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1. Introduction. This survey of selected computational aspects of linear

algebra is addressed to members of SIAM who are ﬁot specialists in numerical
analysis., The reader is assumed to have a general familiarity with the algebra
and analysis of finite vectors and matrices, including norms, and to know the
Gaussian elimination process. A completely adequate background is given in the
first 72 pages of Faddeeva [9]. A much more complete background for practical
matrix work is found in Bellman (3], Marcus and Minc [38], and Wilkinson [61].
Far more extensive expositions of the computational methods of linear
algebra are to be found in Fox [14], Noble [42], Householder (28], and Wilkinson [61].
The author gratefully acknowledges conversations with Gene H. Golub,
Richard Hamming, and William Kahan, and especially the opportunity to see a
draft of Kahan [32). He also acknowledges substantial debts to Cleve Moler for

the use of material from Forsythe and Moler [12].

2. Computational problems of linear algebra. The ordinary computational

problems of linear algebra are concerned with matrices of real numbers.

a. Let A be an n-rowed, n-columned matrix of real numbers. Let b be
an n-rowed column vector of real numbers. The traditional linear-equations
problem is to find an n-rowed column vector x such that

Ax="»b.
Tt is normally assumed that A is a nonsingular matrix, since then and only then

does a unique solution exist for all b.
b. With the same A as in part a, another traditional problem is to find
the inverse matrix A™l .

c. Let A bve an n-rowed, n-columned matrix of real numbers which is

symmetric. The third traditional problem is to find some or all of the (necessarily

real) eigenvalues of A. Recall that an eigenvalue of A is a number A for which
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there exists a column vector u such that
Au=hy.

Such a vector u is called a (column) eigenvector of A belonging to A,

and often the computational problem includes finding a u belonging to each
eigenvalue computed. There exist n orthonormal eigenvectors of A, one
belonging to each eigenvalue of A.

d. Let A be an unsymmetric n-rowed, n-columned matrix of real numbers.
Another trnaditional problem of linear algebra is to find some or all of its
eigenvalues, and sometimes also its corresponding column eigenvectors and row
eigenvectors. Recall that a row eigenvector belonging to AN is an n-columned

row vector v such that
VA=ANv.

When A 1is not symmetric, the problem is complicated in many ways: First,

some of the eigenvalues M are ordinarily complex numbers. Second, there may

not exist n linearly independent column eigenvectors, and those which exist are
not ysually orthogbnal.., Indeed, they are likely to be nearly linearly. dependent and
the same holds for the row eigenvectors.” Third, if an eigenvalue A 1is a root of
multiplicity k > 1 of the characteristic eouation det(A - N I) = O, then

there may exist anywhere from 1 to k 1linearly independent column eigenvectcrs
belonging to A. (If A were symmetric, there would always be k.) If the

number is less than k, it corresponds to one or more nondiagonal blocks in

the Jordan canonical form of A, or equivalently to so-called nonlinear elementary

divisors of A. Fourth, multiple or nearly multiple eigenvalues of A are

likely to be very rapidly changing functions of the elements of A, so

%1,
that computations are at best tricky.
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e. For any column vector y, define the p-th power norm of y to be
1

(1) I, = €L v PF

Here p is a real number with 1 <p<o, and M EEEEETIR A are the components
of y 1in a given coordinate system. We define the maximum norm as the limiting
case p » oo of (1);
(2) Ivll, = max Ayl .
1<i<n

The norms most used in numerical analysis are p = 1, 2, @, but statisticians
are now giving attention to values of p between 1 and 2.

Let A be an n-rowed, k-columned matrix of real numbers, and let b be
an n-rowed column vector. Given some p, a more recent computational problem

is to find a k-rowed column vector x such that
|| A x - bllp is minimized .

When p = 2, the usual case, this is the linear least-squares problem. For

p = 2 the unit sphere in the norm is very smooth, and methods of analysis work
well. However, for p =1 or @ the unit sphere has many corners, and methods
of minimizing ||Ax - b||p become combinatorial or discrete.

f. For two n-rowed column vectors x and y, we define x 2>y to mean
that Xy 2 Yi for all components of x and y.
Let A and b be as in part e above. Then an important computational problem

is to describe the set S of k-rowed column vectors x such that

Ax> b
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Sometimes, as in linear programming problems, one looks for vectors x in S
such that ch is a minimum, where c¢ is a given k-rowed column vector.

So far. we have spoken only of matrices of real numbers. Similar
problems are posed occasionally for matrices of complex numbers. Many of the
problems can also be phrased for matrices whose elements are expressions in
indeterminates or letters. As methods of symbol manipulation on digital computers
become more accessible to computer users, problems of linear algebra with
matrices of letters will be studied more. Practical symbol manipulation will
probably do more to interest mathematicians in computing than anything that
has happened in the computer era to date.

The present discussion is limited to matrices of numbers, and moreover
to problems a, b, ¢, d. For discussions of problem e with p =2, the
reader is referred to Golub and Kahan [18]. For problem f see presentations
on linear programming like Dantzig [5].

Why do the linear problems &, b, ¢, and d arise so often? Why are
they important? The answer is that linear operators are the simplest ones in
mathematics, and the only operators that are fully understood in principle.
dience they are a natural model for an applied mathematician to use in attacking
3 problem. Even though linear operators in infinite-dimensional spaces will
occur in analysis of differential equations (for example), the realities of
zomputing mean that only finite-dimensional spaces can be handled with digital
zomputers.

More realistic models of applied mathematics are usually nonlinear. But,
whenever nonlinear operators are used, the actual solution of functional
equations almost always involves the approximation of nonlinear operators by

linear ones. A typical example of this is the use of Newton's method for solving
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2 system of nonlinear equations, in which at every step a loenlly best;fitting
linear equation system must be solved. Nonlinear problems ususlly are very hard
In attacking them by linear methods, it is essentisl th~t our line~r tools be
very sharp, so th't they can be relied upon to work without failure. Only in
this way can the analyst concentrate on the real difficulties of the nonlinesr
world. This point of view not only emphasizes the importance of being able to
solve linear problems, but also the necessity of solving linear systems with
extremely reliable methods.

Linear equation systems & arise directly mainly from two sources. One
is from an approximation to linear functionsl eguations, usually ordinary or
partial differential equations. The other source is a problem of date fitting,
interpol~tion, or rpproximation by linear families of functionms.

Eigenvalue problems usually arise from studies of vibration or stability
or resonﬂnce.of linear physical systems (e.g., .flutter of aircraft »nd criti-
cnlity of reactors), or from factor snalysis problems.

An excellent textbook by Noble [42) gives a number of physical examples

of computational matrix problems.

3. A closer look at the problems. Since actual computers have finite

storage capecity and a finite precision, we need to have a closer look st the
nature of the matrices A =nd the comput~tional problems.

Is the matrix A dense (most elements ay 3 # 0), or is it sparse
)

(most elements a = 0)? If A 1is sparse, do the nonzero elements form a

i,J
significant pattern? For example, is A triangular (ai,j =0 for 1> J or

for i< j)? Is it of Hessenberg form (ai 5= 0 for i> 3J+1 or for
)

3>1+1)? Is it a bend matrix (s ;= O for |t - 31 >m, where m<< n?
2

Ts it a tridiagonal matrix (i.e., a band matrix with m = 1)? All these special

ferms occur freaquently, and can be given special consideration.

>



Is the matrix A symmetric? Positive definite? 1f ¢t is sparse, 1s tic

pattern associated with the adjacency matrix of same graph? Frequently matrice:
asscciated with structures or with partial difference equations are best under-
stood in terms of the associated graph.

