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Abstract

In the analysis of high-throughput data from complex samples, cell composition is an important factor that needs to

be accounted for. Except for a limited number of tissues with known pure cell type profiles, a majority of genomics

and epigenetics data relies on the “reference-free deconvolution” methods to estimate cell composition. We develop

a novel computational method to improve reference-free deconvolution, which iteratively searches for cell

type-specific features and performs composition estimation. Simulation studies and applications to six real datasets

including both DNA methylation and gene expression data demonstrate favorable performance of the proposed

method. TOAST is available at https://bioconductor.org/packages/TOAST.

Keywords: Reference-free deconvolution, Tissue-heterogeneity, DNA methylation, Gene expression, Cell-type

composition

Background
There have been an increasing number of large-scale clin-

ical studies using high-throughput technologies to pro-

file biological samples collected from human subjects, in

order to identify molecular biomarkers and therapeutic

targets for different diseases [1, 2]. These samples (e.g.,

blood, tumor, or brain tissues) are oftenmixtures of differ-

ent cell types. The importance of accounting for cell com-

position in high-throughput data analyses has been well-

recognized [3–5]. For example, researchers proposed to

include the compositions in regression models as covari-

ates to adjust for the association between proportions and

phenotype [6, 7], or to use them as inputs to solve for cell

type-specific profiles [8]. Adjusting for cell composition

is especially emphasized in epigenome-wide association

studies (EWAS), where ignoring the composition has been

shown to produce biased results [4]. As a result, adjusting

for cell composition has become a standard procedure in

EWAS studies [6, 9–11].

Regardless of the approach and goal, an important first

step in the analysis of high-throughput data from complex
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tissues is to estimate the cell compositions. Experimen-

tal approaches including different cell sorting techniques

[12, 13] are accurate, but too laborious and expensive to

be used in large-scale studies. A number of computational

methods based on signal deconvolution algorithms have

been proposed. These methods mainly fall into two major

categories: reference-based (RB) [14–17] and reference-

free (RF) deconvolution [18–23].

There have been some discussions and comparisons of

RB and RF deconvolution methods. It was reported that

the RB deconvolution in general provides more accurate

and robust estimation than RF deconvolution [17, 24, 25].

However, the application of RB methods are limited

because it requires reference panels—the data from puri-

fied cell types. Currently, such reference panels only exist

for a few tissue types, including blood [14, 26, 27], brain

[6], and pancreas [28]. When reference panels are unavail-

able, for example in under-studied tissues or new high-

throughput data modalities, RF deconvolution is the only

viable solution. Moreover, the reference data are collected

from a small number of samples with limited clinical con-

ditions (mostly healthy subjects) and phenotypes such as

age and gender. It has been reported that reference-based

method fails to provide accurate cell composition esti-

mation when the subjects of mixed tissues and reference
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panels have significant differences in clinical conditions

and phenotypes, for example, when mixed samples are

collected from newborns while the pure tissue samples

are from adults [29]. In this case, reference-free decon-

volution could be a better option [23, 30]. Due to these

reasons, RF deconvolution is widely applied in recent

studies of complex tissues [10, 31, 32]; therefore, new tech-

niques with potential of improving RF deconvolution is

worthy of further investigation.

The high-throughput data from complex samples are

weighted averages of signals from different cell types.

To solve for cell compositions, most RF deconvolution

methods are based on some type of factor analysis. They

usually apply on the data for a subset of “informative”

features, or the ones containing information for the cell

composition. It has been reported that feature selection

plays an important role in the deconvolution and has

great impacts on the accuracy of cell composition esti-

mation [33–35]. Intuitively, the good features are the cell

type-specific ones, i.e., the ones with distinct profiles

in different cell types [36]. However, without reference

panels, these features cannot be easily identified. As a

result, most popular RF methods resort to ad hoc fea-

ture selection procedure. The variability of features has

been commonly used as indicator of how “informative"

a feature is for sample mixing [35, 37–39]. Using the

most variable features in reference-free deconvolution is

also recommended by a number of existing reference-free

deconvolution publications [22, 23, 36]. A review of pub-

lished studies that used RF deconvolution (Table 1) reveals

that 8 out of 10 methods select the most variable sites as

features.

Table 1 Summary of different feature selection techniques used

by reference-free deconvolution methods in published studies

Features selected by RF methods Published studies

Deconf Liebner et al. [40]

RefFreeEWAS Johnson et al. [9]

RefFreeEWAS Johnson et al. [10]

Largest variability RefFreeEWAS Chen et al. [11]

RefFreeEWAS Everson et al. [41]

ReFACTor Kaushal et al. [42]

ReFACTor Rahmani et al. [23]

NMF Feng et al. [32]

External information Deconf Gaujoux et al. [43]

RefFreeEWAS Gasparoni et al. [44]

RefFreeEWAS is EWAS using Reference-Free DNA Methylation Mixture

Deconvolution, from CRAN package RefFreeEWAS. ReFACTor is reference-free

adjustment for cell type composition, from the GLINT package. NMF is non-negative

matrix factorization, available from https://github.com/haoharryfeng/cfDNAmethy.

Deconf is the in-silico deconfounding approach, i.e., alternate least-square NMF

method using heuristic constraints, available from the CellMix package

In this work, we develop a straightforward and effective

algorithm to improve RF deconvolution by better select-

ing features. The key idea is to identify features showing

distinct profiles among different cell types, without know-

ing the pure cell type profiles or mixing proportions a

priori. The feature selection procedure is purely data-

driven, without requiring any additional information. The

algorithm is based on a recently developed statistical

framework, which provides functionality to detect cross-

cell type differential signals for high-throughput data from

mixed samples [45]. The proposed algorithm in this work

iteratively performs feature selection (based on cross cell

type differential analysis) and RF deconvolution and only

needs a small number of iterations (less than 30) to

achieve the best estimation.

We evaluate our method through extensive simulation

and analyses of six real datasets and show that the pro-

posed method can significantly improve the accuracy of

proportion estimation based on existing RF deconvo-

lution techniques. From our method, we observe sub-

stantial improvement in correlation and reduction in

bias in the estimated proportions. In addition, there are

significant improvements by using several other met-

rics including root mean squared error and goodness-

of-fit of the deconvolution model, and precision of the

selected features. Our method is applicable to both gene

expression data and DNA methylation data as demon-

strated in both simulation and real data applications.

