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Summary

Tobacco smoking causes lung cancer1–3, driven by the 60+ carcinogens in cigarette smoke that 

directly damage and mutate DNA4,5. The profound effects of tobacco on the lung cancer genome 

have been well documented6–10, but we lack equivalent data for normal bronchial cells. We 

sequenced whole genomes of 632 colonies derived from single bronchial epithelial cells across 16 

subjects. Tobacco smoking was the major influence on mutation burden, adding 1000-10,000+ 

mutations/cell, massively increasing both within-subject and between-subject variance, and 

generating several distinct signatures of substitutions and indels. A population of cells in subjects 

with smoking history had mutation burdens equivalent to that expected for never-smokers: these 

cells had less damage from tobacco-specific mutational processes, were four-fold more frequent in 

ex-smokers than current smokers, and had significantly longer telomeres than their more mutated 

counterparts. Driver mutations increased in frequency with age, affecting 4-14% of cells in 

middle-aged never-smokers. In current smokers, ≥25% of cells carried driver mutations and 0-6% 

cells had 2 or even 3 drivers. Thus, tobacco smoking increases mutation burden, cell-to-cell 

heterogeneity and driver mutations, but quitting promotes replenishment of bronchial epithelium 

from mitotically quiescent cells that have avoided tobacco mutagenesis.

Introduction

Lung cancer kills more people globally than any other cancer, with 80-90% of those deaths 

attributable to tobacco exposure1,2. Our model for how tobacco causes lung cancer 

emphasises direct mutagenesis from the 60+ carcinogens in cigarette smoke4,5, combined 

with indirect effects such as inflammation, immune suppression and infection. Recognised 

first in TP53 sequencing5 and more recently in genome-wide sequencing of lung 

cancers6–10, tobacco exposure leads to both an increase in somatic mutation burden and an 

altered spectrum of mutations. A lung cancer genome from a smoker typically has tens of 
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thousands of somatic mutations6,7,9 – of these, a small handful, probably <20, drive the 

biology of the tumour11–13.

Epidemiological studies have quantified the relationships between lung cancer and duration 

of smoking, intensity of smoking, type of smoking and timing of smoking cessation1–3,14. 

Interpreting these observations from population cohorts in terms of the molecular basis for 

tobacco carcinogenesis is challenging. Under a model in which lung cancer requires n driver 

mutations, an exposure that, say, increases mutation rates k-fold should increase incidence 

by ~kn, across a range of growth patterns11. However, in a paradox first noted by Armitage 

in 197115, the dose-response relationship between number of cigarettes smoked per day and 

lung cancer risk is linear3,14, k1, or at most weakly quadratic16. The benefits from smoking 

cessation likewise do not fit straightforwardly into multistage models of cancer15. By 

stopping in middle age or earlier, smokers avoid most of the risk of tobacco-associated lung 

cancer, a benefit that begins to emerge almost immediately and accrues steadily with time2. 

Of two people who smoked the same lifetime number of cigarettes, why the one with longer 

duration of cessation should have lower risk of lung cancer is difficult to explain if tobacco 

induces carcinogenesis exclusively via increased mutation burden.

Sequencing single-cell–derived colonies

We recruited 16 patients to assess the landscape of somatic mutations in normal bronchial 

epithelium: 3 children, 4 never-smokers, 6 ex-smokers and 3 current smokers 

(Supplementary Table 1). For ethical reasons, samples could only be obtained from subjects 

undergoing a bronchoscopy for clinical indications. The never-smokers and current smokers 

had bronchoscopy to investigate changes eventually diagnosed as benign. Of the ex-smokers, 

2 had had a previous cancer treated with curative intent, and 5 had a carcinoma in situ or 

invasive squamous cell carcinoma that was the indication for bronchoscopy. The children in 

the cohort had bronchoscopy for investigation or follow-up of congenital anomalies: all had 

normal bronchial epithelium.

Samples of airway epithelium were obtained from biopsies or brushings of main or 

secondary bronchi. These were dissociated into single cells and EPCAM-positive epithelial 

cells flow-sorted, one to a well, onto mouse feeder cells allowing basal cell attachment and 

growth (Extended Figure 1A). Each cell was independently cultured to obtain single-cell–

derived colonies that expressed the transcripts expected for basal cells of pseudostratified 

bronchial epithelium (Extended Figure 1B). Typically 15-40% of flow-sorted cells produced 

colonies (Extended Figure 1C), confirming that cells sequenced were drawn from a 

prevalent and representative population of epithelial cells. Colonies underwent whole 

genome sequencing to average coverage 16x (Supplementary Table 2), analysed using a 

xenograft pipeline to flag non-human sequencing reads (Extended Figure 2A-B). 

Somatically acquired mutations were identified from reads specific to the human genome. In 

nearly all colonies, the variant allele fraction of mutations averaged ~50%, consistent with 

contamination-free colonies derived from a single bronchial cell (Extended Figure 2C). To 

remove variants possibly acquired in vitro, we excluded mutations with variant allele 

fraction <30% that were present in only a single colony (Extended Figure 2C). Occasional 

colonies had a low mean variant allele fraction (Extended Figure 2D), consistent with 
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seeding by two bronchial cells – these colonies were excluded from downstream analyses. 

We estimate that sequencing depth of 8x gave sensitivity for variants of 70-75%, rising to 

>95% at 15x (Extended Figure 2E). The majority of colonies had depth >15x, and we set a 

minimum cut-off of 8x for inclusion.

The final dataset comprises somatic mutation catalogues from whole genomes of 632 single 

bronchial cells. Five patients had squamous cell carcinomas or carcinoma in situ, three of 

which we also sequenced. Normal basal cells from these patients shared no clonal 

relationships with the carcinomas, and we found no systematic differences in mutation 

burden between normal cells in the vicinity of carcinoma in situ lesions and histologically 

normal regions (Extended Figure 2F).

Mutation burden

The burden of somatic substitutions per cell showed considerable heterogeneity both across 

the cohort and even within individual patients (Figure 1A). Using linear mixed effects 

(LME) models, we assessed factors influencing mutation burden (Supplementary Code). 

Single base substitutions increased significantly with age, at an estimated rate of 22/cell/year 

(CI95%=20-25; p=10-8; Figure 1B). Previous or current smoking significantly increased 

mean burden of substitutions (p=0.0002) by an estimated 2330/cell (CI95%=1180-3480) in 

ex-smokers and 5300/cell (CI95%=3660-6930) in current smokers.

While the effects of age and smoking are expected, what was more surprising was that 

smoking massively increased the variability in mutation burden from cell to cell, even within 

the same individual. Among closely collocated cells from a given subject’s tiny biopsy of 

normal airway, the estimated standard deviation was 2350/cell in ex-smokers and 2100/cell 

for current smokers compared with 140/cell for children and 290/cell for adult never-

smokers (p<10-16 for within-subject heterogeneity in variance across smoking categories; 

LME). There was also heterogeneity across individuals, with standard deviation in mean 

substitution burden estimated at 1200/cell for ex-smokers and 1260/cell for current smokers, 

compared to 90/cell for non-smokers (p=10-8 for between-subject heterogeneity of variance; 

LME).