Are the elements a stored in the computer memory, to be retrieved

i,J
when needed, or are they regenerated from some algorithm, as needed? One might

define the informational content of a matrix as the number of cells needed

(on a certain computer) to store the data and program to obtain all the ai,j'
The author knows of no work on this concept, which is clearly relevant to
matrix computation.

What is the size of the matrix A, relative to the memory size and speed
of a given computer?

If we are solving a linear equation system Ax = b, do we have many
different right-hand sizes b, or just one? Do we have many different matrice -
that are close together, or do we have just one A? Are the elements of A ar
precise nathematical ' numbers (for example, integers), or are they physical
numbers subject to uncertainty? Any uncertainty in A and b leads to
uncertainty in the definition of x as the solution of Ax = b. What x do--
the problem's proposer want to see? Even when A and b are mathematical
nurbers, the solution x is normally not representable as a finite-precision
nunber in the computer's number base. Of the various approximate answers
x which might be obtained, what is the proposer's desire? For example, does
he went ||x - A'lbu to be small, where Alb s the true answer? Or would the
proposer settle for an x such that "Ax - b" is small? For each case: whic:
norm, and how small?

Most proposers of linear equation systems haven't considered these

questions, and look to the numerical analyst to explainthe possibilities and

3elect the options.

- ———— = TR LT L L L
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If a proposer requests the inverse matrix A-l » it is usually worth finding
out why. Frequently he merely wishes a convenient way to solve Ax = c for
an arbitrary vector c¢. Having A-l stored away, the proposer expects to
obtain the solution x in the form A'lc, for any new c¢ that comes along.
It should be pointed out that there are other ways to obtain A'lc for new
vectors c¢, ways that require no more storage and take no longer for the same
accuracy, than the multiplication of A'l by c. Because of these facts,
the computation of A-1 may frequently be dispensed with. However, certain
statistical applications really do require knowledge of at least the diagonal
elements of A-l.

The eigenvalue problem c¢ for symmetric matrices A can require finding
all the eigenvalues, or only a few. It matters a good deal whether or not the
corresponding eigenvectors are needed. If a complete set of eigenvectors is
needed, is it important that they be orthogonal to each other? Getting orthog-
onal eigenvectors corresponding to multiple eigenvalues is far more difficult
than just getting eigenvalues.

In the eigenvalue problem 4 for nonsymmetric matrices A, one has
similar choices: do we want all eigenvalues, or just some? Do we want column
eigenvectors? Do we want row eigenvectors? Both? But then comes a new choice.
If some eigenvalues are multiple and correspond to a nonlinear elementary divisor,

what vectors does the proposer want to see? 1In monographs on algebra one learns

about chains of principal vectors that with the eigenvector form a basis for the

null space N of (A - A I)k , where N 1is an eigenvalue of multiplicity k
with an elementary divisor of degree k. These principal vectors are associated
with the Jordan canonical form of A, It is my impression that a proposer who
has a good background in algebra will want to see a set of principal vectors
(they are not unique). But these principal vectors are extremely hard to compute,
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partly because they are discontinuous functions of the data. It is likely thnt
an orthogonal basis for the nullspace N would be a more useful set of vectors.
The matter seems to be poorly understood by problem proposers and numerical
.analysts.

Matrices with actual multiple eigenvalues are very rare, and a small
computational perturbation of these will normally destroy the equality of
eigenvalues. One might therefore assume that we need not be concerned in prac-
tice with what o do about them. But, in fact, the bad behavior of nonlinear
divisors carries over in practice to a surprisingly large set of neighboring
matrices. These neighboring matrices have distinct eigenvalues, but the k
column eigenvectors are so nearly linearly dependent that they cannot be
separated in a normal computation. So also here one faces the problem of what
vectors to give the proposer.

In » least squares problem, say a search for x to minimize f(x) = [|Ax -of,,
does the proposer really want a minimum of f(x), or does he merely wish an x
that gives a value of f(x) fairly close to the minimum? In a curve-fitting
problem, for example, one can often get a surprisingly good fit by a polynomial
with coefficients very different from those of the minimizing polynomial.

In all of the above computational problems, it is important to ascertain
which of the following types c¢f answers the probiem proposer is looking for:

a) a surmised answer, with no estimates of its correctness;

b) some answer, together with some sort of probabilistic assertions
about its correctness;

¢) some answer, together with mathematically provable bounds for its
error.,

Normaily it is more expensive to obtain b) than a), and still more

expensive to obtain c).



It is not obvious which of the above types of answer the problem proposer
will want. Frequently a) is quite satisfactory. The physical scientist and
engineer frequently have their own checks on the validity of an answer, and
may nejther need nor wish the mathematician's rigorous bounds. They may recog-
nize, for example, that the mathematical model is such a rough approximation to
reality that mathematical bounds would only be ludicrous. When mathematicians
enter the practical world of engineering, the rules by which mathematics is
played frequently have little relevance. Numericel analysts frequently have
trouble deciding when to play the game according to mathematician's rules
and when to play it like engineers. It is, of course, extremely pleasant to
encounter those occasional examples where mathematically provable bounds can be
found that are just as accurate and cheap as surmised answers. One should
never cease looking for such miracles, because they do occur! One has been

just reported at this SIAM Symposium; see Fox, Henrici, and Moler [26].

L, Nature of computer hardware and software. The character of achievable

solutions to the computational problems of linear algebra is greatly influenced
by the nature of the computing systems available to us. It is cuétomary to
separate computer systems along the foliowing lines:

a) Computer hardwarc--the nature of the electronic circuitry of a
computer;

b) Computer langueges--the languages in which are described algorithms
for the solution of a given problem on a given computer;

c) Computer software--the programs which make it possible for a computer
actually to perform the algorithms described in the computer language.

In looking at computer hardware for computations in linear algebra one

wants to know what precision is available for computation--how many digits are

9



in the significand of the floating-point operands, and to whut base? One :s
also interested in the cost and speed of double-precision operations. In
matrix algebra work the critical operation is frequently the computation of

a rounded single-precision approximation to the double-precision inner product
of two vectors whose components are single-precision floating-point numbers.
"The speed and cost of this inner product are°®very important.

One wonders whether the hardware rounds the result of an arithmetic
operations, or whether it is chopped off. Best of all is a system that lets
the programmer decide when to round and when to chop.

What happens when the result of an arithmetic operation exceeds the
capacity of the flosting-point system? Are there "traps" which make it possible for
the system to detect overflow or underflow? Can these traps be by-passed,
(turned off) by the programmer? When an overflow or underflow is detected, is
all essential information recoverable, so that the solution can continue? Or
are vital bits of information irretrievabiy lost?

What is the exact nature of the arithmetic operations in the machine? I
one is to prove theorems about the behavior of a computation, one needs certain
properties of the arithmetic. Because of the rounding of the machine, it 1s
well known that addition and multiplication are not associative, nor are they
distributive. Nevertheless, one can do surprisingly good analysis, provided
only that the arithmetic is monotonic.

By multiplication being monotonic, we mean, for example, that if
0<a<b and O0<c. thenaxc < bxc, Such properties seem elementa..
out they are extremely helpful. And they are sarprisingly often absent’

It must be noted that apparently minor changes in the hardware of the
arithmetic circuitry can make surprisingly large differences in the behavior

of the algorithms,
10
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A great many computer languages have been devised for the description of
scientific algorithms. These range from the very elementary codes for Turing
machines, through the machine codes of computers, to various algebraic languages
like the forms of Fortran, Algol, and PL/I. All these languages are equiva-
lent, in the sense that the class of representable algorithms is the same for
all of them. The languages differ only in regard to human convenience and in
the compilation problems they create. Can one conveniently represent such a
data structure as a triangule: matrix in a certain language? In typical
languages like Algol or Fortran, one must choo:se between representing it as
part of a much larger square matrix, on the one hand, or as an artificially
created one-démensional array, on the other. The former choice is humanly
convenient and wastes space; the latter choice saves the computer time and
space, at the cost of confusing the human.

