and mechanisms for
turn-taking repairs in a chaired meeting. Journal of Pragmatics, 19:177–196.

Lauritzen, S. and Spiegelhalter, D. (1988). Local computations with probabilities on
graphical structures and their application to expert systems. Journal of Royal Statistical
Society (Series B), 50:157–224.

Lerner, G. H. (1991). On the syntax of sentences in progress. Language In Society,
20:441–458.

Lerner, G. H. (1993). Collectivities in action: Establishing the relevance of conjoined
participation in conversation. Text, 13(2):213–245.

Lerner, G. H. (1995). Turn design and the organization of participation in instructional
activities. Discourse Processes, 19(1):111–131.

Lerner, G. H. (1996a). Finding “face” in the preference structures of talk-in-interaction.
Social Psychology Quarterly, 59(4):303–321.

Lerner, G. H. (1996b). On the place of linguistic resources in the organization of
talk-in interaction: “Second person” reference in multi-party conversation. Pragmat-
ics, 6(3):281–294.

Lerner, G. H. (2003). Selecting next speaker: The context-sensitive operation of a
context-free organization. Language in Society, 32:177–201.



BIBLIOGRAPHY 163

Lesch, S., Kleinbauer, T., and Alexandersson, J. (2005). Towards a decent recogni-
tion rate for the automatic classification of a multidimensional dialogue act tagset. In
4th Workshop on Knowledge and Reasoning in Practical Dialogue Systems, Edinburgh,
Scotland.

Levinson, S. C. (1983). Pragmatics. Cambridge: Cambridge University Press.

Levinson, S. C. (1987). Putting linguistics on a proper footing: Explorations in goff-
man’s participation framework. In Drew, P. and Wootton, A., editors, Erving Goffman:
Exploring the interaction order, pages 161–227. Oxford: Polity Press.

Lisowska, A. (2003). Multimodal interface design for the multimodal meeting domain:
Preliminary indications from a query analysis study. Technical Report 11, IM2.MDM.

Lunsford, R. and Oviatt, S. (2006). Human perception of intended addressee in multi-
party meetings. In Proceedings of 8th International Conference on Multimodal Interfaces
(ICMI’06), Banff, Canada.

Manning, C. and Schutze, H. (1999). Foundations of Statistical Natural Language Pro-
cessing. Cambridge, MA: The MIT Press.

McCowan, I., Bengio, S., Gatica-Perez, D., Lathoud, G., Monay, F., Moore, D., Wellner,
P., and Bourlard, H. (2003). Modeling human interactions in meetings. In Proceedings of
28th International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
Hong Kong.

Minka, T. P. (2001). A family of algorithms for approximate Bayesian inference. PhD
thesis, MIT Media Lab.

Moore, D. (2002). The IDIAP smart meeting room. Technical Report IDIAP-COM-07,
IDIAP, Martigny, Switzerland.

Moran, T. P., L. Palen, S. H., Chiu, P., Kimber, D., Minneman, S., Melle, W. V., and
Zellweger, P. (1997). I’ll get that off the audio’: A case study of salvaging multimedia
meeting records. In Proceedings of CHI, Atlanta, Georgia, USA.

Murphy, K. and Weiss, Y. (2001). The Factored Frontier algorithm for approximate
inference in DBNs. In Proceedings of the 17th Conference on Uncertainty in Artificial
Intelligence, Seattle, WA.

Murphy, K. P. (2001). The Bayes Net toolbox for Matlab. Computing Science and
Statistics.

Murphy, K. P. (2002). Dynamic Bayesian Networks: Representation, Inference and
Learning. PhD thesis, UC Berkeley, Computer Science Division.



164 BIBLIOGRAPHY

Nijholt, A. (2007). Google home: Experience, support and re-experience of social home
activities. Journal of Information Sciences, Special Issue on Ambient Intelligence, Else-
vier, Amsterdam. to Appear.

Nijholt, A., Rienks, R., Zwiers, J., and Reidsma, D. (2006). Online and off-line visual-
ization of meeting information and meeting support. The Visual Computer, pages 1–12.
To Appear.

