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1. Introduction.    This survey of selected computational aspects of linear 

algebra is addressed to members of SIAM who are not specialists in numerical 

analysis.    The reader is assumed to have a general familiarity with the algebra 

and analysis of finite vectors and matrices,  including norms, and to know the 

Gaussian elimination process.    A completely adequate background is given in the 

first 72 pages of Faddeeva [9]-    A much more complete background for practical 

matrix work is found in Bellman [3], Marcus and Mine [38],  and Wilkinson [6l]. 

Far more extensive expositions of the computational methods of linear 

algebra are to be found in Fox [lU], Noble  [U2], Householder [28],  and Wilkinson [6l]. 

The author gratefully acknowledges conversations with Gene H. Golub, 

Richard Hamming, and William Kahan,  and especially the opportunity to see a 

draft of Kahan [32].    He also acknowledges substantial debts to Cleve Moler for 

the use of material from Forsythe and Moler [12]. 

2.    Computational problems of linear algebra.    The ordinary computational 

problems of linear algebra are concerned with matrices of real numbers. 

a. Let   A    be an n-rowed, n-columned matrix of real numbers.    Let   b   be 

an n-rowed column vector of real numbers.    The traditional linear-equations 

problem is to find an n-rowed column vector    x    such that 

A x -: b „ 

It is normally assumed that   A   is a nonsingular matrix, since then and only then 

does a unique solution exist for all   b. 

b. With the same    A    as in part a, another traditional problem is to find 

the inverse matrix   A~ 

c. Let    A   be an n-rowed, n-columned matrix of real numbers which is 

symmetric.    The third traditional problem is to find some or all of the (necessarily 

real) eigenvalues of   A.    Recall that an eigenvalue of   A    is a number    \ for which 



there exists a column vector   u    such that 

A u = \ y . 

Such a vector   u    is called a (column) eigenvector of   A   belonging to k, 

and often the computational problem includes finding a   u   belonging to each 

eigenvalue computed.    There exist   n   orthonormal eigenvectors of   A,    one 

belonging to each eigenvalue of   A. 

d.    Let    A   be an unsynmetric n-rowed, n-columned matrix of real numbers. 

Another traditional problem of linear algebra is to find some or all of its 

eigenvalues, and sometimes also its corresponding column eigenvectors and row 

eigenvectors.    Recall that a row eigenvector belonging to    \    is an n-columned 

row vector    v   such that 

v A = ^ v . 

When   A   is not symmetric, the problem is complicated in many ways:    First, 

some of the eigenvalues   />.   are ordinarily complex numbers.    Second, there may 

not exist    n   linearly independent column eigenvectors, and those which,exist are 

not usually orthogonal, v Indeed, -tliey are likely to be nearly linearly, dependent and 

the same holds for the row eigenvectors."   Third,, if an eigenvalue    X.   is a root of 

multiplicity   k > 1    of the characteristic eauation   det(A - \ l)  =0,    then 

there may exist anywhere from 1 to    k   linearly independent column eigenvectors 

belonging to    X.     (if   A   were symmetric, there would always be    k.)    If the 

number is less than    k,    it corresponds to one or more nondiagonal blocks in 

the Jordan canonical form of   A,    or equivalently to so-called nonlinear elementary 

dj visors of   A.    Fourth, multiple or nearly multiple eigenvalues of    A   are 

likely to be very rapidly changing functions of the elements    a.   .    of   A,    so 

that computations are at best tricky. 



e. For any column vector y, define the p-th power norm of y to be 

i 
(i) llyL   =   (  £ ly/P    . 

p i=l 

Here    p    is a real number with    1 < p < oo ,    and   y ,   ..., y     are the components 

of    y    in a given coordinate system.    We define the maximum norm as the limiting 

case   p -» oo    of (l); 

(2) ||y|l        =        max |y I     . 
1< i< n 

The norms most used in numerical analysis are   p = 1, 2,  oo,    but statisticians 

are now giving attention to values of   p   between    1    and 2. 

Let A be an n-rowed, k-columned matrix of real numbers, and let b be 

an n-rowed column vector. Given some p, a more recent computational problem 

is to find a k-rowed column vector    x    such that 

|| A x - b||        is minimized  . 

When   p = 2,  the usual case, this is the linear least-squares problem.    For 

p = 2    the unit sphere in the norm is very smooth,  and methods of analysis work 

well.    However,  for   p = 1    or    oo     the unit sphere has many corners,  and methods 

of minimizing    ||Ax - b||      become combinatorial or discrete. 

f. For two n-rowed column vectors x and y, we define x > y to mean 

that    x. > y.     for all components of   x   and y. 

Let    A    and    b    be as in part e above.    Then an important computational problem 

is to describe the set    S    of k-rowed column vectors    x    such that 

A x >    b    o 



Sometimes,  as in linear programming problems, one looks for vectors    x    in   S 

T 
such that    ex    is a minimum, where    c    is a given k-rowed column vector. 

So far^   we have spoken only of matrices of real numbers.     Similar 

problems are posed occasionally for matrices of complex numbers.    Many of the 

problems can also be phrased for matrices whose elements are expressions in 

indeterminates or letters.    As methods of symbol manipulation on digital computers 

become more accessible to computer users, problems of linear algebra with 

matrices of letters will be studied more.    Practical symbol manipulation will 

probably do more to interest mathematicians in computing than anything that 

has happened in the computer era to date. 

The present discussion is limited to matrices of numbers, and moreover 

to problems a, b,  c, d.      For discussions of problem   e with   p = 2,    the 

reader    is referred to Golub and Kahan [l8].   For problem    f see presentations 

on linear programming like Dantzig [5l. 

Why do the linear problems a, b, £, and d   arise so often?     Why are 

they important?    The answer is that linear operators are the simplest ones in 

mathematics,  and the only operators that are fully understood in principle, 

rience they are a natural model for an applied mathematician to use in attacking 

J, problem.    Even though linear operators in infinite-dimensional spaces will 

occur in analysis of differential equations (for example),  the realities of 

computing mean that only finite-dimensional spaces can be handled with digital 

jomputers. 

More realistic models of applied mathematics are usually nonlinear.    But, 

whenever nonlinear operators are used,  the actual solution of functional 

equations almost always involves the approximation of nonlinear operators by 

linear ones.    A typical example of this is the use of Newton's method for solving 



a system of nonlinear eouations, in which at every step a locally best-fitting 

linear equation system must be solved. Nonlinear problems usually are very hard 

In attacking them by linear methods, it is essentipl ttrt our linear tools be 

very sharp, so th't they can be relied upon to work without failure. Only in 

this way can the analyst concentrate on the real difficulties of the nonlinear 

world. This point of view not only emphasizes the importance of being able to 

solve linear problems, but also the necessity of solving linear systems with 

extremely reliable methods. 

Linear equation systems a arise directly mainly from two sources. One 

is from an approximation to linear functional equations, usually ordinary or 

partial differential equations. The other source is a problem of data fitting, 

interpolation, or approximation by linear families of functions. 

Eigenvalue problems usually arise from studies of vibration or stability 

or resonance of linear physical systems (e.g., .flutter of aircraft and criti- 

cnlity of reactors), or from factor analysis problems. 

An excellent textbook by Noble [h2]  gives a number of physical examples 

of computational matrix problems. 

5.  A closer look at the problems. Since actual computers have finite 

storage capacity and a finite precision, we need to have a closer look at the 

nature of the matrices A «nd the computational problems. 

Is the matrix A den^e (most elements **   A t  O); or is it sparse 

(most elements a. . = 0)?  If A is sparse, do the nonzero elements form a 

significant pattern? For example, is A triangular (a. . = 0 for i > J or 

for i < o)? Is it of Hessenberg form (a. , = 0 for i > j + 1 or for 

J > i + l)? Is it a band matrix (a. . = 0 for |i - J I > m, where m « n? 

Is it a tndiagonal matrix (i.e., a band matrix with m =- l)? All these special 

forms occur frequently, and can be given special consideration. 
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Is the matrix A symmetric? Positive ctefirüto? If it is sparse, as the 

pattern associated with the adjacency matrix of sane graph? Frequently matrice 

associated with structures or with partial difference equations are best under- 

stood in terms of the associated graph. 

