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TOEPLITZ AND HANKEL OPERATORS
ON BERGMAN SPACES

KAREL STROETHOFF AND DECHAO ZHENG

Abstract. In this paper we consider Toeplitz and Hankel operators on the
Bergman spaces of the unit ball and the polydisk in C whose symbols are
bounded measurable functions. We give necessary and sufficient conditions on
the symbols for these operators to be compact. We study the Fredholm theory
of Toeplitz operators for which the corresponding Hankel operator is compact.
For these Toeplitz operators the essential spectrum is computed and shown to
be connected. We also consider symbols that extend to continuous functions on
the maximal ideal space of H°°(Ci) ; for these symbols we describe when the
Toeplitz or Hankel operators are compact.

1. Introduction

For a bounded domain Q in C", let V denote the Lebesgue measure on
£2 normalized so that Q has measure 1. For 1 < p < oo and a Lebesgue
measurable function /: Q -+ C let ||/||p = (¡n\f(z)\P dV(z)f/P . The Bergman
space Lpa(Çï) is the Banach space of analytic functions /: Q —► C such that
11/||p < oo. The Bergman space L2(Q) is a closed subspace of the Hubert
space L2(SAl, dV) with inner product given by (/, g) = Jnfi(z)g(z)dV(z),
for f, g £ L2(Çl, dV). Let P denote the orthogonal projection of L2(Q, dV)
onto L2a(Q) . For a function / e L°°(£2), the Toeplitz operator Tf: L2(f2) -►
L2(Q) and the Hankel operator Hf: L2(QA) -» L2^)1- are defined by

Tfg = P(fig),    Hfg = (I- P)(fig),        g £ L2a(Cl).
These are clearly bounded operators for every function / € L°° (Q). In this
paper we consider the question of characterizing the functions / £ L°°(Q)
for which these operators are compact on L2(Q), for SAI the open unit ball
B„ = {z eC": ||z|| < 1} or the polydisk D" = {z £ C": \zj\ < 1 for 1 < j < n}
in C" . The question of characterizing the bounded measurable functions on
D, the unit disk in C, for which the Hankel operator H y is compact was
raised by Sheldon Axler in [1]. Sheldon Axler answered a special case of this
problem in [2] where he considered conjugate analytic symbols on the unit disk
D. Recently both of the authors independently obtained a complete answer for
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774 KAREL STROETHOFF AND DECHAO ZHENG

Axler's question in [17, 18, 21]. In this paper we will combine and extend our
results.

Throughout the paper let Q. denote either the unit ball B„ or the polydisk
W . In our characterization of the compact Toeplitz and Hankel operators on
L2(í¿) the Möbius transformations on Q will play a crucial role: for each
X £ Q there is an automorphism of Í2 with the following properties:

(i) <PxW = 0, and
(ii) cpx ° tpx = idn (the identity map on Q).

For the unit ball B„ these Möbius transformations are described in §2.2 of [16];
for the polydisk D" they are described in §10.1 of [13].

We denote the topological boundary of Q in C" by «9Q. The statement
X —> 9Í2 will simply mean that X £ Q and the usual distance of A to dQ. tends
toO.

In the first part of the paper (§§2-4) we consider general bounded symbols
on Q. In §2 we will give the preliminaries needed for the rest of the paper.
In §3 we will give our characterization of the compact Toeplitz and Hankel
operators. Our main result in this section states that for Q the unit ball or
the polydisk in C" the Toeplitz operator Tf is a compact operator on L2(Q)
if and only if for some p £ [1, oo), ||P(/° (pf)\\p -» 0 as 1 -* <9Q; and the
Hankel operator Hf is a compact operator on L2(Q) if and only if for some
pe[l,oo), \\f°<Px-P(f°<pf)\\p —* 0 as X^dSAl. We give several descriptions
for compactness of Hankel operators with Berezin symbols in §4. In §5 we will
consider Toeplitz operators of bounded symbols for which the Hankel operator
is compact. For these Toeplitz operators we describe the essential spectrum, give
necessary and sufficient conditions for the operator to be Fredholm, and for the
Toeplitz operators which are Fredholm we prove an index theorem. In §6 we
specialize to symbols that extend to continuous functions on the maximal ideal
space of H°° (Q). For these symbols we give a condition for compactness of the
Toeplitz operator, and we give several conditions equivalent to compactness of
the Hankel operator. We end the paper with some remarks and open questions
in §7.

2. Preliminaries

Point evaluation is a bounded linear functional on the Hilbert space L2(Q),
thus for every X £ Q there exists a unique analytic function kx £ L2(Q) such
that

fi(X) = (fi,kx),    for all / £ L2a(Q).

These functions kx (X £ Q) are called the reproducing kernels for L2(Q).
For the unit ball and the polydisk in C" these reproducing kernels can be
computed explicitly (see, for example, §1.4 in [13]): for Í2 = B„ we have
kx(z) = (1 - (z.A))-"-1 (z £ B„). For / e L°°(Q), g £ L2(Q,dV) and
z £ Q. we have (Tfg)(z) = (P(fg), kf) = (fig, kf, so we get thé following
formula for Tfg :

(1) (Tfg)(z)= ¡ f(w)g(w)kffff)dV(w), Z6Í2.
Ja

Also using the reproducing property of kz we get the following formula for
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TOEPLITZ AND HANKEL OPERATORS ON BERGMAN SPACES 775

Hfg:

(2) (Hfg)(z)= (\f(z)-fi(w))g(w)kf(ff)dV(w),        z£Q.
Ja

For X £ Q the substitution z = cpx(w) results in the Jacobian change in measure
given by dV(w) = (J-^cpf)(z)dV(z), where J^tpx is the real Jacobian of cpx-
Using that J^cpx = \Jc<Px\2 (Proposition 1.4.10 in [13]), it is easy to verify that
Jr<Px is given by the formula (JtLtpx)(z) = \kx(z)\2/kx(X). Thus, for a Lebesgue
integrable or nonnegative Lebesgue measurable function h on Q, we have the
change-of-variable formula:

(3) jji(cpk(w))dV(w) = 1^-)j^h(z)\kx(z)\2dV(z).