O’Connell, D. C., Kowal, S., and Kaltenbacher, E. (1990). Turn-taking: a critical analysis
of the research tradition. Journal of Psycholinguistic Research, 19(6):345–373.

Otsuka, K., Takemae, Y., Yamato, J., and Murase, H. (2005). A probabilistic infer-
ence of multiparty-conversation structure based on markov-switching models of gaze
patterns, head directions, and utterances. In Proceedings of International Conference on
Multimodal Interfaces (ICMI), pages 191–198, Trento, Italy.

Pallotta, V., Seretan, V., Ailomaa, M., Ghorbel, H., and Rajman, M. (2006). Query
types for meeting information systems: assessing the role of argumentative structure
in answering questions on meeting discussion records. Presented at MMAD: Modelling
Meetings, Argumentation and Discourse Workshop, Liverpool, UK. Online.

Parker, K. (1988). Speaking turns in small group interaction: A context-sensitive event
sequence model. Journal of Personality and Social Psychology, 54(6):965–971.

Passonneau, R. (2004). Computing reliability for coreference annotation. In Proceedings
of the 4th International Conference on Language Resources and Evaluation (LREC),
Lisbon, Portugal.

Passonneau, R. and Litman, D. (1997). Discourse segmentation by human and auto-
mated means. Computational Linguistics, 23(1):103–139.

Pearl, J. (1982). Reverend bayes on inference engines: A distributed hierarchical ap-
proach. In Proceedings of the National Conference on Artificial Intelligence, Pittsburgh,
PA.

Pearl, J. (1986). Fusion, propagation, and structuring in belief networks. Artificial
Intelligence, 29(3):241–288.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible
inference. San Mateo, CA: Morgan Kaufmann Publishers.

Popescu-Belis, A. (2003). Dialogue act tagsets for meeting understanding: an abstraction
based on the DAMSL, Switchboard and ICSI-MR tagsets. Technical Report IM2.MDM-
09, ISSCO/TIM/ETI, University of Geneva. Version 1.2 (December 2004).

Popescu-Belis, A. (2005). Dialogue acts: One or more dimensions? ISSCO Working
Paper 62, University of Geneva, Switzerland.



BIBLIOGRAPHY 165

Post, W., Cremers, A., and Henkemans, O. (2004). A research environment for meeting
behavior. In Nijholt, A., Nishida, T., Fruchter, R., and Rosenberg, D., editors, Social
Intelligence Design, Enschede, The Netherlands.

Purver, M., Ehlen, P., and Niekrasz, J. (2006). Detecting action items in multi-party
meetings: Annotation and initial experiments. In Proceedings of the 3rd Joint Workshop
on Multimodal Interaction and Related Machine Learning Algorithms, Washington, DC,
USA.

Purver, M., Niekrasz, J., and Peters, S. (2005). Ontology-based multi-party meeting
understanding. In Proceedings of the CHI 2005 workshop The Virtuality Continuum
Revisited, Portland, OR.

Rehg, J. M., Murphy, K. P., and Fieguth, P. W. (1999). Vision-based speaker detection
using Bayesian networks. In Proceedings of Conference on Computer Vision and Pattern
Recognition, Ft. Collins, CO.

Reidsma, D., Hofs, D., and Jovanovic, N. (2005). Designing focused and efficient annota-
tion tools. In Noldus, L., Grieco, F., Loijens, L., and Zimmerman, P., editors, Measuring
Behaviour, 5th International Conference on Methods and Techniques in Behavioral Re-
search, Wageningen, The Netherlands.

Rienks, R., Nijholt, A., and Barthelmess, P. (2007). Pro-active meeting assistants :
Attention please! AI and Society, The Journal of Human-Centred Systems. to Appear.

Romano, N. C. and Nunamaker, J. F. (2001). Meeting analysis: findings from research
and practice. In Proceedings of the 34th Hawaii International Conference on System
Sciences (HICSS-34).