While most of the cells in ex- or current smokers had considerably elevated substitution 

burden, a fraction of cells in these patients had burdens within the range expected for never-

smokers of an equivalent age (Figure 1C). For many of these patients, the distribution of 

mutation burden was distinctly bimodal, with one mode in the near-normal range and the 

other mode having substantially elevated mutation burden (Extended Figure 3A). Strikingly, 

although cells with near-normal mutation burden were rarely present in current smokers, 

their relative frequency was on average four-fold higher in ex-smokers (CI95%=2.0-7.9x; 

p=3x10-6; log-linear model), typically accounting for 20-40% of all cells studied. Colonies 

with near-normal mutation burden expressed the same set of airway basal cell genes as 

colonies with elevated mutation burden, and had the same tightly associated, cobbled 

architecture in culture (Extended Figure 3B-C), confirming they did indeed derive from 

bronchial epithelial cells.
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Among current and ex-smokers, we found no significant correlation of mutation burden with 

duration of cigarette smoking or the number of cigarettes smoked per day, even if near-

normal cells are excluded. However, the small numbers of subjects and large within-subject 

heterogeneity limits our statistical power for this analysis, and definitive analysis will 

require much larger sample size.

Indels showed similar associations as substitutions, increasing steadily with age (0.7 indels/

cell/year; CI95%=0.6-0.8; p=10-6) and tobacco smoking (101 extra indels/cell in smokers; 51 

in ex-smokers; p=0.001; Extended Figure 4A). Generally, the normal bronchial epithelial 

cells had few copy number changes or structural variants (Extended Figure 4B) – this 

represents a qualitative difference from lung cancers, which tend to have large numbers of 

structural abnormalities6,7,9,17. Interestingly, there were occasional examples of more 

complex structural events in the bronchial epithelial cells, including chromoplexy (Extended 

Figure 4C) and even chromothripsis in a cell from a child (Extended Figure 4D). The latter 

is particularly interesting, given recent data suggesting driver gene fusions in lung 

adenocarcinoma can arise through complex structural events early in life17.

Mutational signatures

A range of mutational processes operate in lung cancers, driven by both the exogenous 

carcinogens present in tobacco smoke and endogenous DNA damage – these processes leave 

characteristic signatures in the genome8. We built phylogenetic trees for each patient, and 

applied a Bayesian de novo mutational signature discovery algorithm to mutations assigned 

to each branch, together with samples from squamous cell lung cancers18 and in vitro cell 

culture controls19 to maintain comparability with previous analyses8 (Figure 2). 

Reassuringly, few mutations in our samples, typically <10-30/cell, were attributed to 

SBS-18, the signature that accounted for all variants in the cell culture controls19, 

confirming that mutations acquired in vitro are minimal in our dataset. Similar results 

emerged using a different mutational signature algorithm20 (Extended Figure 5A-C).

The endogenous mutational signature SBS-5 contributed a large proportion of mutations in 

all subjects, accumulating linearly with age (Figure 2C-D). As previously reported7,8, the 

absolute number of mutations attributed to this signature is higher in those with a smoking 

history (ex-smokers 1140/cell, CI95%=590-1700; current smokers 2200/cell, 

CI95%=1590-2810; p<10-16). Signature SBS-1, comprising C>T mutations at CpG 

dinucleotides, contributed larger proportions of mutations in the young children than the 

adults, but absolute numbers continued to increase linearly with age through adulthood 

(Figure 2C-D). Presumably, then, SBS-1 is enriched during early lung development and 

continues steadily throughout life, but other signatures become proportionally more active in 

adulthood. A novel signature (Sig-A; Figure 2B) was universally present across samples. It 

has some resemblance to SBS-5, and likewise increased linearly with age.

Signatures SBS-2 and SBS-13, caused by APOBEC3A/B mutagenesis, showed striking 

heterogeneity – mostly absent from bronchial cells, but occasionally contributing hundreds 

of mutations in an individual cell, even in children. This activity appears temporally 

restricted: individual branches of a phylogenetic tree had high proportions of SBS-2/13 

despite their absence from antecedent and descendent branches (Figure 3A; Extended Figure 
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6). This implies that the episodic activity of APOBEC mutagenesis observed in cell lines21 

extends to somatic cells in vivo – the proportion of mutations attributed to APOBECs on a 

given branch of the phylogenetic tree does not predict past or future mutagenesis rates in that 

lineage.

Three substitution signatures were largely restricted to current or ex-smokers. Signature 

SBS-4 was expected since it is the predominant signature in lung cancers from smokers7,8 

and is recapitulated by in vitro exposure to polycyclic aromatic hydrocarbons19. Second, 

SBS-16 comprised 5-15% mutations in several current or ex-smokers, but was absent from 

never-smokers. This signature, with its distinctive pattern of transcription-coupled damage 

and repair22 (Extended Figure 5D), correlates with alcohol and tobacco exposure in 

hepatocellular carcinomas8,23, but has not been linked with tobacco exposure in lung cancers 

previously.

A new mutational signature was extracted, comprising predominantly T>A and T>C 

mutations (Sig-B; Figure 2B), that was evident only in patients with a smoking history. The 

signature was mostly present at low rates, but in one ex-smoker it contributed up to 15% of 

mutations per cell. We find a strong transcriptional strand bias, with the transcribed strand 

showing decreased rates of mutation at the adenine in the T:A pairing. This is consistent 

with in vitro data that purines are more reactive with mutagens in tobacco smoke than 

pyrimidines5.

As described above, an unexpectedly high fraction of cells in ex-smokers had near-normal 

mutation burden. These cells had considerably lower proportions of SBS-4 mutations than 

cells in the same patients with elevated mutation burden. Instead, the distribution of 

signatures in these near-normal cells resembled that seen in never-smokers, with prominent 

endogenous signatures such as SBS-5, SBS-1 and Sig-A. Phylogenetically, cells with near-

normal mutation burden showed polyclonal origins (Figure 3A, Extended Figure 6), 

suggesting they do not arise from expansion of a single ancestral cell.

Signatures of indels and double-base substitutions observed in normal bronchial epithelium 

matched those extracted from lung cancers24 and generated in vitro by exposure of cells to 

polycyclic aromatic hydrocarbons19 (Extended Figures 7-8). A history of tobacco smoking 

was particularly associated with a signature of double-base substitutions at CpC/GpG 

dinucleotides – this accords with the high rates of C>A/G>T single-base substitutions in 

SBS-4. Likewise, tobacco exposure was associated with an indel signature of single-base 

deletions of cytosines/guanines in our dataset. Taken together, these data suggest that the 

predilection of polycyclic aromatic hydrocarbons in tobacco smoke to bind guanine 

nucleotides can result in a range of mutation types, even in normal bronchial epithelial cells, 

including single base substitutions, dinucleotide substitutions and small indels.