The method is implemented in the R package TOAST

(TOols for the Analysis of heterogeneouS Tissues), which

is freely available on Bioconductor (https://bioconductor.

org/packages/TOAST).

Results

Method overview

In this work, we develop an iterative algorithm to improve

feature selection. Figure 1 summarizes the general work-

flow of the proposed method in an intuitive way. Given

the original data matrix Y and a list of initial features, step

(a) is to conduct an RF deconvolution to estimate mix-

ture proportions. With estimated proportions, step (b) is

to identify cell type-specific features using cross-cell type

differential analysis. These features are then used for the

RF deconvolution in step (a) in a new iteration. By iter-

ating steps (a) and (b), the updated feature list can better

capture the cell type distinction and improve RF decon-

volution compared with initial features that are usually

selected by choosing the most variable ones. The detailed

notations and algorithm are described in the “Method and

material” section.

The proposed method TOAST is essentially a feature

selection method and thus could be used with existing

reference-free algorithms to improve RF deconvolution.

In order to evaluate the utility and flexibility of TOAST,

https://github.com/haoharryfeng/cfDNAmethy
https://bioconductor.org/packages/TOAST
https://bioconductor.org/packages/TOAST
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Fig. 1 A schematic plot to illustrate the proposed method. We assume four cell types (K = 4) and six subjects (N = 6). Our method starts with the

original data matrix Y and a list of initial markers. In step a, mixture proportions are estimated using existing RF deconvolution algorithms. In step b,

cross-cell type differential analysis is performed to identify cell type specific-features as updated feature list. We improve the feature selection and RF

deconvolution through iterating steps (a) and (b)

we conduct extensive simulation and real data analyses

of both gene expression data and DNA methylation data.

We apply TOAST with the most popular reference-free

methods, deconf [19] for gene expression data and Ref-

FreeEWAS [22] and BayesCCE [23] for DNA methylation

data.

Simulation

To comprehensively assess the proposed method, we

design a series of simulation studies where we can man-

ually control the cell mixing procedure and sample sizes.

Simulation data are generated based on real microarray

experiments, one for gene expression and the other one

for DNA methylation. We evaluate the impact of sev-

eral factors on the deconvolution results, including sam-

ple size, initial marker selection, endpoint selection, and

number of cell types in the mixture. The simulation pro-

cedure is described in detail in the “Method and material”

section. In each simulation setting, the results presented

are summarized over 100 Monte Carlo datasets.

To obtain a fair assessment of the proposed method, we

adopt a number of metrics including correlations and root

mean squared bias (RMSBias) of estimated versus true

proportions, overlaps with true cell type-specific features,

goodness of fit, and root mean squared error (RMSE) of

the fitted deconvolution model. These metrics quantify

the deconvolution results from the quality of estimated

proportions, precision of selected features, and goodness

of the overall deconvolution model. These metrics have

been used by several previous studies [17, 23, 27, 46].

The details of calculating these metrics are available in

the “Method and material” section. Using these metrics,

higher correlations with true proportions, more overlaps

with cell type-specific markers, higher goodness of fit,

smaller RMSBias, and RMSE indicate better deconvolu-

tion performance.

Benchmarking TOAST through simulation

We first evaluate the proposed method in gene

expression-based simulation, where deconf is used as

the deconvolution method. Figure 2a shows the correla-

tions of estimated and true proportions at initial point

(number of iterations = 0) and after several iterations of

applying the proposed method, for each of the four cell
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Fig. 2 Results of the simulation study based on gene expression microarray dataset (GSE19830). a The correlations between estimated and true

proportions by number of iterations. Left panel of a: boxplot of correlations for four cell types by number of iterations. Right panel of a: mean

correlations across four cell types by number of iterations. b The number of overlaps with true cell type-specific (CTS) markers before and after

iterations in the top left panel, the root mean squared bias (RMSBias) in the top right panel, the goodness of fit in the bottom left panel, and the root

mean squared error (RMSE) in the bottom right panel. Sample size is 100 for b. p values in each panel are obtained using paired t test. Red font

indicates being statistical significant. Top 1001–2000 most variable features are selected as initial features. Baseline performance is presented in the

“number of iterations = 0” columns in a and “Before” columns in b

types (left panels) and averaged over four cell types (right

panels). From the top row to bottom row, samples sizes

increase from 50, 100 to 200. It is clear from left panels

that overall the correlations between estimated and true

proportions keep increasing during the iteration for all

four cell types. The improvements are more dramatic and

at the same time more stable with larger sample sizes. In

the right panels, we compare the mean correlations over

four cell types from the proposed method (black solid

lines) versus by using the 1000 “real” cell type-specific

features (red dashed lines). Here the real cell type-specific

features are obtained from analyzing the pure cell type

profiles. Note that these cell type-specific features are

not available in real datasets. The results in right panels

of Fig. 2a show that our iterative procedure achieves

similar or even slightly better results than using true cell

type-specific features. This indicates that our method

is able to identify better cell type-specific features than

using reference panels, which are usually of limited sam-

ple size (e.g., only one biological replicate in the current

simulation study) and biological variances. In real world

scenarios when reference panels are often obtained from

a population different from the samples being stud-

ied, there could be biases in the reference. When the

biases in the existing reference panels are large, TOAST

can achieve better performance than using external

reference panel.

Figure 2b shows the change of other metrics before and

after applying the proposed method using 100 simulated

samples. We observe that applying the proposed method

significantly increases the number of overlaps with cell

type-specific features (p < 1e − 16) and goodness of fit

(p < 1e − 16) and significantly decreases RMSBias (p <

1e− 16) and RMSE (p < 1e− 16). Additional file 1: Figure

S8 is a Venn diagram that intuitively presents the overlaps

between initial, TOAST-selected, and cell type-specific

features.

Additional file 1: Figure S1 presents the simulation

results from the study based on DNA methylation data

with RefFreeEWAS, one of the most popular reference-

free deconvolution tools designed for DNA methylation

data. We observe similar trend for the improvements in

correlations with true proportions and in other metrics.

