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Abstract—The spectrum usage by a secondary user often
happens in a certain geographical region and in a certain time
interval, and the requests often come in an online fashion.
Considering the selfish behaviors of primary users and secondary
users, it is imperative to design online double spectrum auction
methods. The most significant challenge is how to make the
online double auction economic-robust (truthful in particular).
Unfortunately, existing designs either do not consider the online
requests or become untruthful when applied to scenarios when
both primary users and secondary users could be selfish.

In this paper, we address this problem by proposing TODA,
a general framework for truthful online double auction for
spectrum allocation. We assume that there is a central auctioneer,
and the arrivals of secondary users’ requests follow Poisson
distribution. Upon receiving online spectrum requests, the central
auctioneer will decide immediately which secondary and primary
users will win the auction, and match winning primary users and
secondary users, as well as decide how much secondary users
should pay and primary users should get. To preempt existing
spectrum usage is not allowed. We study the case in which the
conflict graph of secondary users is a complete graph, which
occurs in the urban area where the distribution of the secondary
users is very dense. In this case, we design strategyproof (truthful)
mechanisms for both the primary users and secondary users. To
the best of our knowledge, we are the first to design truthful
online double auction mechanisms for spectrum allocation. Our
simulation results show that the expected social efficiency ratio of
our mechanism is always above 80% compared with the off-line
VCG mechanism and the spectrum utilization ratio is around
70% when the system is highly loaded.

Index Terms—Wireless networks, spectrum, online allocation,
double auction.

I. INTRODUCTION

The frequency spectrum has been chronically regulated with
static allocation policies since the early 20th century. In the
past decade, the FCC (Federal Communications Commis-
sion) and its counterparts across the world have been using
single-sided auctions to assign spectrum to wireless service
providers in terms of predetermined national/regional long-
term leases. With the recent fast growing spectrum-based
services and devices, the remaining spectrum available for
future wireless services is being exhausted. However, the
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current fixed spectrum allocation scheme leads to significant
spectrum white spaces where many allocated spectrum blocks
are used only in certain geographical areas and/or in brief
periods of time. Recognizing that the traditional spectrum
management process can stifle innovation, FCC has proposed
new spectrum management models [19].

Spectrum subleasing is widely regarded as a potential way
to share spectrum. In this paper, we show that auctions can
be used when some primary user has white space in some
specific area or during some specific time period. By auctions,
spectrum can be dynamically redistributed among multiple
parties to meet their own demands. In our model, a central
auctioneer runs double spectrum auctions to enable multiple
primary users (sellers) and secondary users (buyers) trade
spectrum dynamically. By multiplexing spectrum supply and
demand in time and space, dynamic auctions can significantly
improve spectrum utilization.

Previous studies on spectrum assignment (e.g. [11], [14],
[22], [25]) only considered single-sided spectrum auctions,
which assume that primary users will always trust the central
authority and be satisfied with the outcome of the auction.
However, in practice, primary users are usually selfish and
want to participate in the auction. So it is reasonable to
design double auctions for spectrum allocation. Unfortunately,
previous truthful double auction designs [2], [15], [7], [26]
only consider the single-round case, which is not fit for the
continuous spectrum auction where secondary users come in a
stochastic way and in an on-line fashion. There are also some
papers focused on online double auctions [5], but they only
focus on single item. In the case of spectrum allocation, we
must consider requested time durations of secondary users,
so this previous work can not be directly used in double
auctions for spectrum allocation. Blum et al. [4] present
online matching algorithms whose competitive ratios depend
on the spread in offer valuations. This earlier work does not
consider incentive-compatibility, and is presented purely from
an algorithmic perspective.

In auctions, truthfulness (or strategyproofness) is one of the
most critical properties. An auction without this property is ex-
tremely vulnerable to market manipulation and produces very
poor outcomes, shown by both economic theory and concrete
examples [12]. Due to the fact that spectrum is fundamentally
different from conventional goods as stated before, designing
economic-robust double auctions for spectrum allocation is
more challenging.
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In this paper, we propose a mechanism M for online double
spectrum auction which achieves truthfulness, ex-post budget
balance, and individual rationality. We make the following as-
sumptions about spectrum subleasing: (1) spectrum allocation
is non-preemptive, (2) time is slotted and only integer number
of time slots will be requested, (3) the arrivals of spectrum
requests of secondary users follow Poisson distribution, and
all primary users join at the beginning of the auction and leave
until the end of the auction, (4) all decisions cannot be revoked
(thus a rejected request cannot be reconsidered later), (5) the
probability distributions of biding and time requirement can be
learned by the central auctioneer based on previous knowledge
[16]. For that preemption is not allowed, the central auctioneer
cannot terminate current running request(s) to satisfy a new
coming request. To the best of our knowledge, we are the
first to design truthful online double auction mechanisms for
spectrum allocation.

The main contributions of this paper are as follows. We
study the case that the conflict graph of secondary users is a
complete graph. In this model, for any spectrum channel, if
we have allocated it to some secondary user ui, then before ui

finished using the channel, we can not allocate the spectrum
channel to any other secondary user uj . Here the conflict graph
is H = (V, E), where V is the vertex set corresponding to the
requests of secondary users and (vi, vj) ∈ E if and only if
the requests of vi and vj conflict with each other. For that
the requests of the spectrum channels in our model not only
contain the bidding price for one time-slot but also contain
the time duration of using the spectrum, the classical truthful
double auctions, such as McAfee double auctions, cannot be
directly used in our model. However, we can borrow the idea
of McAfee double auctions. Our idea is that we consider the
expected revenue of each primary user rather than the exact
revenue by calculating the expected earning of every primary
user at the time when some requests come. Here earning is
defined as the money a primary user collects, which does not
consider the cost. After calculated the expected earnings of all
primary users, we construct a matching bipartite graph (Sec-
tion III) based on them, which represents the potential winning
secondary users (candidates) for each primary user. Based on
this matching bipartite graph, we admit secondary users and
primary users and decide how much should the winner pay.
Our mechanism achieves all the desiderata: strategyproofness,
ex-post budget balance, and individual rationality. We then
perform simulations to show our mechanism is efficient in both
social efficiency ratio (defined in Section II) compared with
the optimal offline VCG meethod, and spectrum utilization
ratio.