In the next section we will give our characterization of compact Toeplitz and
Hankel operators. The following proposition, which gives formulas for the
images of the reproducing kernels kx (X £ Q) under the operators Tf and Hf,
will play an important role in our characterization.

Proposition 1. Let f £ L0C(Q). For each X £ Q we have

(4) Tf(kx) = (P(fiocpx)ocpx)kx

and

(5) Hf(kx) = (fi-P(fiocpx)otpx)kx.
Proof. Take / € L°°(Q) and X £ Q.. Clearly it suffices to prove (4). Let z £ Q.
Using (3) we see that for a function g £ L2(Q) we have ((f°(pf)kx • ig°<Pf)kfl =
hiX)(f, g) = kx(X)(P(f), g) = ((/>(/) o cpf)kx, (g o cpf)kx). Replacing / by
/ o tpx and g by (g o tpf)/(kx ° <Px) (which using that the kx never vanish
and are bounded on Í2 is easily seen to belong to L2(Q)) we see that for every
g £ L2(Q) we have ((P(f° (pf) ° Vx)h, g) = (fkk, g), from which we conclude
that Tf(kx) = P(fikx) = (P(fi o tpx) o cpx)kx.    D

3. Compact Toeplitz and Hankel operators
In this section we will characterize the functions / in L°°(Q) for which

the Toeplitz operator Tf or the Hankel operator Hf is compact. We will need
estimates on certain integrals involving the reproducing kernels. For q £ [1, oo)
and «s > 0 we introduce the notation

A/?,£(Q) = sup / \kx(w)\^-2^kw(wY"dV(w).
xeaJa

It will be important to know when these quantities are finite. The following
lemma tells us when this is the case for Q the unit ball or the polydisk in C" .

Lemma 2. Let fi be the unit ball or the polydisk in C" . Then there exist qn > 1
and en > 0 such that MqyC(SAl) < oo for every q £[l, qçf) and e £ (0, ec¡].
Proof. For fi = B„ it is an easy consequence of Proposition 1.4.10 in [16]
that the above statement holds with qa = (2m + 2)/fin + 1) and e^ =
1/(2« + 2). Using that the reproducing kernel of the polydisk is the prod-
uct of the reproducing kernels of the disk, the statement for Í2 = D" follows
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776 KAREL STROETHOFF AND DECHAO ZHENG

from that for the disk D = Bi : the numbers q¡i = 4/3 and er¡ = 1/4 are easily
seen to give the desired statement.   D

The following lemma gives an estimate that will be used in the proofs of The-
orems 6 and 7, our characterization of compact Toeplitz and Hankel operators
on the Bergman space L2(Q).

Lemma 3. Let F be a nonnegative measurable function on fix Si, 1 < q < oo,
P = Q/(q - I) and e > 0. Then for every w € Í2 :

/ F(w, ^(z))|Â^(z)|fcz(z)£ dV(z)
Ja

i/p
< kviwYM^eiQ)1'* (J Fiw, zf dV(z)\

Proof. Let F be a nonnegative measurable function on SAI x Q. In the integral
at the left make the change-of-variable z = cpw(u). Using (3) we get

[ F(w,tpw(z))\kw(z)\k2(z)edV(z)
Ja

= kw(wf Í F(w,u)\kwiu)\{-2ekuiuYdViu)
Ja

< kwiw)eMq,eia)1t" (Í F(w, zf dV(z)\

(by Holder's inequality).   D

In the proofs of Theorems 6 and 7 we will also need the estimates contained
in the following lemma.

Lemma 4. Let f £ L°°(£2) and e > 0. Then for every z £ SI:

(6) / \P(fiotpw)(cpw(z))\\kw(z)\kw(w)edV(w)<Mx,e(ii)2\\fi\\oûkz(zY
Ja

and

(7) / \f(z)-P(fog,w)(tpw(z))\\kw(z)\kw(wYdV(w)
Ja

<2Ml,e(SÏ)2\\f\\00k2(zY.
Proof. Let fi £ L°°(SÏ), e > 0, and z £ SI. We will only show (6); the proof
of (7) will be similar. Using (4) and (1) we have

\Pifi° (Pw)ifwiz))\ |Mz)| = \iTfkw)(z)\ = I / /(u)M«0M")^(m)
I Ja

<ll/l|oo /|M")IIM")|dr(M).
Ja

Thus

(8)
Í \P(fiocpw)(cpw(z))\\kw(z)\kw(wYdV(w)

Ja
< j \kz(u)\(J \kw(u)\kw(wYdV(w)jdV(u)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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As in the proof of Lemma 2, a change-of-variable yields

(9) / \kwiu)\kw(w)edV(w) < Mx,£(Si)ku(uY.
Ja

Applying inequality (9) twice in (8) we get (6).   D

To estimate the norms of certain (integral) operators we will make use of the
Schur Test as stated in the following proposition [11, Theorem 5.2].