Are the elements    a.   .    stored in the computer memory, to be retrieved 
i,j    —— 

when needed,  or are they regenerated from some algorithm,  as needed?    One might 

define the informational content of a matrix as the number of cells needed 

(on a certain computer) to store the data and program to obtain all the    a.   .. 

The author knows of no work on this concept, which is clearly relevant to 

matrix computation. 

What is the size of the matrix A, relative to the memory size and speed 

of a given computer? 

If we are solving a linear equation system   Ax = b,    do we have many 

different right-hand sizes   b,    or just one?    Do we have many different matrice 

that are close together,  or do we have just one    A?    Are the elements of   A    ar 

precise    niathematical I numbers (for example, integers), or are they physical 

numbers subject to uncertainty?    Any uncertainty in    A   and   b   leads to 

uncertainty in the definition    of    x   as the solution of    Ax = b.    What    x    do 

the problem's proposer want to see?    Even when   A    and   b    are mathematical 

numbers,  the solution   x    is normally not representable as a finite-precision 

number in the computer's number base.    Of the various approximate answers 

x    which might be obtained, what is the proposer's desire?    For example,  does 

he want ||x - A'^DJI    to be small,  where   A' b    is the true answer?    Or would th 

proposer settle for an   x    such that    ||Ax - b||    is small?    For each case:  whic 

norm,  and how small? 

Most proposers of linear equation systems haven't considered these 

questions, and look to the numerical analyst to explain the  possibilities and 

.lelect the options. 



If a proposer requests the inverse matrix A~ , it is usually worth finding 

out why. Frequently he merely wishes a convenient way to solve Ak = c for 

an arbitrary vector c. Having A'  stored away, the proposer expects to 

obtain the solution x in the form A' c, for any new c that comes along. 

It should be pointed out that there are other ways to obtain A* c for new 

vectors c, ways that require no more storage and take no longer for the same 

accuracy, than the multiplication of A"  by c.  Because of these facts, 

the computation of A   may frequently be dispensed with. However, certain 

statistical applications really do require knowledge of at least the diagonal 

elements of A' . 

The eigenvalue problem c  for symmetric matrices A can require finding 

all the eigenvalues, or only a few. It matters a good deal whether or not the 

corresponding eigenvectors are needed. If a complete set of eigenvectors is 

needed, is it import suit that they be orthogonal to each other? Getting orthog- 

onal eigenvectors corresponding to multiple eigenvalues is far more difficult 

than just getting eigenvalues. 

In the eigenvalue problem d for nonsymmetric matrices A, one has 

similar choices: do we want all eigenvalues, or Just some? Do we want column 

eigenvectors? Do we want row eigenvectors? Both? But then comes a new choice. 

If some eigenvalues are multiple and correspond to a nonlinear elementary divisor, 

what vectors does the proposer want to see? In monographs on algebra one learns 

about chains of principal vectors that with the eigenvector form a basis for the 

null space N of (A - \ I) , where \ is an eigenvalue of multiplicity k 

with an elementary divisor of degree k. These principal vectors are associated 

with the Jordan canonical form of A. It is my impression that a proposer who 

has a good background in algebra will want to see a set of principal vectors 

(they are not unique). But these principal vectors are extremely hard to compute, 
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partly because they are discontinuous functions of the data. It is likely thnt 

an orthogonal basis for the nullspace N would be a more useful set of vectors. 

The matter seems to be poorly understood by problem proposers and numerical 

analysts. 

Matrices with actual multiple eigenvalues are very rare, and a "small 

computational perturbation of these will normally destroy the equality of 

eigenvalues. One might therefore assume that we need not be concerned in prac- 

tice with what to do about them. But, in fact, the bad behavior of nonlinear 

divisors carries over in practice to a surprisingly large set of neighboring 

matrices. These neighboring matrices have distinct eigenvalues, but the k 

column eigenvectors are so nearly linearly dependent that they cannot be 

separated in a normal computation. So also here one faces the problem of what 

vectors to give the proposer. 

In a least squares problem, say a search for x to minimize f(x) = jJAx -o\\0, 

does the proposer really want a minimum of f(x), or does he merely wish an x 

that gives a value of f(x) fairly close to the minimum? In a curve-fitting 

problem, for example, one can often get a surprisingly good fit by a polynomial 

with coefficients very different from those of the minimizing polynomial. 

In all of the above computational problems, it is important to ascertain 

which of the following types of answers the problem proposer is looking for: 

a) a Gurmised answer, with no estimates of its correctness; 

b) sorne answer, together with some sort of probabilistic assertions 

about its correctness; 

c) some answer, together with mathematically provable bounds for its 

error. 

Normally it is more expensive to obtain   b) than a), and still more 

expensive to obtain c). 
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I It is not obvious which of the above types of answer the problem proposer 

will want.    Frequently a) is quite satisfactory.    The physical scientist and 

engineer frequently have their own checks on the validity of an answer,  and 

may neither need nor wish the mathematician's rigorous bounds.    They may recog- 

nize,  for example, that the mathematical model is such a rough approximation to 

reality that mathematical bounds would only be ludicrous.    When mathematicians 

enter the practical world of engineering, the rules by which mathematics is 

played frequently have little relevance.    Numericel analysts frequently have 

trouble deciding when to play the game according to mathematician's rules 

and when to play it like engineers.    It is, of course, extremely pleasant to 

encounter those occasional exanpLes where- mathematically provable bounds can be 

found that are Just as accurate and cheap as surmised answers.    One should 

never cease looking for such miracles,  because they do occur!    One has been 

just reported at this SIAM Symposium;    see 7ox, Henrici, and Moler [26]. 

k.    Nature of computer hardware and software.    The character of achievable 

solutions to the computational problems of linear algebra is greatly influenced 

by the nature of the computing systems available to us.    It is customary to 

separate computer systems along the followjlng lines: 

a) Computer hardware—the nature of the electronic circuitry of a 

computer; 

b) Computer languages—the languages in which are described algorithms 

for the solution of a given problem on a given computer; 

c) Computer software—the programs which make it possible for a computer 

actually to perform the algorithms described in the computer language. 

In looking at computer hardware for computations in linear algebra one 

wants to know what precision is available for computation--how many digits are 



an the  significand of the floating-point operands,  and to what base?    One ;s 

also interested in the cost and speed of double-precision operations.    In 

matrix algebra work the critical operation is frequently the computation of 

a rounded single-precision approximation to the double-precision inner product 

of two vectors whose components are single-precision  floating-point   numbers. 

The speed and coat of this inner product are*very important. 

One wonders whether the hardware rounds the result of an arithmetic 

operations,  or whether it is chopped off.      Best of all is a system that lets 

the programmer decide when to round and when to chop. 

What happens when the result of an arithmetic operation exceeds the 

capacity of the floating-point system?    Are there "traps" which make it possible  for 

the system to detect overflow or underflow?    Can these traps be by-passed, 

(turned off) by the programmer?    When an overflow or underflow is detected,  is 

all essential information recoverable,  so that the solution can continue?    Or 

are vital bits of information irretrievably lost? 

What is the exact nature of the arithmetic operations in the machine?    If 

one is to prove theorems about the behavior of a computation, one needs certain 

properties of the arithmetic.    Because of the rounding of the machine,   it is 

well known that addition and multiplication are not associative,  nor are they 

distributive.    Nevertheless,  one can do surprisingly good analysis, provided 

only that the arithmetic is monotonic. 

By multiplication being monotonic, we mean,   for example,  that if 

0 < a < b      and    0 < c.    then axe   <    b X c  .        Such properties seem elementa., , 

but they are extremely helpful.    And they are surprisingly often absent', 

It must be noted that apparently minor changes in the hardware of the 

arithmetic circuitry can make surprisingly large differences in the behavior 

of the algorithms. 

10 



A great many computer languages have been devised for the description of 

scientific algorithms. These range from the very elementary codes for Turins; 

machines, through the machine codes of computers, to various algebraic languages 

like the form? of Fortran, Algol, and PL/l.  All these languages are equiva- 

lent, in the sense that the class of representable algorithms ia the same for 

all of them. The languages differ only in regard to human convenience and in 

the compilation problems they create. Can one conveniently represent such a 

dftta structure as a triangulr- matrix in a certain language? In typical 

languages like Algol or Fortran, one must choo3e between representing d,t as 

part of a much larger square matrix, on the one hand, or as an artificiilly 

created one-dimensional array, on the other. The former choice is humanly 

convenient and wastes space; the latter choice saves the computer time and 

space, at the cost of confusing the human. 

