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To zero or to hold control inputs with lossy
links?

Luca Schenato

Abstract—This paper studies the linear quadratic (LQ) performance
of networked control systems where control packets are subject to
loss. In particular we explore the two simplest compensation strategies
commonly found in the literature: the zero-input strategy, in which the
input to the plant is set to zero if a packet is dropped, and the hold-
input strategy, in which the previous control input is used if packet is
lost. We derive expressions for computing the optimal static gain for
both strategies and we compare their performance on some numerical
examples. Interestingly, none of the two can be claimed superior to the
other, even for simple scalar systems, since there are scenarios where one
strategy performs better then the other and scenarios where the converse
occurs.

I. INTRODUCTION
Today’s technological advances in wireless communications and

in the fabrication of inexpensive embedded electronic devices, are
creating a new paradigm where a large number of systems are
interconnected, thus providing an unprecedented opportunity for
totally new distributed control applications, commonly referred as
networked control systems [1]. One of the most common problems
in networked control systems, especially in wireless sensor networks,
is packet drop, i.e. packets can be lost due to communication noise,
interference, or congestion. If the controller is not co-located with the
sensors and the actuators and it is placed in a remote location, then
both sensor measurement packets and control packets can be lost.
A large number of works in the literature have analyzed estimation

and filter design under lossy communication between the sensors
and the controller [2][3][4][5][6][7][8][9]. However, there are also
several works that studied the close loop performance when control
packets can be dropped [4][10][11][12][13][14][15]. In general, in
most of the literature two different strategies are considered for
dealing with packet drops. In the first one, which we refer as zero-
input, the actuator input to the plant is set to zero when the control
packet from the controller to the actuator is lost [12][13][14][15],
while in the second, which we refer as hold-input, the latest control
input stored in the actuator buffer is used when a packet is lost
[10][4][11]. These are not the only strategies that can be adopted.
In fact, if smart actuators are available, i.e. if actuators are provided
with computational resources, then the whole controller [14] or a
compensation filter [16] can be placed on the actuator. Another
strategy is to use a model predictive controller which sends not only
the current input but also a finite window of future control inputs
into a single packet so that if a packet is lost the actuator can pop
up from its buffer the corresponding predicted input from the latest
received packet [17] [18]. Nonetheless, even this strategy requires
more computational resources and communication bandwidth than
the zero-input or hold-input strategies.
To the author’s knowledge there is no study present in the literature

which directly compares the hold-input and zero-input strategies, ex-
cept for a simple empirical example in [14]. In particular, it seems that
the zero-input strategy is mainly used for mathematical convenience
as it gives simpler equations than the hold-input strategy, rather than
being based on performance considerations. Indeed, intuitively one
is led to think that the use the latest control input stored in the
actuator buffer provides better performance than the use of a zero
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input, in particular during the transient, since the true current optimal
control input is likely to be close to the previous value. The zero-input
strategy, however, it is not so unreasonable, since the optimal control
input eventually converges to zero for a stable closed loop system in
steady state. Motivated by these observations, the goal of this paper
is to explicitly quantify the performance of these two strategies by
adopting a linear quadratic (LQ) approach for discrete time linear
system where the control input packets are dropped according to a
Bernoulli stochastic process as described in details the Section II. In
particular, we derive equations to compute the optimal static control
gains for both strategies. While the equations for optimal control
under the zero-input strategy in Section III have been previously
derived [14], the equations for optimal gain design under the hold-
input strategy presented in Section IV are novel. The equations are
then used to compare the performance of the two strategies for scalar
systems in Section V. In particular, we show that none of the two
strategies is always superior to the other, but the performance depends
on the packet loss probability and the cost weights. Finally, in Section
VI we summarize the results and discuss future research directions.

II. PROBLEM FORMULATION

Consider the following linear stochastic system:

xk+1 = Axk + Bua
k (1)

where ua
k ∈ R

m is the control input to the actuator, A ∈ R
n×n and

B ∈ R
n×m. We assume that the full state xk ∈ R

n is available to a
remote controller which adopts a simple linear feedback:

uc
k = Lxk

where L ∈ R
m×n. The link between the controller and the actuator

is lossy, and the stochastic binary variable νk ∈ {0, 1} models the
packet loss between the controller and the actuator. We consider two
control strategies. In the zero-input strategy, if the packet is correctly
delivered then ua

k = uc
k, otherwise the actuator does nothing, i.e.