Proposition 5. Let (X, v) be a measure space and K a measurable function
on X x X. Suppose there is a positive measurable function h on X and positive
numbers a and ß such that

(10) f \K(x,y)\h(y)dv(y)<ah(x)   for [u]-a.e. x in X
Jx

and

(11) ( \K(x,y)\h(x)dv(x)<ßh(y)   for [v]-a.e. y in X.
Jx

Then

(Af)(x) = i K(x, y)f(y) dviy),        / 6 L2(X, v) and x £ X,
Jx

defines a bounded linear operator A from  L2(X, v)   into itself.   Moreover,
\W<aß.

We are now ready to state and prove our main result, contained in Theorems
6 and 7. The proofs of these theorems will be combined into one proof.

Theorem 6. Let f£L°°(Si). The following statements are equivalent:
(a) Tf is compact;
(b) ||P(/o cpf)\\p -»0 as X -» dSl for some p £ [1, oo) ;
(c) \\Pifio tpx)\\P ̂ 0 as X^dSi for every p £ [1, oo).

Theorem 7. Let f£L°° (Si). The following statements are equivalent:
(a) Hf is compact;
(b) \\f ° n - ?(f ° 9x)\\p ~* 0 as X^dSi for some p£[l, oo);
(c) \\fiotpx-Pifiotpx)\\p^O as X^dF for every p£ [I, ™).

Proof of Theorems 6 and 7. Fix a function / e L°° (Si). Let Mf be the
multiplication operator L2(Í2) —> L2(Si, dV) defined by Mf(g) = fig for
g £ Ll(Si). Writing Q for either P or / - P we note that both Hf and Tf
are of the form QMf ; the proofs of Theorems 6 and 7 will be combined into
one proof.

Proof that (a) =*• (b). Suppose that the operator QMf is compact. By the
reproducing property we have that \\kx\\\ = kx(X). If g is a bounded analytic
function on Si, then (g, kx/WkxWf) = kx(X)~l/2g(X) -> 0 as A -» dSi (because
kx(X) —> oo as 1-» oil). Since the bounded analytic functions on Si are
dense in the Bergman space L2(ß), this shows that /ca/II^IU -» 0 weakly in
L2(Si) as X —* dSi. Compact operators map weakly null sequences to norm null
sequences, thus we have IIÔAL/^/II^Albilb —» 0 as X —► dSi. By Proposition
1, QMf(kf) = (Q(f o cpf) o cpf)kx . Using change-of-variable formula (3) it is
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778 KAREL STROETHOFF AND DECHAO ZHENG

easily seen that llßM/fo/IIAalWIb = WQifi ° <Px)\h thus \\Q(fio n)\\2 ̂  0 as
X^dSi.

Proof that (b) => (c). Suppose that \\Q(f ° <Px)\\Po -»0 as X -» dSi for some
Po £ [1, oo). Let p £ [1, oo) be arbitrary. If p < Po, then ||<2(/° <Px)\\P <
WQif ° <Px)\\Po, thus ||Ö(/°^)llp -» 0 as X -> dSi. If p > p0, then using
Holder's inequality it is easy to verify that

WQifonWp < \\Qif°n)\\Pl2\\Qif°<Px)\\pc,-l/2,
where q = Poi2p - l)/(2po - 1) > 1. Now, since the Bergman projection P
maps Lq(Si, dV) boundedly onto Lqa(Si) and Q is either P or I-P, there
is a constant Cq such that

\\Qif-n)\\q < Cq\\Q(fo <px)\\q < QH/lloo.
Hence \\Q(fotpx)\\pP < (QH/IU'-^lIßi/o^)^2, which immediately implies
that also \\Q(f o cpf)\\p -» 0 as A->0£2.

Proof that (c) => (a). Suppose that \\Q(f o tpk)\\p ̂  0 as X ^ dSi for
every p £ [1, oo). We will prove that the operator (QMf)* is compact by
showing that (QMf)* can be approximated-in the operator norm-by compact
operators.

Let g G Q(L2(Si, dV)). Then (QMf)*g £ L2a(Si), so that for w e Si we
have

((QMf)*g)(w) = ((QMf)*g ,kw) = (g, (Q(fi o tpw) o tp^K,)

=  [ g(z)Q(fictpw)(g,w(z))kw(z)dV(z).
Ja

In view of this we define for 0 < r < 1 an operator Sr: Q(L2(Si, dV)) —> L2(Q)
by _

(Srg)(w) = Xra(w) f g(z)Q(fiocpw)(cpw(z))kw(z)dV(z),
Ja

for g £ Q(L2(Si, dV)), w £ Si. Then Sr is a Hilbert-Schmidt operator. To
see this, observe that change-of-variable formula (3) and Fubini's Theorem give

j ^JsîXraiw)\Q(fiotpw)(ç,w(z))\2\kw(z)\2dV(z)^ dV(z)

kw(w)\\Q(fio<pw)\\22dV(w)<oo,
JrC.Ira

and it follows that Sr is Hilbert-Schmidt. Using ( 12) and the definition of Sr
we see that for h £ Q(L2(Si, dV)) and w e Q :