Most matrix algorithms have "inner loops" where most of the computing
time is spent. If only this inner loop is programmed very efficiently in
machine code, the program will run very rapidly. It scarcely matters how the
rest of the algorithm is programmed. Hence a very important question for any
algebraic language is whether it is :easy to incorporate pieces of machine code
into them. Perhaps the question is more appropriately addressed to the software
system that translates the algebraic language into machine code.

Another important property of a computer language is its readability by
human beings. If the algorithm is correctly written, a computer will (practicalily
always read it correctly. But the practical use of the algorithm depends on
the ability of human beings to comprehend it, adapt it to other uses, improve it
in the light of recent discoveries, and so on. The human readability of existin-

languages differs a great deal.
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The most important software programs for the scientific computer user
are the monitors and the compilers. The compilers are vast symbol-manipuiatior
programs that translate an algorithm from, say, Fortran to the machine code of
a given computer. Compilers should be distinguished from the languages they
translate, and yet of course compilers and languages influence each other.
Compilers differ greatly in speed, in the optimality of the machine code
produced in the translation, and in the diagnostic facilities offered.

As we noted above, it is important that compilers be able to accep:
pieces of algorithms written in machine code, and incorporate them into a program
otherwise written in an algebraic language. For matrix work, the ability to
compile fast codes for iterative loops (the for statment of Algol) is very
important.

Most compilers are now imbedded in control programs variously called

master control programs, monitor systems, or operating systems. These monitor

systems generally retain ultimate control of a computer, preventing a possibly
erroneous user program from consuming vast amount of unwanted time, or from
damaging the monitor system or other persons$' programs by illegal assignments
Also, the monitor systems generally recover control of the machine in case of
overflow or underflow. This is a point of much interest to writers of linear
algebra programs. In case of overflow or underflow, what happens next? Can
the linear algebra program recover control of the computer and repair the dam~sc
done by the overflow or underflow? (This assumes that the hardware retains the
necessary information.) Or does the monitor system take over the machine and
ruthlessly flush the offending program from the machine? If the latter occurs,
then extra time must be taken in each program to make sure that overflow or

underflow cannot occur.

12

— e e - .r._ e e o = rmn -

Ehas - ‘ W .. - -



ok The state of the art, 195% and now. It is safe to say that matrix

computation has passed well beyond the stage where an amateur is likely to
think of computing methods which can compete with the better known methods.
Certainly one cannot learn theoretical linear algebr» snd an algebraic
programming language, and nothing else, and start writing programs which will
perform acceptably by today's standards. There is simply too much hard-earned
experience behind the better algorithms, and yet this experience is hardly
mentioned in mathematical textbooks of linear algebra.

The amount of literature on matrix computations is staggering. In 627
pages, Faddeev and Faddeeva [8] recogd a pretty complete account of computational
methods up to around 1958. 1In 662 pages, Wilkinson [61] gives most of what
is known about computing eigenvalues of dense, stored matrices (both symmetric
nnd unsymmetric), with error bounds for many algorithms. There is very little
overlap between the two books, because Wilkinson and a few contemporaries
created most of the material in his book in the years after 1958. No one could
possibly start research in the numerical mathematics of linear algebra without &
thorough knowledge of the relevant material in these books.

It is perhaps instructive to examine the state of matrix computation
in 1953, when the author wrote a survey [10] of methods for solving linear
systems at the Institute for Numerical Analysis of the National Bureau of
Standards, Los Angeles. We were amateurs. For dense, stored matrices we
knew Gaussian elimination, of course. We knew that it sometimes produced
nuite poor results. We weren't always sure why. We debated endlessly about
how to pick pivots for the elimination, without settling it. The debate still
continues,but now mainly among persons who don't understand that the main lines
of the answer have been settled. Because of misunderstood difficulties with
Gaussian elimination, we searched for other methods which might do better.

13



The conjugate-gradient method had been devised for sparse matrices by Lanczos
(361, and Hestenes and Stiefel [27]. In [10] I guessed that it might also prevail
for dense, stored matrices, despite the extra time it would require, because we
understood how to use higher precision to make the conjugate-gradient method work
well. We did not realize that the same higher precision and a proper pivotal
strategy would make Gaussian elimination work. We were not quite aware of the

extent of problems of ill conditioning of matrices.

The only analysis available to us was the monumental work of von Neumann
and Goldstine [41, 20). They avoided the pivoting problem by reducing any
regular linear equation system Ax = b to the positive definite system
ATA X = ATb. We knew that this normalization of the problem was costly in time
and worsened the condition of the problem. Von Neumann and Goldstine presented
guaranteed error bounds for the solution; actually observed errors were found
to be perhaps 100 times smaller in reasonable cases, The form of the error
analysis was a direct comparison of machine arithmetic with exact operations.
The nonassociativity and nondistributivity of machine arithmetic made the
analysis extremely difficult. In any case, it could only handle scaled fixed-
point arithmetic., Because ot the size of their error bounds, von Neumann and
Goldstine were unnecessarily pessimistic about the possibility of inverting
general matrices of orders over 15 on machines with the 27-bit precision of the
IBM 7090 series,

For the eigenvalue problems, things were :n much worse state. We had the
power method with matrix deflation. While reasonabi.- satisfactory for a few
dominant roots, its general npplication requires intuition and luck, and defies
a complete algorithmization. For dense, stored symmetric malrices we had the

1846 method of Jacobi [31], rediscovered and analyzed by Goldstine, Murray

and von Neumann [19]), and it was quite satisfactory. Givens was writing up
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his newly discovered method, maybe 7 to 9 times faster than Jacobi's and
a basic step toward currently used methods.

For nonsymmetric matrices, things were ghastly. If the power method
wouldn't work, we had practically no alternatives. We could search for zeros
of det(A - zI) in some manner or another. We bravely tried methods for deter-
mining the characteristic polynomial, as described in Faddeevs [9], and found
them to be hopeless. It was almost unbelievable, how badly the standard
methods for n = 4 would perform for n = 10. Lanczos was advocating his
new method of finite iterations, which became the source of modern methods
in a later line of development through the Stiefel and Rutishauser QD-algorithm,
(see Rutishauser [50] and Henrici [25]), the LR-algorithm of Rutishauser [51],
and the QR algorithm of Francis [15, 16] and Kublanovskaja [35]. However, the
original Lanczos method needed careful management, because the raw results

were often poor.

6. The linear eauations problem. For large, sparse matrices, like those

arising in finite-difference approximations to partial differential equations,
there is a whole special literature. See Varga [57], Forsythe and Wasow [13],
the work of David Young, Jim Douglas Jr., Stiefel, and many others. The methods
seem to depend for their success on the nature of the continuous problem being
approximated. Because the matrices are sparse, the prevailing methods are
iterative. I shall omit further discussion of them, and confine attention to
dense, stored matrices.,

For a general matrix A, the solution of the linear system Ax =b by
Gaussian elimination requires n5/5 + Q(nz) multiplications, and the same

number of additions. Recently Klyuyev and Kokovkin-Shcherbak [34] proved that
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no method using ration-l operations for general A, b can take [cwer operaticns.
This result had long been believed but not proved. The result has two
consequences:

(i) Gaussian elimination is likely to remain the method of choice for
solving dense linear systems, when it works, because it is as fast as any.