The rest of the paper is organized as follows. In Section
II, we define the network models and the spectrum allocation
problems to be studied. In Section III, we present TODA for
online double spectrum auction for spectrum allocation, and
we analysis our method in Section IV. Our simulation studies
are reported in Section V. We review the related work in
Section VI and conclude the paper in Section VII.

II. PRELIMINARIES

In this section, we discuss the network model for online
double auction and the bidding model of primary and sec-
ondary users, and formulate our problem.

A. Wireless Network Model

Consider a wireless network consisting of some primary
users U = {u1, u2, · · · , um}, each of whom holds the usage
right of one spectrum channel and is willing to sublease the
usage of the channel to secondary users for time interval
[0, T ]. The channels are identical. Here the time is slotted
(discrete), i.e. the time interval [0, T ] = {0, 1, 2, . . . , T}.
The wireless network also consists of some secondary users
V = {v1, v2, · · · , vn} who want to lease the right of using
some channel for some period of time in some region. Note
that different from previous work, in our network model,
secondary users will come in an online fashion. In practice,
each primary user ui is selfish and has a true valuation s̃i for
the usage of its spectrum per time-slot. Thus the single-sided
auction which only cares the selfish behavior of secondary
users will be no longer proper under this model. Here we
design double spectrum auction mechanisms in which buyers
enter competitive bidders and sellers enter competitive offerers
simultaneously, and there is a central authority who performs
the double spectrum auction.

We assume that the arrivals of requests proposed by sec-
ondary users are independent and identically distributed (i.i.d.)
and follow Poisson distribution with the expected arrival rate
λ. The bidding price and the requested time slots of secondary
users also follow some specific probability distributions. We
assume the central auctioneer knows all the probability distri-
butions (, otherwise it can learn them based on the previous
knowledge using the method proposed by [16]). Primary users
join in the auction at the beginning, submit their asking prices
to the central auctioneer before auction starts, and remain in
the auction until the end.

Since the conflict among primary users has been solved
by the auction performed by FCC, in our work, we assume
the conflict of spectrum usage only happens among the sec-
ondary users, called secondary conflict. The secondary conflict
depends on the locations and requested time periods of the
secondary users. For example, under protocol interference
model [9], if secondary user vi is in the interference range
of secondary user vj , they can not use a same channel
simultaneously. Under the physical interference model, some
concurrent usages of one channel interfere with one another if
and only if the Signal-to-Interference-plus-Noise-Ratio (SINR)
at the receivers is below some acceptable threshold. In this
paper, we assume that the location of each secondary user
is fixed. This location-dependent conflict will be modeled by
a conflict graph H = (V, E), where V is the vertex set
corresponding to the requests of secondary users, and two
nodes vi and vj form an edge (vi, vj) ∈ E if and only if they
conflict with each other, i.e., they cannot use a same channel
simultaneously.
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B. Online Spectrum Bidding Model

We assume there are m primary users in the auction, and
one primary user contributes one distinct channel; thus there
are m channels in the network. Each primary user uj has a
true valuation s̃j of his spectrum channel usage per time slot.
Primary user uj bids asking price sj for selling per time-slot
of the spectrum usage to the auctioneer. Since primary user
uj is selfish, asking price sj is not necessarily equal to the
true valuation s̃j if cheating could improve its profit. In this
paper, we assume that the asking prices of all primary users
are fixed during the auction. We leave the problem model of
adaptive asking prices of primary users as a future work.

In our model, each secondary user only requests one chan-
nel. Let r1, r2, · · · , ri, · · · , be the sequence of all requests of
secondary users. Each request ri = (vi, ai, bi, ti) is claimed
by a secondary user vi at the time ai, who bids bi for the
per time unit usage of the channel and requests to use ti
time-slots. Note that the time is discrete. The total money
secondary user vi willing to pay is bi · ti for spectrum channel
usage. After received a request from some secondary user, the
auctioneer needs to give the result, whether it is admitted or
not, immediately. And the requests cannot be recalled, i.e., if
the request is rejected, then it will never be considered again.
For most of our discussions we will omit vi in ri when it is
clear from the context, or not needed in the notation. So the
request of secondary user vi is simplified as ri = (ai, bi, ti).

Each secondary user vi has its true valuation b̃i for per
time unit usage of a spectrum channel, and bid bi for using
a unit time. Here bi is not necessarily equal to b̃i. In our
model, secondary users can also be untruthful on its required
time slots, but could only bid a longer time period. The
reason that we assume a secondary user cannot announce a
shorter requested time duration is that, even if it wins in the
auction by requesting a shorter time duration, the secondary
cannot finish his own work; thus he will always get negative
utility. For that the spectrum channels are assumed identical,
the central auctioneer can assign any available channel to a
winning secondary user. Note that this assumption is valid
although the asking prices of different primary users could
be different (the difference may be resulted from the different
costs of primary users when buying the spectrum channels).
The auction is sealed-bid and private. Bidders submit their bids
privately to the auctioneer without any knowledge of others
and do not collude.

C. Problem Formulation

In this paper, we will study the complete conflict graph
model for secondary users; we leave the general conflict
graph model as a future work. The objective of this paper
is to design an online double spectrum auction satisfying the
economic properties of truthfulness, individual rationality, and
budget balance, which are three critical properties required for
economic-robust double auction [2] [12]. The three economic
properties are defined as following:

(1) Truthfulness: A double auction is truthful if no matter
how other players bid, no seller ui or buyer vj can
improve its own profit (utility) by bidding untruthfully

(si �= s̃i, bj �= b̃j , or bid a untruthful requested number
of time-slots). Truthfulness is also called strategyproof-
ness. In our problem, truthfulness requires that: (1) the
secondary users report their true required number of time
slots (called time-SP), (2) primary and secondary users
report their true valuation for the per time unit usage of
spectrum channel (called value-SP).
Truthfulness is essential to resist market manipulation
and ensure auction fairness and efficiency. In untruthful
auctions, selfish bidders can manipulate their bids to
obtain outcomes that favor themselves but hurt others.
In truthful auctions, the dominate strategy for bidders is
to bid truthfully, thereby eliminating the fear of market
manipulation and the overhead of strategizing over others.
With the true valuations, the auctioneer can allocate
spectrum efficiently to buyers who value it the most.