(((QMf)* - Sr)g)(w) = f K(w, z)giz) dV(z)
Ja

where K(w , z) = Xa\raiw)Qif o <pw)(tpw(z))kw(z). We claim .that Sr -»
(QMf)* in operator norm as r —» 1 . Since the Sr are compact, it will fol-
low from this claim that (QMf)* is compact, and therefore QMf is compact.
To prove our claim we will apply Proposition 5 to get an estimate on the opera-
tor norm \\(QMf)* -Sr\\. For e = en, the constant from Lemma 2, let h(w) =
kw(w)e(w £ Si). By Lemma 4 inequality (11) in Proposition 5 is satisfied with
j? = 2A/1,e(cy)2||/||0O. For w,z£ Si put F (w , z) = Xa\raiw)\Q{fi o cpw)(z)\.
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Let qa be as in Lemma 2. Choose q £ (1, qçf, and let p = q/(q - 1) be
the conjugate exponent of q. Using that \K(w, z)\ = F(w, cpw(z))\kw(z)\,
Lemma 3 tells us

j K(w,z)kz(zYdV(z) < kw(wYMq^(Sifl"(j F(w, zf dV(z)\

= kw(wYMq,e(Sif">xa\raiw)\\Qifi°<Pw)\\P,
so that inequality (10) in Proposition 5 holds with

a = Mq,e(Sifl* sup{||ß(/° <px)\\p: X £ Si\rSi}.

It follows from Proposition 5 that

\\(QMf)*-Sr\\2<2MXt£(Si)2Mq,E(Si)l'«\\fi\\oc   sup   \\Q(fio n)\\p.
xea\ra

Since \\Q(fi° <Px)\\P -» 0 as X -> dSi our claim that Sr -> (QMf)* in operator
norm as r —► 1 ~ follows.   D

For f £ L2(Si, dV) define /, the Berezin symbol of /, by

f(X) = (fkxl\\kx\\2,kx/\\kx\\2)

= 1^-)lj(z)\kx(z)\2dV(z),        AeQ.

Note that by change-of-variable formula (3), f(X) = /n/° <PxdV (X £ Si).
Thus for a function / e L2(Q) we have, Jafi° fxdV = (/o cpf)(0) = f(X),
and therefore f = f.

As in the above proof, for / e L°°(Si) let My be the multiplication operator
L2(Si) -* L2(Si, dV) defined by Mf(g) = fig for g £ L2(Si). As an easy
corollary of Theorems 6 and 7 we get the following result.

Corollary 8. Let fi£L°°(Si). The following statements are equivalent:
(a) Mf is compact;
(b) \f\2(X)-*0 as X^dSi.

Proof. It is easily verified that for X £ Si :

(13) |7T2(a) = ||/o tpxWl = \\Pif°n)\\l + Wfiotpx - Pifocpx)\\2.
So if \fi\2(X) --> 0 as X --> dSi, then both

\\Pif°<Px)\\2^0   and   ||/o^-i»(/o^)||2-0   as X - dSi,

so that by Theorems 6 and 7 both 7y and Hf are compact, thus A/y is com-
pact.

It is easily seen that |/|2(A) = HA/y^/p^k)!!2;. We have already observed
that A^/II^aIU -* 0 weakly in L2(Í2) as X -» dSi, so if Afy is compact, then
\f\2(X) ̂ 0 as X^dSi.   D

In the next section we will frequently make use of the following consequence
of the above corollary.
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Corollary 9. Let f £ L°°(Si) be supported on a compact subset of Si. Then both
Tf and Hf are compact.

Proof. If / £ L°°(Si) has compact support, then \f\2(X) -► 0 as X -> dSi.   D
As a corollary of Theorem 7 we also obtain some of the main results in [8].

Corollary 10. Let f £ L°°(Q). The following statements are equivalent:
(a) Hf and Hj are compact;

(b) \\f o tpx - fiW\\P ^ 0 as X^dSi for some p£ (I, oo);
(c) ||/ o tpx - f(X)\\p - 0 as X - dSi for every p £ (1, oo).

Proof. Proof that (a) => (c). Suppose that Hf and Hj are compact and
p £ (1, oo). Then

\\fotpx-PiJotpx)\\p = 117o cm - Pi?* <Px)\\P - 0   as X -> dSi.

By continuity of P we get ||P(/°çm) - fiX)\\p = ||P(/°çm -P(fo n))\\p - 0
as A -> «9Í2. Combining this with ||/o ^ - P(/o ^)||p -► 0 as X -» ôfi
statement (c) follows.

That (c) => (b) is trivial.
Proof that (b) =► (a). Suppose that ||/ o cpk - f(X)\\p -> 0 as A -> <9Q for

some p G ( 1, oo). Again using the continuity of P it follows that

l|P(/°rM)-/Wlli,-0   asA-c/fi,
thus ||/o ç»A - P(/o cpf)\\p -> 0 as A -> «9Í2. By Theorem 7, //y is compact.
Since also \\f ° <Px~ fW\\P —* 0 as A —► 9r2 the above reasoning shows that
Hj is also compact.   D

In §5 we will discuss the essential spectrum of the Toeplitz operators for
which the corresponding Hankel operator is compact. We will need some results
relating the Toeplitz and Hankel operator associated to / with those associated
to /. This will be done in Proposition 12. First we need a lemma.