Compared to Fig. 2, one major difference is that the appli-

cation to DNA methylation data requires more iterations

to converge, especially for smaller sample sizes. We sus-

pect that it is related to the larger number of features

in DNA methylation data (54,674 features in the simu-

lated gene expression dataset versus 459,226 features in

the simulated DNA methylation dataset), which leads to

increased difficulty in identifying a good set of cross-

cell type differential features. Nevertheless, these simula-

tions demonstrate that the proposed method effectively

improves the proportion estimation.
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Initial feature selection

As described in the “Background” section, variability

is commonly used to select “informative” features for

reference-free deconvolution. Along the same line, we

consider six different approaches to select initial features,

including the top 1000 most variable features; the top

1001 to 2000, 2001 to 3000, 5001 to 6000, and 10,001

to 11,000 most variable features; and 1000 randomly

selected features. Figure 3 and Additional file 1: Figure S7

demonstrate that regardless of the method being used, the

improvements from without applying TOAST (“Initial”

columns) to after applying TOAST (“TOAST” columns)

are consistent and stable across different sample sizes

(rows) and data types (gene expression in Fig. 3 and DNA

methylation in Additional file 1: Figure S7). Even a ran-

domly selected set of initial features can lead to substantial

improvements after applying TOAST (Additional file 1:

Figure S4). This indicates that TOAST is very robust and

stable to selections of initial features.

Closer comparisons of initial feature selections reveal

that different initial features only have slight impacts on

the converging rate. We compare using the top 1000

most variable features as initial features (Additional file 1:

Figure S2, S3) versus using the second 1000 most variable

features (Fig. 2, Additional file 1: Figure S1). We find the

latter set of features requires fewer iterations to achieve

a satisfactory deconvolution results than the former set.

However, with enough number of iterations (e.g., 30 iter-

ations), the ending correlations with true proportions are

similar for these two sets of initial features.

To further investigate this phenomenon, we first check

the overlaps between selected features and the true cell

type-specific features (identified from pure profiles) in our

simulation study with 100 simulated subjects. Additional

Fig. 3 TOAST is stable with different initial feature selections in gene expression simulation studies. The panels from top to bottom correspond to

sample sizes 50, 100, and 200. The panels from left to right correspond to different methods of selecting initial features: Top 1–1000 variables is to

select the top 1000 most variable features, 1001–2000 is to select the top 1001–2000 most variable features, similarly 2001–3000, 5001–6000,

10001–11000 are to select the top 2001–3000, 5001–6000, 10001–11000 most variable features. Random 1000 is to randomly select 1000 features as

initial features. In each panel, “Initial” and “TOAST” correspond to reference-free deconvolution results without and with TOAST. The presented

results are summarized over 100 Monte Carlo experiments
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file 1: Figure S6a shows an increasing trend for overlaps

during the iteration. This trend is clear for both top 1000

and second 1000 most variable features as initial features,

however, the second 1000 features have higher numbers of

overlaps with cell type-specific features. This explains why

selecting the second 1000 features could converge faster

than the top 1000. With the increasing of iteration num-

bers, the difference between the two lines in Additional

file 1: Figure S6a shrinks, which is consistent with the sim-

ilar ending correlations by using the two sets of initial

features.

In the same direction, we also compare the within-cell

type standard deviations for different sets of features: the

top 1000 most variable features, the second 1000 most

variable features, and the features selected after applying

TOAST, using the pure tissue profiles of the Mouse-

Mix dataset (described later). As shown in Additional

file 1: Figure S6b, the top 1000 most variable features

have greater within-cell type variance than the second

1000most variable features, and the features selected after

applying TOAST have the smallest variation. This indi-

cates that selecting the most variable features might not

be a good idea in general, since the large variance can be

from within-cell type (whereas one wants features with

large between-cell type variation).

Considering the final performance using different initial

features is similar, and the 1001–2000 most variable fea-

tures have better converging rate than the top 1000 most

variable features, we stick with using the 1001–2000 most

variable features as initial features.

Ending point of iterations selection

In addition to initial feature selection, it is also impor-

tant to understand how to choose the ending point of

iterations. Ideally, we want to choose the iteration where

the correlations of estimated and true proportions reach

maximum. However, these correlations cannot be com-

puted without knowing the true proportions. Root mean

squared error (RMSE) of the fitted data from deconvo-

lution methods has been used to choose tuning parame-

ters in deconvolution algorithm [17]. Technically speak-

ing, RMSE is not directly related to correlation with

true proportions. However, RMSE reflects the fitness of

the deconvolution model to the observed data, and bet-

ter fitness usually leads to better proportion estimation.

Figure 4a and c show the scatterplots of RMSE versus cor-

relations with true proportions, from the gene expression

and DNA methylation simulation studies, respectively.

Significant negative correlations can be observed between

RMSE and correlations with true proportions, indicat-

ing that smaller RMSE is related with better proportion

estimation.

Figure 4b and d are boxplots of correlations with true

proportions using different endpoint in the algorithm,

from gene expression and DNA methylation simulations.

Init is the results of using conventional RF methods with-

out applying the proposed method. Iter20, Iter30, and

RMSE are different ways of selecting endpoint. Best is the

best correlation results from the 30 iterations. Note that

Best is not observed in real data analysis but is presented

here to make us aware of the best possible results.

We find no matter which endpoint selection method is

used, the increase of correlations with true proportions

over initial point is dramatic, which demonstrates the sta-

bility of the proposed method. Among the three endpoint

selection methods, choosing by smallest RMSE results in

the highest mean correlations in both gene expression and

DNA methylation simulation studies. This finding also

holds if we use randomly selected initial features (Addi-

tional file 1: Figure S5). Together with the significant

negative correlations observed in Fig. 4a and c, we decide

to choose the ending point of the proposed algorithm by

the smallest RMSE. In our software, users could specify

the total number of iterations, and among them, the iter-

ation with the smallest RMSE would be chosen. Based on

our experience, 30 iterations are sufficient for gene expres-

sion and DNA methylation datasets with four cell types

and moderate or large sample size. The number of itera-

tions should be increased for studies with smaller sample

size (e.g., less than 50) or more cell types (e.g., 6 or more).