(2) Individual Rationality: A double spectrum auction is
individual rational if no winning seller is paid less than
its bid (per time-slot) and no winning buyer pays more
than its bid (per time-slot), i.e. the utility of the sellers
and buyers is no less than 0. If we let ps

j > 0 to denote the
total payment of secondary user vj , and t is the total time
requested, then individual rational requires ps

j −bj ·t < 0.
In our probability model, the individual rationality of a
primary user means that the expected profit is no less
than 0. Here the expected profit is defined as the expected
earning subtract the cost of the spectrum channel s̃ · T .
This property guarantees non-negative utilities for bid-
ders, providing them incentives to participate.

(3) Ex-post Budget Balance: A double spectrum auction is
ex-post budget balanced if the auctioneer’s profit φ ≥
0. The profit φ is defined as the difference between the
revenue collected from buyers and the expense paid to
sellers, i.e. φ =

∑m
i=1 pp

i +
∑n

j=1 ps
j ≥ 0. Observe that

here pp
i < 0, denoting that the auctioneer has to pay −pp

i

to the primary user ui; ps
j > 0, denoting that auctioneer

collects ps
j from secondary user vj .

This property ensures that the auctioneer has incentives
to set up the auction. Note that in practice the auctioneer
can charge a transaction fee to (winning) bidders. For
simplicity, we do not include this charge in the profit
computation.

Instead of the worst case performance, we focus on the
expected performances, i.e. the total expected earning of the
primary users. Based on the expected earning, we design an
online double auction which guarantees to achieve these three
economic properties under our complete conflict graph model.

To evaluate the performance of an online mechanism, we
compare it with offline VCG mechanism (Vick) which will
maximize the total social efficiency (but not necessarily strat-
egyproof in the online model) in our simulation section. The
performance of an online mechanism M is measured by its
social efficiency Eff(M), defined as the total true valuations of
all winners, i.e. Eff(M) =

∑
i xibi. The social efficiency ratio

of a mechanism M is Eff(M,Vick) = Eff(M)/Eff(Vick).
In our simulation part, we will study the expected total social
efficiency ratio of our mechanism M.
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III. OUR AUCTION MECHANISM M
The complete conflict graph model requires that if we admit

the request of one secondary user on some spectrum channel
for some period of time, we cannot admit any other request on
the same spectrum channel in that time duration. We propose
our mechanism M in this section.

Recall that we assume at the very beginning of the auction,
each primary user ui submits their asking price si to the central
auctioneer which does not change during the auction. After the
auction started, secondary users come in a stochastic manner;
the arrivals of them follow Poisson distribution with arrival
rate λ. The bidding price and requested time intervals follow
some specific distribution which is known (or can be learned
[16]) by the central auctioneer based on previous knowledge.
For example, it is possible that, based on historical data, the
bidding price of the incoming requests satisfies the Normal
distribution with mean value μ and standard deviation σ,
and the requested number of timeslots satisfies the Uniform
distribution ranging from tmin to tmax.

At the beginning of the auction, all the primary users submit
their asking price s1, s2, . . . , sm to the central auctioneer. The
first step of our mechanism M is that, for each primary
user ui, the central auctioneer calculates the expected earning
Vi(t),∀0 ≤ t ≤ T , for leasing the spectrum channel from time
t to the end of auction T . In other words, at the beginning of
the auction, the central auctioneer prepares an m× T matrix,
and in each cell (i, t) is the expected earning Vi(t) based on
the historical data. Note Vi(t) denotes the expected earning
from time t to T of primary user ui. The calculation is by
Dynamic Programming (DP) as follows. Let Xk denote the
event that there are k requests arrived at the beginning of time
slot t, and Yt denote the event that the requiring time slots is
t, and Zb denote the event that the bidding value of a request
is b. Then the expected earning of primary user i is as follows:

Vi(t) =
+∞∑

k=0

Pr (Xk)(
T−t∑

tn=1

Pr (Ytn
)(bi(k) · tn + Vi(t + tn))).

(1)
Here bi(k) ≥ si is an expected bidding value based on the
arrival rate of the requests and the bidding distribution of the
secondary users. We use bm

i (k) to denote the expected highest
bidding value when the bidding prices of the k requests are
all above the asking price of primary user ui. Clearly, bm

i (k)
can be calculated as below:ˆ bm

i (k)

si

Pr (Zx)dx =
k

k + 1
·
ˆ +∞

si

Pr (Zx)dx. (2)

Note that the value bm
i (k) is the ideal case that will not

always be achieved (because sometimes not all the bidding
prices will be above the asking price si of primary user ui).
We introduce a parameter 0 < δ ≤ 1. Then bi(k) is computed
by

bi(k) = max{δ · bm
i (k), si}.