(ii) The solution of a linear system of large order n is going to
require a very substantial amount of computing time, at least for serial
computers.' For n = 1000, we have 1/3 X 109 multiplications and additions.
If we can multiply and add in 10 microseconds, we need 3333 seconds, or about
an nour of computation. In fact, there is some overhead also, and on an IBM
7094 (Model II) the solution would tske over 2 hours. However, the storage cf
the million elements of data requires extensive use of some bulk storage like
tapes or disks, as only some 20,000 elements or so can be kept in the current
32,000-word core storrge. The very numerous transfers of matrix elements from
core to magnetic tapes nppear likely to wear out the tapes before the solution
can be obtained, according to certain tests made at Stanford! I know of no
comparable experience with magnetic disks or other form of bulk storage.

A5 a result, we cannot consider order n = 1000 to represent s practical
lineur equations preblem, but we will undoubtedly soon be able to do it regular:y
for perhaps $500.

The case n = 10C is now easy ond costs around $1 on an IBM 7094%. The
case n = 10,000 is likely not to be accessiple for a2 long time, and it would
take over 2000 hours now on an IBM 7094,

There is beginning to be serious consideration of computers with a
substantinl amount of parallel operation, so that perhaps much of the solution
of » linenr system could be done simultaneously. Preliminary studies make it

clear that the solution of a linear system could very easily make use of parall: !
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computation, if it should prove worth while. Apparently only Q(n) operation
times would be needed for solving n linear system, if one had a sufficiently

larze amount of psrallel arithmetic circuitry.

T. Inherent inaccuracy in solutions of linear systems. Given a non-

singular matrix A and a nonzero b, let x be the solution of Ax = b,
Suppose A and b are subject to uncertsinty. What is the resultant uncer-
tainty in the solution x?

For any column vector y of order n, define Hy“ to be the

euclidean length of y:

2 2 2
Il =y, =/ P+ 2 e e v g2

For any n-by-n square matrix A, define the spectral norm ”AH by

fall = max [laxf .
x”- 1
These functions ||...]|] give useful measures of the size of vectors and matrices,

respectively.

For a nonsingular matrix A, define the condition of A, cond(A)
by the relation

cond(4) = flall - fla™]

The concept of condition of a matrix seems to have been introduced by Turing [55],
nnd studied extensively by Todd ({53] and some later papers) and many others.

One of the main uses of the concept of condition lies in answering the
question posed at the start of this section. Suppose that A is known exactly,

but that b is subject to uncertainty. Let x + ®x solve the system with matrix

A and right-hand side b + db. Then
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A(x + 8x)

b + db

Al + Atap

A" db :

x + Ox

(2)

dx

-1
Hoxll <A™+ Nlavll .

Since A x =Db, we have

(&) loll = llax] < flall - I« .

Dividing (3) by (&), we have

[
Ao sl oy ey Laed

(B ol
or
(5) Jlox!t < ‘comi(a) dbll

Il vl

Inequality (5) shows thet the relative uncertainty in x is bounded by
cond(A) times the relative uncertainty in b. The bound in (5) is attainable,
for any nonsingular A and nonzero b. This is easy to see, if we perforr a
change of coordinates in which A trkes n diagonal form.

A5 a linear transformntion, A takes vectors x into vectors b.
A fundementally important, but too little known theorem ststes that by a certain
orthomonnl chrnze of coordirates in the space of x, and by another orthogonal
change of roordinates in the space of b, the matrix A can be put in the diagonal

f'orm

18



Here the positive numbers By 2.“2 > . Z'“n are called the singular values

of A. Moreover,

Al = w5 AT = Wt

Finally, the orthogonal transformations do not change the norms of x and b.

We have - -

1 /@
0 /
!
If b= : ,  and i = | . ,
. \ 0
(6] €
N
ithen
-1
0 .
X = A-lb = ' s ana Ox = A-l db = i .
0
0 "'”r_zl
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For these vectors,

M.fﬁlguﬂut!.::cond(l\)uﬂ .

Il “n ol Hn ol

The last line shows that (5) is an equality in this case, as we promised

to prove.

Although (5) is only an exact equality under exceptional conditions,

it is usually rather close to equality, and in the following we assume approxi-

mate equality.
If cond(A) = 10° , and if b is known to be correct only to 10 decimals,

then x can be known only to 10 - p decimals. Now p can range anywhere from

0 té o . The only hope of having any significance to x in a 10-decimal computing

system is that, roughly,

cond(A) ° 10710 <

V] F o

In a base-8 computer with t significant digits, we ro'.ghly need
cond(A) B't < 22-

in crder to have any significance to a solution.

Romember that 11l statements in this section are independent of any
method of solving a system Ax = b. They are statements about errors in x
which rire inherent in the uncertainty in the data.

I A 1is subject to a change dA, and b is known exactly, then

an inejunlity analogous to (5) is the following:

() _exb < cond(A) ° laa]
lIx + ox]| Al
It Giexl is small, compared with [|x|l, then we may safely consider the left-hand

5i'e of (v) ss a relative error in x.
20
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8. Accuracy achievable with Gaussian elimination. I assume that the

reader knows what Gaussian elimination is, as a method of solving linear eoua-
tion systems. The main strategic decision facing the designer of the algorithm
is the choice of a unique pivot element for each of the n-1 stages in which
a variable is eliminated from the remaining equations. There are two main
strategies discussed:

(1) complete pivoting, in which at each stage one selects as a pivot

some element a, . of maximum absolute value among all the remaining elements
2

of the matrix.

(ii) partial pivoting, in which at each stage one selects as a pivot some

element ai,j of maximum absolute value among the first column of the remainin-
elements of the matrix.

Thus, in the first stage complete pivoting would search the whole matrix
A for an element maximal in absolute value, whereas partial pivoting would
search only the first column.

Some special classes of matrices permit elimination to proceed
successfully without any search for pivdting--for example, positive definite
symmetric matrices. But generally, pivotal searching is essential to guarantee
success, The following simple example illustrates the disaster possible in not
searching for a pivot. Consider a 3-digit floating-decimal machine.

The system is

{; .0001 x + 1.00 y

1.00

1.00 x + 1.00 y 2.00 .

The true solution, rounded to five decimals, is x = 1.00010, y = .99990.
If one accepts the element .0001 as a pivot, the elimination of x

from the second equation yields the equation
- 10000 y = -10000.

Backsolving, we find that y = 1.00, whence x = 0.00, a clear disaster.
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On the other hand, partial pivoting would select the element
a2,l = 1.00 as the pivot. Elimination of x from the first equation yields

the equation
1.00 y = 1.00 .

Backsolving, we get y = 1.00 and then x = 1.00, with obvious success.

We shall now assume that we are dealing with a t-digit base-2 floating-
point computer. Rather than discuss the solution of a linear system, we shall
consider the computation of the inverse A"l of a given matrix. We wish to
state the rounding error bounds that have been proved for Gaussian elimination.

Wilkinson [58] assumes a complete pivotal strategy, and that the mstrix A
is reasonably scaled at the start and at all intermediate stages (see Sec. 10

for more about scaling). Then, if all la | <1, = certain Gaussinn algorithm

i,d
yields a matrix X such that

(7) X -2 o (o)t a2 g(m)

-1}

Here g(n) is the maximum of all elements of the successive matrices found
during the elimination.