Most matrix algorithms have "inner loops" where most of the computing 

time is spent. If only this inner loop is programmed very efficiently in 

machine code, the program will run very rapidly. It scarcely matters how the 

rest of the algorithm is programmed. Hence a very important question for any 

algebraic language is whether it Xs  .■ easy to incorporate pieces of machine code 

into them. Perhaps the question is more appropriately addressed to the software 

system that translates the algebraic language into machine code. 

Another important property of a computer language is its readability by 

human beings. If the algorithm is correctly written, a computer will (practically 

always read it correctly. But the practical use of the algorithm depends on 

the ability of human beings to comprehend it, adapt it to other uses, improve it 

in the light of recent discoveries, and so on. The human readability of existing 

languages differs a great deal. 
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The most important software programs for the scientific computer user 

are the monitors and the compilers. The compilers are vast symbol-manipuiation 

programs that translate an algorithm from, say, Fortran to the machine code of 

a given computer. Compilers should be distinguished from the languages they 

translate, and yet of course compilers and languages influence each other„ 

Compilers differ greatly in speed, in the optimality of the machine code 

produced in the translation, and in the diagnostic facilities offered. 

As we noted above, it is important that compilers be able to accept 

pieces of algorithms written in machine code, and incorporate them into a program 

otherwise written in an algebraic language. For matrix work, the ability to 

compile fast codes for iterative loops (the for statment of Algol) is very 

important. 

Most compilers are now imbedded in control programs variously called 

master control programs, monitor systems, or operating systems. These monitor 

systems generally retain ultimate control of a computer, preventing a possibly 

erroneous user program from consuming vast amount of unwanted time, or from 

damaging the monitor system or other persons' programs by illegal assignments 

Also, the monitor systems generally recover control of the machine in case of 

overflow or underflow. This is a point of much interest to writers of linear 

algebra programs. In case of overflow or underflow, what happens next? Can 

the linear algebra program recover control of the computer and repair the dam^e 

done by the overflow or underflow? (This assumes that the hardware retains the 

necessary information.) Or does the monitor system take over the machine and 

ruthlessly flush the offending program from the machine? If the latter occurs, 

then extra time must be taken in each program to make sure that overflow or 

underflow cannot occur. 

12 



5.  The state of the art, 19^3 and now.  It is safe to say that matrix 

computation has passed well beyond the stage where an amateur is likely to 

think of computing methods which can compete with the better known methods. 

Certainly one cannot learn theoretical linear algebr« and an algebraic 

programming language, and nothing else, and start writing programs which will 

perform acceptably by today's standards. There is simply too much hard-earned 

experience behind the better algorithms, and yet this experience is hardly 

mentioned in mathematical textbooks of linear algebra. 

The amount of literature on matrix computations is staggering. In 620 

pages, Faddeev and Faddeeva [8] record a pretty complete account of computational 

methods up to around 1958. In 662 pages, Wilkinson [6i] gives most of what 

is known about computing eigenvalues of dense, stored matrices (both symmetric 

•tnd unsymmetric), with error bounds for many algorithms. There is very little 

overlap between the two books, because Wilkinson and a few contemporaries 

created most of the material in his book in the years after 1958. No one could 

possibly start research in the numerical mathematics of linear algebra without a 

thorough knowledge of the relevant material in these books. 

It is perhaps instructive to examine the state of matrix computation 

in 1955^ when the author wrote a survey [lo] of methods for solving linear 

systems at the Institute for Numerical Analysis of the National Bureau of 

Standards, Los Angeles. We were amateurs. For dense, stored matrices we 

knew Gaussian elimination, of course.  We knew that it sometimes produced 

ouite poor results. We weren t always sure why. We debated endlessly about 

how to pick pivots for the elimination, without settling it. The debate still 

continues,but now mainly among persons who don't understand that the main lines 

of the answer have been settled. Because of misunderstood difficulties with 

Gaussian elimination, we searched for other methods which might do better. 
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The conjugate-gradient method had been devised for sparse matrices by Lanczos 

[36], and Hestenes and Stiefel [27]. In [lO] I guessed that it might also prevail 

for dense, stored matrices, despite the extra time it would require, because we 

understood how to use higher precision to make the conjugate-gradient method work 

well. We did not realize that the same higher precision and a proper pivotal 

strategy would make Gaussian elimination work. We were not quite aware of the 

extent of problems of ill conditioning of matrices. 

The only analysis available to us was the monumental work of von Neumann 

and Goldstine [Ul, 20]. They avoided the pivoting problem by reducing any 

regular linear equation system Ax = b to the positive definite system 

T     T 
A A x = A b. We knew that this normalization of the problem was costly in time 

and worsened the condition of the problem. Von Neumann and Goldstine presented 

guaranteed error bounds for the solution; actually observed errors were found 

to be perhaps 100 times smaller in reasonable cases. The form of the error 

analysis was a direct comparison of machine arithmetic with exact operations. 

The nonassociativity and nondistributivity of machine arithmetic made the 

analysis extremely difficult. In any case, it could only handle scaled fixed- 

point arithmetic. Because of the size of their error bounds, von Neumann and 

Goldstine were unnecessarily pessimistic about the possibility of inverting 

general matrices of orders over 15 on machines with the 27-bit precision of the 

IBM 7090 series. 

For the eigenvalue problems, things were ^n much worse state.  We had the 

power method with matrix deflation. While reasonabi/ satisfactory for a few 

dominant roots, its general npplicHtion requires intuition and luck, and defies 

a complete algorithmization. For dense, stored symmetric matrices we had the 

18U6 method of Jacobi [5l], rediscovered and analyzed by Goldstine, Murray 

and von Neumann [l9J> and it was quite satisfactory. Givens was writing up 

Ik 
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his newly discovered method, maybe 7 to 9 times faster than Jacobi's and 

a basic step toward currently used methods. 

For nonsymmetric matrices, things were ghastly.    If the power method 

wouldn't work,  we had practically no alternatives.    We could search for zeros 

of det(A - zl)    in some manner or another.    We bravely tried methods for deter- 

mining the characteristic polynomial,  as described in Faddeeva [9], and found 

them to be hopeless.    It was almost unbelievable, how badly the standard 

methods for    n = ii   would perform for    n -- 10.      Lanczos was advocating his 

new method of finite iterations,  which became the source of modern methods 

in a later line of development through the Stiefel and Rutishauser QD-algorithm, 

(see Rutishauser [50]  and Henrici  [25]), the LR-algorithm    of Rutishauser  [5l], 

and the QR algorithm of Francis [l5,  16] and Kublanovskaja [55].    However, the 

original Lanczos method needed careful management, because the raw results 

were often poor. 

6.    The linear equations problem»    For large,  sparse matrices, like those 

arising in finite-difference approximations to partial differential equations, 

there is a whole specinl literature.    See Varga [5?]* Forsythe and Wasow [153^ 

the work of David Young, Jim Douglas Jr., Stiefel,  and many others.    The methods 

seem to depend for their success on the nature of the continuous problem being 

approximated      Because the matrices are sparse, the prevailing methods are 

iterative.    I shall omit further discussion of them,  and confine attention to 

dense,  stored matrices. 

For a general matrix   A,    the solution of the linear system   Ax = b    by 

Gaussian elimination requires    n O    + 0(n )    multiplications, and the same 

number of additions.    Recently Klyuyev and Kokovkin-Shcherbak [5^] proved that 

15 
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no method using ration'il operations for general    A, b    can take fewer operations. 

This result had long been believed but not proved.    The result has two 

consequences: 

(i)    Gaussian elimination is likely to remain the method of choice for 

solving dense linear systems, when it works, because it is as fast, ns any. 

(ii)    The solution of a linear system of large order   n    is goin?* to 

require a very substantial amount of computing time,  at least for serial 

computers.    For   n = 1000, we have    l/3 x 10     multiplications and additions. 