After Vi(t) and bi(k) are given, Lemma 1 follows directly:
Lemma 1: Vi(t) is monotonically decreasing as t grows,

and bi(k) is monotonically increasing as si grows.
Based on Lemma 1, we get the following corollary:

Corollary 2: If si ≤ sj , then for any time t, Vi(t) ≤ Vj(t).
Proof: We prove by induction on t. First when t = T ,

∀i, Vi(T ) = 0, the corollary holds. Assume that ∀t, t > t0, the
corollary holds, and si ≤ sj , then for the time t0 we get

Vi(t0) =
+∞∑

k=0

Pr (Xk)(
T−t∑

tn=1

Pr (Ytn
)(bi(k) · tn + Vi(t0 + tn)))

≤
+∞∑

k=0

Pr (Xk)(
T−t∑

tn=1

Pr (Ytn
)(bj(k) · tn + Vj(t0 + tn)))

= Vj(t0)

So the corollary holds for every t = 1, . . . , T .
After the auctioneer prepared Vi(t),∀1 ≤ i ≤ m, 0 ≤ t ≤

T , it will start the auction. The secondary users come in a
stochastic way. At the beginning of each time slot, if some
secondary users came, a decision phase happens. In other
words after the auction begins a series of decision phases
will happen. The admission method of our mechanism M
for each decision phase contains two steps: (1) the matching
bipartite graph BGt(B,S,E) construction step, (2) admission
and charge decision making step, all of which will be discussed
in below.

A. Matching Bipartite Graph Construction

When a secondary user vj comes, it submits its request to
the central auctioneer. Then the auctioneer computes V j

i (t) =
bj · tj + Vi(t + tj) which is the expected earning after the
primary user ui admits the secondary user vj . The auctioneer
will keep m values V j

i (t)(i = 1 . . . m) for each bidder vj

who comes at the decision phase starting at time t. If V j
i (t)

is greater than the expected earning Vi(t), then it is better for
primary ui to admit the secondary user vj than to wait next
request. Under this condition, we call vj is a candidate to ui.

Definition 1: If the expected earning for the primary user
ui to admit bidder vj is no less than the expected earning
at the current time t, i.e. V j

i (t) ≥ Vi(t), then bidder vj is a
candidate (potential winner) to primary user ui.

Here we use a bipartite graph to represent the relationship
of “is-a-candidate-to”, and we call this bipartite graph the
matching bipartite graph BGt(B,S,E). In matching bipartite
graph BGt(B,S,E), there are two sets of vertices B and
S. The vertex set B = {β1, β2, . . . , βn} denotes the set of
n buyers arrived at the beginning of time slot t, and the
vertex set S = {ς1, ς2, . . . , ςk}, k ≤ m, denotes the set of
k primary users whose channels are available (not allocated)
at the beginning of time slot t. If buyer vj is a candidate to
primary user ui, then we add an edge (βj , ςi) to the edge set
E. A key property of BGt(B,S,E) is shown in Lemma 3.

Lemma 3: For two sellers ui and uj , if si < sj , then for
any candidate vk to primary user uj is also a candidate to
primary user ui.

Proof: For any request vk is a candidate to primary user
j, it must have V k

j (t) = bk · tk + Vj(t + tk) > Vj(t). V k
i (t)−

Vi(t) = bk ·tk +Vi(t+tk)−Vi(t) = bk ·tk−Vi(t, t+tk−1) >
bk · tk − Vj(t, t + tk − 1) > 0. Here Vi(t1, t2) denotes the
expected earning of primary user ui from time t1 to t2. So
the lemma holds.
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The following Corollary 4 can be directly got from
Lemma 3.

Corollary 4: For any two elements ςi, ςj ∈ S, the cor-
responding asking prices satisfy si < sj , ∀βk ∈ B, if
(βk, ςj) ∈ E, then (βk, ςi) ∈ E.

B. Making Admission and Charging Decision

After BGt(B,S,E) is constructed, we are ready for making
the admission and charging decisions. In this section, we give
the admission method and the charging method.

One trivial idea is to find the maximum weighted match-
ing in BGt(B,S,E) and admit the matched (primary
user,secondary user) pairs. However, we found that trivially
doing the maximum matching will not give us a strategyproof
mechanism, for that the secondary user could increase its
utility by decreasing its bidding price to match a primary user
with a lower asking price. Here we borrow the idea of McAfee
double auction to design our mechanism which satisfies the
three desiderata: truthfulness, individual rationality, and ex-
post budget balance.

In our mechanism M, we first sort the set of S in increasing
order based on the asking price si,∀i ∈ {1, 2, · · · , k}. Let |βi|
denote the number of edges incident with vertex βi ∈ B in
the matching bipartite graph BGt(B,S,E). We then sort the
set of B in decreasing order based on |βi|. We re-number the
elements of S and B after this sorting, i.e. ∀ςi, ςj ∈ S, 1 ≤
i ≤ j ≤ k, then si ≤ sj and ∀βi′ , βj′ ∈ B, 1 ≤ i′ ≤ j′ ≤ n,
then |βi′ | ≥ |βj′ |.

From now on, the matching bipartite graph BGt(B,S,E) is
referred to the sorted bipartite graph. By Lemma 3, we know
that if (βj , ςi) ∈ E then ∀l ≤ i, (βj , ςl) ∈ E, so the Bipartite
Graph BGt(B,S,E) must be in the form similar as Fig. 1.

S

B

Fig. 1. The possible bipartite graph after vertex sorting.

In the bipartite graph BGt(B,S,E), we find that if E is
not empty (E �= Φ), there must be some edge(s) with the form
as (βi, ςi). We call such edges as the diagonal pairs (because
that if we use a adjacent matrix to denote BGt(B,S,E) then
all such edges (the “1”s) lie in the diagonal of the matrix). Let
N be the number of the diagonal pairs in BGt(B,S,E). For
example, in Fig. 1 N = 3. We call N the matching number.

Let BGN
t (BN , SN , EN ) ⊆ BGt(B,S,E) to denote the

bipartite graph induced by BN = {β1, β2, . . . , βN} and
SN = {ς1, ς2, . . . , ςN}. It is trivial that BGN

t (BN , SN , EN )
is a complete bipartite graph KN,N . For each buyer vi corre-
sponding to βi ∈ BN , we calculate the expected earning V i

N (t)
for seller uN corresponding to ςN ∈ SN . Recall that V i

N (t) is
the expected earning that seller uN admits buyer vi. We next
perform a second sorting on the N elements of vertex set BN

based on V i
N (t) in decreasing order. We use {β′

1, β
′
2, . . . , β

′
N}

to denote the order after the second sorting. Since that the
bipartite graph BGN

t (BN , SN , EN ) is a complete bipartite
graph KN,N , it is trivial to get the matching number is also
N , i.e. (β′

i, ςi) ∈ E,∀1 ≤ i ≤ N .
From now on, again, we use the index of the newly sorted

bipartite graph BGN
t (BN , SN , EN ), i.e. ∀βi ∈ B is the ith

elements of the newly sorted vertex set BN . Similar to the
McAfee double auction, the central auctioneer admits the first
(N − 1) pairs of bidders (primary and secondary users) and
charges the admitted pairs based on the N th pair (but not
exactly the bids of the N th pair). The charging method is as
follows.