Russell, S. J. and Norvig, P. (2003). Artificial Intelligence, A Modern Approach. New
Jersey: Prentice Hall, 2nd edition.

Sacks, H. (1992). Lectures on Conversation. Volumes I and II, volume I. Cambridge,
MA: Basil Blackwell.

Sacks, H. and Schegloff, E. A. (1979). Two preferences in the organization of reference
to persons in conversation and their interaction. In G. Psathas, ed., Everyday language:
studies in ethnomethodology, pages 15–21. New York: Irvington.

Sacks, H., Schegloff, E. A., and Jefferson, G. (1974). A simplest systematics for the
organization of turn-taking for conversation. Language, 50:696–735.

Schegloff, E. A. (1986). The routine as achievement. Human Studies, 9:111–151.

Schegloff, E. A. (1988). Goffman and the analysis of conversation. In Drew, P. and
Wooton, A., editors, Erving Goffman: Exploring the interaction order, pages 89–135.
Cambridge: Polity Press.



166 BIBLIOGRAPHY

Schegloff, E. A. (1995). Parties and talking together: two ways in which numbers are
significant in talk-in-interaction. In ten Have, P. and Psathas, G., editors, Situated
order: studies in the social organization of talk and embodied activities, pages 31–42.
Washington: University Press of America.

Schegloff, E. A. (1996). Some practices for referring to persons in talk-in-interaction: A
partial sketch of a systematics. In Fox, B., editor, Studies in Anaphora, pages 437–485.
Amsterdam: John Benjamins.

Schegloff, E. A. (2002). Opening sequencing. In Katz, J. and Aakhus, M., editors,
Perpetual Contact: Mobile communication, private talk, public performance, pages 326–
385. Cambridge: Cambridge University Press.

Schegloff, E. A. and Sacks, H. (1973). Opening up closings. Semiotica, 7(4):289–327.

Schegloff, E. A., Sacks, H., and Jefferson, G. (1977). The preference for self-correction
in the organization of repair in conversation. Language, 53(2):361–382.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2):461–
464.

Searle, J. (1969). Speech Acts: An Essay in the Philosophy of Language. Cambridge:
Cambridge University Press.

Searle, J. (1975). Indirect speech acts. In Cole, P. and Morgan, J. L., editors, Syntax
and Semantics Volume 3: Speech Acts, pages 55–82. New York: Academic Press.

Shachter, R. D., D’Ambrosio, B. D., and Favero, B. D. D. (1990). Symbolic probabilistic
inference in belief networks. In Proceeding of the 8th National Conference on Artificial
Intelligence, Boston, MA, USA.

Shaw, M. E. (1981). Group dynamics: The psychology of small group behavior. New
York: McGraw-Hill.

Shriberg, E., Dhillon, R., Bhagat, S., J.Ang, and Carvey, H. (2004). The ICSI Meet-
ing Recorder Dialog Act (MRDA) corpus. In Proceedings of 5th SIGdial Workshop on
Discourse and Dialogue, pages 97–100, Boston, USA.

Shriberg, E., Stolcke, A., and Baron, D. (2001). Observations on overlap: findings and
implications for automatic processing of multi-party conversation. In Proceedings of7
th European Conference on Speech Communication and Technology (EUROSPEECH),
Aalborg, Denmark.

Stasser, G. and Taylor, L. (1991). Speaking turns in face-to-face discussions. Journal of
Personality and Social Psychology, 60:675–684.



BIBLIOGRAPHY 167

Stiefelhagen, R., Yang, J., and Waibel, A. (2002). Modeling focus of attention for meeting
indexing based on multiple cues. IEEE Transactions on Neural Networks, 13(4):928–938.

Stiefelhagen, R. and Zhu, J. (2002). Head orientation and gaze direction in meetings.
In Conference on Human Factors in Computing Systems (CHI2002), Minneapolis, MI,
USA.

Traum, D. (2004). Issues in multi-party dialogues. In Dignum, F., editor, Advances in
Agent Communication, pages 201–211. Springer-Verlag.