ua
k = 0, which gives the following closed loop system:

xk+1 = Axk + Bua
k

ua
k = νkuc

k

uc
k = Lzxk

(2)

In the hold-input strategy, instead, when the packet is lost we use
the previous control value stored in actuator, i.e. ua

k = ua
k−1, which

leads to the following closed loop dynamics:

xk+1 = Axk + Bua
k

ua
k = νkuc

k + (1 − νk)ua
k−1

uc
k = Lhxk

(3)

The subscripts z and h in gains Lz and Lh are used to indicate
the zero-input and the hold-input strategy, respectively. These two
control packet loss compensation strategies are graphically illustrated
in Figure 1.
We compare the performance in terms of the infinite horizon

expected total cost:

J∞(L) = E[
∞X

k=0

xT
k Wxk + (ua

k)T Uua
k] (4)

where Wk ∈ Sn, Uk ∈ Sm, and S! = {S ∈ R
!×! |S = ST , ξT Sξ ≥

0,∀ξ ∈ R
!}, i.e. S! is the set of positive semidefinite matrices of

dimension #. For simplicity we will often use the notation X ≥ 0 as
a shortcut for X ∈ S!. Note that only the inputs that actually enter
the plant ua

k, and not the desired control inputs uc
k , are penalized.

We also assume that the packet drops are i.i.d. Bernoulli random
variables:

P[νk = 0] = ν (5)
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Fig. 1. Compensation approaches for actuators with no computational
resources when a control packet is lost: zero-input approach ua

k = 0 (top)
and hold-input approach ua

k = ua
k−1

(bottom).

where ν ∈ [0, 1]. More realistic packet loss models, which also
include burst losses, can be captured with Markovian packet drops
[15][4], however this approach leads to a more complex analysis and
it is left as future work. A useful result that links stability to infinite
horizon cost is the following:
Proposition 1: Let the pair (A, W 1/2) be detectable, then the

closed loop systems given by Equations (2) and (3) are mean square
asymptotically stable, i.e. limk→∞ E[||xk||2] = 0, if and only if the
cost defined in Equation (4) is bounded, i.e. J∞(L) < ∞.

Proof: The proof is rather standard since it can be derived
similarly to standard LQ-control results [19], therefore it is omitted.

This proposition states that minimizing the infinite horizon cost
implicitly solves the problem of finding a stabilizing gain L. In the
next two sections, we will derive the optimal infinite horizon cost
and corresponding optimal gain for the two strategies.

III. LQ OPTIMAL CONTROL: ZERO-INPUT STRATEGY
The equations in this sections have been previously derived in [14]

in a more general LQG optimal control setting, but are reported here
in the context of LQ control to ease comparison with the hold input
strategy developed in the next section.
The optimal control equations are obtained using the standard

dynamic programming approach, i.e. we compute the cost-to-go
function iteratively. First note that system (2) can be written as

xk+1 = (A + νkBL)xk

ua
k = νkLxk

Let us define the cost-to-go function Ck as follows

CN
k (xk) = E[

NX

h=k

xT
h Whxh + ua

h
T Uhua

h|xk] (6)

where Wk = W and Uk = U except for the terminal costs UN = 0
and WN ≥ 0. We claim that the cost-to-go function can be written
as

CN
k (xk) = xT

k Skxk (7)

where Sk ∈ Sn. This is clearly true for k = N with SN = W . Then
by induction, we show that this is true for all k. Suppose that it is
true for k + 1, then we have:

CN
k (xk) = E[

NX

h=k

xT
h Wxh + ua

h
T Uua

h|xk]

= E[xT
k Wxk + ua

k
T Uua

k + CN
k+1|xk]

= E[xT
k Wxk + νkxT

k LT ULxk +

+xT
k (A + νkBL)T Sk+1(A + νkBL)xk|xk]

= xT
k

“
W + E[νk]LT UL + ASk+1A

T +

+2E[νk]LT BT Sk+1A + E[ν2
k]LT BT Sk+1BL

”
xk

= xT
k

“
W + (1 − ν)LT UL + νAT Sk+1A +

+(1 − ν)(A + BL)T Sk+1(A + BL)
”
xk

where we used the fact that νk is independent of xk, and E[νk] =
E[ν2

k] = 1− ν. Therefore the claim above is true and the matrix Sk

is given by:

Sk = W + νAT Sk+1A + (1 − ν)
`
LT UL+

+(A + BL)T Sk+1(A + BL)
´

= F(Sk+1, L)
(8)

where the operator F(S, L) : Sn × R
n×m → Sn is affine in S for

fixed L, and quadratic in L for fixed S. The infinite horizon cost can
be obtained from the cost-to-go function as follows:

J∞(L) = lim
N→∞

CN
0 (x0) = xT

0 Sx0

where S is the positive semidefinite solution of the Lyapunov-like
equation S = F(S, L), if such solution exists. The optimal gain
L∗ is defined as the minimizer of the infinite horizon cost, i.e.
L∗ = argminLxT

0 Sx0. It was shown in [14] that the optimal gain
is independent of the initial condition x0 and can be obtained by
solving a Riccati-like equation. We summarize those results in the
following theorem:
Theorem 1 ([14]): Consider the system defined by Equations (2)

and the infinite horizon cost defined in Equation (4). Assume that
the pair (A,B) is stabilizable and (A,W 1/2) is detectable. Then
the optimal infinite horizon cost J∗

∞ = minL J∞(L) is given by
J∗
∞ = x0S

∗x0 where S∗ is the unique positive semidefinite solution
of the Riccati-like equation:

S∗ = AT S∗A + W−
−(1 − ν)AT S∗B(BT S∗B + U)†BT S∗A = Φ(S∗)

(9)
and the optimal gain is given by

L∗ = −(BT S∗B + U)†BT S∗A (10)

where the symbol † indicates the pseudo-inverse operation. The
Riccati-like equation S∗

∞ = Φ(S∗
∞) has a positive semidefinite

solution if and only if ν < νc, where νc is a critical packet loss
probability, which depends on the pair (A, B). The critical loss
probability νc satisfies the following bounds:

νm ≤ νc ≤ νM

νM = 1

maxi |λu
i
|2

, νm = 1
Q

i
|λu

i
|2

(11)

where λu
i are the unstable eigenvalues of the matrix A. In particular

νc = νM if B is invertible, and νc = νm if B is rank one.
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IV. LQ OPTIMAL CONTROL: HOLD-INPUT STRATEGY

We now derive the equations to compute the infinite horizon cost
for the hold-input strategy. We proceed similarly to the previous
section by computing the cost-to-go function. We first define the

augmented state zk =

»
xk

ua
k−1

–
∈ R

n+m. Then the system defined
by Equations (3) can be written as:
»

xk+1

ua
k

–
=

»
A + νkBL (1 − νk)B

νkL (1 − νk)I

– »
xk

ua
k−1

–
= F (νk)zk

(12)
where I ∈ R

m×m is the identity matrix. The evolution of the systems
can be modeled as a Jump Markov Linear System (JMLS) since
the dynamics jumps between two systems F (νk = 1) and F (νk =
0) according to a Bernoulli distribution. Many mathematical tools
exist to study JMLS by reframing the LQ-control problem as the
solution of a set of coupled algebraic Riccati equations (CARE) [20].
However, since the system we are considering has only two jumping
dynamics with a simple Bernoulli switching, we can explicitly reduce
it to a single Riccati-like equation that can be compared with the zero-
input Riccati-like equation of the previous section. We start defining
the cost-to-go function as in the previous section:

CN
k (zk) = E[

NX

h=k

xT
k Wkxk + ua

k
T Ukua

k|zk] (13)

where Wk = W and Uk = U except for the terminal cost UN = 0
and WN ≥ 0. We claim that the cost-to-go function can be written
as

CN
k (zk) = zT

k Vkzk (14)

where Vk ∈ Sn+m. This is clearly true for k = N with VN =»
WN 0
0 0

–
. Then by induction, we show this is true for all k.

Suppose it is true for k + 1, then we have:

CN
k (zk) = E[

NX

h=k

xT
k Wxk + ua

k
T Uua

k|zk]

= E[xT
k Wxk + ua

k
T Uua

k + CN
k+1|xk]

= E[zT
k

»
W + νkLT UL νk(1 − νk)LT U
νk(1 − νk)UL (1 − νk)2U

–
zk +

+zT
k F T (νk)Vk+1F (νk)zk|zk]