If we can multiply and add in 10 microseconds, we need 5553 seconds, or about 

an hour of computation.    In fact,  there is some overhead also,  and on an IBM 

7094 (Model Ii) the  solution would take over 2 hours.    However,  the storage of 

the million elements of data requires extensive use of some bulk storage like 

tapes or disks,  as only some 20,000 elements or so can be kept in the current 

52,000-word core storage.    The very numerous transfers of matrix elements from 

core to magnetic tape;? appear likely to wear out the tapes before the solution 

can be obtained,  according to certain tests made at Stanford!    I know of no 

comparable experience with magnetic disks or other form of bulk storage. 

As a result,  we cannot consider order   n = 1000 to represent  a practical 

linear equations problem,  but we will undoubtedly soon be able to do i*   regular;1/ 

for perhaps $500. 

The case    n = 100    is now easy and costs around $1 on an IBM 709^.    The 

case    n = 10,000 is likely not to be accessible for a long time,   and it wojld 

take over 2000 hours now on an IBM 709'+. 

There is beginning to be serious consideration of computers with a 

substantial amount of parallel operation,   so that perhaps much of the solution 

of y linear system could be done simultaneously.    Preliminary studies make it 

clear that the solution of a linear system could very easily make use of paraJ it 1 
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computation, if it r.hould prove v/orth while. Apparently only 0(n) operation 

times would be needed for solving n  linear system, if one had a sufficiently 

large amount of parallel arithmetic circuitry. 

7.  Inherent inaccuracy in solutions of linear systems. Given a non- 

singular matrix A and a nonzero b, let x be the solution of Ax - b. 

Suppose A and b are subject to uncertainty. What is the resultant uncer- 

tainty in the solution x? 

For any column vector y of order n, define |ly|| to be the 

euclidean length of y: 

Uii - imu =M/  y. + yo + • - • + y„ -/ 

For any   n-by-n    square matrix   A,    define the spectral norm    ||A||    by 

||A||  =      max      IIAxll     . 
Ilxll- 1 

These functions ||...|| give useful measures of the size of vectors and matrices, 

respectively. 

For a nonsingular matrix A, define the condition of A, cond(A) 

by the relation 

cond(A) . l|Al| - HA-1!!  . 

The concept of condition of a matrix seems to have been introduced by Turing [55J, 

nnd studied extensively by Todd ([55] and some later papers) and many others. 

One of the main uses of the concept of condition lies in answering the 

luestion posed at the start of this section. Suppose that A is known exactly, 

but that b is subject to uncertainty. Let x + &x solve the system with matrix 

A and right-hand side b + db. Then 
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(5) 

A(x + &x) = b + db ; 

x + öx    = A'H + A-1^ ; 

6x =   A"  db ; 

||5x|i <    HA"1!!   •  ||db||     . 

Since   A x = b,    we have 

(^) INI = l|Ax|  < 

Dividing (5) by {h)f we have 

LÄ <    jjAii . HA-
1

!!  M 
llxjl      ~ llbjj 

or 

(5) M   <    oo„d(A) « 
I! b1 

Inequality (5)  shows th^t the relative uncertainty in    x    is bounded by 

cond(A)    times the relative uncertainty in    b.    The bound in (5)  is attainable, 

for any nonsingular   A    and nonzero    b.    This is easy to see,   if we perforrr   a 

change of coordinates in which    A    takes a diagonal form. 

A:5 a linear transformation,    A    takes vectors    x    into vectors    b. 

A fun»i'«mentally important,  but  too little known theorem states that by a certain 

orthogonal change of coordinates in the space of    x,     and by another orthogonal 

change of  coordinates in the space of   b,    the matrix    A    can be put in the diagonal 

form 

18 
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n- o 

o ^ n 

Here the positive numbers \i   > ^p > ... > ki  are called the singular values 

of A. Moreover, 

= ^ ;  II A"
1

!! = ^
1
 • 

Finally, the orthogonal transformations do not change the norms of x and b. 

We have 

.-I 

m 
-1 

^2 

o 

o K;
1 

If      b = and    db « 

\ 

then 

x = A ""b = ,  and Bx = A"x db = 
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For these vectors, 

1 

M .  !^   = M ^i  . cona(A) M 
llxll % ||b||    % l|b|| 

The last line shows that (5) is an equality in this case,  as we promised 

to prove. 

Although (5) is only an exact equality under exceptional conditions, 

it is usually rather close to equality, and in the following we assume approxi- 

mate equality. 

If cond(A) - l(r   ,    and if    b    is known to be correct only to 10 decimals, 

then    x    can be known only to 10 - p decimals.    Now   p    can range anywhere from 

0   to co .    The only hope of having any significance to   x    in a 10-decimal coraputinp; 

system is that, roughly, 

cond(A) • 10"10 < |    . 

In a base-B    computer with   t    significant digits, we ro ghly need 

cond(A)   ß       <   | 

in order to have any significance to a solution. 

Remember that all statements in this section are independent of any 

method of solving a system Ax = b. They are statements about errors in x 

which -.re inherent in the uncertainty in the data. 

If   A    is subject to a change    dA,    and   b    is known exactly,  then 

an  ineuudity analogous to (5) is the following: 

(M M        <    cond(A)  '       M . 
l|x + bxll l|Al| 

If    Ijcxil    is  small, compared with   ||x||, then we may safely consider the left-hand 

:;i'e of (■>)  as a relative error in    x. 
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8-      Accuracy achievable with Gaussian elimination.    I assume that the 

reader knows what Gaussian elimination is,   as a method of solving linear eoua- 

tion systems.    The main strategic decision facing the designer of the algorithm 

is the choice of a unique pivot element for each of the    n-1    stages in which 

a variable is eliminated from the remaining equations.    There are two main 

strategies discussed: 

(i)    complete pivoting, in which at each stage one selects as a pivot 

some element    a.   .    of maximum absolute value among all the remaining elements 

of the matrix. 

(ii)    partial pivoting,  in which at each stage one selects  as a pivot some 

element    a.   .    of maximum absolute value among the first column of the remaining; 

elements of the matrix. 

Thus,   in the first  stage complete pivoting would search the whole matrix 

A    for an element iraximal in absolute value,  whereas partial pivoting would 

search only the first column. 

Some special classes of matrices permit elimination to proceed 

successfully without any search for pivoting—for example, positive definite 

symmetric matrices.    But generally, pivotal searching is essential to guarantee 

success.    The following» simple example illustrates the disaster possible in not 

searching for a pivot.     Consider a 3-digit  floating-decimal machine. 

The system is 

[ 
.0001      x    +    1.00    y    =    1.00 

1.00 x    +    1.00    y    =    2.00 

The true solution,  rounded to five decimals,   is    x = 1.00010,    y =  .99990. 

If one accepts the element  .0001 as a pivot, the elimination of    x 

from the second equation yields the equation 

-  10000   y    =    -10000. 

Backsolving,  we find that    y - 1.00,  whence    x = O.00,  a clear disaster. 
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On the other hand, partial pivoting would select the element 

ag ,   = 1.00    as the pivot.    Elimination of   x    from the first equation yields 

the equation 

1.00 y » 1.00 . 

Backsolving, we get    y = 1.00    and then    x = 1.00, with obvious success. 

We shall now assume that we are dealing with a t-digit base-2 floating- 

point computer.    Rather than discuss the solution of a linear system,  we shall 

consider the computation of the inverse   A"      of a given matrix.    We wish to 

state the rounding error bounds that" have been proved for Gaussian elimination. 

Wilkinson [591 assumes a complete pivotal strategy, and that the matrix   A 

is reasonably scaled at the start and at all intermediate stages (see Sec.   10 

for more about scaling).    Then,   if all    |a      |    < 1,     s certain Gaussian algorithm 
i, j 

yields a matrix   X    such that 

(7) P - A''«     <    (0.8)2-*   n7/2
g(n)    HA'

1
«      . 

lU-1!! 

Here    g(n)  is the maximum of all elements of the successive matrices found 

during the elimination. 

To express the result  (?)  in a form to be comp-'red with those of Sec.  7> 

l/2 
we note that   1 < ||A|| < n,     so that we expect that    ÜAÜ =   n '     .    Then we hnve 

roughly 

(8) P - A'1«   <   „5    .    2-t    cond(A)    (n)    _ 

HA-
1

!! 