Traum, D. R. and Hinkelman, E. A. (1992). Conversation acts in task-oriented spoken
dialogue. Computational Intelligence, 8(3):575–599.

Tucker, S. and Whittaker, S. (2005). Accessing multimodal meeting data: Systems,
problems and possibilities. In Bengio, S. and Bourlard, H., editors, Machine Learn-
ing for Multimodal Interaction, First International Workshop, MLMI 2004, Martigny,
Switzerland, June 21-23, 2004, Revised Selected Papers, volume 3361 of Lecture Notes
in Computer Science, pages 1–11. Springer.

van Turnhout, K., Terken, J., Bakx, I., and Eggen, B. (2005). Identifying the in-
tended addressee in mixed human-human and human-computer interaction from non-
verbal features. In Proceedings of 7th International Conference on Multimodal Interfaces
(ICMI’05), Trento, Italy.

Vertegaal, R. (1998). Look who is talking to whom. PhD thesis, University of Twente,
Enschede, The Netherlands.

Whittaker, S., Laban, R., and Tucker, S. (2006). Analysing meeting records: An ethno-
graphic study and technological implications. In Renals, S. and Bengio, S., editors,
Machine Learning for Multimodal Interaction, Second International Workshop, MLMI
2005, Edinburgh, UK, July, 2005, Revised Selected Papers, volume 3869 of Lecture Notes
in Computer Science, pages 101–113. Springer-Verlag.

Witten, I. H. and Frank, E. (2000). Data mining: Practical machine learning tools and
techniques with Java implementations. San Francisco: Morgan Kaufmann.

Zhang, N. L. and Poole, D. (1994). A simple approach to Bayesian network computa-
tions. In Proceedings of the Tenth Canadian Conference on Artificial Intelligence, Banff,
Alberta, Canada.

Zimmermann, M., Liu, Y., Shriberg, E., and Stolcke, A. (2006a). Toward joint segmen-
tation and classification of dialog acts in multiparty meetings. In Renals, S. and Bengio,
S., editors, Machine Learning for Multimodal Interaction, Second International Work-
shop, MLMI 2005, Revised Selected Papers, volume 3869 of Lecture Notes in Computer
Science, pages 187–193. Springer-Verlag.



168 BIBLIOGRAPHY

Zimmermann, M., Stolcke, A., and Shriberg, E. (2006b). Joint segmentation and classi-
fication of dialog acts in multiparty meetings. In Proceedings of the 31st International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), Toulouse, France.



SIKS Dissertation Series

1998-01
Johan van den Akker (CWI), DEGAS - An Active, Tempo-
ral Database of Autonomous Objects

1998–02
Floris Wiesman (UM), Information Retrieval by Graphically
Browsing Meta-Information

1998-03
Ans Steuten (TUD), A Contribution to the Linguistic Anal-
ysis of Business Conversations within the Language/Action
Perspective

1998-04 Dennis Breuker (UM), Memory versus Search in Games

1998-05
E.W.Oskamp (RUL), Computerondersteuning bij
Straftoemeting

1999-01
Mark Sloof (VU), Physiology of Quality Change Modelling;
Automated modelling of Quality Change of Agricultural
Products

1999-02 Rob Potharst (EUR), Classification using decision trees and
neural nets

1999-03 Don Beal (UM), The Nature of Minimax Search

1999-04
Jacques Penders (UM), The practical Art of Moving Physi-
cal Objects

1999-05
Aldo de Moor (KUB), Empowering Communities: A
Method for the Legitimate User-Driven Specification of Net-
work Information Systems

1999-06 Niek J.E. Wijngaards (VU), Re-design of compositional sys-
tems

169



170 SIKS Dissertation Series

1999-07
David Spelt (UT), Verification support for object database
design

1999-08
Jacques H.J. Lenting (UM), Informed Gambling: Concep-
tion and Analysis of a Multi-Agent Mechanism for Discrete
Reallocation.