Lemma 11. Let g£L2(Si,dV) and e>0. Then \\g\\2 < 2n+lMx^(Si)\\g\\2.
Proof. It is readily verified that \kw(z)\ < 2"+ikw(w) (remember that Si is the
unit ball or the polydisk in C), so that for g £ L2(Si, dV) and w £ Si

\g(w)\<2n+l i \g(z)\\kw(z)\dV(z).
Ja

Using (9) and Proposition 5 (with h(w) = kw(w)e) the statement follows eas-
ily.    D

Proposition 12. Let fi£L°°(Si) besuchthat Hf is compact. Then:
(1) T _~ is compact;
(2) Hj is compact.

Proof. Suppose / e L°° (Si) is such that Hf is compact. Let s = £e¿ be as in
Lemma 2. Let X £ Si. Apply Lemma 11 with g = f o cpx - P(fio tpf). Since
P(/o tpf) £ L2(Si) its Berezin symbol is equal to itself. Also, if w £ Si, then by
Cartan's Theorem [16, Theorem 2.1.3] there exists a unitary n x n matrix U
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suchthat U(Si) = Si and cpxocpw = g>9í{W)°U, and consequently (f°cpf)~(w) =
Iaf0V>x°?wdV = Jafo cpn(w) dV = ficpxi™)) • Thus g = f°n- Pifotpx),
and by Lemmas 2 and 11 there is a finite constant C such that for every X £ Si :

(14) ||/o tpx - Pifotpx)\\2 < CWfotpx - Pifiotpx)\\2.

By Theorem 7 we have ||/o cpx - Pifo cpf)\\2 -»0 as X -> dSi, so that by (14)
\\fio<Px-Pifio(px)\\2 - 0 as A - an, hence \\foq>x-fon\\2 - 0 as X - dSi.
By continuity of P, \\P(f ocpx - fio ç>f)\\2 -* 0 as X —> <9Q, and by Theorem 6
it follows that T ~ is compact. Also ||/o cpx - P(/° çm)I|2 -»0 asü-» dSi,
so that also //- is compact (by Theorem 7).   D

4. Hankel operators with Berezin symbols
In this section we will give several descriptions for compactness of a Hankel

operator associated with the Berezin symbol of a bounded measurable function.
It is easy to see that the Berezin symbol of a bounded measurable function is

continuous. We will write BC(Si) to denote the algebra of bounded continuous
functions on Si. Let ßSi denote the Stone-Cech compactification of Si. Every
function / in BC(Si) has a unique continuous extension to ßSi which we
will denote by f& . Let <P be the set of all possible limits in the product space
(ßSi)a of nets {cpxfi for which Xa —► dSi. Note that by TychonofFs Theorem
the space (ßSi)n is compact, so that every net {Xa} in Q tending to dSi has a
subnet {wy} such that {cpWy} converges in (ßSi)n to some cp e <P. Also note
that if {tpf} is a net in (ßSi)a such that cpa -> cp in (ßSi)a , then for all X £ Si,
<pa(X) -+ cp(X) in ßSi (because the projection of (ßSi)n onto its A-coordinate
is continuous). So if also / £ BC(Si), then fio <pa —► /^ o cp pointwise on Si.
The Q>-parts of ßSi are by definition the images of the elements in O. We
introduce two subalgebras of BC(Si). Let AO<P (which stands for "analytic
on O-parts") be defined by

ACRP = {fi£ BC(Si): fß o tp £ H°°(Si) for all cp £ <!>} ,
and let COO (which stands for "constant on O-parts") be defined by

COO = {/ £ BC(Si): fß o cp is constant for all cp £ <D}.

In the following theorem we will relate these algebras to compactness of Hankel
operators with Berezin symbols. We first need to introduce the Bergman metric
and recall a few facts about this metric proved in [6].

The Bergman metric b is a complete Riemannian metric on Si which gives
the usual topology on Q. By definition, b is the integrated form of the in-
finitesimal metric

(^(z))=Gäz|z^l0g/Cz(z))-

As a special case of Theorem F in [6] we have that for a smooth curve o: [0, 1]
-+Si anda /GL°°(n)

(15) pliait)) -   J dt
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for some positive constant Cy only depending on /, where 5 = s(t) is the arc-
length of a with respect to the Bergman metric b . Choosing for a a geodesic
joining two points z and w in Si it follows immediately that

(16) \fi(z) - f(w)\ < Cfb(z, w),    for z,w£ Si.
We have already noted that if g £ BC(Si) and {wa} is a net in Si tending

to dSi such that cpWa —► cp in (ßSi)Q, then g o tpWa —> gß o cp pointwise on
Si. The following lemma shows that for Berezin symbols this convergence is
uniform on compact subsets of Q.

Lemma 13. Let f £ L°°(Si), and let {wa} be a net in Si tending to dSi such
that tpWa —> cp in (ßSi)a. Then fio tpWa converges to fß otp uniformly on each
compact subset of Si.
Proof. Suppose that / e L°°(Si). We have already seen that focpWa converges
to fß o cp pointwise on Si, so it suffices to prove that the family {/ o tpWa} is
equicontinuous on each compact subset of Si. Inequality (16) and the Möbius-
invariance of the Bergman metric b imply that |(/o cpwf)(z) - (f o tpWa)(w)\ <
Cfb(z, w), from which the equicontinuity of the family {/o tpwf\ follows at
once.   D

The following theorem relates the algebras AOQ> and CO<& to compact-
ness of the Hankel operator associated with the Berezin symbol of a bounded
measurable function.
Theorem 14. Let f £ L°°(Si). Then:^

( 1 ) Hj is compact if and only if f £ AO<& ;
(2) both Hj and H- are compact if and only if f £ CO<f>.