What kind of bound can we give for    g(n)?    This turns out to be an open 

question.     The best known result is approximately 

(9) g(n)< 1.8  „(V^logn^ 
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On the 01 her hand,   for  ;.]]  reaJ  matr,K«-s r>ver examined it has always been 

obcerved that 

g(n) < n . 

The last bound is  attained for unboundedly large    n   by matrices  related to the 

H idamard matrices.    For most matrices one even observes that 

(10) g(n) < 8    . 

Tornheim [5^+] has found complex matrices    A    of unboundedly large    n    for 

;-."Mch 
g(n)    =    5.1 n    . 

It would be most desirable to have a good bound for    g(n),     so that  (?) 

could be turned into  a good a priori error bound for the computation of   A 

Naturally,   for any particular matrix    A,    g(n)    is easily observed in 

ihe course of the elimination,  so that in any event  (?) becomes  an    a posteriori 
« 

n-ror bound.    However,   still better error  bounds can be given a posteriori,  as 

.■/ill be shown in Sec.   9. 

Wilkinson's proof of (7) in [58]   is  reasonably short.    It makes use of 

'.•iverse rounding error analysis,  which we shall mention agein in Sec.  11.    It  is 

'..i-nructive to compare  (8) with (6),  even though one deals  with inverses and one 

■„•Ith linear systems.    The factor    2~       is essentially the inherent uncertainty 

'evel of the data,   and should be equated to    ||dA||/||A||..    Then the bound in (8) 

io larger than that  in  (6) by the factor    n    g(n).    Taking into account the empir- 

ical result  (lO) that    g(n) < 8    for most real matrices,  we then interpret  (8) 

• .3  saying that the computed matrix    X    generally differs from the true inverse 

A  "    in relative terms by no more than    8n      times the error inherent in the 

problem.    Thus simple Gaussian elimination is reasonably good at keeping the 

rounding error bound under control,   for modest values of   n.    Much better results 



can be achieved with some devices to be mentioned in Sec. 9, 

The bound corresponding to (7) given by von Neumann and Goldstine [^l] 

was 

(11) M^jCh.    < (5.5 + m.6 |1A||2) 2^ n2 HA"1!',2 
HA-

1
!! 

~    15 n2 2"t[cond(A)]2  . 

2 T T 
The factor [cond(A)]      arose from solving   A A x = A b,    rather than    Ax  - b, 

The proof of (ll) was an order of magnitude more difficult and tedious than 

the proof of (7). 

9.     More accurate solutions.      Suppose that   A   is given as single- 

precision data,  and that we wish to get solutions guaranteed to be more accurate 

than the above bounds would indicate.    How shall we proceed?    The most obvious 

choice is to perform all calculations in double-precision.    Roughly speaking, 

-2t. 
then    t    is replaced by   2t    in the above error bounds, and,  since    2 Is 

so very much smaller than    2    , we gain many orders of magnitude in acciiracy. 

The cost in computing time varies among different machines,   but  is only a factor 

of four on the IBM 709^.    The cost in storage is greater,   since we mas',  double 

the  storage reserved for the  developing matrix. 

Where the time and storage costs are too high   to justify complete dcuole 

precision,  it is possible to make a very substantial gain by a much more limited 

use of double precision.    Most of the operations  in Gaussian elimination rnn 

he phrased as inner products of vectors of single-precision numbers.     On many 

mnchines it is possible to accumulate such an inner product in double precision, 

-nd then round it off to single precision before  storing away the result. 

The result of this accumulation is to reduce the maximum rounding error of an 
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inner product by a factor of    n.    The total effect turns out to be to reduce the 

5/2 
round-off error bound by a factor of    n      .    Thus,  instead of the result (7), 

an elimination with pivoting and accumulation produces an approximate inverse    X 

such that 

(12) H* -f'H     <    3.5n 2"* HA"1!! g(n)    , 

under certain additional hypotheses.    See Wilkinson [6l, p. 253].      The gain 

5/2 
of the factor    n is very substantial,  although experience shows that the 

actual errors in single-precision computation are usually rather less than the bounds. 

One theoretical disadvantage of the complete pivoting strategy is that 

it does not mix well with the accumulation of inner products.    When products 

are accumulated,  one almost always uses a partial pivotal strategy, and accepts 

the theoretical possibility that pivots can grow very large. 

A third and the most successful approach to increasing the accuracy of 

solutions of dense,   stored linear systems is the so-called method of iterative 

improvement.    By this method,  if the matrix   A   is not too ill-conditioned, one 

in practice gets solutions which are the correctly rounded approximations to the 

trvj answers.    We will now describe this development. 

Suppose that by Gaussian elimination one has achieved a first approximate 

solution    xn    of the linear system   Ax = b.    The next step is to form the residual 

vector    r0 = b -Ax«.    If   x0    were the exact solution of the system, we would 

have    r0 = 6 ,    the null vector.    If not,  we solve the new linear system   Ay = r0 , 

to obtain a vector    y .    Let    x    = x0 + y, . 

The process is repeated iteratively.    I.e.,  for   k = 0,  1> 2,  ... 

we form the residual    r   = b - Ax,,     solve the system   Ay = r^    to obtain a 

vector   yk+1,    and then form   xk+1 = ^ + yk+1 . 
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Under suitable hypotheses to be specified below, the sequence x 
K. 

-i 
converges to the true solution   A   b    of the system   Ax - b- 

Several matters need to be clarified in this algorithm.    First, it appears 

to involve a great deal of work to solve systems of the form    Ay -   r     for mnny 

values of   k.    In fact, this is not so.    Gaussian elimination to solve a. 

system   Ax = b involves three distinguishable stages: 

(i)      Trinngularization of the matrix    A   by elementary row t ransfcrn.^ icns 

(ii)      Application of the same row transformations to *.he right-hand sid^    o 

(iii)      Solution of the triangular system by back-substitution. 

V It turns out that stage (i) requires approximately    n/5    multipiicat icns 

and additions,  but that  stoges  (ii) and (iii) together require   ^nly approximately 

2 
n     multiplications and additions.    Stage  (i) need be done only once for axl 

the systems    Ay - r. .     If the multipliers defining the row transformations are 

sav^d,  stages  (11) and (lix) can be done rapidly for each new system   Ay      r 

m turn.    As a result,  it is found that a sufficiently long sequence of vec'.crs 

y^     con usually be computed in something like only 20 per cent  more time ' nan 

the computation of the first solution    x«. 

It  is absolutely essential that   each residual  vec*-cr    r      oe  ecrrp-'ed  *c 
 K  

nigh precision,     ^his  is normally done  by a double-precision «ccumuia'ion of 

inner products,   followed by rounding of the  answer to single-precision floa*ing- 

pom',  form.     If    r      is computed with merely a singxe-precisicn inner pr d.ct , 

it will h-ive rounding errors of several units  ^n 'he least   s.gnjficani   J.g.'s 

of    x,       '.'.'hen »iv  inequality (5),   which   ;s an appruximat«:   equality in practic-', 

teils us that    x^    will  oe wrong by several times    cond(A)     in its    leas' 

/   x US 
mgrufican*   di^it.     Since    cond(Aj    may well  be 10    or 10 ,  the result an* 

necur^cy in    x      is very lev; and,   in fact,     x      is itself almost  as accr-te 

r>s ''ny sjcceedins    x . 
K. 
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■'iif   following theorexr. gives  ' n-   onsis  :>f the above me-hod of 

Iterative  improvements 

Theorem      Le'. the ratnx    A    navg ' he property that 

(15) (0.8) 2-*  n
7'? g(n) HA*1!! <   i    , 

let the abeve algorithm be carried ou1., v:\.h each system    Ay - r      being soi'/ed 

-n single-precision base-2  floating-point antninetic.  but   with computations of 

r        b - Ax,      and   x. , n  -- x,   * y    n     carried o.t   without  ro-nding  error. 
K k          k+1        k        K+l     ■=  

"nen , 
||x.   - A"  bl|    -» 0,    as    k -» oc    . 