2000-01 Frank Niessink (VU), Perspectives on Improving Software
Maintenance

2000-02
Koen Holtman (TUE), Prototyping of CMS Storage Man-
agement

2000-03
Carolien M.T. Metselaar (UVA), Sociaal-organisatorische
gevolgen van kennistechnologie; een procesbenadering en ac-
torperspectief.

2000-04
Geert de Haan (VU), ETAG, A Formal Model of Compe-
tence Knowledge for User Interface Design

2000-05 Ruud van der Pol (UM), Knowledge-based Query Formula-
tion in Information Retrieval.

2000-06 Rogier van Eijk (UU), Programming Languages for Agent
Communication

2000-07
Niels Peek (UU), Decision-theoretic Planning of Clinical Pa-
tient Management

2000-08 Veerle Coup (EUR), Sensitivity Analyis of Decision-
Theoretic Networks

2000-09 Florian Waas (CWI), Principles of Probabilistic Query Op-
timization

2000-10
Niels Nes (CWI), Image Database Management System De-
sign Considerations, Algorithms and Architecture

2000-11
Jonas Karlsson (CWI), Scalable Distributed Data Struc-
tures for Database Management

2001-01 Silja Renooij (UU), Qualitative Approaches to Quantifying
Probabilistic Networks

2001-02
Koen Hindriks (UU), Agent Programming Languages: Pro-
gramming with Mental Models

2001-03 Maarten van Someren (UvA), Learning as problem solving

2001-04
Evgueni Smirnov (UM), Conjunctive and Disjunctive Ver-
sion Spaces with Instance-Based Boundary Sets



SIKS Dissertation Series 171

2001-05
Jacco van Ossenbruggen (VU), Processing Structured Hy-
permedia: A Matter of Style

2001-06 Martijn van Welie (VU), Task-based User Interface Design

2001-07 Bastiaan Schonhage (VU), Diva: Architectural Perspectives
on Information Visualization

2001-08
Pascal van Eck (VU), A Compositional Semantic Structure
for Multi-Agent Systems Dynamics.

2001-09
Pieter Jan ’t Hoen (RUL), Towards Distributed Develop-
ment of Large Object-Oriented Models, Views of Packages
as Classes

2001-10
Maarten Sierhuis (UvA), Modeling and Simulating Work
Practice BRAHMS: a multiagent modeling and simulation
language for work practice analysis and design

2001-11
Tom M. van Engers (VUA), Knowledge Management: The
Role of Mental Models in Business Systems Design

2002-01 Nico Lassing (VU), Architecture-Level Modifiability Analy-
sis

2002-02 Roelof van Zwol (UT), Modelling and searching web-based
document collections

2002-03 Henk Ernst Blok (UT), Database Optimization Aspects for
Information Retrieval

2002-04
Juan Roberto Castelo Valdueza (UU), The Discrete Acyclic
Digraph Markov Model in Data Mining

2002-05
Radu Serban (VU), The Private Cyberspace Modeling Elec-
tronic Environments inhabited by Privacy-concerned Agents

2002-06
Laurens Mommers (UL), Applied legal epistemology; Build-
ing a knowledge-based ontology of the legal domain

2002-07
Peter Boncz (CWI), Monet: A Next-Generation DBMS Ker-
nel For Query-Intensive Applications

2002-08
Jaap Gordijn (VU), Value Based Requirements Engineering:
Exploring Innovative E-Commerce Ideas

2002-09
Willem-Jan van den Heuvel (KUB), Integrating Modern
Business Applications with Objectified Legacy Systems

2002-10 Brian Sheppard (UM), Towards Perfect Play of Scrabble



172 SIKS Dissertation Series

2002-11
Wouter C.A. Wijngaards (VU), Agent Based Modelling of
Dynamics: Biological and Organisational Applications

2002-12 Albrecht Schmidt (Uva), Processing XML in Database Sys-
tems

2002-13
Hongjing Wu (TUE), A Reference Architecture for Adaptive
Hypermedia Applications

2002-14
Wieke de Vries (UU), Agent Interaction: Abstract Ap-
proaches to Modelling, Programming and Verifying Multi-
Agent Systems

