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Toboggan-Based Intelligent Scissors with a Four-Parameter Edge Model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Eric N. Mortensen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(enm@cs.byu.edu) William A. Barrett (barrett@cs.byu.edu) 

Brigham Young University 

Abstract 
Intelligent Scissors is an interactive image segmentation 
tool that allows a user to select piece-wise globally optimal 
contour segments that correspond to a desired object bound- 
ary. We present a new and faster method of computing the 
optimal path by over-segmenting the image using toboggan- 
ing and then imposing a weighted planar graph zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon top of the 
resulting region boundaries. The resulting region-based 
graph is many times smaller than the previous pixel-based 
graph, thus providing faster graph searches and immediate 
user interaction. Further; tobogganing provides an new sys- 
tematic and predictable framework for computing edge 
model parameters, allowing subpixel localization as well as 
a measure of edge blu,: 

1. Introduction 

All general purpose image segmentation techniques 
require some amount of human guidance due to the large 
variety of image sources, content and complexity. Conse- 
quently, a goal of any general image segmentation algorithm 
should be to accurately define the desired object boundary 
or region with minimal user input. A variety of segmenta- 
tion tools exist ranging from user intensive lassoing to semi- 
automatic initialization schemes such as magic wands and 
active contour models. Unfortunately, lassoing or other 
primitive manual tracing tools are still widely used when a 
non-homogeneous image component must be extracted 
from a complex background. For this reason intelligent seg- 
mentation tools which exploit high level visual expertise but 
require minimal user interaction become appealing. 

Recently, we presented a unique segmentation algorithm 
called Intelligent Scissors [12,13] which allows a human 
operator to interactively select an optimal boundary seg- 
ment, called a “live-wire” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 11,7], corresponding to a portion 
of the desired object edge. When the mouse position comes 
in proximity to an object edge, the live-wire “snaps” to, and 
wraps around the object of interest. Thus. Intelligent Scis- 
sors allows objects to be extracted quickly and accurately 
using simple gesture motions with a mouse. 

This paper presents improvements to our Intelligent 
Scissors tool based on an oversegmentation method known 
as tobogganing that allows for faster optimal path computa- 
tion in the interactive live-wire environment. Further, tobog- 
ganing provides a new framework for computing edge 
model parameters based on well-defined foregroundhack- 
ground regions and edge position. This provides sub-pixel 
localization, blur, and foregroundhackground color. 

2. Previous Work 

Among the boundary based segmentation strategies, 
active contours or snakes have received considerable atten- 

tion over the last few years [1,3,8,9,18]. Active contours are 
initialized with an approximate boundary and then itera- 
tively minimize the contour’s energy functional to achieve 
an optimal boundary. The functional combines external and 
internal forces in an attempt to yield a final smooth contour 
that conforms to the desired object boundary. Since snakes 
are typically initialized with an approximate contour, the 
human operator is often not quite sure what the final bound- 
ary will be until the active contour settles into a minimum. 
Some implementations allow the user to interactively niod- 
ify the energy landscape and thus nudge a snake [3,8], but 
still the user does not typically know exactly what the final 
boundary will be during interaction. 

Intelligent Scissors presents a different approach tot the 
Segmentation problem. Rather than optimizing a user-initial- 
ized approximate contour, we allow the user to interactively 
select a boundary from a collection of optimal solutions. 
Thus the user knows exactly what the resulting contour will 
be during interaction. Intelligent Scissors achieves this goal 
by interactively computing the optimal path from a user 
selected “seed” point to all other points in the image. A!; the 
cursor moves, the optimal path from the pointer position to 
the seed point is displayed, allowing the user to select an 
optimal contour segment which visually corresponds to a 
portion of the desired object boundary. 

3. Toboggan-Based Intelligent Scissors 

Intelligent Scissors, as presented in [ 131, formulates the 
boundary detection problem as a weighted graph search 
where each pixel is a node and edges are created between 
each pixel and its 8 neighbors. In this paper, we first parti- 
tion the image into a collection of regions and then impose a 
weighted planar graph onto the resulting region boundaries. 
This greatly reduces the graph size which speeds up the 
graph search and improves interactive responsiveness. 