Impact of number of cell types in themixture

For RF deconvolution, selecting an appropriate number

of cell types is a difficult question. We provide more dis-

cussion toward the selection of cell type numbers in the

“Discussions” section. Here we use our DNA methylation

simulation study to explore the impact of having 6 cell

types (CD4T, CD8T, Gran, Mono, NK, B cells) versus 4

cell types (CD4T+CD8T+NK, Gran, Mono, B cells) on

RF deconvolution and the proposed method. As expected,

increasing number of cell types leads to lower correla-

tions of estimated proportions versus true proportions

even after applying TOAST (Additional file 1: Figure S9).

We find increasing sample size is crucial for better pro-

portion estimation, especially with more cell types. For

example when there are 6 cell types in the mixture, cor-

relations between true and estimated proportions from

TOAST can be twice as high from 200 samples compared

with 50 samples. Moreover, we find that TOAST provides

greater performance improvement for 4 cell types than

6 cell types when sample size is moderate (50 or 100).

This indicates that when sample size is small, it is bet-

ter to specify a relatively small number of cell types and

apply TOAST. If the experiment requires more cell types

to be studied, increasing sample size is the most effective

approach to improve deconvolution accuracy. In real data,

the heterogeneous samples could contain many different

cell types. However, the mixture is usually dominated by
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Fig. 4 Exploration of endpoint selection. a, b Results from gene expression simulation settings. c, d DNA methylation simulation settings. a, c

Negative correlations between RMSE and the correlations of estimated versus true proportions. b, d The boxplots of correlations with true

proportion using different endpoint selection methods. Init is based on the initial features. Iter20 is based on features after 20 iterations. Iter30 is

based on features after 30 iterations. RMSE is based on results with the smallest RMSE in 30 iterations. Best is the best possible correlations over all

iterations (not obtainable in real data analysis)

just a few cell types, so it is reasonable to just model

the major ones. To what level the cell types should be

combined and modeled is another question worth further

investigations.

Compatibility with other RFmethod

TOAST is a feature selection method and works in con-

junction with existing RF deconvolution methods for cell

composition estimation. For all above results, TOAST

uses deconf for gene expression and RefFreeEWAS for

DNA methylation deconvolution. However, TOAST will

work with other RF deconvolution methods and improve

the results through better feature selection. Here we

choose the state-of-the-art deconvolution method for

DNA methylation data, BayesCCE [23], to demonstrate

the flexibility of the proposed method. In their semi-

nal paper published in 2018, BayesCCE has been shown

to outperform existing deconvolution methods including

ReFACTor [47], NNMF [20], and MeDeCom [48]. Here

we compare performance of BayesCCE with and without

applying TOAST for feature selection.

We find TOAST can significantly improve the decon-

volution performance of BayesCCE (Fig. 5). Compared

to BayesCCE, the proportions estimated by BayesCCE+T

(BayesCCE with TOAST incorporated) achieve signifi-

cantly higher correlation with true proportions (p =

7.9e−07), smaller rootmean squared error (p = 3.4e−07),

and root mean squared bias (p = 5.8e − 4). The improve-

ment pattern holds in settings with different sample sizes

(Additional file 1: Figure S10), and the improvement is

more significant with the increase of sample size.

Real data results

While simulation is useful to evaluate how well TOAST

behaves in an idealized synthetic setting, simulation

cannot inform us how well the deconvolution per-

forms in reality. To fully evaluate TOAST in real world

applications, we obtain six datasets including two gene
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Fig. 5 The proposed method could improve the deconvolution performance of BayesCCE in simulation studies. BayesCCE is the BayesCCE results

without applying TOAST. BayesCCE+T is the BayesCCE algorithm with the proposed method TOAST. Results are based on 100 DNA methylation

simulation datasets with four cell types. Panels from left to right demonstrate correlations of estimated versus true proportions (Corr with true prop),

root mean squared error, and root means squared bias. 200 samples are simulated in each dataset. The p values are obtained from paired t test. Red

fonts indicate significant test results. Boxplots are summarized from 100 Monte Carlo experiments

expression, the Mouse-Mix data [8] and Immune data

[14]), and four DNA methylation datasets, the EPIC

(European Prospective Investigation into Cancer and

Nutrition) data [49], Aging data [50], RA (Rheumatoid

Arthritis) data [51], and Breast data [10].

These datasets are diverse in a number of aspects. For

example, the sample sizes of these datasets range from 12

(Immune data) to 689 (RA data). Both Mouse-Mix and

Immune data have true proportions from experiments,

but the rest of the datasets do not have “true” propor-

tions to provide benchmarks. As a surrogate, we obtain

blood reference panels from [4] with profiles of six cell

types (CD8T, CD4T, NK, Bcell, Mono, Gran) and apply RB

deconvolutionmethod EpiDISH [24] to obtain proportion

estimates. Moreover, the Breast data is collected based on

non-diseased breast tissue and does not have a reference

panel to refer to. This is a perfect example to showcase

the utility of RF deconvolution. To evaluate our method in

the case with no prior information of cell type number of

the tissue, we adopt goodness of fit in addition to correla-

tion with true or RB proportions as metrics, as calculating

goodness of fit does not require known true proportions

(details demonstrated the “Method andmaterial” section).

The goodness of fit has been extensively used in previous

studies to evaluate the deconvolution performance [27].

Even though it can be affected by the selected features to

some degree, our simulation studies show that goodness

of fit is highly and positively correlated with “correla-

tions with true proportions” (Additional file 1: Figure S11).

Thus, it is a reasonable metric to assess the deconvolution

results since better goodness of fit is more likely to be

associated with estimates having higher correlation with

true proportions.

Benchmarking TOAST through six real data experiments

Figure 6 summarizes the correlations and goodness of fit

from all real data applications. These analyses reveal in

most of cases a significant increase of correlations with

true or RB proportions (p = 0.0246) and in all cases

a substantial increase of goodness of fit (p = 0.0139).