To express the result (7) in a form to be comprred with those of Sec. 7,

we note that 1< [|All <n, so that we expect that Al = nl/2 . Then we have
roughly

-1
(8) Ix - a™7)| < n° . 27t cond(A) g(n) .

lla-2]
What kind of bound can we give for g(n)? This turns out to be an open

question. The best known result is approximately

(9) g(n) < 1.8 n(1/¥)l0g 0
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On the other hand, for :i! real matr:<+ s ~over ~yxamired it has always been

observed that

g(n) <n.

The last bound is attained for unboundedly large n by matrices related to the

Hadamard matrices. For most matrices one even observes that

(10) g(n) <8 .
Tornheim [54) has found complex matrices A of unboundedly large n for

g(n) =2 3.1n .

It would be most desirable to have a good bound for g(n), so that (7)
~ould be turned into a good apriori error bound for the computation of A‘l .

Naturally, for any particular matrix A, g(n) 1is easily observed in
“ie course of the elimination, so that in any event (7) becomes an a posteriori
>rror bound. However, still better error bounds can be given a posteriori, as
#4211 be shown in Sec. 9.

Wilkinson's proof of (7) in [58] is reasonably short. It makes use of
"nverse rounding error analysis, which we shall mention ag#in in Sec., 11. It is
“istructive to compare (8) with (6), even though one deals with inverses and one
~.in linear systems. The factor E't is essentially the inherent uncert~inty
"evel of the data, and should be equated to "dAH/“AH“ Then the bound in (8)
is larzer than that in (6) by the fuctor n’ g(n). Taking into account the empir-
ienl result (10) that g(n) < 8 for most real matrices, we then interpret (8)

-3 saying that the computed matrix X generally differs from the true inverse
A-}' in relative terms by no more than 8n5 times the error inherent in the

vroblem. Thus simple Gaussian elimination is reasonably good at keeping the

rounding error bound under control, for modest values of n. Much better results



can be achieved with some devices to be mentioned in Sec. 9,
The bound corresponding to (7) given by von Neumann and Goldstine [41]

was

-1
(11) ﬂﬁﬁﬂ < (5.3 + .6 AP 2% a2 a2
—

~ 15 e 2'1"[cond(A)]2 .

2 .
The factor [cond(A)]) arose from solving ATA X = ATb, rather than Ax - D.
The proof of (11) was an order of megnitude more difficult and tedious %han

the proof of (7).

9. More accurate solutions. Suppose that A is given as single-

precision data, and that we wish to get solutions guaranteed to be more accurate
than the above bounds would indicate. How shall we proceed? The most obvious
choice is to perform all calculations in double-precision. Roughly speaking,
then t 1is replaced by 2t in the above error bounds, and, since 2'21:' is

so very much smaller than 2-t, we gain many orders of magnitude in accuracy.
The cost in computing time varies among different machines, but is only a factor
of four on the IBM 7094. The cost in storage is greater, since we mus‘. double
the storage reserved for the developing matrix.

Where the time and storuge costs are too high to justify compl-te dcuple
precision, it is possible to make a very substantial gain by a much more limited
nse of double precision. Most of the operations in Gaussian elimination can
he phrased as inner products of vectors of single-precision numbers. On many
machines it is possible to accumulate such an inner product in double precision,

«nd then round it off to single precision before storing away the resalt.

The result of this accumulation is to reduce the maximum rounding error of un
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inner product by a factor of n. The total effect turns out to be to reduce the
round-off error bound by a factor of n5/2. Thus, instead of the result (7),

an elimination with pivoting and accumulation produces an approximate inverse X
such that |

=1
(12) Ix- a0 o 550 278 aY) gtn)

fla=4

under certain additional hypotheses. See Wilkinson (61, p. 253]. The gain

5/2

of the factor n is very substantial, although experience shows that. the'

actual errors in single-precision computation ‘are usually rather less than the beunds.
One theoretical disadvantage of the complete pivoting strategy is that
it does not mix well with the accumulation of inner products. When products
are accumulated, one almost always uses a partial pivotal strategy, and accepts
the theoretical possibility that pivots can grow very large.
A third and the most successful approach to increasing the accuracy of
solutions of dense, stored linear systems is the so-called method of iterative

improvement. By this method, if the matrix A 1is not too ill-conditioned, one

in practice gets solutions which are the correctly rounded approximations to the
tr.. answers. We will now describe this development.
Suppose that by Gaussian elimination one has achieved a first approximate

solution x. of the linear system Ax = b. The next step is to form the residual

0
vector Iy = b -Axo. If X, Wwere the exact solution of the system, we would

have ry = ® , the null vector. If not, we solve the new linear system Ay = Iy >

to obtain a vector ¥y Let X) = X, + Yy-

The process is repeated iteratively. I.e., for k=0, 1, 2, ...

we form the residual r, = b - Axk, solve the system Ay Ty to obtain a

= + 3
vector yk+lf' and then form xk+l X ¥ Vi
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Under suitable hypotheses to be specified below, the seqguence X,

-1
converges to the true solution A b of the system Ax = b.
Several matters need to be clarified in this algorithm. First, it appears

to involve a great deal of work to solve systems of the form Ay - r,Z for many

k
values of k. In fact, this is not so. Gaussian elimination to solve a
system Ax = b involves three distinguishable stages:
(i) Triangularization of the matrix A by elementary row trarsforna*:cns
(ii) Application of the same row transformations tc *he right-hasnd s:de o
(iii) Solution of the triangular system by back-substiiut:ion.
Tt turns out that stage (i) requires approximately n3/5 mult:plications
and additions, but that steges (ii) and (iii) together req.ire .nly approx:na’ely
n2 multiplicrtions and additions. Stage (i) need be done oniy once for a.l

the systems Ay = r If the multipliers defining the row transformetions are

k.
saved, stages (11) and (1i.) can be done rapidly for each new system Ay . T

in turn. As o result, it is found that s sufficiently iong sequence of vec'.crs

X, o usually be computed in something like cnly 20 per cent more time 'aan

the computntion of the first solution Xy

1t 15 nbsolutely essfntial that each res:dusl vec*cr r, OoF dempe€d * &

nigh prec:sion. This 1s normally done by a do.ble-precisior ~ccumaiation of

inner prod.cts, foliowed by rocunding of the answer tc« single-precision !lza'ing.

po:nt. fecrm, If r, 1s computed with merely a sing.e-precisicn inner prd.ct.

1t will have rounding errors of several units .n the least s.gnificant @ .g.'s

ct x,. “hen the inequality (5), wnich :s an appruximate eq.allty 1in praclic:,

<8

tells us that xk w1ll ve wrong by several t.mes cond(A) in i1ts leas:
b 5
significan* digit. Since cond(A) may well be 10 or 10, the resultan

LCCLrACY in xk 1s very low and, in fact, Xy 1s 1tseif aimost as acc.r-te

ns nny s.cceeding X, .
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"ne foliowing trneorci gires ‘- oas:s f tne above me-nod of
iterative improvement:

Tneorem. le' the ratrix A aave ‘he prcperty that

. s .1
(13) (0.8) 2" n" % g(n) Ia"h <

-

b=

-et the abcve algorithm be carried ou', w:th each system Ay = 1 peing solved

k

:n single-precision base-2 {loating-pcint aritnmetic, but with computat:ons of

carried c.l without ro.nding error.