K 

If the  solution of the systerrs    Ay -   r      were done with ace-julations of 
K 

. r.ner-products  in double precision,   t nen 'he left-hand side of (l5) could be 

»^placed by the right-hand side of (12) 

In practice,  of course,     r      iS comp^fd oy a double-precision 
K 

cumulation of inner products,   and    x    .     is comp .ted as the floatmg-po.nt 

• rr,    of    x,      and   y. ,.      As a resul* ,   the seq.enc3    x      does not  converge  to 
k k+1 A 

c     m the mathematiLal sense.     Instead,    x      is ooserved to oecome constant 

-■   a value wnich is normally the cuirectly rounded single-precision approximation 

■ ■     A-^     . 

In the actual use of  iterative improvement,  on-   dees not  >Sv.ally Know 

'.  advance whether or not   hypothesis   (i7))  is satisfied,   and it cannot   be con- 

. led afterwards either,    Normal practice is theretore  to rely on the  following 

'■-: .r: stic  result: 

Almost-theorem.    Let  the aoo/e  alporirnm be carried o~i, with each 

■'■• •'LS^'    ^y      ri,    being sol^/ed by •'he   saire version of Gaussian elimination,   with 

i-'i- i    r,     being computed by a double-precision acc^i: .la* ion of inner products, 

r'.o wit.h    x    ,     being computed as the floating-point   s^m of    x     and    y       . 
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If for   k > k0>    all vectors    x.     are equal to some single-precision 

vector   x   ,    ther^   x     is the correctly rounded single-precision approximation 

to   A"1*    . 

This almost-theorem cannot be proved, and, indeed. Kalian [52] has an 

extremely ingenious counter-example.    However, most computers would bet their 

life on the applicability of the above almost-theorem in any practical example, 

unless Kahan were furnishing the problem! 

Normally, when   cond(A)    gets near   2 ,    the vectors    x     obviously 

diverge.    Then there is no cure except to increase the precision with which 

the elimination is carried out, unless scaling   A   will help. 

The usual value of   k-    is 3 or ^, 
ü 

10.    Scaling of matrices.    One matter that was glossed over in Sec. 8 

was the scaling of the matrix   A   before solving a system   Ax = b.    Alternate 
« 

terms for scaling are preconditioning and equilibration. Suppose that the 

2-by-2 numerical example of Sec. 8 were altered by multiplying the first 

equation by 10 . Then the system would be 

100000  y = 100000 
{Ik) 

flO.O  x + 100 

(_ 1.00 x +  1. 00   y =  2.00 

The effect of the scaling is to make 10.0 the larger pivot in the first column. 

Then elimination of x from the second equation of {lh)  in 5-digit floating- 

decimal arithmetic will result in a new second equation 

-10000 y = - 10000 . 

Back solution leads to y = 1.00 and the awful result x = 0.00. 
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We r.ee that   poor  scsl.ng v.ri.t:". v good pivo1nl  stifiicgy forces us   into the 

some enormous rounding error thot we cDtamed in ?ec     8 from the original set of 

equations snd a bnd pivotal strategy, 

The conclusion of this is tha: a good pi/ot«l strategy is only good when 

the matrix is properly scaled in advnce. However^ it must be admitted th^t so 

far we do not know guaranteed algorithms  for scaling matrices well. 

It is normal to scnle matrices by simply multiplying rows pnd coluinn by 

factors.    In effect,   one  chooses nonsingtiar  diagonal matrices    D      and    Dp, 

• nd then scales    A   "by the transformation 

A -» D"1    A D2 

Because    cond(A)    is  an ingredient of all our error  bounds and convergence 

theorems,  it is natural to wish to select     D      and    D?    so as to reduce 

cond(D      A Dp)    to as low a value as  :s  reasonably possible. 

One usually i:ses powers of tne floating-point   base for scnle factors, 

to avoid the introduction of rounding errors  m the  scanng.    Or,  alternatively, 

one may use the  scaling only implicitly,  without   actually altering the  elements 

of    Ar, 

Theorem (F-  L.  Bauer)    If the  ordf-r^d set of pivotal elements  is selec.efl 

in advance,  scaling of a matrix    A    by peers of th^  floating-point   base does no- 

change a single digit, of the sigmficand of any intermediate or final number 

in the  solution of    Ax  -   b    by Gaussian elimma^ icn- 

The theorem was presented in ßa.er  [l.! ,     Thus  the only possible effect 

of the scaling of    A    on the rounding errors must   occur through changing the 

order of pivots.     Our example  showed that  the change  in pivots can indeed make 

a great   deal of difference. 

One is sometimes  advised to pick    D      and    2<      so that the resulting 
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matrix D  A D  has its mnximum element in each row ani column (m absol^t»- 

vnlue) in the interval [.1, l),  in whatever number bn.^e one i-. using, However, 

Richard Hamming has showed (unpublished) that this advice does not always lead 

to good scaling. If 

A = 

1 

2 

1 

• 1 

2 x 10' 

10' 

0 

Then both of the following matrices are decimally scaled equivalents of A: 

.1 

.2 

.1 

.1 

-.1 

.2 

.2 

0 

AR' 

10 

2 X 10 

-10 

•10 

10 •10 

-10 
-10 

However,  A- is a well-conditioned matrix that offers no difficulties m .he 

solution of an equation sys'en., whereas A„ is most ill-conditi .;ned and 

provides vast troubles for elimination. 

Bauer [2] has studied the problem of finding D,  nnd 1^ to minimise 
i 

.1 
CO nd(D'" A Dj).  It turns o^t that the solution depends on certain properties 

of the nonnegative matrices  |A| A "",  and  |A ^i   |A| .  (Here |B| 

denotes the matrix of absolute values jb . j ■•) Clearly, ve can nardly hope 'o 

compute A"  in order tc find a reasonable scaling, so that we can compute A 
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I 
So,   it  is nn open question,   hov: to find a demonstrably good and convenient scaling 

algorithm.    Existing algorithms are either very superficial or potentially very 

slow. 

The only cheerful side of the scaling question is that it  seems to be P 

rare matrix which good scaling changes from untractable to tractable I 

11.    Analysis of rounding errors.      We pointed out in Sec«   5    that the 

direct rounding error analysis of von Neumann and Goldstine was extremely 

tedious to apply.    Givens  [17J  introduced the idea of inverse rounding errors,, 

Wilkinson has developed this in+o a very powerful tool for bounding  the rounding 

errors  in matrix computations.    The error bounds of Sees.  8 and 9 were obtained 

from inverse analysis.    Th^ basic idea is to change the nonassociative,  non- 

distributive floating-point arithmetic system into an associativ*1',  distributive 

number system, by throwing the errors back onto the data of the computation. 

For example,  let    fl(u X v)    stand for the floating-point product 

^number base ß )    of the floating-point numbers    u    and   v.    The direct error 

analysis uses statements of the form 

w = fl(u x v)   - uv + *-:,    where     |:|  < - |uv|ß 
i-t 

Farther operations on    w    introduce new errors,  and one has to keep account  of 

the cumulation of all the oid and new rounding errors.    Eventually, one bounds t he 

difference between the computed final answer and the mathematically correct 

tnswer corresponding to the given data. 

In jnverse analysis,  one makes statements of the form 

w = fl(a X v) - uv(l + 6),    where     N < J ß1"* 
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Thus the computed product is considered the true mathematical prcduct of (for 

example) the real numbers    u    and    v(l + 5),    which differ slightly from    u 

and   v.    Further floating-point operations on    w   produce numbers which are 

always treated as the results of exact operations on other slightly more 

perturbed approximations to the original data.    The final answer is considered 

as the exact solution of an original problem with data which are perturbed by 

amounts for which bounds are given. 

If desired, these inverse error bounds can be converted to ordinary erroi 

bounds, by normal mathematical methods. 

Inverse error analysis turns out to be extremely well adapted to the 

analysis of algorithms of a marching type which continally introduce new data. 

Both the solution of linear equations and the evaluation of polynomials are of 

this type.    Inverse error analysis is not at all well suited for problems of an 

iterative nature--for example, the Newton process for evaluating the snuare root of 

a number. 

The reader is referred to Wilkinson [60, 62] for further study of inverse 

round-off analysis. 