We use ps
j to denote the payment of secondary user vj , and

pp
i to denote the payment of primary user ui. Note that pp

i < 0
represents the value paid to primary user ui for subleasing the
spectrum channel to secondary user vi. If the requested time-
slots is tj , the admitted secondary user vj will be charged

ps
j = bN · tN + VN (t + tN ) − VN (t + tj). (3)

If the requested time-slot of the admitted secondary user vi

is ti, the admitted primary user i will be paid

pp
i = −VN (t) + VN (t + ti). (4)

And the non-admitted primary (secondary) users will be
charged 0. The whole algorithm of our mechanism M is
concluded in Algorithm 1.

IV. THEORETICAL ANALYSIS OF MECHANISM M
In this section, we prove that our mechanism M satisfies

all the desiderata.
First, we prove the most important economic property

strategyproofness of our mechanism Mi which requires both
time-strategyproofness and value-strategyproofness. To prove
our mechanism M’s truthfulness, we need to show that for
any secondary user vi or primary user uj , it cannot improve
its utility by bidding other than its true valuation. In other
words, the agent’s dominant strategy is to report its true bid
value (called value-SP) and true time requirement (called time-
SP). For this, we first show that its winner determination
is monotonic for both sellers and buyers and the pricing is
bid-independent. Using these two claims, we then prove the
truthfulness.

The following two lemmas summarize the monotonicity of
our mechanism M’s winner determination.

Lemma 5: Given the bids set {b1, . . . , bi−1, bi+1, . . . , bn}
and the set of asking prices {s1, s2, . . . , sk}, if buyer vi wins
the auction by bidding bi, then it will win by bidding b′ > bi.

Proof: For that we only admit the first N −1 pairs of the
vertexes of the sorted bipartite graph, so whether admit or not
is merely depended by the position in the sorted vertexes set.
If the secondary user vi bids higher than before, then there
will be no less edges incident with the corresponding vertex
in the set of B, so its position index in B will not increase,
i.e. we will also admit it. So the lemma holds.

Similarly, we can prove the corresponding lemma for the
buyer side.
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Algorithm 1 Spectrum Allocation Mechanism M for Double
Spectrum Auction in Complete Conflict Graph.
Input: The asking prices of the primary users and the proba-
bility distributions required.
Output: The spectrum channel allocation method and charg-
ing mechanism.

1: Primary users submit their asking prices {s1, . . . , sm} to
the central auctioneer.

2: For each primary user ui, the central auctioneer calculate
Vi(t),∀t, 0 ≤ t ≤ T .

3: while t �= T do
4: if A decision phase starts then
5: For each request of secondary user vj , central auc-

tioneer calculates the expected earning V j
i (t) after

admitted vj for each primary user ui.
6: Use Bipartite Graph BGt(B,S,E) to represent the

relationship of “is-a-candidate-to”.
7: Sort the set of S in increasing order based on the

asking price {s1, s2, . . . , sk}, here k ≤ m is the
number of available spectrum channels.

8: Sort the set of B in decreasing order based on the
number of edges( |bj |) incident with bj .

9: After first sorting the central auctioneer got the
matching number N , then begins a second sorting
based on V i

N (t),∀1 ≤ i ≤ N .
10: Admit the first N −1 pairs and allocate the spectrum

corresponding to si to the buyer corresponding to bi.
11: Each admitted primary user i is charged by pp

i =
−VN (t) + VN (t + ti) < 0, and each admitted
secondary user j is charged by ps

j = bN ·tN +VN (t+
tN ) − VN (t + tj) > 0.

12: The other bidders (primary and secondary users) is
charged 0.

Lemma 6: Given the set of bids {b1, b2, . . . , bn} and the
set of asking prices {s1, s2, . . . , sj−1, sj+1, . . . , sk}, if seller
uj wins the auction by asking sj , then it will win by asking
s′ < sj .

The following two lemmas summarize the pricing is bid-
independent for winning buyers and sellers.

Lemma 7: Given the bids set {b1, . . . , bi−1, bi+1, . . . , bn}
and {s1, s2, . . . , sk}, if buyer vi wins the auction by bidding
bi and b′, then the mechanism M will charge the same for
both.

Proof: Similar as the proof of Lemma 5, by formula (3),
the charging method of M is only depend on the N th buyer’s
bid bN and the spectrum channel N . So whether we change
the bid value of buyer vi or not, only if it will be admitted,
the charging price will be the same.

Lemma 8: Given the set of bids {b1, b2, . . . , bn} and
{s1, . . . , sj−1, sj+1, . . . , sk}, if seller uj wins the auction by
asking sj and s′, then our mechanism M will charge the same
for both.
The proof of Lemma 8 is similar as that of Lemma 7.

Based on the above lemmas, we now prove the main results
on our mechanism M’s truthfulness. We use quasi-linear

utility functions; the expected utility function of primary user
ui is Up

i = Vi(0)− s̃i ·T , and the utility function of a winning
secondary user vj is Us

j = bi ·ti−ps
i and for a loser the utility

function is 0.
In the following proofs of the lemmas, we will use b̃i

(resp. s̃i) to denote the true valuation of the secondary user
vi (resp. primary user ui), and use b′i (resp. s′i) to denote the
untruthful valuation of secondary user vi (resp. primary user
ui). Similarly, we use U ′ to denote the untruthful utility. In
the following lemmas, we will prove our mechanism M is
truthful.