Proof. Since clearly COO = AOQ>nAO<J> it suffices to prove (1). By Theorem 7
we have that //- is compact if and only if \\focpx-Pifi0(Px)\\2 —> 0 as X —> dSi.
By the previous lemma, if {wa} is a net in Si tending to dSi suchthat tpWa —► cp
in (ßSTf1 ,ihen \\f°cpWa-fßocp\\i —> 0. Using this observation, the compactness
of Hj is easily seen to be equivalent with \\fiß o tp - P(fß o tp)\\2 = 0, i.e.,

fß otp = P(fß o cp), for every cp £Si.   D
In the sequel we will also need the following lemma.

Lemma 15. Let tp € 0 and w £ Si. Then there exist a ip £<S> and a unitary n
by n matrix U such that U(Si) = ¡Q and tp otpw = tp oU.
Proof. Fix cp £ <P and w £ Si, and let {^Q} be a net in Si such that wa —> dSi
and tpWa -y tp in (ßSi)a . By Cartan's Theorem [16, Theorem 2.1.3] there is a
unitary « by « matrix Ua such that Ua(Si) = Si and cpWa o tpw = cpZa o Ua,
where za = cpWa(w). It is easy to verify that also za —> dii. Using that the
unitary group is compact, we may assume—by going to a subnet which we do not
relabel—that {cpzf} converges in (ßSi)a , say to \p, and that {Ua} converges
in the unitary group, say to U. Clearly U(Si) = Si, and since za —► dSi,
\p £ O. It is now readily verified that cp o tpw = ip o U.    D

For w £ Si and r £ (0,1) let the pseudohyperbolic ball Si(w, r), with
center w and radius r, be defined by Si(w, r) = tpw(rSi). For the unit ball
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B„ these pseudohyperbolic balls are ellipsoids (see §2.2.7 in [16]); for the poly-
disk D" these pseudohyperbolic balls are cartesian products of pseudohyper-
bolic disks in D.

The following proposition gives a more precise description of the algebra
AOQ>. The result is a generalization of Sheldon Axler's description of AOP
for the unit disk [3]. The "distance" in the statement of this proposition is with
respect to the supremum norm.

Proposition 16. Let f £ L°°(Si). Then the following statements are equivalent:
(i) f£AO$;
(ii) distance(/|Q(w, r), H°°(Si(w, r))) —► 0 as w —► dSi for every r £

(0,1);
(hi) distance(/|Q(t(7, r), H°°(Si(w, r))) —► 0 as w —> dSi for some r £

(0,1).
Proof. Let /el°°(fi).

Proof that (i) =>• (ii). Suppose that (ii) does not hold. Then there exist
r £ (0, 1), ô > 0, and a sequence {wj} in Q such that w¡ -» dSi as j -* oo,
and

distance(/|Q(w;, r), H°°(Si(Wj, r))) >S,    for all ; > 1.
Let {wa} be a subnet of {wj} such that {cpwf¡ converges in (ßSi)a, say to
cp £ O. Then by Lemma 13, /o cpWa -»/'oji uniformly on rSi. For every
index a we have

distance(/o cpwfrSi, H°°(rSi)) > Ô,

so it follows that distance(/ffo«j!)|rQ, H°°(rSi)) > 3, which implies that fißotp £
H°°(Si), thus / i AOQ>. This proves that (i) implies (ii).

That (ii) => (hi) is trivial.
Proof that (hi) =>■ (i). Suppose that r £ (0, 1) is such that

distance(7|ß(w, r), H°°(Si(w , /■))) ̂0   as w -> dSi.
Take cp £ O. Let {wa} be a net in Si such that wa —» «9Q and ^ —» 9)

in (>9Q)Q . For each index a let ga £ H°°(Si(wa , r)) be such that

\\f\Si(wa,r) - fou«, < 2distance(/|Q(u;a, r), H°°(Si(wa, r))).

Then ||7|ß(toa , r) - foil«, -> 0. Putting ha = gao cpWa,  we have

||7°ÇV,k»Q-/Za||oo -» 0.

Since {Jo cpwf} is uniformly bounded on rSi, there is no loss of generality
in assuming that the same is true for {ha} . Then there is a subnet {hv} and
h £ H°°(rSi) such that hv -> Ä weak-star in Z/°°(rQ). In particular, hv -> h
pointwise on rSi. But also 7° ?V -> fß ° ^ pointwise on rfi, and ||7°
^««„kß — A„||oo —» 0. We conclude that fß o cp = h on riî, thus 7^ ° <P is
analytic on rSi.

Now let ty £ Si be arbitrary. By Lemma 15 there is a unitary « by « matrix
U and a 1/ e O such that t/(A) = Si and cp o cpw = y/ o U. By the previous
paragraph fiß o\p is analytic on rSi. Because U maps rSi analytically onto
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itself, we see that fß o y/ o U is analytic on rSi, i.e., fß o cp o cpw is analytic
on rSi. Thus fß o cp is analytic on Si(w , r). Because w £Si was an arbitrary
point of Si, fß o tp is analytic on all of Si. This holds for every cp £<f>, hence
f£AOd>.   D
Remark. It is clear from the proof that the above proposition remains true if the
pseudohyperbolic balls Si(w , r) are replaced by sets cpw(G), where G is a fixed
nonempty open subset of Si whose closure is contained in Si. In particular,
the proposition holds for the balls with respect to the Bergman metric.