Driver mutations

To assess whether any mutations are under positive selection in normal bronchial epithelium, 

we applied an algorithm, dNdScv, that identifies and quantifies excess non-synonymous 

mutations compared with that expected from synonymous (neutral) variants, correcting for 

local variation in mutation rates12. With hypothesis testing across all coding genes, three 
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were significant: NOTCH1 (20 unique non-synonymous variants; q=1x10-5); TP53 (7; 

q=2x10-4); and ARID2 (7; q=4x10-4; Figure 3B). With hypothesis-testing restricted to genes 

mutated in lung cancers12,13,18,25,26 and normal squamous tissues27–29, FAT1, PTEN, 

CHEK2 and ARID1A were also significant, showing the expected patterns of protein-

truncating mutations (Supplementary Tables 3-5; Extended Figure 9A). This closely 

resembles genes under positive selection in squamous cell lung cancers13,18 and other 

normal squamous tissues27–30.

Driver mutations were more frequent in patients with a tobacco-smoking history (Figure 3C, 

Extended Figure 9B). No candidate driver mutations were identified in cells from children; 

4-14% cells in adult never-smokers had drivers, whereas in current smokers, ≥25% of cells 

carried at least one driver. Furthermore, a small fraction of cells in smokers had 2 or even 3 

coding driver point mutations (Figure 3D), as many as seen in some lung cancers12. We used 

generalised linear mixed effects models to quantify these effects (Supplementary Code). 

Driver mutations were significantly more frequent in those with a smoking history, increased 

2.1-fold in current smokers compared to never-smokers (CI95%=1.0-4.4; p=0.04). The 

number of driver mutations also independently increased with age, with every decade of life 

increasing the number of drivers per cell 1.5-fold (CI95%=1.2-2.1; p=0.004), reminiscent of 

the increasing number of driver mutations with age in oesophagus28,29. Finally, the number 

of driver mutations doubled on average for every 5,000 extra somatic mutations per cell, 

independent of the other variables (CI95%=1.4-2.7; p=0.0003).

Layering driver mutations onto phylogenetic trees revealed that driver mutations occurred 

throughout molecular time (Figure 3A; Extended Figure 6). TP53 mutations were much 

more likely to be shared by 2 or more cells sequenced (Figure 3E), though, suggesting that 

they either occur earlier in molecular time or drive larger clonal expansions.

Telomere lengths

To assess historic mitotic activity, we estimated telomere lengths from the sequencing data 

(Figure 4). Bronchial cells from children had longer telomeres than those in adults 

(Extended Figure 10), as expected, and telomere lengths showed no correlation with 

mutation burden in children. Among never-smokers, there was also minimal correlation 

between mutation burden and telomere length. In current smokers, and especially in ex-

smokers, however, there was a strong inverse relationship between telomere length and 

mutation burden, independent of the number of driver mutations (p=0.0009 for interaction 

between smoking status and telomere length; LME models; Supplementary Code). In 

particular, the cells with near-normal mutation burden in ex-smokers had considerably 

longer telomeres than their more mutated counterparts, suggesting they have historically 

undergone fewer cell divisions.

Discussion

The simplicity of the notion that cigarette smoking causes lung cancer through its mutagenic 

effects belies the underlying complexity of how tobacco fashions clonal dynamics, mutation 

acquisition and the selective environment in the bronchus. Yes, exposure to tobacco smoke 

increases the number of somatic mutations, by an average of a few thousand mutations per 
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normal bronchial cell, with the excess mutations attributable to signatures of carcinogens in 

cigarette smoke. Yes, this increased mutation burden generates more driver mutations. What 

is unexpected, though, is the massive within-patient variation in mutation burden among 

smokers – cells from the same tiny biopsy of bronchial epithelium can vary 10-fold in 

mutation burden, from 1,000/cell to over 10,000/cell.

Our cohort does potentially suffer from recruitment bias, since samples could only ethically 

be obtained from individuals undergoing a clinically indicated bronchoscopy. Nonetheless, 

such a recruitment bias could not explain the considerable within-patient variance in 

mutation burden, and we believe this finding will therefore apply to smokers more generally. 

Understanding how heterogeneity in mutation burden among competing cells contributes to 

clonal evolution will be important for refining our models of lung cancer development, 

which usually assume homogeneous effects of carcinogens across a population of cells. We 

recently described similar heterogeneity in tobacco mutagenesis among neighbouring clones 

within non-malignant liver31, suggesting that this phenomenon is not restricted to bronchial 

epithelium.

We find a qualitatively distinct population of bronchial epithelial cells with near-normal 

mutation burden in subjects with a smoking history. These cells have the same mutation 

burden as age-matched never-smokers; low proportions of signatures from tobacco 

carcinogens; longer telomeres than more mutated cells; and fourfold higher frequency in ex-

smokers compared with current smokers. These cells are clearly cancer-protective – lung 

cancers that emerge in ex-smokers do not have near-normal mutation burden, typically 

showing high mutation burden associated with active tobacco signatures.

Two puzzles emerge – how have these cells avoided the mutational ravages suffered by their 

neighbours, and why do they expand after smoking cessation? Their longer telomeres imply 

that cells with near-normal burden have undergone fewer cell divisions, potentially 

representing recent descendants of quiescent stem cells. Although they remain elusive in 

human lung32, quiescent stem cells have been identified through lineage tracing in mouse 

models, and have been shown to occupy a protected niche in submucosal glands and expand 

after lung injury33–35. A physically protected niche could explain how such stem cells would 

avoid exposure to tobacco carcinogens, but so too could mitotic quiescence itself, since 

replication is required to convert adducted DNA bases to mutations.

It may be tempting to assume the expansion of cells with near-normal burden after smoking 

cessation arises through better fitness in the altered selection landscape – perhaps because 

they have longer telomeres, or fewer mutations, or aberrant NOTCH/TP53 signalling confers 

less advantage in the absence of tobacco smoke. These explanations notwithstanding, the 

near-normal cells’ apparent expansion could represent the expected physiology of a two-

compartment model in which relatively short-lived proliferative progenitors are slowly 

replenished from a quiescent stem cell pool, but the progenitors are more exposed to tobacco 

carcinogens. Only in ex-smokers would the difference in mutagenic environment be 

sufficient to distinguish newly produced progenitors from long-term occupants of the 

bronchial coalface.
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Epidemiological studies show the health benefits of stopping smoking begin immediately, 

accrue with time since cessation and are evident even after quitting late in life2. That these 

benefits could be facilitated by replenishment of bronchial epithelium with cells essentially 

impervious to decades of sustained cigarette smoking attests to the lung’s remarkable 

resilience and regenerative capacity. The public health message has an appealing quality of 

absolution – stopping smoking, at any age, does not just slow the accumulation of further 

damage, but can reawaken cells unscathed by past lifestyle choices.