2002-15
Rik Eshuis (UT), Semantics and Verification of UML Activ-
ity Diagrams for Workflow Modelling

2002-16
Pieter van Langen (VU), The Anatomy of Design: Founda-
tions, Models and Applications

2002-17
Stefan Manegold (UVA), Understanding, Modeling, and Im-
proving Main-Memory Database Performance

2003-01
Heiner Stuckenschmidt (VU), Ontology-Based Information
Sharing in Weakly Structured Environments

2003-02
Jan Broersen (VU), Modal Action Logics for Reasoning
About Reactive Systems

2003-03
Martijn Schuemie (TUD), Human-Computer Interaction
and Presence in Virtual Reality Exposure Therapy

2003-04
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Summary

This thesis is concerned with automatic addressee identification in face-to-face meetings.
A grate number of meetings are organized everyday around the world to exchange ideas,
share information, negotiate alternatives and make decisions. Despite their importance
and prevalence there is a general observation that meetings are neither as productive nor
as efficient as we would like them to be. To overcome these problems, technology to
support meetings has being developed. With advances in multimedia technologies, it has
become feasible to record all aspects of interaction taking place in meetings and thus to
enhance traditional ways of documenting meetings: meeting minutes and personal notes.
To make benefits out of meeting recordings, the recorded content needs to be automatically
analyzed: relevant information needs to be extracted from the meeting content and the
extracted information needs to be structured in such a way as to enable an efficient access
to meeting data. Recently, research has begun to develop in that direction establishing a
new research area: automatic meeting analysis. Since meetings are a domain where multi-
party dialogues take place, automatic analysis and understanding of meeting discussions
comprises not only identification of who speaks, what is said or what type of communicative
act the speaker performs with his utterance but also to whom the speaker addresses that
act.

To model addressing, we need to understand the basic processes that underlie this
activity. The first part of the thesis is thus devoted to gaining theoretical insights into
addressing based on the outcomes of the research in conversational and interaction analysis.
Addressing is communicated through various communication channels such as speech, gaze,
gestures and postures. In many cases, addressing is accomplished not explicitly but tacitly.
In the latter case, the content of what has been said and various features of conversational
context play the major role. The multi-modal nature of addressing as well as its context
sensitivity pose challenges not only for computational systems but also for humans in
determining who is being addressed in a particular situation. This thesis investigates the
difficulties of the task of addressee identification for both humans and systems.

To develop computational models for addressee prediction, a collection of audio and
video meeting recordings annotated with addressee information as well as with phenom-

179



180 Summary

ena related to addressing is required (e.g. where participants are looking, what type of
communicative act the speaker is performing). The second part of the thesis describes
two meeting corpora employed in our study. The corpora were developed using annotation
schemas designed in the interaction between data observed and theoretical insights into
addressing obtained from the literature. To assess the credibility of the annotated data for
drawing research results relying on them, the thesis provides an exhaustive reliability anal-
ysis of the annotation schemas. A detailed investigation of the problems human observers
had in determining who is being addressed by the speaker shows that it is intrinsically
difficult to distinguish between group and individual addressing. This certainly brings an
additional challenge in modeling this process automatically.

The third part of the thesis deals with the development of a computational model
for automatic addressee identification. As a computational framework, we use Bayesian
Networks. Features employed to model addressing are obtained from speech and gaze com-
munication channels as well as from conversational and meeting contexts. Conversational
context features, which relate to conversational history, are shown to be the most valuable
for addressee prediction; they dominate over utterance and gaze features. We observe that
utterance features, which contain a set of lexical features extracted from the utterance
content as well as the type of dialogue act performed with the utterance, are the most
uninformative cues for determining the intended addressee. Furthermore, knowing who
is looking at whom in a meetings does not provide sufficient information for determining
who is talking to whom during the meeting, although one would intuitively expect that it
would. Meeting context, which comprises various types of activities participants perform
in a meeting, does not add valuable information for addressee identification to utterance,
gaze and contextual features. By combining all these four types of features addressees are
predicted with the highest accuracy.