The following proposition gives a description of the algebra COO in terms
of the oscillations over pseudohyperbolic balls of a fixed (pseudohyperbolic)
radius. The result is a generalization of Sheldon Axler's description of COP
for the unit disk [3].

Proposition 17. Let f £ L°°(Si). Then the following statements are equivalent:
(i) f£COd>;
(ii) sup{|/(z)-/(u;)|: z £ Si(w, r)} -> 0 as w -> dSi for every r £ (0, 1);
(Hi) sup{|7(z)- J(w)\: z £ Si(w, r)} —> 0 as w —y dSi for some r £ (0, 1).

Proof. Let f£L°°(Si).
Proof that (i) => (ii). Suppose that (ii) does not hold. Then there exist

re (0,1), á > 0, and sequences {wj} in Si and {X¡} in rSi such that
Wj —y dSi as 7 -> oo and

1(7° (PwfiXj) - fiWj)\ >S,    for all j > 1.
Let {wa} be a subnet of {wj} such that tpWa —> cp in (/ííi)" for some cp e O.
Since the net {Xa} is contained in a compact subset of Q, by going to a subnet
(that we will not relabel) we may assume that Xa —> X for some X £ Si. By
Lemma 13 we have (7° <Pwa)(Xa) —y (fß ° Ç>)(X). On the other hand, fi(wa) =
ifio<Pwa)iO) -* (fßotp)(0). Sincejor every index a, \(JocpWa)(Xa)-J(wa)\ >ô,
it follows that \(fß o tp)(X) - (fß o <p)(0)\ > ô , hence fiß o tp is not constant.
This proves that (i) implies (ii).

That (ii) =>■ (hi) is trivial.
Proof that (hi) =-> (i). Suppose that sup{|/(z) - f(w)\: z £ Si(w ,«-)}-» 0

as w —y dSi for some r £ (0, 1). Take tp £ O. Let {wa} be a net in Si
such that wa —y dSi and tpWa —» cp in (ßSi)a. For X £ rSi, \(f o cpWa)(X) -
fiwa)\ < sup{|7(z) - fiwa)\: z £ Si(wa, r)}, thus (Jo cpwf)(X) - J(wa) -y 0.
On the other hand, (7° <Pwa)iX) -+ if o <p)iX) and J(wa) -* (fß o tp)(0). Thus
(Jß o tp)(X) = (fß o cp)(0), and we conclude that fß o cp is constant on rSi.

Now let w £ Si be arbitrary. By Lemma 15 there is a unitary n by n matrix
U and a ip £ O such that U(Si) = Si and^ tp o cpw = \p o U. By the previous
paragraph Jß o y/ is constant on rSi, so fiß o \p oU is constant on rSi, i.e.,
Jß o cp o cpw is constant on rSi. Thus Jß o cp is constant on Si(w , r). By an
easy covering argument we conclude that fiß o cp is constant on all of Si. This
holds for every cp £ O, hence J £ COO.   □
Remark. Again it is clear from the proof that the above proposition is also
true if the pseudohyperbolic balls Si(w, r) are replaced by sets tpw(G), where
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G is a fixed nonempty open subset of Q whose closure is contained in Si.
In particular, the proposition holds for the balls with respect to the Bergman
metric.

5. The essential spectrum of Toeplitz operators

Let ^A(L2(Si)) denote the Banach algebra of the bounded linear operators
on L2(Si), and let A% denote the ideal of compact operators in Az?(L2(Si)).
For an operator T in J¿?(L2(ST)) the essential spectrum of T, denoted by
oe(T), is by definition the spectrum of the operator T + 3AA in the Calkin
algebra Jïf(L2(Si))/Aî?, i.e., oe(T) is the set of all complex numbers ( such
that T - ¡A + X is not invertible in S?(L2(Si))/5Í.

Let AQ(Si) = {f £ L°°(Si): Hf is compact}. It is well known that AQ(Si)
is a closed subalgebra of L°°(Si) (see for example p. 475 of [4]). In this section
we will describe the essential spectrum of the Toeplitz operator Tf for / in
the algebra AQ(Si).

For E c C" , let cl E denote the closure of the set E in C" . It is easy to
verify that C(clB„) c AQ(Mn). Since trivially //°°(B„) c ^ß(B„), it follows
that the algebra //°°(B„) + C(clB„) is contained in ^ß(B„). Thus the results
in this section generalize the results of [14].

We will need the following lemma.

Lemma 18. Let F £ AQ(Si) be such that for some ô > 0, |P(ií;)| > ô for all
w£Si. Then l/FeAQ(0).
Proof. Suppose F £ AQ(Si) is such that for some S > 0, |F(w)| > ô for
all w £ Si. Put G = l/F. Then clearly G £ L°°(Si). We must show that
G £ AQ(Si), which by Theorem 7 is equivalent to showing that