Methods

Subjects

Subjects were recruited at University College London Hospitals (UCLH) or Great Ormond 

Street Hospital (GOSH) and gave written informed consent with approval of the Research 

Ethics Committee (REC reference 06/Q0505/12 and 11/LO/152, respectively). Details of the 

patients studied are listed in Supplementary Table 1. All patients underwent bronchoscopy 

as part of their clinical care. In adults, the bronchoscopy procedure was performed for 

diagnostic or surveillance indications; in children, it was undertaken for investigational 

procedures on congenital tracheal abnormalities. For five patients with squamous cell 

carcinomas or carcinoma in situ, biopsy of normal bronchial tissue was taken from a site 

distant from the tumour.

Single-cell-derived colonies

Endobronchial biopsies were dissociated using 16 U/ml dispase in RPMI for 20 minutes at 

room temperature. The epithelium was dissected away from the underlying stroma and 

foetal bovine serum (FBS) was added to a final concentration of 10%. Both the epithelium 

and stroma were combined and digested in 0.1% trypsin/EDTA at 37°C for 30 minutes. The 

solution was neutralised with FBS to a final concentration of 10% and added to the 

neutralised dispase solution36. Cells were passed through a 100 μm cell strainer and stained 

in sorting buffer (1x PBS, 1% FBS, 25 mM HEPES and 1 mM EDTA) with anti-CD45-PE 

(BD Pharminogen 555483, 1:200), anti-CD31-PE (BD Pharminogen 555446, 1:200), anti-

EPCAM-APC (Biolegend 324208, 1:50) antibodies and DAPI (1 μg/ml). For endobronchial 

brushings, no dissociation was carried out, the cell suspension was passed through a 100 μm 

cell strainer prior to staining.

Cells were single cell sorted based on expression of CD45, CD31 and EPCAM, using a BD 

FACSAria Fusion. Each DAPI-CD45-CD31-EPCAM+ cell was sorted into 1 well of a 96-

well plate, pre-coated with collagen I and mitotically inactivated 3T3-J2 feeder cells. Feeder 

cells were authenticated by whole genome sequencing, and were screened for Mycoplasma 

contamination by PCR. Cells were grown in fresh epithelial growth medium37 (DMEM: F12 

at a 3:1 ratio with penicillin-streptomycin, 5% FBS, 5 μM Y-27632, 5 μg/ml insulin, 25 

ng/ml hydrocortisone, 0.125 ng/ml epidermal growth factor, 0.1 nM cholera toxin, 250 

ng/ml amphotericin B and 10 μg/ml gentamicin), which was supplemented for the first week 

of culture with epithelial growth medium that had been conditioned on growing epithelial 

cells and a final concentration of 10 μM Y-27632. Epithelial cells were grown in 96-well 

plates for 2 weeks before being passaged into 24-well plates and then into T25s. Epithelial 
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cells were in culture for a total of about 25 days at 37°C and 5% CO2 with 3 changes of 

medium per week. When cells reached 70-80% confluence in T25s, they were differentially 

trypsinised, making use of the greater sensitivity of feeder cells to trypsin compared with 

epithelial cells, generating a mostly pure population of epithelial cells. DNA was then 

extracted using the PureLink Genomic DNA Mini Kit (Invitrogen).

Whole-genome sequencing

Paired-end sequencing reads (150bp) were generated using the Illumina Hiseq X-Ten 

platform for 662 samples of 16 patients. Target coverage was 15x per sample, except for 30x 

for 26 pilot samples derived from the first patient (PD26988). For 10 patients, blood DNA 

samples were also sequenced as germline controls. For 3 patients, bulk squamous cell 

carcinoma or carcinoma in situ (CIS) samples, which were collected at the same or nearby 

timepoints (~4 months after), were sequenced, including 2 CIS samples used in a previous 

study38 (PD38326a and PD38327a, which are CIS derived from PD30160 and PD34210, 

respectively). We also sequenced the whole genome of the pure mouse feeder cell layer.

Discrimination of human and mouse sequences

Bronchial epithelium samples were cultured on J2 mouse embryonic feeder fibroblast cells, 

which caused various degrees of contamination of mouse DNA in the samples from 

bronchial cell colonies. To remove mouse-derived sequencing reads, we used the Xenome 

algorithm39 with default setting (k-mer size = 25). The Xenome algorithm classifies fastq 

files into five categories: graft (human), host (mouse), ambiguous, both and neither. We 

confirmed that most of sequencing reads of a pure human DNA sample were classified as 

human (98%) and those of the mouse feeder cell-derived DNA sample were rarely (2.8%) 

classified as human (Extended Figure 2A). In addition, we mapped sequencing reads of 

mouse feeder fibroblast DNA sample to the human genome reference, and confirmed that 

most of mouse-derived mutations have been successfully removed using Xenome for 

selected samples with mouse contamination (Extended Figure 2B). Although all samples 

were negative for Mycoplasma using standard laboratory PCR testing, Xenome identified 

sequencing reads derived from the Mycoplasma genome in a subset of samples, assigning 

them to the “neither” classification.

With testing complete, we ran Xenome for all bronchial epithelium samples, and aligned 

only reads classified as human to the human reference genome (NCBI build 37d5) using 

BWA-MEM. Metrics of sequencing coverage and proportion of human-derived reads are 

listed in Supplementary Table 2, and 20 samples with less than 8X average sequencing depth 

were excluded from further analysis due to lower estimated sensitivity, as described later 

(Extended Figure 2E).

Clonality of samples

To ensure that each sample was single–cell-derived, we visually inspected the distribution of 

variant allele fractions (VAFs) of mutations: 632 clones had VAFs distributed around 50%, 

confirming that they were derived from a single cell, but 10 clones had lower allele fractions, 

suggesting that these colonies were oligoclonal (Extended Figure 2D). These samples were 

removed from further analyses (Supplementary Table 2).
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Single base substitution calling

Single base substitution (SBSs) were called using the Cancer Variants through Expectation 

Maximisation (CaVEMan) algorithm40 with copy number options of major copy number 5, 

minor copy number 2 and normal contamination 0.1. In order to allow the discovery of early 

embryonic mutations, we ran CaVEMan using an unmatched normal control. In addition to 

the default “PASS” filter, we removed variants with <120 median alignment score (ASMD) 

and those with >0 for the clipping index (CLPM) to remove mapping artefacts. Also, 

variants identified in the mouse feeder fibroblast DNA sample were removed, if they 

persisted in the call-set. Subsequently, for every mutation identified in any colonies from 

each patient, we counted the number of mutant and wild-type reads in all bronchial samples 

from the same patient using bam2R function of R package deepSNV41, where bases with 

≥30 base quality and sequencing reads with ≥30 mapping quality were used. Further filters 

described below were applied to identify true somatic mutations and separate them from 

either germline variants or recurrent sequencing errors.