Evaluation of several static Bayesian Network classifiers indicates that Bayesian Net-
works are effective computational models for the task of addressee prediction. Among all
evaluated models, augmented Naive Bayes classifiers show the best performances over all
feature sets. Similar to human annotators, Bayesian Network addressee classifiers “ob-
serve” addressing in a particular situation using a set of defining features and classify
the observed process into several categories denoting the intended addressee: a particular
individual or a group. In that sense, Bayesian Network classifiers can be considered as
automatic annotators. The present study reveals that Bayesian annotators behave in a
similar way to human annotators regarding the type confusion between addressee values.

As we rely on hand-annotated values for the input features instead of automatically
computed values based on measurements, the present study aims to investigate the upper
bounds for the results that could be obtained in a more realistic, fully-automatic scenario.
As the first step in the automation of addressee detection process, we propose a Dynamic
Bayesian Network model. The evaluation of performances of addressee classifiers relying
on fully automatic features remains one of the tasks for future research.



Samenvatting

Dit proefschrift gaat over het automatisch identificeren van die deelnemer(s) die door
de spreker in een vergadering word(t)(en) aangesproken. Dagelijks worden over de hele
wereld een groot aantal vergaderingen gehouden, vergaderingen waarin ideeën worden uit-
gewisseld en waarin besluiten worden genomen. Veel vergaderingen zijn niet zo productief
en efficiënt als we zouden willen. Om vergaderingen productiever en efficiënter te maken
wordt speciale ondersteunende technologie ontwikkeld. Door ontwikkeling van multimedia-
technieken ontstaan nieuwe mogelijkheden voor het automatiseren van het samenvatten
van vergaderingen, zowel in video- als in audio- als in tekstformaat. Daarvoor is het nodig
automatisch te bepalen waarover de deelnemers aan de vergadering het hebben en welke ac-
tiviteiten er tijdens de vergadering worden uitgevoerd, welke beslissingen zijn genomen en
hoe deze beslissingen zijn genomen. De multimodale gegevens die het resultaat zijn van een
extractie- en herkenningsproces moeten op zodanige wijze gestructureerd worden opgesla-
gen dat het mogelijk is op efficiënte wijze de gewenste gegevens op te zoeken. Een nieuw
onderzoeksgebied vormt de context van het onderzoek waar dit proefschrift toe bijdraagt:
automatische analyse van vergaderingen. Omdat in vergaderingen meerdere deelnemers
betrokken zijn, moet niet alleen worden vastgesteld wie er spreekt en waarover gesproken
wordt, maar ook tegen wie de spreker spreekt, ofwel wie de geadresseerde van de spreker
is.

Om het fenomeen van adressering te modelleren, moeten we de basisprocessen van
deze activiteit begrijpen. Het eerste deel van dit proefschrift is daarom gewijd aan het
verkrijgen van een theoretisch kader. Daartoe baseren we ons op bestaande theorieën uit
de conversatie-analyse en de interactie-analyse van menselijk gedrag. Adresseren is een
activiteit die gerealiseerd wordt door een scala van verbale en niet-verbale gedragingen:
spraak, kijkgedrag, gebaren en houdingen. In veel gevallen wordt adressering niet expliciet
maar impliciet gerealiseerd. In het laatste geval spelen diverse eigenschappen van de con-
text van het gesprek de belangrijkste rol bij het bepalen van de geadresseerde. Zowel het
multimodale karakter van het adresseergedrag als de context-afhankelijkheid ervan vormen
een uitdaging voor het identificeren van de geadresseerde. En dat geldt zowel voor het
detecteren door een machine als door de mens. Dit proefschrift bespreekt de moeilijkheden
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van deze taak: het vinden van de geadresseerde door de mens en door de machine, en geeft
aanzetten tot het oplossen ervan.