3.1. Tobogganing 

Tobogganing [6,19] oversegments an image into small 
regions by sliding in the derivative terrain. Given the gradi- 
ent magnitude of an image, each pixel determines a slide 
direction by finding the pixel in a neighborhood with the 
lowest gradient magnitude. Generally, several pixels will 
represent local minima in the gradient terrain within their 
own neighborhood due to either image features or noise. 
Pixels that “slide” to the same local minimum are grouped 
together, thus segmenting the image into a collection of 
small regions (Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1). 

The regions produced by tobogganing are effectively 
identical to the catchment basins produced by applying the 
popular watershed algorithm to the gradient image[2,14,17]. 
However, tobogganing is much more computationally effi- 
cient than the watershed algorithm. 
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(d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a) Original image (b) Expanded section of (a )  showing 

toboggan region boundaries, slide directions, and local minima. ( E )  Numer- 
ical illustration of (b) showing gradient magnitudes, region boundaries 
(:hick lines). slide directions (arrow heads), and local minima (circled). 
Nodes (shaded circles) are created where 3 or 4 regions meet at a pixel cor- 
ner while region boundary segments between two nodes become edges. The 
shadedptxels show an example gradient index vector (Section 3 2 2). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.1.1. Multi-Scale Gradient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
puted using multi-scale derivatives of Gaussian kernels. If 

The gradient magnitude used for tobogganing is com- 

is a 2-D normal distribution with a standard deviation of a, 
the multi-scale gradient magnitude is given by 

where 
G(x, Y )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 4-j (2) 

(3) 

3.1.2. Sliding and Grouping 

Given a gradient magnitude image, we next segment the 
image into regions by sliding in the gradient terrain. Pixels 
that slide into the same local minimum are efficiently 
grouped into regions by assigning them a unique label. The 
image is scanned in row major order. If a pixel is not 
labelled, its four-connected neighborhood is checked to 
determine which neighboring pixel has the smallest gradient 
magnitude. The pixel then “slides” to the minimum gradient 
neighbor by setting a slide direction and moving to that 
neighbor. The process is repeated until it slides into a pixel 
that is already labelled or until it slides into a local mini- 
mum. If sliding reaches an unlabeled local minimum, that 
minimum is assigned a unique label. Now that a region label 
is known, unlabeled pixels encountered during sliding are 
labelled. Thus, the tobogganing algorithm is as follows: 

Algorithm 1: Toboggan Segmentation. 

Input: 

G ( p )  

N ( p )  

“(9) 

L (9) 

reg ionsco;  (Initialize # of regions.) 

for each p do begin 

(Gradient magnitude at pixel position vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp.) 

(4  connected neighborhood of p.) 

(Toboggan direction vector at p.) 
(Region label at p (initialized to nil for all p).) 

Data Structures: 

OUtpUC: 

Algorithm: 

(Scan image in row major order.) 

[Slide to labelled pixel or local minimum.) 

mintG(u) ; u ’ c u ;  
for each r c N ( q )  do begin (Find lowest gradient neighbor.) 

U+P ; 
repeat  

if G(r)Smin then begin 
mintG(r) ; u ‘ c r ;  

end 
end 
T ( u ) t u ‘ - U ;  W-U‘; (Set slide direction and slide.) 

until L ( q ) # n i l  or T ( u ) = O  

if L ( p ) = n i l  then begin (I f  local minimum is unlabeled.) 

{ assign a unique label.) L (9) c r e g i o n s ;  
reg i o n s c r e g i  ons + 1 ; 

end 

X c R  ; 
repeat  

u n t i l  L(r)#nil 

(Repeat slide to label unlabeled pixels.) 

L ( r ) t L ( u )  ; r e r + T ( r )  ; 

end 

Note that we use a 4-connected neighborhood as opposed to 
the 8-connected neighborhood of [6,19]. I t  has been our 
experience that using a 4-connected neighborhood, while 
producing more regions, isolates fine detail better than 
tobogganing with an 8-connected neighborhood. Further, 8- 
connected regions pose more topological problems when 
mapping region boundaries to a planar graph. 