To remove germline variants (binomial filter)—We fitted a binomial distribution to 

the total variant counts and total depth at each SBS site across all samples from one patient. 

To differentiate somatic variants from germline variants, we used a one-sided exact binomial 

test, with the null hypothesis that these variants were drawn from a binomial distribution 

with a success probability of 0.5 (0.95 for sex chromosomes in males). The alternative 

hypothesis was that these variants were drawn from distributions with lower success 

probabilities. Variants with p-value >10-10 were considered as germline variants.

To remove errors (beta-binomial filter)—We fitted a beta-binomial distribution to the 

variant counts and depths of all SBSs across samples from the same patient for the 

remaining somatic variants. The beta-binomial was used as it captures the difference 

between artefactual variant sites and true somatic variants. Many artefacts appear to be 

randomly distributed across samples and can be modelled as drawn from a binomial 

distribution. True somatic variants will be present at high VAF in some samples, but absent 

in others, and are hence best captured by a highly over-dispersed beta-binomial. For each 

variant site, the maximum likelihood of the over-dispersion factor (ρ) was calculated using a 

grid-based method (ranging from a value of 10-6 to 10-0.05). Variants ρ>0.1 were filtered out 

and considered to be artefactual. The code for this filter is based on the Shearwater variant 

caller41.

To remove mutations induced in vitro—We observed peaks of lower VAFs in a subset 

of samples (Extended Figure 2C), suggesting the existence of mutations arising during the in 

vitro expansion of the single cell. These peaks were more prominent in samples from 

children, suggesting that the number of this kind of mutation is relatively small – they 

would, however, be more prominent in samples with low true mutation burden, such as in 

children. We discarded mutations with median VAF ≤0.3 for autosomal regions and ≤0.6 for 

sex chromosomes across all samples from the same patient – these cut-offs were determined 

based on the observed distribution of VAFs here and a previous report20.
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We quantified sensitivity by measuring how well our algorithms called heterozygous 

germline polymorphisms in the colonies depending upon sequencing depth – since our 

colonies are single cell-derived, we would expect heterozygous germline SNPs to have the 

same variant allele fraction distribution as true somatic mutations in that original single cell. 

We find that a sequencing depth of 8x leads to an estimated sensitivity of 70-75%, rising to 

>95% at a sequencing depth of 15x. The majority of colonies we sequenced had depths of 

>15x, and we set a minimum cut-off of 8x depth for inclusion of a colony within the study 

(Extended Figure 2E). Finally, we visually inspected allelic counts of removed germline 

variants with ≥2 samples without any mutant reads, and rescued embryonic mutations. 

Somatic variants were annotated using ANNOVAR42.

Indel calling

Indels were called using cgpPindel43, and an unmatched normal sample was used as the 

germline control. Indels detected in mouse fibroblast feeder cells were removed as mouse-

derived artefacts. For all indels, indel-positive or negative sequencing reads were counted 

using cgpVAF across all samples of each patient.

To remove germline variants and recurrent sequencing errors, the same binomial and beta-

binomial filters were used as described above for single base substitutions. We discarded 

mutations with median VAF ≤0.25 for autosomal regions and ≤0.5 for sex chromosomes 

across all samples from the same patient to remove mutations induced in vitro.

Double-base substitution calling

We first identified candidate double-base substitutions (DBSs) based on side-by-side SBSs 

called using CaVEMan for each patient, and ran cgpVAF across all samples of each patients 

to remove those called in independent reads. DBSs with ≥3 mutant reads in at least one 

sample were considered as true positives. Germline variants, errors and mutations induced in 

vitro were filtered as for single base substitutions and indels.

Structural variant calling

Structural variants (SVs) were called using the BRASS algorithm44, and matched normal 

samples, including blood samples and normal bronchial samples assigned on distantly 

located branches in phylogenetic trees, were used as controls. To remove germline SVs, we 

filtered SVs detected in the descendant colonies of both of the earliest two branches at the 

top of phylogenetic tree for each patient. If the earliest branch had ≥3 branches (polytomy), 

those detected in both descendent and non-descendent samples of the earliest branch with 

highest number, were removed. We further filtered SVs not identified using unmatched 

normal control, to remove SVs not filtered due to lower sequencing coverage of matched 

normal control sample. In addition, SVs detected in other patients were also removed as 

germline variants or errors. Finally, remaining all SV calls were manually inspected using 

IGV to confirm somatic variants.

Copy number calling

Copy number changes were called using the ASCAT algorithm45,46, and the same matched 

normal control samples as those used in SV analysis were used as germline controls. Copy 
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number gains, losses and copy neutral LOHs were visually confirmed LogR and BAF plots 

by ascatNgs. For amplification, those with >100kb were visually confirmed using ascatNgs 

and JBrowse47.

Mutational burden and estimation of effect of age, smoking

For SBS, indels, DBSs, samples with ≥3 mutant reads and ≥0.2 VAF were considered to be 

mutated, and the number of each class of genetic lesions were counted for all bronchial cells. 

For SV, chromoplexy48 (Extended Figure 4C), chromothripsis49 (Extended Figure 4D) and 

translocation pairs with similar breakpoints were considered as single SVs. Genetic lesions 

identified both as SV and copy number changes were also considered as single events.

Subsequently, a linear mixed-effect model was fitted to estimate the effect of age and 

smoking status on the number of SBSs or indels using ‘nlme’ R package (Supplementary 

Code). In addition to the fixed effects of age and smoking, patient was used as a grouping 

variable in the random effect, in which smoking status was used as a modifier of between-

patient difference. Difference of within-group heterogeneity (heteroscedasticity) according 

to smoking status was also fitted in this model. The intercept of this model was likely to be 

derived from embryonic mutations and mutations introduced in vitro. Models were fitted 

using maximum likelihood estimation, and nested models compared using likelihood ratio 

tests.

Identification of near-normal lung cells

We define cells as having a near-normal mutation burden if they have a mutation burden that 

is less than 2 non-smoker within-patient standard deviations (SDs) plus 2 non-smoker 

between-patient SDs above the estimated number of mutations accumulated at the age of 

that patient using LME model (Supplementary Code). The fraction of cells with near-normal 

mutation burden was compared between current smokers and ex-smokers with log-linear 

regression using the logarithm of the total number of cells sequenced per patient as an offset.

Phylogenetic tree construction

Phylogenetic trees were built using maximum parsimony using substitutions for each 

patient. First, the input matrix of mutations was made, in which samples with ≥0.2 VAF and 

≥3 mutant reads were considered as mutated samples and labelled as “1”, and remaining 

samples were labelled as “0”. Among samples labelled as “0”, samples (i) with ≤6X 

sequencing depth for each mutated base and (ii) ≥1 mutant reads were considered as 

undetermined and labelled “?”. For every individual, phylogenetic trees were constructed 

using the Camin-Sokal method of the Mix program of RPhylip package, and subsequently 

consensus trees of all the trees were constructed using the Consensus program of RPhylip.