A second approach to round-off analysis Is the interval analysis,  ex- 

tensively developed by Moore  [^0],  but based on the idea of "range numbers" 

presented earlier by Dwyer [6J.     In its original form»   interval analysis   is 

poorly adapted to matrix computations, but Hansen [25]  has modified  it  ingeniously 

for matrix work. 



12   Eigenvalues of symmetric matrices.  Space does no*, permit as 

extensive a treatment of the Pigenvalue problem as that given for the linear 

equations problem. We can only mention a few highlights of today's methods 

The reader is referred to Wilkinson's treatise [6l] for an almost complete 

presentation of the state of the art. 

As with the linear equations problem, the computation of eigenvalues 

of matrices divides into two methods, according to the nature of the matrices. 

For large, sparse matrices the methods are mostly infinite iterations, and will 

not be considered here. For dense, stored matrices, most methods are finite 

algorithms. 

If a matrix A is symmetric, its eigenvalues are very well determined 

by the data. In fnct, let the symmetric matrix B - A + E have eigenvalues 

ß., and let A (also symmetric) have eigenvalues O.. Then the eigenvalues can 

be so numbered that 

(15) la. - ß. | < !|E|| , for all 1. 

Now inverse error analysis refers the computed eigenvalues of a ir/trix A back 

to a matrix B - A + E.  If E can be proved to oe small (as it can),, then (l5j 

shows how small the eigenvalue errors are. In fact, today's metnods can yield 

eigenvalues that are in error by only a few digits in the least significant digits 

of the large eigenvalues. 

The method of Jacob! [3l] is an infinite iteration for dense., stored 

matrices. It produces a sequence of matrices orthogonally congraent to At 

A ^ = n T A 11  . 
k   k    k 

More over, A  converges to a diagonal matrix D whose diagonal entries are, of 
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course,   the eigenvalues of    A.     In fact,  each    A is computed from tne 

previous    A     by a rotation in the coordinate 2-space of some two indices 

i    and    j,    a rotation chosen so that      a  .   .    = 0. 

For any    k    such that    A,     is almost diagonal,   the columns of the 

corresponding orthogonal matrix    U     are approximately column eigen/ectors of    A. 
K 

Moreover,  the columns are themselves orthogonal.    Thus the Jacob! method yields 

approximate eigenvectors of fine quality as a by-product of the basic-  iter-Mon. 

The whole program is easy to write,  and it  is difficult for it to be done  badly. 

There are  some theoretical problems about how good the eigenvectors are,   and 

whether the    U.     actually converge., 

Goldstine, Murray,  nnd von Neumann  [19]  analyzed the rounding errors  in 

a fixed-point version of the Jacobi method. 

The original Jacobi algorithm chose    i    and    j    to maximize the absolute 

(k) value of the element    a.   '    of    A.    Modern algorithms modify this criterion 

in one of two ways: 

(i)      In the cyclic Jacobi methods,  the off-diagonal elements    a. are 

zeroed in some cyclic order.    Forsythe and Henrici  [ill proved the convergence of" 

a common cyclic method.    See also Hansen [22]. 

(11)      In threshold Jacobi methods,   an element    a is sel^ted for 

•mnihilation only when its absolute value is above a certain threshold size, 

which gets  smaller as the iteration progresses,     See Fope ^nd Tompkins  [^J   ' ^'i 

Corneil !>]. 

It has been proved only recently that the cyclic Jacobi method converges 

;;adraticnlly for any matrix    A.     See Schonhage [52]   and Wilkinson [59],     "he 

work was based on that of Henrici  [2^]. 

Givens  [17] observed that,  although it takes an infinite  sequence of 

^ 



rotations to bring A  to diagonal form, a mere x(n-l)(n-2) rotations can 

bring A  to tridiagonal form. This reduced the problem to that of finding 

eigenvalues of tridiagonal matrices, and the latter problem has been a subject 

of research ever since. See Ortega [h^\,  Ortega rnd Kaiser [^5], and recent work 

of Kahan and Varah [35].  In any case, the Givens idea cut the practical time 

of finding eigenvalues by a factor of about 9 in practice (Wilkinson [6l, p. 355' 

A few years later Householder (see Householder and Bauer [29]) introduced a 

new method of tridiagonalizing a symmetric matrix, using n-2 reflections instead 

of ■^(n-l)(n-2) rotations. This cut the time down by another factor of two, 

find effectively put the Givens method out of business. An error analysis is 

given by Ortega [hk].    Most contemporary programs use the Householder method, 

but differ widely in how eigenvalues of tridiagonal matrices are found. Getting 

the eigenvectors is surprisingly tricky, and lack of knowledge of how to do it 

is one reason for the occasional continued use of the Jacobi methods. 

15.  Eigenvalues of unsymmetric matrices.  The area of greatest activity 

in the past decade of research on computational linear algebra h"s been the 

eigenvalue problem for unsymmetric matrices» Only one method from before the 

computer era is still in use--the power method—and it has only limited appli- 

cations today. Most methods in use today were unheard of 15 years ago. 

It is essential to realize tne instability inherent in the eigenvalue 

problem for unsymmetric matrices. In contrast to the close bound (l5), for 

unsymmetric matrices the corresponding result, due to Ostrowski [^-6]., is 

(16) |a. - ß.| < (polynomial in n) X llEJI1'11  (all i) . 

The above result is very weak, and yet is the best possible general result 

of its kind. For the matrix 
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of order    n   has all eigenvalues    0    for    f = 0,  but all eigenvalues ; :o distinct  nr.d 

rr-ve   modulus   U|  'n for    e / 0.    Thus,   if   n = 40    and    r    =   io"     ,     pi . eigenv»  .s ". 

have modulus    0.1    (l)- 

Fortunately,  eigenvalues are not usually so sensitive      In fact,   different 

eigenvalues of a matrix   A    c^n differ enormously in their sensitivity  to 

perturbations in    A.     Chapter 2 of Wilkinson [6l]  is full of useful results, 

'"hey are generally a posteriori  results, giving bound for tne changes  in eigen- 

values as functions of perturbations in a matrix and information about   the 

other eigenvalues and eigenvectors. 

The great power of the Jacobi method for symmetric matrices,  ''nd tne 

extremely pleasant  rounding characteristics of unitary m^r rices  led to ■,  desire 

to use them for the unsymmetric eigenvalue prcolem,    Tne b'sic tneorerr   is d^ 

•o Schur: 

Theorem. For an arbitrary matrix    A,     * here exists a unit'-ry rr. *o.x    I' 

s^ch that 

T  = ITA U 

is triangular.     (Here    U^    denotes the ccn.i ugate transpose of U.) 

Since the eigenvalues of    A    are the diagonal elements of   T,     the  hope 

has been to find unitary matrices which bring    A    nearly into a triangular  fcrr, 

and then let the diagonal elements ser^e as approximate eigenvalues of    A. 
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Investigations  by Greenstadt  [2l],   Lotkin [57J,  and Eoerlein [7J offer 

some hope,  but no real promise of success 

For most  methods of attacking tne eigenvalue problem,  the  first step 

is to condense the data,  to save time and storage in further work     The now 

universally accepted condensed form is the Hessenberg matrix,   in which    a.   .  = 0 

for    i - j > 1 (or  its transpose)      It  is possible to transform    A   by orthogonal 

congruences    of    the      Householder type  into ■   Hessenberg form with only very 

small rounding errors.    Any further condensation (say,  into tndiagonal form) 

is subject to serious losses of digits.    A transformation to the companion- 

matrix form is particularly disastrous in practice,  and it normally requires very 

substantial increases in precision to successfully yield the eigenvalues of   A 

As an alternative,  one can transform    A    to Hessenberg  form by Gaussian 

elimination with partial pivoting, a similarity transformation 

The next  st^ge in the unsymmetric eigenvalue problem is to get t.he 

eigenvaTues of a Hessenberg matrix    H.    A variety of methods h' ve been used. 