= zT
k

“ »
W + E[νk]LT UL E[νk(1 − νk)]LT U
E[νk(1 − νk)]UL E[(1 − νk)2]U

–
+

+ P[νk =0]F T(0)Vk+1F (0)+P[νk =1]F T(1)Vk+1F (1)
”
zk

= zT
k

“ »
W + (1 − ν)LT UL 0

0 νU

–
+

+νF T (0)Vk+1F (0) + (1 − ν)F T (1)Vk+1F (1)
”
zk

where we used the fact that νk is independent of zk. Therefore the
claim above is true and the matrix Vk is given by:

Vk =

»
W + (1 − ν)LT UL 0

0 νU

–
+

+ν

»
AT 0
BT I

–
Vk+1

»
A B
0 I

–
+

+(1 − ν)

»
(A + BL)T LT

0 0

–
Vk+1

»
A + BL 0

L 0

–

= Lν(Vk+1, L)
(15)

where the operator Lν(V, L) : Sn+m × R
n×m → Sn+m is affine

in V for fixed L, and quadratic in L for fixed V , and we made
explicit its dependence on the parameter ν with the subscript. The

property Lν(V, L) ≥ 0 if V ≥ 0 follows by observing that all terms
in the previous equation are of the form XT Y X with Y ≥ 0 for
proper choices of X and Y , i.e. they are all positive semidefinite
since ξT XT Y Xξ = ||Y

1

2 Xξ|| ≥ 0. Let us partition the matrix V
and the operator Lν(V, L) as follows

V =

»
V11 V12

V T
12 V22

–
, Lν =

»
L11 L12

LT
12 L22

–

where V11 ∈ Sn, V12 ∈ R
n×m, V22 ∈ Sm, then Equation (15) can

be written as:

L11(V, L) = W + νAT V11A + (1 − ν)
“
LT UL +

+LT V22L + (A + BL)T V11(A + BL) +

+LT V T
12(A + BL) + (A + BL)T V12L

”
(16)

L12(V ) = ν(AT V11B + AT V12) (17)
L22(V ) = ν(U + BT V11B + V T

12B + BV12 + V22) (18)

L11(V, L) : Sn+m × R
n×m → Sn,L12(V ) : Sn+m →

R
n×m,L22(V ) : Sn+m → Sm. Note that only the upper left

block of Lν(V, L), i.e. L11(V, L), depends on the gain L, and that
Lν(V, L) ≥ 0 implies also L11(V, L) ≥ 0 and L22(V ) ≥ 0.
Moreover, since it is quadratic in the gain L it can be written as
follows:

L11(L, V ) = Φν(V ) + (1 − ν)(L − LV )T PV (L − LV ) (19)
Φν(V ) = W +AT V11A−

−(1−ν)AT (V11B+V12)P
†
V (BT V11+V T

12)A (20)
PV = U+V22+BT V11B+V T

12B+BT V12 (21)
LV = −P †

V (BT V11+V T
12)A (22)

We define the nonlinear operator Ψν(V ) : Sn+m → Sn+m as
follows:

Ψν(V ) =

»
Φν(V ) L12(V )
LT

12(V ) L22(V )

–
(23)

which has few useful properties summarized in the following propo-
sition:
Proposition 2: Consider the operators Lν(L, V ) and Ψν(V ) de-

fined in Equations (15) and (23), respectively. Also assume that
V ≥ 0. Then the following facts are true:

(a) Lν(L, V ) ≥ Ψν(V ) = Lν(LV , V ) ≥ 0,∀L, V , where LV

is defined in Equation (22).
(b) If V1 ≥ V2 then Lν(L, V1) ≥ Lν(L, V2) and Ψν(V1) ≥
Ψν(V2).
(c) If ν1 ≥ ν2 then Ψν1

(V ) ≥ Ψν2
(V ),∀V .

(d) If (A, W 1/2) is detectable and V = Ψν(V ) and S =
Lν(L, S) have a positive semidefinite solution, then V and S are
unique, V is stabilizing, and V ≤ S,∀S. Moreover, if L = LV ,
then V = S.
Proof: Note that the identity Ψν(V ) = Lν(LV , V ) can be

checked by direct substitution of LV into the operator Lν . Fact (a)
follows from:

Lν(L, V )−Ψν(V ) =

»
(1 − ν)(L − LV )T PV (L − LV ) 0

0 0

–
≥ 0

for all L and V , where PV is defined above.
In fact (b) the monotonicity of Lν follows from Lν(L, V1) −

Lν(L, V2) = Lν(L, V1 − V2)
˛̨
U=0,W=0

≥ 0. The monotonicity
of Ψν follows from fact (a) since Ψν(V1) = Lν(LV1

, V1) ≥
Lν(LV1

, V2) ≥ Ψν(V2).
Fact (c) follows from:

Ψν1
(V ) − Ψν2

(V ) = (ν1 − ν2)

»
XP †

V XT X
XT PV

–
≥ 0,∀V
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where X = AT (V11B+V12), since the positive semidefiniteness can
be verified by taking the Shur complement and noting that PV ≥ 0.
The proof for fact (d) is somewhat more technical and in the

interest of space only a sketch is reported. The proof follows along
the same lines of optimal estimation [19] [8], being optimal control
simply its dual, where it is shown that the null space of the matrices
V and S corresponds to the unobservable subspace of (A, W 1/2),
which, by hypothesis, is strictly stable. This property is sufficient to
prove uniqueness of the solution, and that V leads to a stabilizing
gain LV . The inequality V ≤ S,∀L follows directly from fact (a).
The last statement V = S if L = LV comes from fact (a) and the
uniqueness of the solution for both operators Lν and Ψν .
We are now ready to derive the optimal gain and stability conditions
for the hold-input strategy:
Theorem 2: Consider the system defined by Equations (3) and the

infinite horizon cost defined in Equation (4). Assume that the pair
(A, B) is stabilizable and (A, W 1/2) is detectable. Then optimal cost
is given by

J∗
∞ = min

L
J∞(L) = zT

0 V ∗z0

where V ∗ is the unique stabilizing positive semidefinite solution of
the Riccati-like equation:

V ∗ = Ψν(V ∗) (24)

where Ψν(V ) is defined in Equation (23) and the corresponding
optimal gain is given by

L∗ = LV ∗ (25)

where LV is defined in Equation (22). The Riccati-like equation
V ∗ = Ψν(V ∗) has a unique stabilizing positive semidefinite solution
if and only if ν < νc, where νc is a critical packet loss probability,
which depends on the pair (A,B) and satisfies the bound νc ≥ νM ,
where νM is defined in Theorem 1. If B is invertible then νc = νm.
The fixed point V ∗ can be obtained as the limit of the sequence
V ∗

k+1 = Ψν(V ∗
k ), V ∗

0 = 0, i.e. limk→∞ V ∗
k = V ∗. If ua

−1 = 0, then
the optimal cost reduces to J∗

∞ = xT
0 V ∗

11x0.
Proof: A detailed proof is rather technical and long but can be

obtained by using similar tools as those presented in [8] and [14].
Therefore in the interest of space, only a sketch of the main steps
of the proof are given. First note that it is sufficient to understand
when V ∗ = Φν(V ∗) has a solution, since fact (d) of of Proposition 2
guarantees uniqueness and stabilizability of the solution V ∗. We start
by noting that from the definition of cost-to-go function we have that
J∞(L) = limN→∞ CN

0 (z0) = limN→∞ zT
0 LN

ν (L, VN )z0, where
Lk+1

ν (L, V ) = Lν ◦Lk
ν(L, V ), since V0 = LN

ν (L, VN). If we define
eVk = Lk

ν(eV0, L) where eV0 = VN , then J∞(L) = limN→∞ zT
0

eVNz0.
Let also consider the sequence V ∗

k+1 = Ψν(V ∗
k ) where V ∗

0 = VN .
Note that VN becomes the initial condition for the two sequences.
The existence of the optimal cost can be inferred from the

convergence conditions of the sequence V ∗
k . Indeed, we can restrict

our analysis to the convergence of V ∗
k and eVk from initial condition

VN = 0, since uniqueness of fixed points of operators Φν and Lν

implies convergence from any initial condition. From monotonicity
of operators Φν(V ) and Lν(V, L) with respect to V (fact (b)
of Proposition 2) and minimality of operator Φν(V ) (fact (a) of
Proposition 2), it follow that V ∗

k+1 ≥ V ∗
k , eVk+1 ≥ eVk and V ∗ ≤ eVk,

therefore the sequences either converge or are unbounded. If they
converge then i.e. limk→

eVk = eV and limk→ V ∗
k = V ∗, then they

also need to satisfy eV = Lν(eV , L), V ∗ = Ψν(V ∗) because of
continuity of the operators in their arguments. If the system is mean
square stabilizable, then there exists L such that eV exists, therefore
all elements of the sequence V ∗

k ≤ eV are bounded, consequently
V ∗ exists. Conversely, if V ∗ exists, since it must necessarily be a

stabilizing solution and unique, then limN→∞ LN (VN , L∗) = V ∗

for any VN ≥ 0.
Now we want to show that there exists νc, such that V ∗

ν =
Ψν(V ∗

ν ) ≥ 0 has a solution if and only if ν < νc. In fact, by
monotonicity of Ψν in the parameter ν (fact (c) of Proposition 2),
we necessarily have V ∗