We further examine the proportions estimated before and

after applying TOAST for each dataset. Figure 7 and Addi-

tional file 1: Figure S12–S14 shows the estimated versus

true proportions at initial point (“Before”) and after apply-

ing TOAST (“After”). The improvements in proportion

estimation can be dramatic for some datasets. For exam-

ple in the application to the Mouse-Mix data shown in

Fig. 7a, the correlations of estimated and true proportions

for liver increase from 0.857 to 0.923 after applying the

proposed algorithm. Similarly, the correlations increase

from 0.756 to 0.942 for the brain and from 0.862 to 0.964

for the lung.

The improvements can also be observed in DNAmethy-

lation data applications. For example in the EPIC data

experiment, the correlations increase from 0.0923 to 0.506

for B cells and from 0.367 to 0.551 for CD8T. It should be

pointed out that, since we do not have true proportions in

DNA methylation datasets, the results from RB deconvo-

lution could itself be deviated from the truth. This might

explain the correlations of these applications are lower
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a b

Fig. 6 The proposed method improves the deconvolution results in real data applications. Boxplots show the evaluation metrics before and after

updating features. a The correlation of estimated versus true (Mouse-Mix, Immune datasets) or reference-based deconvolution solved proportions

(EPIC, Aging, RA datasets). b The goodness of fit for the deconvolution models before and after applying TOAST. The “Before” columns in both plots

are baseline reference-free results without applying TOAST. Small jitter noises are added to points to provide better visualization

than Fig.7a and Additional file 1: Figure S12, which have

true proportions to benchmark the results. Neverthe-

less, our proposed method still demonstrates significant

improvements in the composition estimation.

The Breast data have neither true proportions nor RB

proportions because of the lack of pure tissue profiles;

thus, we cannot present correlations nor scatterplot of

proportions as with other datasets. We use the RefFreeE-

WAS package to determine the number of cell types, and

six is selected in the analysis (consistent with [10]). The

goodness of fit shows a dramatic increase before and after

applying TOAST (Purple crossed squares in Fig. 6b).

We further demonstrate the compatibility of TOAST

with BayesCCE and evaluate the performance in the three

DNA methylation datasets (EPIC, Aging, and RA) which

collect blood samples, as blood samples have prior knowl-

edge of blood proportions provided in the BayesCCE

paper. Additional file 1: Figure S16 shows that TOAST

improves the performances from both RefFreeEWAS and

BayesCCE.With TOAST, bothmethods have highermean

absolute correlations and lower root mean squared bias.

Comparison of RB and RF estimations in RA data

Finally, we ask whether the estimated proportions are bio-

logically meaningful? Moreover, we are curious between

RB and RF, which provides more meaningful estimation?

Previous studies have shown that when reliable refer-

ence panel is available, RB deconvolution can obtain pro-

portion estimates with high accuracy [14–17]. However,

when the reference panel is obtained from subjects with

different phenotypes such as age, gender, and disease sta-

tus from the population of interests, RF could provide

better proportion estimates than RB method [30].

RA dataset [51] epitomizes such a scenario, as it collects

the whole blood from 354 RA patients and 335 normal

controls with males and females in each group, while the

blood reference panel is obtained from 6 healthy males in

a separate study [26]. It was reported that RA can signif-

icantly change the proportions of some blood cell types

in patients [52, 53], making blood cell proportions from

RA patients differ from healthy subjects. Thus, the blood

cell proportions can potentially be used for predicting

RA. To compare the proportion estimations from differ-

ent methods, we adopt a tenfold cross validation and use

the estimated proportions to predict the disease status of

each patient. Proportions that can better predict disease

are deemed better estimated.

We compare RB method EpiDISH, RF methods Ref-

FreeEWAS, BayesCCE, and the RF methods with TOAST

(RefFreeEWAS+T and BayesCCE+T) and summarize

the results in Fig. 8. The left panel shows the propor-

tions estimated from RB and BayesCCE+T, and the right

panel shows the precision-recall curves for predicting RA

from estimated proportions. Figure 8b shows that all RF

methods achieve better disease prediction performance

than RB method. Most importantly, TOAST can greatly

improve the prediction performance of either RefFreeE-

WAS or BayesEWAS compared to the original meth-

ods, resulting in more biologically meaningful proportion

estimation.
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a

b

Fig. 7 Proportion estimation from the Mouse-Mix dataset (GSE19830, upper panel) and EPIC dataset (GSE51032, lower panel). Left panels of a and

b: estimated proportions versus true proportions without applying TOAST (baseline performance). Right panels of a and b: estimated versus true

proportions after updating feature selection by the proposed algorithm. “True” proportion of the EPIC dataset is obtained using RB deconvolution

method EpiDISH

a b

Fig. 8 Results from the analysis of RA dataset (GSE42861). a The boxplots of estimated proportions of RA patients and controls from reference-based

(RB) deconvolution method and BayesCCE with TOAST (BayesCCE+T). b The precision-recall curve for predicting disease status using estimated

proportions from different methods. RefFreeEWAS and BayesCCE are baseline performance without applying TOAST. Results averaged from tenfold

cross validation are used to generate the curves



Li and Wu Genome Biology          (2019) 20:190 Page 11 of 17

We also investigate the impacts of gender on the pre-

diction performance (Additional file 1: Figure S15). In

both male and female groups, we observe comparable

or improvements after applying TOAST (yellow and red

lines) over without TOAST (green and purple lines).

These results again demonstrate the favorable and robust

performance of the proposed method. On another note,

we observe greater improvements by using TOAST in

females than in males. In male populations, there is mini-

mum advantage in reference-free deconvolution methods

(colored lines) over reference-based method (black line),

while the advantage is more profound in the female group

and overall population.We believe this could be explained

through gender distinctions in RA etiology [54–56] and

sample size differences (197 males and 492 females). Nev-

ertheless, TOAST still provides robust performance in

improving proportion estimations and disease predictions

for both male and female samples.

Discussions
We present TOAST, a feature selection method for

reference-free deconvolution to estimate cellular compo-

sition from high-throughput data of complex samples.