We first prove that our mechanism M is truthful for primary
users. Please note that the sellers can only be untruthful on its
asking price in our double auction.

Lemma 9: Mechanism M is truthful (value-SP) for primary
users (sellers).

Proof: To prove the lemma holds, it is equivalent to prove
that on every case listed above the utility function Ui when
seller ui is truthful will be no less than that when it lies on
its asking price si.

Get admitted when truthful: In this case, the seller will be
admitted being truthful. If it get admitted when bidding
untruthfully, by Lemma 8 we know that the charging pol-
icy for seller ui of M is independent with the asking price
si. So no matter how seller ui lies on its asking price,
the utility function Up

i will not change. If it cannot be
admitted when bidding untruthfully, by the Theorem 14,
we know that the utility function Up

i ≥ 0 = U ′p
i . So our

mechanism is truthful in this case.
Not admitted when truthful: In this case, the seller cannot

be admitted if bids truthfully. We first consider that it
can be admitted when bids untruthfully, which could only
be resulted from that it submitted a lower asking price
s′i < s̃i to the central auctioneer at the beginning of the
auction.
Note that the primary user N is the original N th seller
in the vertex set S. And the seller ui is in the position
behind the seller uN , i.e. i ≥ N . After seller ui lies on its
asking price, it will jump to the position ahead of that of
the seller uN and the original (N−1)th seller will be the
N th seller. So the payment after lying will be based on
the original (N − 1)th seller’s asking price sN−1. Note
that the seller ui itself could also be the (N − 1)th seller
after lying. So the utility function after it admitted is:

U ′p
i = −Vi(t) + Vi(t + ti) − p′P

i

= −Vi(t) + Vi(t + ti)
+VN−1(t) − VN−1(t + ti)

≤ 0

The last inequality is based on the proof of Lemma 3.
When it cannot be admitted when bids untruthfully, the
utility will always be 0. So our mechanism M is truthful
in this case.

Then the lemma follows.
Now we show that our mechanism M is truthful for the

buyer side. Unlike the primary users, the secondary users could
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also lie on the required time slots in addition to lying on the
bid. Here we use ti to denote the truthful requested time of
secondary user vi, and t′i to denote the untruthful requested
time. The payment under truthful bidding for secondary user vi

is denoted as ps
i , and that under untruthful bidding is denoted

as p′s
i . So to prove truthful for the buyer side we need to prove

both parts: (1) value-SP, (2) time-SP. We first show that M is
time-SP, then show value-SP.

Lemma 10: Mechanism M is time-SP for secondary users.
Proof: Recall that we assume each request of a secondary

user could only claim a longer required time duration than its
actual requirement.
Get admitted when truthful: If it can also get admitted

when bidding untruthfully, the utility function is:

U ′s
i = bi · ti − p′s

i

< bi · ti − bN · tN − VN (t + tN ) + VN (t + ti)
= Us

i .

So the utility U ′s
i after buyer vi lies is less than the

truthful utility Us
i .

If it cannot get admitted when bidding untruthfully, our
mechanism is trivially truthful under this case for that
our mechanism is individual rational for buyers (Theo-
rem 14).

Not admitted when truthful: If it can get admitted when
bidding untruthfully, after admitted, the utility is:

U ′s
i = bi · ti − p′s

i

< bi · ti + VN (t + ti) − (bN · tN + VN (t + tN ))
= V i

N (t) − V N
N (t) ≤ 0

The last inequality is because that originally buyer vi

cannot be admitted, i.e. V i
N (t) ≤ V N

N (t). So the utility
will not increase.
If it cannot get admitted when bidding untruthfully, the
utility will remain 0.

So the lemma holds.
Next, we show that our mechanism M is value-SP for

secondary users.
Lemma 11: Mechanism M is value-SP for secondary users.

Proof: We prove M is value-SP for each case in the
following:
Get admitted when truthful: If it can get admitted after

lying on the bidding price, for that the pricing of M
is bid-independent, so no matter buyer vi lies or not, the
payment ps

i is same. So the utility of buyer vi will not
increase after it lies.
If it cannot get admitted after lying on the bidding price,
the utility will not increase by the individual rationality
of M.

Not admitted when truthful: If it can get admitted when
bidding untruthfully, the only possibility is that it sub-
mitted a higher bid value b′i > b̃i. After admitted, the
utility of buyer vi is:

U ′s
i = bi · ti − p′s

i

= bi · ti − (bN · tN + VN (t + tN ) − VN (t + ti))
= V i

N (t) − V N
N (t) ≤ 0

The last inequality is due to that truthfully buyer vi will
not be admitted, i.e. V i

N (t) ≤ V N
N (t). So the utility of

buyer vi will not increase after it lies.
If it cannot get admitted when bidding untruthfully, the
utility will remain 0.

So M is value-SP for buyers.
Based on Lemma 10 and Lemma 11, we have proved that

our mechanism M is truthful for the buyers.
Theorem 12: Mechanism M is strategyproof for both pri-

mary users (sellers) and secondary users (buyers).
Next, we demonstrate our mechanism M is ex-post budget

balanced and feasible.
Theorem 13: The mechanism M is ex-post budget bal-

anced and feasible.
Proof: To establish ex-post budget balance of M, it is

enough to prove that the sum of all payments of the winners
in each decision phase of the auction is not negative, i.e.∑N−1

i=1 (ps
i + pp

i ) ≥ 0. Note that for all admitted primary
(secondary) users, we charge the same payment. So we only
need to prove the no-deficit property for any winner pair.

pp
i + ps

i = bN · tN + VN (t + tN ) − VN (t) ≥ 0 (5)

Note that the “≥” relation is resulted from the fact that the
bidder N and seller N are matched in the matching bipartite
graph BGt(B,S,E). So our mechanism M is ex-post budget
balanced.