3.2. Weighted Graph 

Having partitioned the image into a collection of small 
regions, we now convert the tobogganed regions into a 
weighted planar graph. The resulting graph has weighted 
edges and is used to compute an optimal path corresponding 
to a lowest cumulative cost boundary segment in the image. 

is the squared gradient magnitude summed over each color 
band (Ib) of the original image 1. 
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3.2.1. Graph Creation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Since tobogganing produces regions that partition the 

image, there are no pixel-based boundaries between neigh- 
boring regions. Rather, two adjacent regions share a con- 
nected sequence of one or more “cracks” between two 4- 
connected pixels. As such, edges map to the boundary seg- 
ment between two neighboring regions and nodes are cre- 
ated where three or four regions meet at a pixel corner. 

Since nodes occur only at pixel corners, every node is 
uniquely identified by the pixel whose upper-left corner is 
the node position. Thus, nodes are specified with a pixel 
position vector’, q, and edges are represented as an ordered 
quadruple, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(qsrc, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqds,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI , ,  I , ) ,  indicating the source and desti- 
nation nodes as well as the region labels on its left and right 
side, respectively. 

The graph is created by tracking the boundary of each 
region using an “over-the-shoulder’’ contour following algo- 
rithm. Given the definitions of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL@) and N @ )  in Algorithm 1 
and pixels p and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq such that q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE N ( p )  and L ( p )  # L ( q )  - 
i.e., neighboring pixels p and q span the boundary between 
adjacent regions-then the crack betweenp and q is defined 
as the ordered pair @, q)  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(4) 

is the crack direction vector pointing clockwise relative top. 
Thus, if 1 = L@), qd = q + dPvq and Pd = p + dp,q then 

(p,,, q d ) ;  if L ( q d )  # 1 and L ( p d )  = I 

(4@ 4 ) ;  if L ( Q )  = I 

t?exr(p,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4) = ( 5 )  1 (p, p d ) ;  otherwise 

is the next clockwise pixel crack on the boundary of region I 
relative to the crack (p, 4). 

Defnirion: B(I) is the ordered n-tuple, ((pl,qI), (p2,q2), 
. . ., @,,,q,)), of pixel cracks that represent, in clockwise 
order, the boundary of a 4-connected region with label I 
such that all of the following properties hold: 

I .  L@$=lforall 1 S i l n  

2. L(q;) # I for all 1 I i l n 

3. (pi+],  q;+ , )  = nexf@i, qi) for all 1 I i < n 

4. @ 1.  q 1 ) = next@,, qn) 
5.  L(q,,) = L(q1) iff L(qi) = L(q,) for all 1 I i ,  j 5 n 

Processing each region, I ,  we note that there is a node on 
the boundary whenever L(q;) # L(q;+,), corresponding to the 
node position 

Further, if L(qj) # L(qj+,) f o r i  > i such that L(qk) = L(q i+ l )  
for i e k then there is an edge, e = (vi, qp L(q,), I), defined 
between nodes q; and q, that separates regions L(qj) and I 
where ecrack = (@;+17q;+ih @;+24i+2)9  . . .. @pqj)) is the 
ordered sequence of pixel cracks defining the edge. 

I .  We use q to represent a position vector corresponding to a node in order to 
avoid confusion with a regular position vector such a s p  or q.  

Fig. I(c) illustrates how the tobogganed regions form a 
planar graph. Graph nodes are indicated with shaded circles, 
0, while edges, shown as thick lines, correspond to the por- 
tion of a region boundary connecting two nodes. 

3.2.2. Edge Weights 

Since region boundaries already localize object edges, 
there is no need for the Laplacian zero-crossing cost usedl in 
[ 131. Rather, edge costs are currently computed using only 
the gradient magnitude in a two step process. The first step 
creates a gradient index vector for each edge and the second 
step computes an edge’s gradient cost by remapping and 
summing the index vector. The gradient index, given by 

(7) 

scales the gradient magnitude to integer values between 0 
and nc-1 (which is the domain of the remapping function 
used in the second step). 