We design an iterative algorithm, based on cross-cell

type differential analysis, that improves feature selec-

tion and subsequently proportion estimation. Different

from other methods that improve deconvolution per-

formance through prior knowledge of markers or cell

type proportions, TOAST is a purely data-driven method

without requiring additional information. This provides

great convenience for analyzing novel complex tissues or

data from new modalities. TOAST can be incorporated

with most, if not all, existing RF methods. The appli-

cations to deconf, RefFreeEWAS, and BayesCCE show-

case this flexibility. If any prior information about cell

type proportions are available, TOAST together with

a RF method that utilizes such information, for exam-

ple, BayesCCE, could further improve the estimation

accuracy.

It is important to note that in general the RF decon-

volution methods require large sample size to work well.

As described in the “Background” section, sample decon-

volution is important for analyzing data from large-scale

clinical studies for human diseases. In such studies, large

sample size is not only reasonable, but also necessary. In

our opinion, the small sample size study is only reasonable

for very homogeneous samples, such as cell lines or model

organisms. To study heterogeneous and complex diseases

in human subject, large sample size is necessary to provide

enough power to identify disease biomarkers and thera-

peutic targets. This is the reason why most serious studies

of human diseases have large sample sizes, for example,

TCGA for cancers [57] and ROS/MAP for neurodegenera-

tive diseases [58]. On another note, for datasets with small

sample sizes, reference-free method is not recommended

and one has to rely on reference-based method.

One universal difficulty of applying RF methods is to

choose an appropriate number of cell types. Toward this

end, we first want to join the discussions in previous

publications and mention the usage of prior knowledge

[23, 48]. For tissues that have been well-studied, such as

blood and brain, prior knowledge about cell types can be

easily obtained [26, 59]. When there is no prior informa-

tion about the number of cell types, many RF methods

provide schemes to select cell type number automatically,

for example, by comparing the estimation error and the

approximation error [48], or by AIC and BIC [20]. In

our application to the Breast dataset, we use the “Est-

DimIC” function provided by the RefFreeEWAS package

and choose six cell types, which is in consistent with pre-

vious analysis [10]. In addition, the selection of cell type

numbers is dependent on sample size. As demonstrated in

the simulation results, estimation accuracy is much lower

for 6 cell types than 4 cell types with moderate sample

sizes, even if the proposed method is applied. As a rec-

ommendation, when sample size is small and RF method

is needed, one should consider to combine similar cell

types and decrease the cell type number specified in RF

deconvolution.

In the evaluations of initial feature selection, we con-

sider six sets of selections, the top 1000, 1001 to 2000,

2001 to 3000, 5001 to 6000, and 10,001 to 11,000 most

variable features and 1000 randomly selected features.

These results provide comprehensive evaluations of the

robustness of TOAST. Regardless of the initial features,

TOAST could improve the feature selection and subse-

quently improve deconvolution accuracy.

The proposed method is primarily focused on microar-

ray data (for gene expression or DNA methylation) in this

work. However, the same principal is applicable for cell

composition estimation in other data types, such as RNA-

seq. Since the RF deconvolution method for RNA-seq

is still underdeveloped, we did not test our functional-

ity to deconvolve RNA-seq. Instead, we have evaluated

our cross-cell type differential analysis method on RNA-

seq data. We have designed a simulation study based on

a real RNA-seq dataset [60] using Bioconductor package

PROPER [61]. Detailed procedures of our RNA-seq sim-

ulation study have been described in Additional file 1:

Section S2. As demonstrated in Additional file 1: Figure

S17, TOAST is able to detect cross-cell type differential

expressed genes (DEGs) with high accuracy (> 70% of

the top ranked 1000 genes are true DEGs), which means

TOAST is able to accurately select desired features from

RNA-seq data.

Our proposed method works in combinations with

existing RF methods, such as deconf for gene expres-

sion data and RefFreeEWAS and BayesCCE for DNA
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methylation data. It is therefore important to follow the

data preparation procedures suggested by those pack-

ages. For example, BayesCCE suggested to incorporate

methylation-altering covariates into the analysis [23],

which has been shown to generate more biologically

meaningful results in our real data applications.

TOAST also demonstrates favorable computationally

performance since the feature selection step is based on

linear regression.We have benchmarked TOAST on a lap-

top computer with 4GB RAM and Intel Core i5 CPU. For a

real gene expression dataset with 54,675 features and 100

samples, it takes less than 2min to complete 30 iterations.

For a real DNA methylation dataset with 459,226 features

and 100 samples, it takes around 8min to complete 30

iterations.

Finally, the proposed methods have some connections

to SVA (Surrogate Variable Analysis) [62] and RUV

(Remove Unwanted Variation) [63, 64]. Both RUV and

SVA are targeting at the removal of “unwanted” variations

or “undesired” confounding factors. For complex tissues,

the cell compositions, which we are interested in, might

be considered as unwanted variations under their con-

text. All methods use some type of factor analysis (SVD

for RUV and SVA, and NMF for TOAST), and the esti-

mated “unwanted variations” (or proportions in our study)

can be used for downstream analysis by including them

as covariates in a linear model. One important distinc-

tion in TOAST is the iterative feature selection procedure,

since SVA and RUV use a fixed set of features. From

this perspective, an extension of SVA, the ISVA (Indepen-

dent Surrogate Variable Analysis) [65], has more similarity

to TOAST for its data-driven feature selection. However,

ISVA identifies informative features through regressing

observed data on each individual surrogate variable (SV).

If the SVs contain proportion information, this approach

can be considered as a special case of TOAST. Moreover,

ISVA only performs one round of feature selection instead

of iterating between feature selection and ICA (indepen-

dent component analysis). This may not be ideal since we

have shown that the iteration greatly improves the results.

Conclusion
We study the problem of feature selection in RF decon-

volution for cellular composition estimation from high-

throughput data of complex samples. We design an itera-

tive algorithm, based on cross-cell type differential anal-

ysis, that improves feature selection and subsequently

proportion estimation. There are two advantages of the

proposed methods. First, our algorithm is flexible enough

to work with existing RF deconvolution methods. The

applications to gene expression data and DNA methyla-

tion data showcase this flexibility. Second, our current

results show that only a few iterations (e.g., 30 itera-

tions) can achieve good improvements, which means it

is computationally efficient. With the wide applications

of RF deconvolution and the increasing needs of analyz-

ing heterogeneous samples, we expect broad applications

of the proposed method to microarray data and to other

omics data as well.