ν1
≤ V ∗

ν2
if ν1 ≤ ν2, therefore if V ∗

ν2
exists,

then also V ∗
ν1
exists, and conversely if V ∗

ν1
does not exist, then also

V ∗
ν2
does not exist. These two observations prove the existence of νc.

We can also provide some additional considerations about νc. First,
let us consider the linear operator Gν associated to the affine operator
Lν defined as Gν(V, L) = Lν(V, L)−Lν(0, L) : Sn+m ×R

n×m →
Sn+m. If there exists L such that Gν(·, L) is strictly stable, then
V ∗ = Ψν(V ∗) exists, and conversely if V ∗ = Ψν(V ∗), then
Gν(·, LV ∗) is strictly stable, since V ∗ is unique and stabilizing.
We start by showing that νc > 0. If ν = 0, i.e. if there is no
packet loss, then we recover the standard LQ problem. In fact,

V ∗ =

»
VARE 0

0 0

–
, where VARE is the solution of the standard

algebraic Riccati equation (ARE), i.e. VARE = Φ0(VARE), and
L∗ = LARE is the corresponding gain. Since (A, B) is stabilizable
and (A, Q1/2) is detectable, then the solution V ∗ exists, is unique
and it is a stabilizing solution [19], i.e. G(·, LARE) is strictly stable
and limN→∞ LN

ν (VN , LARE) = V ∗ for any VN ≥ 0 . The operators
Lν ,G, Ψν , as well the fixed point V ∗ and optimal gain L∗ = LV ∗ ,
are all continuous in ν, therefore, since V ∗ leads to a stabilizing
solution for ν = 0, i.e. the eigenvalues of the operator G(·, L∗) are
all strictly inside the unit circle, then by continuity V ∗ = Ψν(V ∗)
exists, is unique and remains to be stabilizing if ν < ν̄ for some
ν̄ > 0. Since V ∗ = Ψν(V ∗) exists if and only if ν < νc, as we
showed above, then ν̄ can be as large as νc.
Finally, we show that νc ≤ νM = 1

maxi |λi|2
< 1 if A is

unstable. Let us define the following linear operator Lν(V ) =»
W + νAT V11A L12(V )

LT
12(V ) L22(V )

–
: Sn+m → Sn+m, where V11 and

the operators L12(V ),L22(V ) were defined in Eqn. (16)-(18). Note
that this operator is affine in V and it has a fixed point V =
Lν(V ) ≥ 0 only if V̄11 = W + νAT V̄11A ≥ 0, i.e. only if

√
νA

is strictly stable since V̄11 is the solution of a standard Lyapunov
equation. In other words, V̄ exists only if ν < 1

maxi |λi|2
where λi

are the eigenvalues of A. Since by direct inspection we observe that
Lν(V ) ≤ Φν(V ),∀V ≥ 0, it follows that V ≤ V ∗ by using usual
monotonicity arguments. As a consequence we necessarily have νc ≤
νM = 1

maxi |λi|2
if A is unstable. We now show that νc = νM if B

is invertible. In this scenario let us consider L = −B−1A, therefore
L11(V,−B−1A) = W + νAT V11A and consequently the existence
of Ṽ = Lν(Ṽ ,−B−1A) ≥ 0 is equivalent to the existence of a fixed
point for V = Lν(V ). Since Φν(V ) ≤ Lν(V,−B−1A),∀V ≥ 0,
then νc ≥ νM , from which follows νc = νM . If A is strictly
stable then, it is easy to see that eV = Lν(eV , 0) ≥ 0 exists
if and only if ν > 0. Noting Ψν=1(V ) = Lν=1(eV , 0),∀V and
Ψν(V ) ≤ Lν(eV , 0),∀V, ν > 0, since eV = Lν(eV , 0) has a solution
if and only if ν > 0, then by monotonicity arguments we can claim
that νc = 0.
Note that the hypothesis ua