L, Db Aw  and g s Rp * Vg

‘nen
o Ix, - &7 >0, as ko
.f the solution cf the systers Ay - r, were done with acc.rilations of
rner-prcducts in double precision, tnen the lief:-nard side of (13) could be
verlaced by the right-hand side of (12)
in practice, of co.rse, rK ;S8 comp.1<d oy a double-precision
cumulation of irner products, and X .,y 1S comp .ted as the floating-po.nt

| of X, and Y+l As a resil*, the seqg.ence X, do€s not converge tc

t 1n the mathematical sense. Instead, xK 18 opserved to pecone constant
- 4 value which 1s normalily the courrectly rcunded single-precision appreximation
A-lo
Tn the actual use of 1terative ipnprovement, ons dces not .s.ally know
. ~dvance whether or not hypothesis (13) 1s sa*1sfied, and i cennot be con-
.led afterwards either. Normal practice 18 there:cre to rely cn the follcwing
~.r.stic result:

Almcst-theorem. Let the avove algoritnm be carried o.t, with each

sLatem Ay - rk being solved by *he same version of Ga.ssian elimination, with

. —

el Ll being computed by a dc.bie-precision acc.r.la'ion of inner prod.cts,

~d with x

s > + - v .
L being computed as the flcating-pecint s.m of X and Y1
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If for k > ko, ~all vectors xk are equal to some single-precision

*
vector x , then x* is the correctly rounded single-precision approximation

to Alb .

This almosp;theorem cannot be proved, 'and, indeed, Kahan [32] has an
extremely ingenious counter-example. However, most computers would bet their
life on the applicability of the above almost-theorem in any practical example,
unless Kaixan were furnishing the problem!

Normally, whén cond(A) gets near 2t, the vectors x obviously
diverge. Then there is no cure except to increase the precision with which
the elimination is carried out, unless scaling A will help.

The usuel value of k, is 3 or

10. Scalinlg of uiatrices} One matter that was glossed over in Sec. 8

was the scaling of the matrix A before solving a system Ax = b. Alternate

terms for scaling are preconditioning and equilibration. Suppose that the
2-by-2 numerical example of Sec. 8 were altered by multiplying the first

equation by 106. Then the system would be

10.0 x + 100000 y = 100000
(14)

1.00 x + 1.00 y = 2.00 .

The effect of the scaling is to make 10.0 the larger pivot in the first column.
Then elimination of x from the second equation of (14) in 3-digit floating-

decimal arithmetic will result in a new second equation

210000 y = - 10000 .

Back solution leads to y = 1.00 and the awful result x = 0.00,
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We see thn! pcor scol.ng wits 8 goud pive'al strategy torces us :nto the
snme enormous rounding error thot we cotarned in Sec 8 from the origincl set of
equations and a bad pivotal strntegy.

The conclusion of this is tha* a good pivotal strategy is only gcod when
the matrix is properly scaled in adv-nce. However, it must be admitted th=t so
far we do not know guaranteed ~lgorithms for scaling mrtrices well.

It is normnl to scale matrices by simply mult:iplying rows =2nd column by
factors. 1In effect, one chooses nonsingt.iar diagonal matrices Dl and 32,

‘nd then scaies A by the transformo*icn

A —>Dil A D,
Becruse cond(A) is an ingredient of =1l our error bounds and convergence
theorems, it is natural to wish to se.iect Dl and D2 so as tu reduce
cond(Dil A D2) tc as low a value as 15 ressonably possible.

One usually m:ses powers of tne flonting-pcint base for sc~le factors,
to avoid the introduction of rounding errcrs in tne scaiing. Or, alternatively,
one may use the scaling only implicitly, without nct.uslly altering the elements

of A.

Theorem (F. L. Bauer) If the crdered set of pivotal elements is selec'.ed

in advance, scaling of a matrix A by pcrers of th~ fioating-point base does nc:

change a single digit. of the s:ignificand of any intermediate or final number

in the solution of Ax - b by Gaussian eliminaticn.

The theorem was presented in Ba.er [1] Thus the only puss:ble effec:
of the scaling of A on the rounding errcrs mus' occir through changing the
order of pivots. Our example showed that the change i1n pivots can indeed make

n great deal of difference.

One is sometimes advised to pick Dl and 32 so that the resulting
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. -1 . , _ .
matrix Dl A D2 has its moximum element. in each row and column {:n avso..i=
value) in the interv:1 [.1, 1), in whatever number bn:e one 17 using . lowever,
Richard Hamming has showed (unpublished) “hat this advice does not always lead

to good scaling. If

Then both of the following matrices are decimally scaled equiva_snts o A

.1 s SE
AC = 02 ) l ]. [}
1 o2 0
L J
- -
1oh o 2
Ap = 2 x 10710 S .1
o R 0
However, AC is a well-cond:tioned matr:x that offers no d:ffic.lties :n (hne
solut:cn of an equation sys*en, whereas A_ 1is mos* > l-conditi:red and

R

prov:des vast troubles for elimination.
3auer [2] has studied the problem of finding :1 and L, tc minimi:e
(o

cond(D:l A DJ). It turns ot thot the solution depends on cer'nin properties
-1, -1, .
; YAl . (Here |B|

of’ the nornegative matrices fal - 'a and  |A

denotes the matrix of absclute values ‘bl il“) Clear.y, ve can nardly hope ‘c
Y

-1 . ' .
compute A in crder tc find « reasonable scaling, so that we can compute A
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S0, it is 7n open question, how to find a demonstrably good and convenient scaling
algorithm. Existing algorithms are either very cuperficial or potentially very
slow.

The only cheerful side of the scaling question is that 1t seems to be a

rare matrix which good scaling changes from untractable to tractable!

11. Analysis of rounding errors. We poirnted out in Sec. 5 that the

direct rounding error analysis of von Neumann and Goldstine was extremely
~edious to apply. Givens [17) introduced the idea of inverse rounding errors.
Wilkinson has developed this into a very powerful tool for bounding the rounding
errors in matrix computations. The error bounds of Secs. 8 and 9 were obtained
from inverse analysis. The basic idea is t¢ change the nonassociative, non-
distributive floating-point ar:thmetic system into an associative, distributive
number system, by throwing the errors back onto the data of the computation.

For example, let fl1(u X v) stand for the floating-point product
\number base B ) of the floating-point numbers u and v. The direct error

analysis uses statements of the form

w=fluxv) - uv+ e, wnere |z <3 |ulg'"

P.rther operations on w irntroduce new errors, and one has to keep account of
the cumulation of all the oid and new rounding errors. Eventually, one bounds 'ne
difference between the ccmputed final answer and the mathematically correct

¢nswer corresponding to the given data.

In inverse analysis. one makes sta'ements of the form

w=fl(s X v) = uv(l +8), where |5| < % Bl-t -

31
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Thus the computed product 1s considered the true mathematical prcduct of (for
example) the real numbers u and v(l1 + ®), which differ slightly from «
and v. Further floating-point operations on w produce numbers which are
always treated as the results of exact operations on other slightly more
perturbed approximations to the original data. The final answer is considered
as the exact solution of an original problem with data which are perturbed by
amounts for which bounds are given.

If desired, these inverse error bouuds can be converted to crd:nary error
bounds, by normal mathematical methods.

Inverse error analysis turns out to be extremely well adapted to the
analysis of algorithms of : marching type which continally introduce new data.
Both the solution of linear equations and the evaluation of polynomials are of
this type. Inverse error analysis is not at all well suited for problems of an
iterative nature--for example, the Newton process for evaluating the snuare root of
a number.

The reader is referred to Wilkinson (60, 62] for further study of inverse
round-off analysis.

A second approach to round-off analysis is the interval analysis, ex-

tengively developed by Moore [40], but based on the idea of "range numbers"
vresented earlier by Dwyer [6!. 1In its original form, interval analysis :s
poorly adapted to matrix comp.tations, but Hansen (23] has modified it ingericusly

for mavrix work.