Method andmaterial

Notations andmodel

We first provide a formal definition of the problem that

most RF deconvolution algorithms try to solve. Denote the

data generated from high-throughput experiments by Y,

a P by N matrix with rows representing features (genes,

CpGs, etc.) and columns representing samples. Assume Y

contains mixed signals from K (assumed known) “pure”

cell types. Most deconvolution methods seek the optimal

solutions for matrix factorization Y = WH. Here refer-

ence panelW is a P by K matrix, where the k-th column of

W is the profile of cell type k. H is the mixture proportion

matrix with dimension K by N, each column represents

the mixture proportions of K cell types for each subject.

H has a constraint that every column sums up to one. If

the input is DNA methylation data, another constraint, in

which elements of W are bounded by 0 and 1, is added to

the algorithm.H is the variable of interests in this analysis.

Using this notation, selecting high variable features

is equivalent to selecting rows with highest variance

Var(Yi·) =
∑

j(Yij − Ȳi·)
2, which contains contribu-

tions from within-cell type variances (biological variation

among samples for pure cell types), cross-cell type vari-

ances (mean differences among pure cell types), and vari-

ation from the mixing proportions. As discussed in recent

published studies [32, 46], the good features for deconvo-

lution are those with low within-cell type variation and

high cross-cell type variation. If we select features solely

based on variance of raw observations, features with high

within-cell type variances could also be included, which

will have negative impact on the RF deconvolution in later

step.

Now we briefly introduce the method for cross-cell type

differential analysis for data from mixed sample, which is

a special case of our previously proposed method [45].

Assume the observed data for the p-th feature are Yp =

[Yp1,Yp2, · · · ,YpN ]
T , p = 1, · · · ,P. Denote the propor-

tions obtained for sample s are θs = (θs1, θs2, · · · , θsK ).

With known proportions, the observed data can be mod-

eled by a linear model:

E(Yp) = Vβp (1)

where

V =

⎡

⎢

⎢

⎢

⎣

θ11 θ12 · · · θ1K
θ21 θ22 · · · θ2K
...

...
...

θN1 θN2 · · · θNK

⎤

⎥

⎥

⎥

⎦

, βp =

⎡

⎢

⎢

⎢

⎣

µp1

µp2

...

µpK

⎤

⎥

⎥

⎥

⎦

. (2)
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Regression coefficient µpk represents the mean level for

the p-th feature in the k-th cell type. Using this model, one

can test the difference between cell type k versus other cell

types in feature p by following hypothesis test:

H0 : µpk −
1

K − 1

∑

i�=k

µpi = 0, k = 1, · · · ,K . (3)

Features with significant test results are cell type-specific

features.

The above linear model can be fit using ordinary least

squares (OLS) method.We find that sometimes extremely

small variance estimation can lead to undesirable results

for some features. To overcome this problem, we impose

a data-driven lower bound (10th quantile values of all

estimated variances) to stabilize the variance estimates.

Similar methods are widely used in popular tools for dif-

ferential expression analysis which has been proven to

have good results [66]. In addition, as all the µpi’s repre-

sent the mean observation levels for each cell type, it may

not be reasonable to have negative estimators. As such,

we provide options to bound negative estimated parame-

ters in the TOAST software. In our experiments, we find

bounding negative estimators hasminimum impact on the

results due to the small proportions of negative estimators

(e.g., less than 2% in RA data analysis).

With this method, we design the following iterative

algorithm to improve feature selection in RF deconvolu-

tion. The algorithm starts with a list of initial features,

denoted as M0, which could be selected using conven-

tional methods, such as choosing the top variable fea-

tures. In the “Initial feature selection” section, we have

provided more discussion about this. Observed data for

these features, denoted as YM0 , are used as inputs for RF

deconvolution to estimate mixture proportions. With the

estimated proportions, we run cross-cell type differen-

tial analysis on the whole observed data Y to detect cell

type-specific features. In each iteration, the top features

from this analysis with the same length as M0 are then

used for another round of RF deconvolution. In our soft-

ware implementation, the function “DEVarSelect()” has an

argument “nMarker” for users to specify the number of

initial features and selected features in each iteration. The

default value is 1000, as used throughout this paper. The

feature selection and RF deconvolution are iterated for a

number of times then stop. In the “Ending point of itera-

tions selection” section, we have more discussions about

choosing endpoint. The algorithm is summarized below.

Note that Algorithm 1 is not constrained to a specific

deconvolution method, so most existing RF methods can

be applied in conjunction with this procedure. For exam-

ple in our simulation study and real data applications, we

Algorithm 1: Improve feature selection in RF decon-

volution
Input: Y (observed data matrix) and K (number of cell

types);

1. Select a list of initial featuresM0;

2. Conduct RF deconvolution on YM0 with K cell

types, where YM0 is a sub-matrix of Y and rows of YM0

are the corresponding rows for features inM0.

InitializeH0 by the estimated proportions; i = 0;

while Stopping criteria is not met do

3. Ĥ =Hi; i = i + 1;

4. Use proportion Ĥ and Y as inputs for cross-cell

type differential analysis;

5. Construct a new feature listMi of the same

length asM0 containing the top cell type-specific

features for all K cell types;

6. Conduct RF deconvolution on YMi where the

rows of YMi are the corresponding rows of Y for

features inMi.Hi = estimated proportions;

end

Output: Hi.

use RF algorithm deconf [19] for gene expressionmicroar-

ray data and RefFreeEWAS [20] and BayesCCE [23] for

DNA methylation microarray data.

The proposed algorithm guarantees the improvements

of proportion estimations from two aspects. The first is

that RF deconvolution performs better with more “cor-

rect” or informative features. The second is that feature

selection can be improved with more accurate estimated

proportions. The first point has been empirically demon-

strated by all our results and by discussions about feature

selection in many RF deconvolution publications [23, 36].

The latter point is a natural result from the measurement

error model [67, 68].

Simulation setting

We design two simulation studies based on real datasets,

one for gene expression data and the other one for DNA

methylation data, so that the simulation studies mimic the

real data scenarios well.