Subsequently, all mutations were reassigned to branches in the phylogenetic trees. If 

mutations were called in all the descendants of a given branch and in no samples that were 

not descendants of the branch, mutations were perfectly assigned to those branches. Given 

the existence of samples with relatively lower sequencing depth for each mutated position, 

we also assigned mutations to branches if mutations were called in all but one undetermined 

descendant labelled as “?” of a given branch, and all samples that were not descendants of 
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the branch were wild-type (“0”). Given the smaller number of indels and DBSs, these were 

assigned to each branch using the tree defined from SBSs, rather than generating new trees 

for the other mutation types.

Extraction of mutational signatures

Extraction of SBS signatures—To analyse mutational signatures for SBS, SBSs 

assigned to each branch of the phylogenetic trees were categorised into 288 subtypes, 

consisting of 6 mutation classes by 16 5’ and 3’ base contexts on transcribed strand, non-

transcribed strand or intergenic region. Mutational signatures were extracted using the HDP 

package50 relying on the hierarchical Bayesian Dirichlet process (https://github.com/

nicolaroberts/hdp). Due to the lack of reference signatures categorized into 288 subtypes, we 

conducted a de novo signature extraction. We included somatic mutations from squamous 

cell lung carcinomas sequenced by TCGA and from in vitro single cell culture controls as 

separate samples to maintain comparability with signatures already established in previous 

studies. For identified SBS signatures, signatures with ≥0.90 cosine similarity with reported 

signatures in terms of distribution to 96 or 192 subtypes24, were considered as same 

signatures, including SBS1, SBS4, SBS5, SBS16 and SBS18. For the remaining new 

signatures, the expectation-maximisation algorithm was used to deconvolute these signatures 

into above five signatures and other known signatures in lung cancers (SBS2, SBS8 and 

SBS13), because it is difficult to separate signatures that are strongly correlated across 

samples. If a signature reconstituted from the components that expectation-maximisation 

extracted (only including signatures that accounted for at least 10% of mutations in each 

sample to avoid over-fitting) had a ≥0.90 cosine similarity to the original HDP signature, the 

signature was presented as its expectation-maximisation deconvolution. Two HDP signatures 

met these criteria: one new signature was deconvoluted into a mixture of SBS4 and SBS5; 

another new signature was deconvoluted in SBS2 and SBS13. After these analyses, 7 known 

and 2 new SBS signatures were identified.

To validate these signatures identified using HDP, we also analysed SBS signatures using the 

‘MutationalPatterns’ package20, which relies on Non-negative Matrix Factorisation (NMF). 

Optimal factorisation rank (rank = 7) was determined based on the slope of cophenetic 

correlation coefficient. MutationalPatterns identified similar signatures with SBS5 

(Signature A), SBS4 (Signature B), Sig-B (Signature D), SBS18 (Signature E), SBS1 

(Signature F), SBS2, SBS13 (Signature G), (Extended Figure 5A-B).

Extraction of indel and DBS signatures—For indels and DBS, each type of genetic 

alteration assigned to each branch of the phylogenetic trees was categorised into 83 and 78 

subtypes as previously reported24. First, the algorithm was conditioned on the set of 

mutational signatures that have been detected in lung cancers (ID1, ID2, ID3, ID5, ID6, ID8, 

ID9, DBS2, DBS4, DBS5, DBS6, DBS11). This allows simultaneous discovery of known 

and new signatures. For known signatures, signatures identified by HDP with ≥0.90 cosine 

similarity with corresponding reported signatures were accepted as known signatures. 

Deconvolution of new signatures to above known signatures was also performed, and one 

new indel signature was deconvoluted in ID5 and ID8. Finally, 10 known and 1 new 

signatures were identified.
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Analysis of A>G transcription strand bias

First, we measured distance from mutations to nearest transcription start sites (TSSs) of the 

all expressed genes in lung, which was defined as those with median of ≥1 Transcripts Per 

Million (tpm) in lung samples in GTEx database (https://gtexportal.org/home/). Mutations in 

regions of bidirectional transcription were excluded from the further analysis. We tiled 10 

kilobases up and downstream of the TSSs into 1kbp bins, and counted the number of A>G 

mutations on transcribed and untranscribed regions in each tile, which were further divided 

by average of bins in intergenic regions.

Analysis of driver variants

To systematically identify genes under positive selection in normal bronchial epithelium, we 

used the dN/dS method12. We performed exome-wide dN/dS analysis and also analysed 

global dN/dS ratios for driver genes (n = 86) reported in lung cancer12,13,18,26 or normal 

skin/oesophagus tissues27–29 using dNdScv (Supplementary Table 3). Genes with q-value 

≤0.05 were reported as driver genes (Supplementary Tables 4-5). Finally, hot-spot mutations 

reported in COSMIC for ≥4 patients were also considered as driver mutations, in addition to 

those in the 7 driver genes identified by dNdScv (Figure 3B). Proportion of shared/private 

mutations was calculated for patients other than PD30160 (which had a low number of 

sequenced samples (n = 13)). For TP53 and NOTCH1 genes, distributions of mutations were 

compared between bronchial cells and lung squamous cell carcinoma13 (Extended Figure 

9B).

To estimate the effect of smoking status on the number of driver mutations, a generalized 

linear mixed-effects model was fitted using ‘lme4’ R package (Supplementary Code). 

Patient was modelled as a random effect, and fixed effect of age, smoking status and total 

mutation burden were fitted into the model.

Telomere length estimation

The average telomere length of bronchial epithelium cells were estimated from the whole-

genome sequencing data using Telomerecat51. Considering the similarity of telomere 

sequences between human and mouse, we aligned all sequencing reads to the human 

reference genome using BWA-MEM without using Xenome, and subsequently ran 

Telomerecat on the bam files. Samples with more than 10% reported mouse contamination 

were excluded from further analysis to prevent a possible effect of mouse cells on telomere 

length. The average telomere length for the mouse fibroblast feeder samples was estimated 

at 1745bp, which is in range with human telomere length estimates, so a low level of mouse 

contamination will not affect the estimates substantially.

Subsequently, a linear mixed-effect model was fitted to estimate the effect of telomere length 

on the number of SBSs using ‘lme4’ R package (Supplementary Code). Patient was 

modelled as a random effect, and fixed effect of telomere length and its interaction with 

smoking status as well as fixed effect of age and smoking status were fitted into the model.

Extended Data
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Extended Data Figure 1. Flow-sorting strategy of single basal bronchial epithelial cells.

(A) Sorting of EpCam+ epithelial cells from human airway biopsies. Human hematopoietic 

and endothelial cells were stained with antibodies against CD45 and CD31, respectively. 

Within the population of cells negative for those markers, EpCam-expressing cells were 

gated. Single, live (DAPI-negative) cells were flow sorted from this population into 

individual wells of 96-well plates.