−1 = 0 is a natural choice which
allows a fair comparison between the zero-input strategy and the hold-
input strategy. Few remarks are in order. The first remark is that the
previous theorem states that we can compute the optimal gain L∗ and
the corresponding optimal cost J∗

∞ as the solution of a Riccati-like
equation, which can be computed numerically through an iterative
procedure. The second remark is that if the system A is unstable,
then there is a critical loss probability νc above which the closed
loop system cannot be stabilized by any linear feedback. In general,
it is hard to find the value for νc in closed form. However, using
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a bisection method based on whether the solution V ∗ = Ψν(V ∗)
exists, we can numerically compute it with any desired accuracy. The
last remark is that the optimal gain L∗ does not depend on the initial
conditions (x0, u

a
−1). Although this is clear for classic LQ control

and for the zero-input strategy, it is not trivial from Equation (15)
that the matrix V for hold-input strategy is convex in the gain L,
since a multivariate quadratic function is not necessarily convex.
So far we have shown how to compute the optimal gain for both

the zero-input strategy and for hold-input strategy. However, we have
not yet determined whether one strategy is better than the other. In the
next section, we will compare the performance of the two strategies
for scalar systems, for which we can find closed form expressions
for the gain L and the performance J∞.

V. HOLD-INPUT VS ZERO-INPUT: THE SCALAR CASE

Without loss of generality, we assume thatB = 1, A = a,W = w,
and x0 = 1. Since B is trivially invertible, if A is unstable, then
according to Theorem 1 and Theorem 2 the closed loop system under
either the zero-input strategy or the hold-input strategy is stable if and
only if ν < νM = 1/a2. Therefore, both strategies have the same
stability domain. Although they provide the same stabilizability, they
might provide different performance, therefore in the following we
compare them under different choices of the weights W and U .
We start by assuming that U = 0, which corresponds to the cheap-

control scenario where we look for the fastest converging controller
in mean square sense. In fact, for ν = 0, U = 0 we obtain the
usual dead-beat controller. If we substitute the systems parameters
into Equations (9) and (10) for the zero-input strategy we get:

s∗ = w + a2s∗ − (1 − ν)a2s∗ = w + νa2s∗

=
1

1 − νa2
w (26)

#∗z = −a (27)

Note that the optimal gain #∗z is independent of the packet loss rate
ν, which is very valuable since it implies that this gain is optimal
also for unknown time-varying packet loss rates.
Similarly, if we substitute the system parameters into Equa-

tions (24) for the hold-input strategy we get:

v∗
12 = νa(v∗

1 + v∗
12) =

νa
1 − νa

v∗
1

v∗
2 = ν(v∗

1 +2v∗
12+v∗

2)=
ν(v∗

1 +2v∗
12)

1−ν
=

ν(1+νa)
(1−ν)(1−νa)

v∗
1

v∗
1 = w + a2v∗

1 − (1 − ν)
a2(v∗

1 + v∗
12)

2

v∗
1 + v∗

2 + 2v∗
12

If we substitute the first two equations into the third one, we find
the following expression for v∗

1 and the optimal gain #∗h given by
Equation (25):

v∗
1 = w + a2v∗

1 − (1 − ν)2

1 − ν2a2
a2v∗

1

=
(1 − ν2a2)
(1 − νa2)2

w (28)

#∗h = − (1 − ν)a

1 + νa
(29)

We now show that the zero-input strategy gives a better perfor-
mance than the hold-input strategy in the cheap-control scenario. If
we compute the performance difference:

s∗−v∗
1 =

„
1

1 − νa2
− 1−ν2a2

(1 − νa2)2

«
w =

„
−(1 − ν)νa2

(1 − νa2)2

«
w ≤ 0,

we see that it is always negative in the stability region ν < 1/a2,
therefore the zero-hold strategy always outperforms the hold input
strategy under the cheap-control scenario. Figure 2 shows a graphical
representation of Equations (26) and (28), whereA = 1.2, B = W =
1, and U = 0. In Figure 3 it is shown a typical realization for an

0 0.2 0.4 0.6 0.8 1
0
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20

30

40

50

60

ν

J ∞*

 

 
zero−input
hold−input

Fig. 2. Minimum cost J∞ for A = 1.2, B = W = x0 = 1, U = 0 under
zero-input and hold-input control architectures. The critical loss probability
for this systems is νc = 1/1.22 = 0.694.