The property of feasible requires that at any time the
winning buyers will actually get the goods. In our model,
a feasible mechanism needs to satisfy that at any time the
winning secondary user will actually be allocated some time
of one spectrum channel. It is clear that our mechanism M is
feasible, for that in M if we admit ONE secondary user, then
we must admit a corresponding primary user, i.e. we only
admit winning (primary user, secondary user) pairs. So the
theorem holds.

At last, we prove that our mechanism M is individual
rational, i.e. the expected utility of any seller is no less than 0
and no buyer pays more than its bid (per time-slot). Individual
rationality requires Uz

i ≥ 0, z ∈ {p, s} in each decision phase.
Theorem 14: Mechanism M is individual rational, i.e. in

each decision phase, Uz
i ≥ 0, z ∈ {p, s}.

Proof: First we prove that our mechanism M is individual
rational for primary user ui. For that in the computation of
Vi(t), bi(k) is always no less than si. By Theorem 12, we
know that the dominant strategy of primary user is that si = s̃i,
so bi(k) ≥ s̃i. Thus at each time slot, the expected bidding
price is no less than the true valuation of the primary user ui,
so the expected utility of ui Up

i ≥ 0. So our mechanism M
is individual rational for primary users.

Since the utility function of all the losing secondary users is
0, we only need to consider the utility function of the winning
secondary users. We prove that the utility function of admitted
secondary users is no less than 0.

Us
i = bi · ti − ps

i

= bi · ti − bN · tN − VN (t + tN ) + VN (t + ti)
= V i

N (t) − V N
N (t)
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For that we have done the second sorting, V i
N (t) ≥ V N

N (t).
So Us

i ≥ 0. We finished the proof.

V. SIMULATION RESULTS

We conduct extensive simulations to study the performance
of our online mechanisms M for the complete conflict graph
model which simulate the situation in urban area.

A. Simulation Setup

In our simulations, we assume there are 10 primary users,
and the total available time for the spectrum channel of
each primary user is T = 1000 time-slots. We generate
random secondary requests with random bid values and time
requirements. The arrivals of these requests follow Poisson
distribution with an arrival rate λ, which varies in our simula-
tions to simulate lightly loaded or heavily loaded system. The
asking prices of sellers follow the same probability distribution
type of the bidding prices of buyers in our simulations(, for
example normal distribution or uniform distribution).

The bidding price and time requirement of each request
are either uniformly distributed or normally distributed in our
simulations. Here we generate four different sets of requests.

Set 1 The bid value of each request is uniformly distributed
in [0, 1], time requirement of each request is uniformly
drawn from all integers in [1, 50];

Set 2 The bid value of each request is uniformly distributed
in [0, 1], time requirement of each request is uniformly
drawn from all integers in [1, 500];

Set 3 The bid value of each request is normally distributed
with expected value μb = 0.5, and variance σb = 2, time
requirement of each request is normally distributed with
expected value μt = 25, and variance σt = 3;

Set 4 The bid value of each request is normally distributed
with expected value μb = 0.5, and variance σb = 2,
time request of each request is normally distributed with
expected value μt = 250, and variance σ = 9.

The bid value are randomly matched and independent with the
time requirement.

We also consider the different probability parameters of
asking prices and bidding prices in our simulations. We
borrow the economic term Balanced market between supply
and demand to denote that the distributions of asking prices
and bidding prices are exactly the same, i.e. same probability
distribution type with same parameters, and seller’s market
(resp. buyer’s market) to denote that the probability distribu-
tion type of asking prices and bidding prices is the same but
the expectation of asking prices is higher (resp. lower) than
that of bidding prices.

All the simulations is performed 20 times and the result is
the averaged value.

B. Performance of Mechanism M
In this section, we study the performance of our mechanism

M compared with the off-line VCG mechanism. We mainly
focus on the performance of social efficiency ratio, and total
spectrum utilization ratio of our mechanism M. Recall that

when we calculate the expected earning Vi of each primary
user i, there is an parameter δ which is used to calculate
bi which is the expected bidding price. Before we study the
performance, we need to set a proper value for δ such that
the revenue earned by any primary user is no less than the
cost of that primary user. We plot result for our 4 different
sets of requests, here λ = 10 equals to the number of primary
users and we consider the balanced market between supply
and demand.

From Fig. 2 (b), we get that when δ = 0.7 to 0.9 the
spectrum utilization ratio is maximized, and when δ ≥ 0.7
the revenue earned by any primary user is no less than the
cost of that primary user as shown in Fig. 2 (a). We then set
δ = 0.9 in our following simulations, because that although
we get this value in the simulation which we set λ = 10 and
consider the balanced market, this value is reserved enough to
fit for other conditions such as λ �= 10 and/or other market.

In Fig. 3 (a), we plot the averaged competitive ratio for
the expected social efficiency among the 10 channels, when
the request arrival rate λ varies. From Fig. 3 we can see
that the performance of our mechanism is more than 80% of
the VCG mechanism. When the required time is in the same
order of the available total time of the spectrum channels as
in request set 2 and 4, our mechanism is surprisingly better
than VCG in expected social efficiency. The reason is that
when the requested time is in the same order with the total
available time of the spectrum, as in request set 2 and set 4
the expected required time is 0.25 of the total available time,
in the fourth quarter of the available time the expected social
efficiency calculated by VCG is very poor, while when the
requested time is much less than the total available time, as in
request set 1 and set 3 the expected required time is 0.025 of
the total available time, only in the last 1/40 of the available
time the expected social efficiency is poor. Given the requests,
our mechanism will choose requests that will maximize the
social efficiency. So in set 2 and set 4, our mechanism is
better than VCG in expected social efficiency. Observe that
the competitive ratio of set 2 and set 4 decrease when the
arrival rate increases, but the competitive ratio of set 1 and
set 3 increase. The reason is that when the arrival rate is big,
the competition among requests is high, then our mechanism
will converge to the VCG mechanism; When the arrival rate
is small, the competition is low, it is harder to admit a request
of secondary user in each decision phase. In request set 1 and
set 3 the requested time is far less than the total available time
which means that the number of decision phases is far more
than that for set 2 and set 4, so the social efficiency for request
set 2 and set 4 is more than set 1 and set 3.