Given an edge e such that ecrack = (@l,qI), (p2,q2), . . ., 
@,,,q,,)), the gradient index vector of e, = (idxc(vl), 
idx&), . . ., idxC(r,)), is an ordered m-tuple of gradient 
indices where m I n and ( r l ,  r2, . . ., r,) is the 8-connected 
pixel sequence defined algorithmically as follows: 

I Init. previous pixel position & j.) 

i f  i%(p i )  > idx,(ui) then rtmptpi; lSetr,,,,,,tocrackpir.el) 

I with largest gradient.) else 

if rtmp # rpm then begin ( I f  new pixel position, ) 
1 add i t  to path.) 

end 

r p r v t ( - l , - l ) ;  j t l ;  

for i = 1 to n do begin 

rtmptqi ; 

rj+rtmp; j + j + l ;  rprv+rtmp; 

end 
m c j - 1 ;  1 Set path length. ) 

Fig l(c) highlights, in the upper-left, the gradient index 
vector for an example edge. Notice that even though the 
edge is composed of 5 pixel cracks, its gradient index vector 
is only 4 gradient values (since the maximum gradient posi- 
tions for two of the cracks are identical). Consequently, the 
gradient index vector for diagonal edges is typically shorter 
than the crack count, thus providing a mechanism to scale 
the edge cost based on estimated Euclidean length. 

As mentioned, an edge’s final cost function is computed 
by remapping and summing its gradient index vector. ’The 
remapping function is initially defined as 

which is an inverse linear ramp ranging from M down to 0 
where M is the maximum cost per boundary unit. mupc is 
implemented as a lookup table in order to adapt dynamically 
and thereby accommodate on-the-fly training (as described 
in [ 131). 

The final edge cost function is given by 
rn 

(9) 
j = l  

and is simply the summation of the edge’s remapped gradi- 
ent index vector. 
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3.3. Optimal Graph Search zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Computation of optimal paths corresponding to mini- 

mum cost contour segments is accomplished using Dijk- 
stra’s [4] optimal graph search in much that same manner as 
in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 131. However, graph edges in [13] had unit length costs, 
thereby bounding the cost range on the “active” list and 
allowing for an efficient bin sort algorithm. Since graph 
edges in this paper can be several units long, the active list 
now employs an efficient two-level bin sort algorithm to 
allow for a much wider cost range. 

Given a user selected “seed” node, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqs, the optimal graph 
search algorithm is as follows: 

Algorithm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2: Optimal Graph Search. 

Input: 

Data Structures: 

?S 

L 

eage(q) 

done(q) 

g(q) 

Output: 

opt (U) 

Algorithm: 

[Seed node. 1 

1 List of active nodes sorted by total cost (initially empty). ] 
1 Edge set containing edges emanaling from q. 1 
{Boolean function indicating if q has been expanded.) 
[Total cost function from qs lo q. 1 

[Edge from q indicating optimal path back zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 qs) 

g (qs) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC O ;  ~ c q ~ ;  
while L # 0 do begin (While still nodes Io expand:] 

(Initialize active list with zero cost seed node.] 

[Remove minimum cost node q from active list.] 
I Mark q as expanded (i.e.. processed). 1 

qcminlL) ; 

done (q) +TRUE; 

for each e t edge(q) do begin 

q n t e d s t  (q) ; 
if not done(qn) then begin 

[Get neighbor connected to edge.) 

[Compute total cos[ to neighbor.) g ’ t g ( q ) + f  (e); 

if q n c  L and g’ < g(qn) then [Removehighercost 1 
q ” t L ;  [ neighbor from list.) 

if qn e L then begin 

g (qn) c g ’  ; 

L c q , ;  

(If neighbor not on list, ] 
{ assign total cost, set opt. edge] 
[ and place on (or return to) ] 

opt (qn) t e ;  

end [ active list.) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
end 

end 

end 

While the optimal graph search algorithm presented here is 
similar to our previous work in [ 131, the reduced graph size 
allows this technique to compute optimal paths anywhere 
from two to 10 or moretimes faster, depending on the aver- 
age size of the tobogganed regions, despite the fact that we 
now use a more complex two-level bin sort. 