unstable system, A = 1.2, with packet loss probability ν = 0.5,
using optimal gain #∗z = −a = −1.2 for the zero-input strategy and
#∗h = −(1 − ν)a/(1 + νa) = −0.375 for the hold-input strategy.
Note that the first control packet is lost and the state x starts to
diverge, however as soon as a packet arrives the zero-hold strategy
drives the system to zero, while the hold-input requires a longer time.
The reason why the zero-input strategy performs better in the cheap-
input scenario, is that if the hold-input strategy adopts the dead-
beat gain, then as soon as a packet arrives the controller drives the
system to zero, similarly to the zero-input strategy. However, if two or
more packets are lost consecutively, the hold-input strategy will keep
driving the system with a non-zero input, thus creating overshooting
or oscillations.

0 5 10 15 20
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1
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x
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−0.5

0

u

0 5 10 15 20
0
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1

1.5

time (k)

ν k

zero−input
hold−input

Fig. 3. A specific realization for A = 1.2, x0 = 1, ν = 0.5 under under
optimal zero-input control, "∗z = −a = −1.2 and optimal hold-input control,
"∗h = −(1 − ν)a/(1 + νa) = −0.375.

So far we have considered only the case U = 0, i.e. the case
when the input it is not penalized. Unfortunately, if U = u > 0,
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it is not possible to derive a closed form solution for the sets
Dz = {(ν, u, w) |s∗ ≥ 0, v∗ ≥ 0, s∗ < v∗}, i.e. the region
where the zero-input strategy is superior than the hold-input strategy,
and Dh = {(ν, u, w) |s∗ ≥ 0, v∗ ≥ 0, s∗ > v∗}, i.e. the region
where the opposite occurs. This is because both s∗ and v∗ are the
positive solutions of second order equations, and in fact, after some
straightforward algebraic manipulations their closed form expressions
are given by:

s∗ =
w + (a2 − 1)u +

p
(w + (a2 − 1)u)2 + 4uw(1 − νa2)

2(1 − νa2)

v∗ =
α +

p
(α2 + 4(1 − νa2)4(1 − ν)(1 − νa)2uw

2(1 − νa2)2

α = w(1 − ν2a2) + (1 − ν)(1 − νa)2(a2 − 1)u

Nonetheless, we can numerically compute the optimality regions,
which are displayed in Figure 4 for state cost W = w = 1.
Very interestingly, if the input penalization u is sufficiently small,
then the zero-input strategy is always better then the hold-input
strategy for all packet loss values ν ∈ [0, νc). Differently, if u
is sufficiently large, then for small packet loss probability rates ν
the hold-input strategy outperforms the zero-input strategy, however
for packet loss probability close to the critical one νc, the zero-
input continues to be better. The reason why the hold-input strategy
performs better for moderate packet loss rates and strong input
penalization U is that in this scenario the optimal input ua

k should
be small in magnitude and slowly changing, i.e it decreases little
from one time step to the next, differently from the dead-beat control
input. Therefore, since the hold-input strategy provides a smoother
sequence of inputs, it performs better. However, for large packet
loss probability, long consecutive packet losses give rise again to
overshooting and oscillations, thus providing a worse performance
than the zero-input strategy.

Fig. 4. Regions indicating best performing strategy in the space (ν, U) for the
hold-input and the zero-input control for A = 1.2, B = 1, W = 1. Stability
regions for both strategies are ν ∈ [0, νM ), νM = 1/1.22 = 0.694.

This implies that, in general, it is not possible to state whether
the hold-input strategy is always better or worse than the hold-input
strategy, even for simple scalar linear systems.

VI. CONCLUSION
In this paper we studied LQ-like performance of the hold-input

and zero-input strategies for control systems for which the control

packets are subject to loss. These are the simplest and most commonly
adopted strategies in the literature. We derived explicit expressions for
computing the optimal static controller gains when control packets are
lost according to a Bernoulli process. Interestingly, we showed that
none of these two control schemes can be claimed to be superior to
the other, even in simple scalar systems. However, the tools developed
in this paper can be used to evaluate which architecture performs
best once the packet loss probability and the systems parameters
are known. We want to remark that although the zero-input strategy
has been proposed in the literature mainly for mathematical reasons,
in many situations it performs better than the hold-input strategy,
thus encouraging further investigation in experimental settings and
justifying its use in networked control systems. Possible future
extensions of this work includes the analysis of LQG control for the
hold-input strategy with dynamic output feedback, and the adoption
of more realistic packet drop models.
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