Ten behoeve van het modelleren van adressering is een collectie van audio- en video-
opnames van vergaderingen geannoteerd met adresseringsinformatie. Van iedere spreekac-
tiviteit (speech act) is door mensen aangegeven wie de in die taalhandeling geadresseerde
is: een individu of een (sub)groep van aanwezigen. Tevens zijn een aantal voor adresser-
ingdetectie relevante kenmerken van gedragingen en context geannoteerd. Het tweede deel
van het proefschrift beschrijft twee collecties (corpora) van vergaderingen. Deze corpora
werden ontwikkeld met behulp van annotatieschema’s die de annotatoren voorschrijven hoe
ze de verschillende observeerbare fenomenen moeten segmenteren en van een label moeten
voorzien. Deze schema’s zijn gebaseerd op de theoretische inzichten die uiteengezet zijn in
het eerste deel. Er is een uitvoerige reliability-analyse uitgevoerd op de diverse annotaties
om inzicht te krijgen in de mate waarin verschillende annotatoren die eenzelfde vergadering
observeren de fenomenen in deze vergadering segmenteren en labelen. Een gedetailleerde
analyse van de verschillen tussen annotatoren laat zien dat het in sommige gevallen moei-
lijk is om te zeggen of een spreker een individu dan wel de hele groep adresseert. Dit vormt
een extra uitdaging voor het automatiseren van dit proces.

Het derde deel van dit proefschrift gaat over het ontwikkelen van een computationeel
model voor het automatisch identificeren van de geadresseerde van de spreker. Daarvoor
gebruiken we Bayesiaanse Netwerken, waarvan de knopen staan voor de relevante eigen-
schappen van spraak, kijkgedrag en van kenmerken van de gesprekscontext. De aan een
taalhandeling voorafgaande taalhandelingen blijken de meest informatieve indicatoren te
zijn voor het bepalen van de geadresseerde van de spreker. Ze zijn belangrijker dan lex-
icale kenmerken van de taalhandeling zelf en het kijkgedrag van de spreker en de andere
deelnemers op het moment dat die handeling wordt uitgevoerd. Het kijkgedrag van de
andere deelnemers is het minst informatief. Verder is het zo dat kijkgedrag (wie kijkt naar
wie) niet voldoende is om te bepalen tot wie de spreker zich richt. Wat men misschien
wel zou verwachten. Ook informatie over de soort vergaderactiviteit waarbinnen de taal-
handeling wordt uitgevoerd is niet voldoende voor detectie van de geadresseerde. Maar
voegen we al deze soorten indicatoren samen, dan kunnen we redelijk goed voorspellen wie
er geadresseerd wordt.

Evaluatie van diverse varianten van Bayesiaanse Netwerken, getraind met (een deel van)
de geannoteerde data, toont aan dat deze modellen geschikt zijn voor deze taak. Onder de
geëvalueerde modellen leveren de augmented Naive Bayesian Networks de beste resultaten
gemeten naar het percentage van juist geadresseerde acties. Ze geven het hoogste percent-
age correcte resultaten wanneer we testen op een ongezien deel van het geannoteerde cor-
pus. Evenals menselijke annotatoren annoteren deze netwerken de taalhandelingen met een
adresseerlabel. In die zin kunnen we de ontwikkelde classificatiesystemen dus beschouwen
als automatische annotatoren. Het blijkt dat ze zich op vergelijkbare wijze gedragen als
menselijke annotatoren, wanneer we kijken naar de soort fouten die ze maken. Omdat
de tests uitgevoerd zijn op handgeannoteerde data, leveren de resultaten van de evalu-
aties bovengrenzen van de accuratesse die automatische systemen voor adresseringsclassi-
ficaties kunnen bereiken. Wanneer de voor deze predictie gebruikte invoerwaarden van het
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model ook volledig automatisch bepaald worden, zullen door fouten bij deze automatische
bepaling lagere resultaten bereikt worden. Als eerste stap naar een verdere automatise-
ring van geadresseerdenidentificatie zijn Dynamische Bayesiaanse Netwerken gemaakt en
getest. Het ontwikkelen en evalueren van een systeem dat volledig automatisch dit werk
doet, blijft werk voor de toekomst.
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Nataša Jovanović,
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