3.4. Four-Parameter Edge Model 
’ One advantage of using toboggan region boundaries as a 
basis for the Intelligent Scissors graph search is the ability 
for subpixel localization of an object edge by applying an 
edge model to the region boundaries. Previous work [5] 
assumes that an edge can be modeled as a Gaussian blurred 
step edge (Eq. IO). If 0: is the step amplitude and p is the 
base (pedestal offset), then the ideal edge model is given by 

where (T is the standard deviation of the Gaussian blur 
and xo is the step edge location. However, because of the 
complexity of the partials of Eq. 10, especially when 
embedded in a summed squared residuals function (i.e., a X 2  

function), we choose to approximate Eq. 10 with a sigmoid 
(Eq. 11)-since its partials are much more tractable and it 
very closely approximates the error function. Thus, the edge 
model we use is 

+ P  (1 1) 
a 

+ - x ) / s  

where s is the spread or blur (similar to (T in Eq. (IO)). These 
parameters are extracted from profile data for each edge 
crack from adjacent tobogganed regions (Fig. 2). The profile 
is then fit to Eq. 11 using a modified 4-parameter Marquardt 
minimization [ 15,161. 

Note that Eq. (1  1) only models the transition between 
two gray levels (or colors). As such, we would like to avoid 
including transition information from edges other than the 
one being modeled. Since tobogganing tends to slide away 
from edges and stops sliding before climbing another edge, 
the slide information provides a reasonable mechanism for 
extracting transition data. 

We extract the edge profile following the slide path from 
both sides of an edge crack and projecting the position and 
color data onto a domain and range vector respectively. 
Given an edge crack @,q) we define a slide path forp as 

(12) 

where p 1  = p ,  pi+{ = p ,  + T@,) for 1 I j < n,  pn is the local 
minima for the tobogganed region, and T@,) is the toboggan 
slide direction defined in Algorithm 1 .  The slide path for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq is 
defined in like manner and the two slide paths are concate- 
nated into a profile sample vector 

s l W p )  = (p l ,  p 2 ,  .... P,) 

sarnple(p,q)  = ( s l , s2 ,  ..., s,,+,,,) 
(13) 

= (Pn> ”.? PZ ’P I .  41, q.2, ... 9 q m )  

by reversing slide@) and appending slide(q). 
We define the domain projection vector, vx, with origin, 

ox, as the normalized gradient direction vector originating at 
the crack @,q)--the normalized sum of the gradient direc- 
tion vectors at p and q. Each domain value, x i ,  is computed 
by projecting the corresponding relative sample vector, 
s i -  o x ,  onto vx. Thus, x; = (si - ox) . vx. Figure 2 illustrates 
the edge model computation for a sample edge crack. 

For grayscale images, the obvious yi’s are simply the 
pixel gray-levels for each corresponding xi  (see Fig. 2(b)). 
However, no such mapping is obvious for color images. We 
thus define the range vector, vy = I (qm) - oy where I (q,J is 
the image color vector at the pixel position qm and 
o = I@,J Each range value, yi ,  is then computed in a simi- 
lar fashion as the x;’s. Specifically, y; = (I(s;) - op) . v,, / llv,.ll. 

One advantage of the Marquardt method 1s that upon 
reaching an acceptable minimum, the curvature matrix can 
be recalculated and used to estimate the covariance matrix 
of standard errors in the fitted parameters. The standard 
errors can be used to evaluate the “reliability” of each 
parameter. For example, we use o(xo)-the estimated stan- 
dard deviation in the fit of xo-to smooth the displayed 
object path, as noted below. 

J 
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Figure 2: (a) Expanded zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 view zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof rhe upper-lefr quad- 

runr of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFig. I(c) showing 

each path project zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAonto rhe 
domain vector v . ~  produc- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ing rhe domain values. x;. 

each corresponding parh 
posirion. (b) The resulting 
profile dura points und 4- 

uirh the paramerers indi- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP 
4.7 \I, 4s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, paramerer f i t  of Eq. (12) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 

V p11 x cared. 