(B) qPCR analysis of clonally derived airway epithelial cell cultures. Airway basal cells 

express integrin alpha 6 (ITGA6), keratin 5 (KRT5), e-cadherin (CDH1) and TP63. 

Yoshida et al. Page 16

Nature. Author manuscript; available in PMC 2020 July 29.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



Expression is shown in clonally derived cell cultures (n = 13 from 3 donors, coloured blue, 

green and orange) compared to a control bulk human bronchial epithelial cell culture 

expanded in the same culture conditions and a lung fibroblast cell culture that served as a 

negative control. Centre values and error bars indicate mean and standard error of the mean, 

respectively. Conditions in which no expression was detected are shown as 0.

(C) Colony-forming efficiency of CD45-/CD31-/EPCAM+ cells after single cell sorting from 

endobronchial biopsy samples (n = 16). For one ex-smoker, EPCAM was not used to select 

cells: only CD45-/CD31- cells were sorted – as expected, this is the patient with the lowest 

colony-forming efficiency.
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Extended Data Figure 2. Quality assurance of mutation calls.

(A) Stacked bar chart showing the proportion of reads attributed to the human genome, 

mouse genome, both, neither or with ambiguous mapping for the pure mouse fibroblast 

feeder line (left) or a pure human sample (right), assessed with the Xenome pipeline.

(B) Clean-up of mutation calls using the xenome pipeline for one of the samples more 

heavily contaminated by the mouse feeder layer. The Venn diagram on the left shows the 

overlap in mutation calls before and after removing non-human reads by xenome.
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(C) Histograms of variant allele fraction (VAF) for two representative colonies in the sample 

set. The plot on the left shows a tight distribution around 50%, as expected for a colony 

derived from a single cell without contamination. The plot on the right shows a bimodal 

distribution with one peak at 50% (mutations present in the original basal cell) and a second 

peak at ~25%, likely representing mutations acquired in vitro during colony expansion. 

These second peaks at <50% are more evident in colonies from the children, due to the low 

number of mutations in the original basal cell.

(D) Histogram of variant allele fraction (VAF) for a colony seeded by more than one basal 

cell, leading to a peak <<50%.

(E) Estimated sensitivity of mutation calling according to sequencing depth. Heterozygous 

germline polymorphisms were identified in each subject – for each colony sequenced, we 

calculated the fraction of these polymorphisms recalled by our algorithms.

(F) Comparison of mutation burden in normal bronchial epithelial cells that neighbour a 

carcinoma in situ (CIS) versus distant from it in 5 patients. Box-and-whisker plots show 

distribution of mutation burden per colony within each subject, with the boxes indicating 

median and interquartile range, and the whiskers denoting the range. The overlaid points are 

the observed mutation burden of individual colonies.
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Extended Data Figure 3. Colonies with near-normal mutation burden.

(A) Density distribution of mutation burden in cells from ex-smokers (green) and current 

smokers (purple). The black vertical line shows the threshold for near-normal mutation 

burden derived for each patient. The x axis is on a log scale. Note the frequently bimodal 

distribution of mutation burden, especially in the ex-smokers, with the modes separated at 

the threshold for near-normal mutation burden.

(B) Flow cytometric analysis of clones for expression of keratin 5 (KRT5), EPCAM, integrin 

α6 (ITGA6), podoplanin (PDPN), NGFR and CD45/CD31. Lung fibroblasts are included as 
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a comparison. Fluorescence minus one (FMO) shown. Plots for one clone with near-normal 

mutation burden and one with increased burden are shown, representative of 5 clones from 1 

patient.

(C) Brightfield image of expanded clones at passage 3, showing cobblestone epithelial 

morphology, representative of 5 clones from 1 patient. A clone with elevated mutation 

burden is shown in the top panels; a clone from an ex-smoker with near-normal mutation 

burden is shown in the bottom panels. Left image x10 magnification, scale bar = 200 μm and 

right image x20 magnification, scale bar = 100 μm.
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Extended Data Figure 4. Indels, copy number changes and structural variants in normal 
bronchial epithelial cells.

(A) Relationship of burden of indels per cell with age, with points representing individual 

colonies (n = 632), coloured by smoking status. The black line represents the fitted effect of 

age on indel burden, estimated from linear mixed effects models after correction for 

smoking status and within-patient correlation structure. The blue shaded area represents the 

95% confidence interval for the fitted line.

(B) Stacked bar plot showing the distribution of colonies with 0-7 copy number changes and 

structural variants across the 16 subjects.
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(C) Three examples of chromoplexy in normal bronchial cells. Structural variants are shown 

as coloured arcs joining two positions in the genome around the circumference. The 

chromoplexy instances all consist of 3 translocations, in purple.

(D) An example of chromothripsis in a cell from an 11-month old infant. The plot on the 

right shows copy number of genomic windows in the relevant region of chromosome 1 

(black points), with the lines and arcs denoting positions of observed structural variants.
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Extended Data Figure 5. Comparison of mutational signatures extracted using two algorithms.

(A) Trinucleotide contexts for the signatures extracted by the hierarchical Dirichlet process 

(HDP) on the left and MutationalPatterns non-negative matrix factorisation on the right. The 

six substitution types are shown in the panels across the top of each signature. Within each 

panel, the trinucleotide context is shown as four sets of four bars, grouped by whether an A, 

C, G or T respectively is 5’ to the mutated base, and within each group of four by whether 

A, C, G or T is 3’ to the mutated base. Where signatures show high cosine similarity scores 

between algorithms, they are lined up horizontally. We note that MutationalPatterns’ 
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Signature C does not have a match in the signatures extracted by the hierarchical Dirichlet 

process algorithm, but appears very similar to Signature A in MutationalPatterns (or SBS-5 

from the hierarchical Dirichlet process). This means it likely represents over-splitting of the 

signatures.

(B) The heatmap shows the cosine similarities of signatures extracted by MutationalPatterns 

with those extracted by the hierarchical Dirichlet process (HDP). Only cosine similarity 

scores >0.75 are coloured.

(C) Scatterplots showing the fraction of mutations in each colony (n = 632) assigned to each 

signature by the hierarchical Dirichlet process (HDP; x axis) versus the MutationalPatterns 

algorithm (y axis). Correlation values quoted are Pearson’s correlation coefficients, R2.

(D) Transcription strand bias of A>G mutations in N[A]T context before and after 

transcription start sites. Note the absence of transcriptional strand bias in intergenic regions, 

but evidence for both transcription-coupled damage and repair after the transcription start 

site, applying similarly in both never smokers and ex-/current smokers.
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Extended Data Figure 6. Phylogenetic trees of 13 subjects.

Phylogenetic trees showing clonal relationships among normal bronchial cells in the 13 

subjects not shown in Figure 3A. Branch lengths are proportional to the number of 

mutations (x axis) specific to that clone/subclone. Each branch is coloured by the proportion 

of mutations on that branch attributed to the various single base substitution signatures.
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Extended Data Figure 7. Indel signatures in the sample set.