In Fig. 3 (b), we plot the total spectrum utilization ratio
for the four request sets. From Fig. 3 (b), we can see that the
spectrum utilization increases when the arrival rate of requests
increases. When the system is highly loaded, the spectrum
utilization ratio could be as high as 80%, while the spectrum
utilization ratio is more than 34% for lightly loaded system.
When the system load is low, the competition among requests
is low and thus we may not admit feasible requests. In all
cases, mechanism M improve the efficiency ratios without
sacrificing the spectrum utilization.
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Fig. 2. Choose the proper value for δ.
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Fig. 3. The performance of M in balanced
market.
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Fig. 4. The performance of M under request
set 4 in different market.

We plot the expected social efficiency ratio and spectrum
utilization ratio of request set 4 for different market in Fig. 4.
In buyer’s market, the expectation μ of asking price is 1.5
times of that of bidding price, while in seller’s market, the
expectation μ of asking price is 0.667 times of that of bidding
price in our simulation setup. From Fig. 4(a), we can see
that our mechanism M performs best in buyer’s market and
worst in seller’s market, which is compared with the VCG
mechanism. The reason is that in buyer’s market, the expected
social efficiency of VCG mechanism is poor for that the
asking price is lower than bidding price in expectation, while
our mechanism will admit the requests that maximize the
expected social efficiency; In seller’s market, the expected
social efficiency of VCG mechanism is good for that the
asking price is high, while given the requests the competition
is low, so it is harder for our mechanism to admit the requests.
However, even in seller’s market in which our mechanism
performs worst, the expected social efficiency ratio is still
above 80%.

From Fig. 4(b), we can see that for all the different market,
the spectrum utilization ratio is above 60% when the system
is highly loaded and above 35% when the system is lightly
loaded. In the buyer’s market where the expectation of asking
prices is better than that of bidding prices, the spectrum
utilization ratio is the worst among the three cases, which is
not intuitive at all. The reason is that in the buyer’s market,
the spectrum utilization ratios of different spectrum channels
are unfair, i.e. as the asking price increases the spectrum
utilization ratio decreases. From the simulation data, we found
that for the lowest 2 asking prices, the spectrum utilization
ratio is above 80%, but for the highest 3 asking prices, the
spectrum utilization ratio is nearly 30%. So although for the
lowest 2 to 3 asking prices the spectrum utilization ratio in
buyer’s market is better than that of seller’s market, when we
study the total spectrum utilization ratio of all the channels,
that in buyer’s market is worse than that of the seller’s market.

However, the difference among the three cases in spectrum
utilization ratio is not significant.

VI. LITERATURE REVIEWS

How to allocate spectrum channels is essentially combinato-
rial allocation problem, which have been well studied [1], [13].
For example, Yuan et al. [24] introduced the concept of a time-
spectrum block to model spectrum reservation in cognitive
radio networks, and presented both centralized and distributed
protocols for spectrum allocation and show that these protocols
are close to optimal in most scenarios. In [20], Wu and Tsang
studied the distributed multichannel power allocation problem
for the spectrum sharing cognitive ratio networks. Ben-Porat et
al. [3] gave a scheme scheduling decisions on the Cumulative
Distribution Function (CDF). Spectrum band auction [6], [8],
[17] has also been well studied. However, these results did not
guarantee truthfulness.

Truthfulness is a critical factor to attract participation [12].
Many truthful mechanisms have been developed in conven-
tional double auctions, including single-unit [2], [7], [15] and
multi-unit double auctions [2], [10]. The majority of these
designs follow the idea of McAfees mechanism [15], using
the trade reduction to maintain truthfulness.

Xu and Li et al. [14] designed efficient methods for various
dynamic spectrum assignment problems. They also showed
how to design truthful mechanism based on those methods.
Xu and Li et al. [21], [22] then designed online spectrum
auction mechanisms when only secondary users could be
selfish. Zhou et al. [25] propose a truthful and efficient
dynamic spectrum auction system to serve many small players.
Although truthfulness is addressed in these works, they all
consider single-sided auctions. A recent result by Zhou and
Zheng [26] designed truthful double spectrum auctions where
multiple parties can trade spectrum based on their individual
needs and consider spectrum reuse. However, they did not
consider the time domain and their work can not be used in
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the online auction. Another recent work by Xu et al. [23]
designed SALSA for online spectrum admissions. In this work,
they considered two cases: Random-Arrival case in which
the bid values and requested time durations of secondary
requests follow some distributions that can be learned, and
Semi-Arbitrary-Arrival case in which the bid values could
be arbitrary, but the request arrival sequence is random. For
both cases, their method can achieve constant approximation
compared to the offline VCG auction in both social efficiency
and revenue efficiency. However, this work only considered
single-sided auction.

VII. CONCLUSIONS

In this paper we designed mechanisms for online spectrum
allocation and double auction when the selfish primary users
want to sublease the usage of their spectrum channels for a
period of time and many secondary users will bid for the usage
in different time-slots. Under a simple assumption that the
requests by secondary users arrive with Poisson distribution
and the willing payment per time-slot is independent from
the time-slot required, we prove that every secondary user
will maximize its expected profit if it proposed requests
truthfully. We also prove that our mechanism is individual
rational for both primary users and secondary users and ex-
post budget balanced for the central auctioneer. To the best of
our knowledge, this is the first online spectrum allocation and
double auction protocol with these properties. Our extensive
simulation studies show that our protocols perform well.

There are a number of interesting questions that are left for
future research. First, we assume that the asking prices of the
primary users is fixed during the double auction. However,
the asking prices could be adaptive, for example, when the
requests are less, the primary users would like to lower their
asking price to sell more fraction of the spectrum channels.
Second, in our study we assume that the request is not periodic.
In practice, the requests of secondary users could be periodic.
So how to design a truthful double auction mechanism to fit the
period requests is a very interesting problem. We also need to
extend our mechanism to the scenarios when the interference
could not be modelled as a complete graph.
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