3.5. Live-WGe Boundary Selection 

Once the optimal path to every node is computed, the 
live-wire allows interactive selection of the optimal path 
corresponding to a segment of the desired object boundary. 
As a pointing device moves, the cursor position is used to 
select a node and display the optimal path from that node 
back to the seed node. The optimal path is displayed as a 
polyline fit to the subpixel midpoints of the path edges. The 
midpoint for each edge crack is defined as ox + xovx where 
ox and vx are the domain origin and vector (as defined previ- 
ously) and xo is the subpixel edge position given in Eq. ( I  1). 
The displayed polyline is fit to the sequence of midpoints by 
incrementally determining the maximum k such that a line 
between midpoints pi and is at most c standard devia- 
tions from all intermediate midpoints. That is, having deter- 

,mined the polyline fit up top;, the next line segment finds 
the maximum k such that for all midpointspi, i < j  < i+k, the 
line connectingp; andpi+k is at most a distance of c.O(xoj) 
away from each p j  where xoj is the subpixel edge position 
for pi. The smoothing constant, c, can be interactively 
adjusted to allow a tighter or looser fit of the polyline. 

Due to the underlying optimal nature of the displa.yed 
live-wire path, as the cursor position moves away from the 
seed node in proximity to an object edge, the live-wire snaps 
to the object edge. When further movement of the cuirsor 
causes the live-wire path to depart from the desired object 
boundary, placement of a new seed node prior to the point of 
departure reinitiates the optimal graph search. This allows 
the user to continue defining the object boundary, thereby 
creating a piece-wise optimal boundary. 

Since it is impossible to exactly specify a node located 
on the interpixel grid using a pixel-based pointing device 
(and since it would be impractical even if i t  were possible), 
edge snapping is provided to select the edge that is “nearest” 
to the current pointer position [10,12,13]. The nearest edge 
is determined by computing the weighted Euclidean dis- 
tance to each edge around the region containing the cursor. 
An edge’s weight is proportional to the average of the 
remapped gradient index vector. The edge “nearest” to the 
cursor is selected and used to select the nearest node. 

Since there is only a single optimal path from any given 
node back to a seed node, pixel-based Intelligent Scissors 
requires a minimum of two seed points to define a closed 
boundary. However, the region-based version has the capa- 
bility of selecting an edge and then displaying the path back 
to a seed node from both nodes connected by that edge. If 
the two optimal paths from each node do not overlap, then 
the edge and the two optimal paths define a closed bound- 
ary. Consequently, in some cases a single seed node i.s all 
that is needed to define the desired closed boundary. For 
example, Figure 3(a) shows the block from Fig. ](a) and the 
resulting closed boundary defined with a single seed point. 
If an image is free of noise, then it is possible to have a sin- 
gle graph edge that completely encloses an object. In such 
cases, the object boundary can be selected without any :seed 
nodes. This is demonstrated in Fig. 3(b) where all of the 
boundaries in this synthetic image are specified without any 
seed points since each boundary is completely defined with 
a single graph edge. The edge that is “nearest” to the cursor 
position is displayed even when there is no optimal ,path 
information. Thus, any given boundary in Fig. 3(b) can be 
defined by moving the cursor closer to it than any other 
boundary and specifying that the boundary is complete. 

Figure 3: (a) Live-wire boundary (in white) defined wirh only a single 
seed poinr. (b) Boundaries defined without any seed points since each 
boundary corresponds ro a single graph edge. 
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drawn with a zero error tolerance, meaning that the smooth- 
ing factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc is set to zero and no smoothing occurs. Of note 
is that the boundaries exhibit reasonable consistency even 
though the edge models are computed independently for 
each boundary element. For example, the transition cutoff 
lines indicate that the horizontal point spread of the imaging 
device is larger than the vertical point spread. This is in fact 
the case with the video camera used to acquire this image. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Also note that there are a couple of spots, such as on the ser- 
ifs of the ‘U’ or near the top corner of the block, where, due 
to the proximity of another edge, there was insufficient or 
unreliable data points for the parameter f i t  to reliably com- 
pute zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxo andor s. However, since these values are not reli- 
able, they will be smoothed out when drawn with a nonzero 
error tolerance (such as c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1). 

Figures 5 and 6 illustrate some simple object boundaries 
defined within a couple of seconds2 and requiring only one 
or two seed nodes while Fig. 7 shows a more complex 
boundary requiring several seed nodes. In general, the 
boundaries correspond well with the desired object edge. 