The first step of our simulation studies is to gener-

ate subject-specific reference panels. In the first simula-

tion study, the four cell types in the reference panels for

each individual are simulated from log-normal distribu-

tions, with cell type-specific means and variances esti-

mated based on a real gene expression microarray dataset

obtained from the Gene Expression Omnibus (GEO) with

accession number GSE11058 [14]. This dataset provides

gene expression profiles of four purified immune cell line

tissues and their manually mixed samples. We only use

the data from four purified cell line tissues to estimate the
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cell type-specific mean and variance of each feature. In the

second simulation study, the four cell types in the refer-

ence panels are simulated from normal distributions, with

cell type-specific means and variances estimated from the

GEO dataset GSE35069 [26]. Note that GSE35069 has

DNA methylation measurements for six types of purified

blood cells (CD4T, CD8T, B-cell, Mono, Gran, NK, Gran).

For our simulation study, we combined CD4T, CD8T, and

NK to one pseudo-cell type when estimating the cell type-

specific mean and variance of each feature. In the “Impact

of number of cell types in the mixture” section, we explore

the impacts of using 6 cell types to deconvolve observed

signals versus using 4 cell types.

After subject-specific reference panels are generated,

the simulated pure cell types are manually mixed

using known mixture proportions, which are simu-

lated from a Dirichlet distribution with parameters

(0.968, 4.706, 0.496, 0.347) for four-cell type setting or

(0.89, 4.12, 0.47, 0.33, 0.61, 1.02) for six-cell type setting.

Randomly simulated measurement errors are added to

the mixed signals. For all settings, results are summarized

over 100 Monte Carlo datasets.

Evaluation metrics

We calculated a number of metrics to evaluate the pro-

posed method. First, we compute the correlations and

biases for comparison between estimated and true pro-

portions. Correlations with true proportions is widely

used in almost all studies that involve evaluating the

deconvolution performance [14, 17, 20, 24]. Specifically,

we calculate:

Corr with true prop = diag(r(H, Ĥ)) (4)

where r(·) represents the Pearson correlation and diag(·)

is the diagonal operation extracting the diagonal elements

from the variance-covariance matrix. RMSBias is the root

mean squared bias of the estimated versus the true pro-

portions, i.e.,

RMSBias =

√

∑

(H − Ĥ)2/KN . (5)

Number of overlaps between selected and cell type-

specific markers is to evaluate the agreement between our

selected markers, and the best markers can be chosen

if pure tissue profiles are known. The cell type-specific

markers are selected by the largest log fold changes of the

cell type-specific value against the mean value of other

cell types, iterating over all cell types (details presented in

Additional file 1: Section S1). Higher overlap usually leads

to better proportion estimation.

Goodness-of-fit score is the Pearson correlation of real

observations and fitted values from the RF deconvolution

results, which we find is a metric especially suitable when

true proportions are unknown [27]. Briefly, for estimated

basis matrix Ŵ and cell proportions Ĥ, the reconstructed

observation is Ŷ = ŴĤ. Goodness of fit is defined as:

Goodness of fit = r(vec(Y ), vec(Ŷ )). (6)

vec(·) is the vectorization operation.

RMSE is also a widely used metrics calculated by the

root mean squared error between the estimated and true

proportions, i.e.,

RMSE =

√

∑

(Y − Ŷ)2/PN . (7)

Datasets

All the six datasets used in the study are publically avail-

able and can be downloaded from the Gene Expression

Omnibus (GEO): Mouse-Mix data by Shen-Orr et al.

[8] (accession GSE19830), Immune data by Abbas et al.

[14] (accession GSE11058), EPIC (European Prospective

Investigation into Cancer and Nutrition) data by Riboli

et al. [49] (accession GSE51032), Aging data by Hannum

et al. [50] (accession GSE40279), RA (Rheumatoid Arthri-

tis) data by Liu et al. [51] (accession GSE42861), and

Breast data [10] (accession GSE88883). The purified blood

cell profiles are obtained from the R/Bioconductor pack-

age FlowSorted.Blood.450k and are originally obtained

by Reinius et al. [26]. After the preprocessed data are

downloaded from GEO, RMA are used to normalize gene

expression data and quantile normalization are used to

normalize the DNA methylation data.

Implementation of the reference-free methods

We use the ged function from R package CellMix [69],

downloaded from GitHub (https://github.com/rforge/

cellmix/tree/master/pkg), for the deconf algorithm [19]

implementation. We use the RefFreeCellMix function

from R package RefFreeEWAS [20] which is obtained from

its CRAN page (https://cran.r-project.org/web/packages/

RefFreeEWAS/index.html). The BayesCCE Matlab tool-

box is downloaded from GitHub (https://github.com/

cozygene/BayesCCE). In order to incorporate BayesCCE

with our algorithm, we call the matlab function from R

using the R.matlab package [70].

When implementing BayesCCE, we set parameters k =

6 and d = 10 and select the initial variables with ReFACTor

as recommended in the BayesCCE paper. In addition to

high-throughput data matrix, BayesCCE accepts known

patient phenotype information. We accounted for age and

gender for all analyzed DNA methylation, EPIC, Aging,

and RA data. We also accounted for the smoking status

when analyzing the RA data. For the prior information

of cell proportions used in BayesCCE, we use the true

parameter values in generating simulation proportions

(0.968, 4.706, 0.496, 0.347) for four synthetic cell types,

https://github.com/rforge/cellmix/tree/master/pkg
https://github.com/rforge/cellmix/tree/master/pkg
https://cran.r-project.org/web/packages/RefFreeEWAS/index.html
https://cran.r-project.org/web/packages/RefFreeEWAS/index.html
https://github.com/cozygene/BayesCCE
https://github.com/cozygene/BayesCCE
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when evaluating BayesCCE in simulation study. In real

data analysis with blood samples, we use the parameter

(15.0727, 1.8439, 2.5392, 1.7934, 0.7240, 0.7404) for gran-

ulocytes, monocytes, CD4+, CD8+, B cells, and NK cells

provided by the BayesCCE paper and originally obtained

from the Perioperative Medicine at UCLA’s perioperative

data warehouse (PDW) [71].
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