(A) Five indel signatures were extracted by the hierarchical Dirichlet process. Contribution 

of different types of indels to each signature are shown, grouped by whether variants are 

deletions or insertions; size of event; whether they occur at repeat units; and the sequence 

content of the indel.

(B) Stacked bar-plot showing the proportional contribution of mutational signatures to indels 

across the 632 colonies derived from normal bronchial cells, extracted using a hierarchical 
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Dirichlet process. Within each patient, colonies are sorted from left to right by increasing 

indel burden (bar chart in dark grey above coloured signature attribution stacks).
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Extended Data Figure 8. Double base substitution signatures in the sample set.

(A) Six double base substitution (DBS) signatures were extracted by the hierarchical 

Dirichlet process. Contribution of different types of DBS to each signature are shown, 

grouped by the sequence that is mutated, and what it is mutated to. Five of the signatures 

have been observed in cancer genomes24, with one (DBS Sig-C) a novel signature extracted 

here.

(B) Stacked bar-plot showing the proportional contribution of mutational signatures to 

double base substitutions across the 632 normal bronchial cells, extracted using a 
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hierarchical Dirichlet process. Note that some of the colonies in children have no double 

base substitutions. Within each patient, colonies are sorted from left to right by increasing 

DBS burden (bar chart in dark grey above coloured signature attribution stacks).

Yoshida et al. Page 30

Nature. Author manuscript; available in PMC 2020 July 29.

 E
u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts
 E

u
ro

p
e P

M
C

 F
u
n
d
ers A

u
th

o
r M

an
u
scrip

ts



Extended Data Figure 9. Driver mutations in normal bronchial epithelium.

(A) Stick plots showing distribution of mutations in TP53, NOTCH1 and other genes that 

were significantly mutated in our sample set – mutations are coloured by type. The gene 

structure is shown horizontally in the centre of each plot with domains as coloured bars. 

Above the gene are mutations in this sample set; below the gene are the mutations found in 

squamous cell carcinomas from the TCGA sample set.

(B) Fraction of cells with driver mutations in TP53 (left), NOTCH1 (middle) or all other 

significant cancer genes (right), split by smoking status.
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Extended Data Figure 10. Relationship of telomere lengths with age.

Scatter-plot of estimated telomere lengths (y axis) against age of subject (x axis). Individual 

points represent colonies (n = 398 colonies with <10% DNA deriving from the mouse feeder 

layer). Cells with near-normal mutation burden are identified in a gold colour.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Mutation burden in normal bronchial epithelium.

(A) Burden of single base substitutions (SBS), small insertion-deletions (indels) and double 

base substitutions (DBS) across patients in the cohort. Box-and-whisker plots show each 

subject, with the boxes indicating median and interquartile range, and the whiskers denoting 

the range. The overlaid points are the observed mutation burden of individual colonies.

(B) Relationship of burden of substitutions per cell with age, with points representing 

individual colonies (n = 632), coloured by smoking status. The black line represents the 

fitted effect of age on substitution burden, estimated from linear mixed effects models after 
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correction for smoking status and within-patient correlation structure. The blue shaded area 

represents the 95% confidence interval for the fitted line.

(C) Fraction of cells with near-normal mutation burden in current and ex-smokers.
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Figure 2. Mutation signatures in normal bronchial epithelium.

(A) Stacked bar-plot showing the proportional contribution of mutational signatures to single 

base substitutions across the n=632 colonies from normal bronchial cells, extracted using a 

hierarchical Dirichlet process. Within each patient, colonies are sorted from left to right by 

increasing mutation burden (bar chart in dark grey above coloured signature attribution 

stacks). Dashed black vertical lines in current and ex-smokers denote the cut-off between 

cells with near-normal and elevated mutation burden.
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(B) Trinucleotide context spectrum on transcribed and untranscribed strands of two new 

single base substitution (SBS) signatures. The six substitution types are shown in the panel 

across the top. Within each panel, the trinucleotide context is shown as four sets of eight 

bars, grouped by whether an A, C, G or T respectively is 5’ to the mutated base, and within 

each group of eight by whether A, C, G or T is 3’ to the mutated base. Activity of the 

mutational signature on the untranscribed strand is shown in pale colour; on the transcribed 

strand in darker colour.

(C) Numbers of base substitutions attributed to the 3 endogenous signatures (y axis) across 

the cohort (n = 632 colonies) shown according to age of subject (x axis). Black line 

represents the fitted effect of age, estimated from linear mixed effects models after 

correction for smoking status and within-patient correlation structure. The blue shaded area 

represents the 95% confidence interval for the fitted line. The quoted p values for the fixed 

effects of age and smoking derive from the full linear mixed effects models.

(D) Estimated effect size of age, smoking status, between-patient and within-patient 

standard deviation of 7 signatures (points) with 95% confidence intervals (horizontal lines). 

Estimates are derived from linear mixed effects models (n = 632).
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Figure 3. Driver mutations in normal bronchial epithelial cells.

(A) Phylogenetic trees showing clonal relationships among normal bronchial cells in 3 

representative subjects. Branch lengths are proportional to the number of mutations (x axis) 

specific to that clone/subclone. Each branch is coloured by the proportion of mutations on 

that branch attributed to the various single base substitution signatures. Driver mutations 

identified in each branch (black: SBS, red: indel) are also shown.

(B) Total number of colonies with mutations (left panel) and number of unique mutations 

(right panel) in key cancer genes across the sample set (n = 632). ** represents genes 
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significant (q<0.05 by dNdScv) when correction for multiple hypothesis testing is applied 

across all coding genes; * represents genes significant (q<0.05 by dSNdScv) when 

correction for multiple hypothesis testing is applied across known driver genes in lung 

cancers and normal squamous tissues (exact q values in Supplementary Table 4).

(C) Fraction of colonies with 0, 1, 2 or 3 driver mutations across the 16 subjects.

(D) Distribution of driver mutations across colonies in the cohort, coloured by type of 

mutation. Loss of heterozygosity (LOH) affecting driver mutations are also shown.

(D) The frequency of driver mutations shared by more than 1 colony in a patient (dark blue) 

versus found in a single colony (light blue) across different cancer genes.
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Figure 4. Relationship of telomere lengths with mutation burden.

Split by smoking status, panels show the relationship between telomere lengths (x axis) and 

mutation burden (y axis) for colonies with <10% contamination from the mouse feeder cells 

(n = 398 colonies). Individual cells are shown as points and fitted lines for each patient as 

coloured lines (slopes estimated using linear mixed effects models). The difference in slopes 

according to smoking status is highly significant (p=0.0009 for interaction term; LME 

models). One outlying cell in an ex-smoker with >10,000 mutations is excluded from the 

plot to improve visualisation.
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