(i)    One can search for zeros of    det(H -  zl)    by root-finding methods, 

for complex    z.    The most satisfactory method appears to be that, proposed by 

Hyman [30j  and developed by Pariert  [hj ■   in a n>xrDer of programs.     He makes 

i>se    of the method of Laguerre to  find the  zeros of    f(z),   following by a form of 

zero suppression      Very satisfactory recurrences are   used to    evaluate    f(z^ 

f'(z),   and f"'vz),   as needed by the Lag,erre process.    After t.he  eigenvalues 

\ ,   ,.,,  K      have  been fcund,  they are  suppressed  by applying t.he Laguerre 

process to r r 

f(z)/ n (^ - \) ■ 
1=1 

(ii)    The LR-aleorithm of R^tishauser  [58' was an important, development.- 

Since  it has now been pretty weil supplanted cy the QR-algorithm,  we emit 

mention of it. 
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(ill) Francis [l5, 161 in England, and Kublanovskaja [55] in the Soviet 

Union devised the very interesting QR-algorithm. This is now widely considered 

the most satisfactory eigenvalue algorithm for dense, stored unsymmetric matrices 

The basic theorem is that an arbitrary real square matrix A can be 

factored in the form A = QR, where Q is orthogonal, and where R is an 

upper-triangular matrix with all diagonal elements r . nonnegative. If A 

is nonsingular, then both Q and R ^re unique. 

In f^ct, the computation is done by building up an orthogonal matrx:: 

Q1 such that Q A = R, where R has the above properties. 

As an aside, for nonsingular A, the reader will be more familiar with the 

stepwise determination of an upper-triangular matrix R with positive r ^  such 

thPt AR"  is an orthogonal matrix Q. This is the nrtrix expression of the 

familiar Gram-Schmidt process of analysis. It will perhaps surprise the reader 

that the matrix Q resulting from the Gram-Schmidt algorithm is normally far 

from orthogonal, because of rounding errors. On the other hand, if the same 0 

T 
is determined so that Q A = R, the rounding errors are very small. 

The basic QR-algorithm proceeds as follows. Let H -  H-  be a Hesseriberg 

matrix.  For k - 0. 1, 2, ,..,     factor H  in the fortr 

H
k " Vk  ' 

and then form 

k+1   k k 

It is ensily shown that H    is also a Hessenberg ir.^rix. 

The basic theorem is the following. 

Tneorem. Let H have eigenvalues A. , A. , .... \ 

with 

(IT) IvJ < KJ < ... <   \\\   . 

58 



Then the matrices    H      converge to an upper-tri-nn;ular matrix whose diagonal 

elementn r-re the eigenvalues of   H 

In the more usual case where  (r?)  is not satisfied,  we find that    H 

converges in shape to a blockwise triangular matrix.     (This means that outside 

a blockwise triangular matrix all elements of   *i     tend to zero,  as    k -» oo   , 

but th't  some elements of the blockwise triangular form may not converge.) 

Moreover the 2-by-2    and 1-by-l diagonal blocks of the matrix   E,     have 

eigenvalues which in their totality converge to the eigenvalues of    H. 

For simplicity,  consider a matrix   H    with eigenvalues 

o<\<\< -<>-n 

The OR method for such a matrix converges with an error which is 

The convergence would be more rapid if, instead of H, we dealt with the 

matrix H - pi, where 0 < p < ^. .  If p were practically eq^ai to X.,, 

the convergence would be extremely rapid» Modifications of the OF-algorithm 

have been devised that simulate this so-called origin shift which introduces •■ 

p near V . After one eigenvalue \     has been isolated, the QR method can t he 

be applied to an n-1 by n-1 matrix with eigenvalues X , .,., \    , New 

origin shifts are then introduced to bring out -^ as rapidly as possible.  E- ■ 

With well devised origin shifts, the whole process has been observed to converge 

with an average of less than two iterative steps per eigenvalue, 

Most research t^ces into the invention of origin shifts when some of t-he 

eigenvalues -ire compi.ex and of equal modulus. We shall not attempt to give tne 

ideas. 

A more recent convergence proof has been given by Wilkinson [62], but. 

like the Francis proof, is given for an arbitrary matrix A. If one limits 

himself to matrices of Hessenberg form, easier proofs can be given; see 

Kahan (unpublished), ^ 



Normally,  the eigenvalues are obtained in order of inorear.ing modulus. 

f-arlett  [^8]  has given theorems stating precisely when thir, occurs. 

If    H    is a symmetric band matrix,  then the OR-algoritrim preserves 

the band width during the iteration,   and is very satisfactory.    In particular, 

QR is a possible algorithm for computing eigenvalues of a symmetric tridlagonai 

•natrix. 

If   H    is an unsymmetric  band matrix, the Q,R-algorithm loses the zero band.- 

above the diagonal. 

So far,  we have not mentioned getting the eigenvectors of n. Hessenoerg 

matrix   H.    This is the most difficult problem we shall mention.    The prevnilinr 

method is that of inverse iterat ion  .    The eigenesi-es are assumed already known. 

For any fixed eigenvalue    \,    one selects a vector    xn    arbitrarily,.    Then one 

carries out  an iteration of the following form: 

For each    k = 0,   1,  2,   ...,    find    x by solving *he  system 

(18) (H - A i)Vl = xk    . 

One continues until    x     is quite  large.    In easy cases,    x      is neiriy an 

eigenvector belonging to    ^u    Wilkinson [6l,  Chap.  9J  discusses  variants of tnis 

process.    Varah [^61 has written several algorithms 

If    H    is a real Hessenberg matrix,  but    K    is n  complex e.^er.-Jah^,  on? 

has to choose between doing complex arithmetic,  or  some judüciousiy selected 

process with real arithmetic. 

Finally,  one transforms x      back to the original  coordina'.e system cf    A 
K 

by undoing the orthogoneü. transformations from    A    to    H. 

If some of the eigenvalues of    H    are very close,  the real problems begin. 

A pair of close eigenvalues may in fortunate cases have distinct column eigenvecr.o-; 

that are far  from parallel; this represents an approximation to a douoie eigenvalue 



vath a linear elementary divisor.     It  is far more  likely that a pair of close 

eigenvalues will have colunn eigenvectors that   are almost parallel      This re- 

presents an pnproximation to the  infinitely more probable case of a double 

eigenvalue with nonlinear divisors. 

In the  former case,   it  is not difficult to compute two eigenvectors that 

nre far from parallel.    It  is only necessary to carry out the iteration (l8) 

with different    x ,  or with two slightly different values of   ^ 

In the latter case,   it appears difficult to obtain much from the itera1 ion 

but  a single eigenvector belonging to    K,    What   should be done next?    In part 

one  doesn't know what the problem proposer would like.     In part one doesn't 

know what  is possible.    Varah is  carrying out research on the problem»    He  is 

attempting to find an orthogonal basis for the invariant subspace of dimension 2 

(in this case) belonging to *.,. 

For a "nice" matrix,  Varah is also getting guaranteed error bounds for 

all eigenvalues and all eigenvectors, using Gerschgorin theorems,  as Wilkinson 

recommends. 

lh.     Conclusion and moral..    The  computational methods of linear algebra 

are moving into a  stage where we have reasonably satisfactory methods  for dense, 

stored matrices    A..    The main exception is the problem of getting eigenvectors 

with error bounds,   for unsymmetnc matrices.    The algorithms have been refined 

several times,  and are being published, particularly in Numerische Mathematik. 

Casual users of matrix algebra will do no better thr>n to take such algorithms 

"off the shelf" for their problems.    The best algorithms are mainly written in 

Algol 60.    Even though the reader may use another language,  it  is unquestionably 

worthwhile for him to learn to read Algol 60,  just in order to be able to read 

these algorithms and adapt them to his own problems. 
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No method of solving n  computation?! problem is re-lly nv-i^sb  -  •.   a 

user until it is completely described in nn algebraic computing language    and 

made completely reliable..     Before that, there are  indeterminate nspects  :n every 

•ilgorithm..    Freouently the entire advantage of a certain computing  crocesa   .les 

:n the treatment of certain fine points which can hardly be suspeced unt: 1  ; ney 

nre completely programmed.    This is the reason why the -mnteur should either 

consult  an expert,  or take great p-'ins to pick up ■-  foolprocf 'Igoritnm       'i-.:r, 

is the reason why professionals should concentrete   v/ery hr-rd on comp h/ie ^.y 

foolproofing the algorithms they devise,   before pitting them on the c:>el.f  :<..• 

widespread use. 
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