12 E:genvalues of symmetric matrices. Space does no! perm:it as

extensive a treatment of the eigenvalue problem as that given for the linear
equations problem. We can only mention a few highlights of today's methods.
The reader is referred to Wilkinson's treatise [61] for an »lmost complete
presentation of the state of the art.

As with the linear equations problem, the computation of eigenvalues
of matrices divides into two methods, according to the nature of the matrices.
For large, sparse matrices the methods are mostly infinite iterations, and will
not be considered here. For dense, stored matrices, most methods are finite
algorithms.

If a matrix A 1is symmetric, its eigenvalues are very well determined
by the data. In frct, let the symmetric matrix B = A + E have eigenvalues
Bi’ and let A (also symmetric) have eigenvalies al. Then the eigenvalues can

be so numbered that

(15) |cxi -p 1< IEl, ror s .

Now inverse error analysis refers the computed eigenvalues of a m~trix A Dback
to a2 matrix B = A+ E. If E can be proved to ve small (as it can), then (15;
shows how small the eigenvalue errors are. In fact, today’'s metnods can yield
eigenvalues that are in error by only a few digits in the least s:gnificant digits
of the large eigenvalues.

The method of Jacobi [31. is an infinite iteration for dense, stored
matrices. It produces a sequence of matrices orthogonally congruent to A:

A =UT

k K AUk

Moreover, Ak converges to a diagonal matrix D whose diagonal entries are, of
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course, the eigenvalues of A. In fact, each Ak+l is computed from tane

previous Ak by a rotation in the coordinate 2-space of some two indices

i and Jj, a rotation chosen so that a(§+;)
)

For any k such that Ak is almost diagonal, the columns of the

= 0,

corresponding orthogonal matrix Uk are approximately column eigenvectors of /.
Moreover, the columns are themselves orthogonal. Thus the Jacobi method yie!ds
approximate eigenvectors of fine quality as a by-product of the basic iter--.ion.
The whole program is easy to write, and it is difficult for it to be done bad:y.
There are some theoretical problems about how good the eigenvectors are, and
whether the Uk actually converge.

Goldstine, Murray, »nd von Neumann [19] analyzed the rounding errors in
an fixed-point version of the Jacobi method.

The original Jrcobi algorithm chose i and J to maximize the absolute
value of the element ag?g of Ak' Modern algorithms modify this criterion
in one of two ways:

(i) In the cyclic Jacobi methods, the off-diagonal elements a; , are
zeroed in some cyclic order. Forsythe and Henrici [11] proved the convergence ¢
a common cyclic method. See also Hansen [22].

(2i) In threshold Jacobi methods, an element A, 4 s selected for
‘nnihilation only vwhen its absolute value is above a certa:n threshoid size,
which gets smaller us the iteration progresses. Sec Fope ~nd Tompkins [49} ni

Jorneil 4],

1t has been proved only recently that the cyclic Jacobi methud conversecs

riadraticnlly for eny matrix A. See Schgnhage [52] and Wilkinson [59]. T“hne
work was based on that of Henrici [2h].

Givens [17) observed that, although it takes an infinite senuence of
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rotations to bring A to diagonal form, a mere %(n-l)(n-2) rotations can

bring A to tridiagonal form. This reduced the problem to that of finding

k
eigenvalues of tridiagonal matrices, and the latter problem has been a subject

of research ever since. 3ee Ortegs [43]), Ortega ~nd Kaiser [45], and recent work
of Kahan and Varah [33]. 1In any case, the Givens idea cut the practical time

of finding eigenvalues by a factor of about 9 in practice (Wilkinson (61, p. 3351 ..
A few years later Householder (see Householder and Bauer [29]) introduced a

new method of tridiagonnlizing a symmetric matrix, using n-2 reflections instead
of %(n-l)(n-2) rotations. This cut the time down by snother factor of two,

und effectively put the Givens method out of business. An error analysis is
given by Ortega [L4]. Most contemporary programs use the Householder method,

but differ widely in how eigenvalues of tridiagonal matrices are found. Getting

the eigenvectors is surprisingly tricky, and lack of knowledge of how to do it

is one reason for the occasional continued use of the Jacobi methods.

155 Eigenvalues of unsymmetric matrices. The area of greatest activity

in the past decade of research on computmational linear algebra h:s been the
eigenvalue problem for unsymmetric matrices. Only one method from before the
computer era is still in use--the power method--and it has only limited appl:-
cotions today. Most methods in use today were unheard of 15 years ago.

It is essential to realize tnhe instability inherent in the eigenvalue
problem for unsymmetric metrices. In contrast to the close bound (15), for

unsymmetric matrices the corresponding result, due to Ostrowski (46], is

(16) Iozi - B.| < (polynomial in n) x llEHl/n (all 1) .

o
The above result is very weak, and yet 1is the best possible general result

of 1ts kind. For the matrix
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B T
€
: O
0
1 .
1 O
of order n has all eigenvalues 0 for « = 0, but all eigenval.es ::2 dist:inct
' -b
7rve modulus lell/n for ¢ # 0. Thus, if n = 40 and <« = 10 O. f1 . eigenve
nave modulus 0.1 ().
Fortunately, eigenvalues are not us.ally so sensitive In fact, aifferen:

eigenvalues of a matrix A c¢~n differ enormously in their sensitivity t~

perturbations in A. Chapter 2 of Wilkinson [61] is full of useful res.lts.
They are generally a posteriori results, giving bound for the changes .r eigen-
values as functions of perturbations in a matrix and information about the
other eigenvalues and eigenvectors.

The great power of the Jacobi method for symmetric motrices, »nd tae
o desire

~xtremely pleasant rounding characteristics of unitary m~trices led to

to use them for the unsymmetric eigenvalue prcolem. Tne b s:c thecrer 1s d.¢

0 dSchur:

Theorem. For an arbitrary mstrix A, there exists « unitorym tr.x U

s.ch that
I {
- UIA U

1s triangular. (Here ! denotes the ccnjigate transpose of U.)

Since the eigenvalues of A are the diagonal elements of T, the hogpe

has been to find unitary matrices which bring A nearly into a triangular fcrr,
and then let the diagonal elements serve as approximate e:genvalues of A.

36
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Tnvestigations by Greenstadt [21], Lotkin [37], and Eperlein [7) offer
some hope, but no real promise of success

For most methods of attacking the eigenvalue problem, the first step
is to condense the data, to cave time and storage in further work. The now

universally accepted condensed form is the Hessenberg matrix, in which ai , = O
)

for i - j > 1 (or its transpose) It 1s pcssible to transform A by orthogon~l
congruences of the  Householder type into ' Hessenberg form with only very
small rounding errors. Any further condensation (say, into tridiagsnal form)
is subject to serious losses of digits. A transformation to the companion-
matrix form is particularly disastrous in practice, and it normnlly requires very
substantial increases in precision to successfully yield the eigenvalues of A,

As oan altern~tive, one can transfcrm A :0 Hessenberg form by Gaussisn
elimination with partial pivoting, a similarity transformation

The next stage in the unsymmetric eigenv-iue problem i1s to get the
eigenvnlues of a Hessenberg matrix H. A v-rie'y of methods h~ve been used.