Preprocessing requires approximately I O  seconds for a 
51 2x5 12 grayscale image on a 99 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMHz HP 735 workstation 
and involves computing the image gradient using a multi- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFigure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4: Block in Fig. ] ( a )  pixel replicated by a facror cf8 10 show the 

zero rolerance subpixel localization of rhe block and ‘U’ boundaries (black) 
as well as the transition cutoff (whire) of rhe block boundary 

4. Results and Discussion 

We have not yet performed any comprehensive quantita- 
tive analysis comparing the accuracy, reproducibility, and 
boundary definition times between toboggan-based Intelli- 
gent Scissors and that in [13]. However, as the authors of 
[ 131, we have extensive experience and familiarity with both 
techniques and submit the following observations: 

The seed point boundary definition range (i.e., the 
amount of an object boundary defined with a single 
seed point) appears to be nearly identical for both tech- 
niques. Hence, both methods typically require close to 
the same number of seed points (though in some cases, 
this technique has the advantage of edge selection to 
define a boundary with only a single seed point, or in 
some cases no seed points). 
In general, boundary definition times depend on the 
time required to manually position seed points. The 
region-based graph search permits faster optimal path 
computation and interactive responsiveness within the 
live-wire environment. This allows quicker mouse 
movements and faster seed point positioning. Further, 
the improved efficiency of this technique permits other 
computations during interaction, such as computing 
edge models and fitting midpoints with a polyline. 
Reproducibility seems to be at least as good for this 
technique since errors in reproducibility occur mostly 
in the vicinity of seed points. 
We feel, due to the subpixel boundary positioning and 
based on visual results, such as those shown here (i.e., 
Figures 4, 5(b), and 6(b)), that this technique is poten- 
tially more accurate than the pixel-based approach [ 131. 

Figure 4 shows the estimated subpixel boundary loca- 
tions for the block of Fig. l(a) and the “U” on top of the 
block. Also shown are the transition cutoff on either side of 
the block boundary. The cutoff is set at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4s where s is the 
spread or blur parameter in Eq. (1 I ) .  These boundaries are 

scale kernel, tobogganing in the gradient terrain to define 
the regions, and transforming the region boundaries into a 
weighted graph. The edge model computation is performed 
during live-wire interaction on an “as need” basis. Also, 
since we only store cost information for the edges of a 
region based graph instead of every pixel, the memory 
requirements are smaller than that of [ 133. 

Finally, the region-based graph provides a framework for 
a variety of future refinements that would be difficult to 
achieve with the pixel-based tool. Some of the improve- 
ments include incorporating reliable region information into 
the cost function such as foregroundhackground color and 
multiple path exclusion with contour untangling to facilitate 
definition of long, thin image features (such as hair, sticks, 
etc.) by allowing the live-wire to snap to the strong side of 
such objects only once. We are in the process of adding 
these refinements and believe they will improve the effec- 
tiveness of Intelligent Scissors even more. 

5. Conclusions 

Compared to the original Intelligent Scissors tool, tobog- 
gan-based Intelligent Scissors reduces computational 
requirements during the critical interactive optimal bound- 
ary selection process. Further, the region-based graph pro- 
vides a well-defined framework to compute an edge model, 
allowing for subpixel boundary localization and edge blur. 
In addition to the improvements mentioned previously, other 
extensions could include hierarchical graph construction 
with dynamic detail adjustment for improved computational 
performance and texture based cost functions. 

2.Times staled are for the boundaries shown and are based on the best time 
achieved by an experienced user measured from the lime the first seed node is placed 
to completion of boundary definition. 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5: Grayscale image of ha). Size: 256x256. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a) Boundary defini- 
tion: 1.4 seconds with I seed node. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(b) Magnified section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof hat showing 
zero tolerance (i.e., no smoothing) subpixel boundary lr~calizotion. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(b) 
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6: Full color image (printed grayscale) of a tulip. Size: 256x256. 

(a) Boundary definition: 1.6 seconds with 2 seed nodes. (b) Magnified sec- 
riorr of tulip showing zero tolerance subpixel boundary localization. 
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