{i) One can search for zeros of det(H - z!) by root-finding methods,
for complex z. The most satisfactory method sappears to be that. proposed by
Hyman [%0) and developed by Parlett [47. in a n.roer of programs. He makes
.se of the method of Laguerre tc¢ find the zerus of f(z), following by a form of
zero sJppress:on  Very satisfaclory recurrences are usedto evaiuate iz,
f'iz), and f"'z), as needed by the Lag.erre process. After the eigenvalues
’ hr have been fcund, they are suppressed by applying the Laguerre

l, v e o

process to

r
() TT oo
i=1

{ii) The LR-algorithm of R.tishauser [58' was an important. development..
Since it has now been pretty weil supplanted by the QR-aigorithm, we cmat

mention of it.
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(1ii) Francis [15, 16! in England, and Kublanovskaja [35] in the Soviet
Union devised the very interesting QR-algorithm. This is now widely considered
the most satisfactory eigenvalue algorithm for dense, stored unsymmetric matriaces.

The basic theorem is that an arbitrary real square matrix A can be
factored in the form A = QR, where Q is orthogonal, and wherc R 1s an
upper-triangular matrix with all diagonal elements ri,i nonnegative., If A
is nonsingular, then both Q and R ~re unique.

In f~ct, the computation is done by building up an orthogonal matr:x
QP such that Q?A = R, where R has the above properties.

As an aside, for nonsingular A, the reader will be more fomiliar with vlhe
stepwise determination of an upper-triangular matrix R with positive ey such
that A.R'l is an orthogonal matrix Q. This is the m~trix expression of the
familiar Gram-Schmidt process of analysis., It will perhaps surprise the reader
that the matrix Q resulting from the Gram-Schmidt algorithm is normaliy far

from orthogonal, because of rounding errors. On the other hand, if the same Q

1s determined so that Q¢A = R, the rounding errors are very small.

The basic QR-algorithm proceeds as follows., Let H = HO be a Hessecnberg
matrix. Fer k=0, 1, 2, ...y factor Hk in the fornm
Hk = CRRK ’

and then form

Tt 1s eas1ly shown that H is also a Hessenberg mn'rix.

k+l

Tne basic theorem is the following.

A

Tneorem. Let H have eigenvalues A

l, 2, ca s n

S~ T
[ ™
~N e+
— s oS

< l<.o< I
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Then the matrices Hk converge to an upper-tri-ngular matrix whose diagonal

elements sre the eigenvnlues of H

In the more usual case where [17) is not sctisfied, we find that H
converges in shape to a blockwise triangular matrix. (This means that outside

12 blockwise triangular matrix all elements of Hk tend to zerc, 3s k 2w ,
but th "t some elements of the blockwise triangular form may not converge. )
Moreover the 2-by-2 and l-by-1 diagonal blocks of the matrix Hk have
eigenvalues which in their totality converge to the eigenvalues of H.
For simplicity, consider a mrtrix H with eigenvalues
A A Anille M
0< ]< 2< < .
The R method for such a matrix converges with an error which is
k
) A
LA /Ay ]
The convergence would be more rapid i1f, instead of H, we dealt with the

matrix H - pI, where 0<p<A If p were practically equal to Kl,

1
the convergence would be extremely rapid. Modifications of the Qk-algorithm
have been devised that simulate this so-called origin shift which introduces -

P near Klu After one eigenvalue Kl has been i1solated, the QK method can tre:.

be applied to an n-1 by n-1 matrix with eigenvelues K2, AN Kn . New

I

origin shifts are then introduced to bring out A2 as rapidly as possible.
With well devised origin shifts, the whole process has been observed to conver:z-
with an average of less than two iterative steps per eigenvalue.

Most reseurch gces into the invention of corig:in shifts when some of “.a¢
eigenvalues nre comp.ex and of equal modulus. We shall not attempt to give t:o#
ideas.

A more recent convergence proof has been given by Wilkinson [62], but,
like the Francis proof, is given for an arbitrary matrix A, If one limits

himself to matrices of Hessenberg form. easier proofs can be given; see

Kahan (unpublished). 59



Normally, the eigenvalues are obtained in order of increasing modulus.
farlett [48] has given theorems stating precisely when this cccurs.

If H is a symmetric band matrix, then the QR-algoritim preserves
the band width during the iteration, and 1s very satisfactory. In particular,
R is a possible algorithm for computing eigenvelues of a symmetric tridiagonal
matrix.

If H is an unsymmetric band matrix, the QR-algorithm lcses the zers band.
above the diagonal.

So far, we have not mentioned getting the eigenvectors cof » Hessenverg

matrix H. This is the most difficult problem we shall mention. The prevailinn

method is that of inverse iteration . The eigenvai.es are assumed already known.

For any fixed eigenvalue A, one selects a vector X, arbitrar:.y. Then one
carries out an iteration of the foliowing form:

For each k=0, 1, 2, ..., find x by solving ‘he system

k+l

(18) (H - A L)xk+l = X

One continues until X is quite large. 1In easy cases, Xy is nearly an
eigenvector belonging to AN. Wilkinson [61, Chap. 9, discusses voriants of tiis
process. Varah [56} has written several algor:thms

If H 1s a real Hessenberg marrix, but A is a ccmplex «.zervalu=, one¢
has t.0 choose between doing compiex arithmetic, or s:-me judiciou.s.y selected
process with real arithmetiec.

Finally, one transforms X, back to the original ccordinare system cf A
by undoing the orthogonal transformations from A ‘o H.

If some of the eigenvalues of H are very close, the real problems beg:in.

A pair of close eigenvalues may in fortunate cases nave distinct coilumn eigenvector:s

that are far from psrallel; this represents an approximation to a doubie eigenvalue

Lo



with a linear elementary divisor, 1t i1s far more likely that a pair of close
eigenv-lues will have column eigenvectors that are almost parallel This re-
presents an ~nproximation to the infinitely more probable case of a double
eigenvalue with nonlinear divisors.

In the former case, it is not difficult to compute two eigenvectors that
are far from pnrallel. It is only necessary to carry out the iteration (18)
with different Xq» Or with two slightly different values of A,

In the latter case, it appears difficult to obtain much from the iteration
but a single eigenvector belonging to A, What should be dcne next? In part
one doesn't know what the problem proposer would like. In part one doesn't
know what is possible, Varah is carrying out research on the problem. He is
attempting to find an orthogonal basis for the invariant subspace of dimension 2
(in this case) belonging to N\.

For a "nice" matrix, Varah is alsc getting guaranteed error bounds for
all eigenvalues and all eigenvectors, using Gerschgorin theorems, as Wilkinson

recommends.

14, Conclusion and moral. The computationsal methods of linear algebra

are mcving into = stage where we have reasonably satisfactory methods for dense,
stored matrices A. The main exception is the problem of getting eigenvectcrs
with error bounds, for unsymmetric matrices. The algorithms have been refined

several times, and are being published, particularly in Numerische Mathematik.

Casual users of matrix algebra will do no better thmn to take such algorithms
"off the shelf" for their problems. The best algorithms are mainly written in
Algol 60. Even though the reader may use another language, it is unquesticnably
worthwhile for him to learn to read Algol 60, just in order to be able to read

these algorithms and adapt them to his own problems.
L1



No method of solving n computational problem is re-lly nav-i'asb < *. a
user until it is completely described in »~n algebr-ic computing lang.age and
made completely reliable. Before that, there are indeterminate =spects :n every
1lgorithm. Freauently the entire advantage of a certain computing rrocess .1es
:n the treatment of certain fine points which can hardly be suspe:'ed unt:i tney

nre completely programmed. This is the re~son why the ~mateur shouid eitner

9]

consult an expert, or take great p~ins to pick up ~ foolprocf ~lgoritam
5 the reason why professionals should concentrate very hsrd on Comp.cie _y

foolproofing the algorithms they devise, before p.tting therm on the =relf o

widespread use.

L2
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