\\Gotpx-P(Gotpx)\\2^0

as X —y dSi. Let {Xm} be a sequence in Si tending to dSi. By the proof of
Proposition 12, | |P" o tpXm - F o cpXm \ \i -> 0, and thus—by going to a subsequence
—we may assume that F o cpxm - F o cpXm —y 0 almost everywhere on Si as
m —y oo. Now let {Xa} a subnet of {Xm} such that tpXa —> cp in (ßSi)n for
some tp £ O. By Proposition 12 we have F £ AQ(Si), thus the function
h = Fß o cp £ H°°(Si). Since \\F o cpka - F o <pxa\\2 -»Owe have F o cpka -> h
in L2(Q, dV). Also note that \h(w)\ > ô for all w £ Si. It follows"from
\\Gotpxa-l/h\\2<\\Fotpxa-h\\2/ô2 that ||G o cpXa - 1/A||2 - 0. Applying P
we also get \\P(G o cpxf) - 1/A||2 -» 0, thus ||G o cpla - P(G o ̂ J||2 -, 0. We
conclude that \\G ocpx- P(C? o cpf)\\2 -► 0 as X -»■ dSi, and by Theorem 7, HG
is compact, i.e., G £ AQ(Si).   G

It will be convenient to make use of the following well-known identity which
gives a simple relationship between Toeplitz and Hankel operators:

(17) Tgf - TgTf = H±Hf,
for /, g £ L°°(Si).

The following theorem describes the essential spectrum of the Toeplitz oper-
ators for which the corresponding Hankel operator is compact.
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Theorem 19. Let f £ AQ(Si). Then

ae(Tf)=   f)  d/(0\rO).
0<r<l

Proof. Let / £ AQ(Si). We will divide the proof into several steps.
Step 1. Suppose that Ç $ clf(Si\rSi) for some r £ (0, 1). Define the

function g: Si -» C by g(z) = (f(z) - Q~l if z g Si\rSi; g(z) = 1 if
z g rSi. Then g £ L°° (Q) and g(/ - f ) = XaVa + ifi~ QXra , so that by ( 17)
we have

(18) TgTf^ = I + T{f_c_X)Xra-HjHf.
Since both the operators Hf and 7(/_f_i)Zifl at the right-hand side of (18)
are compact it follows that 7y_{ + Ji is left-invertible in the Calkin algebra
AA?(L2a(Si))/A%. Reversing the roles of /- Ç and g we also have

(19) Tf_cTg = I + T{f_^X)Xra-H±Hg.

Put F = (f - Qxava + Xra • Then clearly HF is compact, i.e., F £ AQ(Si).
There is a ô > 0 such that \F(w)\ > ô for all w £ Si. So by Lemma 18,
l/F £ AQ(Si). But 1/F = g, so Hg is compact. It follows from (19) that
Tf^+X is also right-invertible in S?(L2a(Si))/3ÍA . Thus Ty-Ç+JT = Ty^+JT
is invertible in 5?(L2a(Si))/5?, so that C $ GeiTy). We conclude that ae(Tf) C
cl/(Q\rQ) for all re(0, 1).

Step 2. By Proposition 12, 7", 7 is compact, thus ae(Ty) = ae(T~), so that

by Step 1, oe(Tf)c clJ(Si\rSi) for ah r £ (0, 1).
Äep 3. Now suppose that C G cl7(Œ\>'.r2) for all r g (0, 1). Pick a net

{Aa} in Ü such that J(Xa) -► C, AQ -^ 9Q and çmq -, p in (^Q)n for
some <? G O. Note that fiß ° tp(0) = £. Since fiß ° tp is analytic on Í2) We
have Pt/^ o c?) = P(fß o cp) = fß o tp(0) = Ç, so that P(fß otp-Q = 0.
Hence ||7)._?(*ä./||A:J|2)||2 = ||P(/' ° <Pxa - Oh - ||P(/" ° tp - Ç)||2 = 0,
and 7)_^ -r-^ cannot be left-invertible in the Calkin algebra A?(L2a(ST))/A%A.
Therefore  Ty_^ + 3AA is not right-invertible in the Calkin algebra, and thus
C G Oe(Ty) = Oe'Tf) .     U
Remark. The above proof shows that for / in AQ(Si) the left-essential and
the right-essential spectra coincide with the essential spectrum.

Corollary 20. Let f £ AQ(Si). Then the essential spectrum ae(Tf) is connected.

Proof. Since the function / is a bounded continuous function on Si, the sets
clJ(Si\rSi) are compact and connected. By Theorem 19, oe(Tf) is the inter-
section of a nested family of compact connected sets.   D

The essential norm of an operator is its distance to the compact operators,
i.e., if T is an operator in ^(L2(Q)), then its essential norm, denoted by
11 rile, is by definition the norm of the operator T + A%A in the Calkin algebra
¿A,(Ll(Si))/X. The following corollary gives the essential norm for the Toeplitz
operators on the Bergman space L2(Q) for which the corresponding Hankel
operator is compact.
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Corollary 21. Let f G AQ(Si). Then

\\Ty\\e = limsup\J(w)\.
w—aa

Proof. Let f £ AQ(Si). It is an easy consequence of identity (17) that TjTy —
TyTj- = HjHj-HyHy, which together with the fact that H y is compact implies
that Tf+3tA is a hyponormal element of the Calkin algebra ^(L2(Q))/^\ By
Stampfli's Theorem [9, III. Proposition 4.7], the norm of Tf + A% is equal to
its spectral radius max{|C|: Í G oe(Tf)} . By Theorem 19 this quantity is equal
to limsup^^n^w)!-    □

To state yet another corollary of Theorem 19 we recall that an operator in
AA?(L2(Si)) is called Fredholm if its kernel has finite dimension and its range
has finite codimension. It is a standard fact that T in J?(L2(Q)) is Fred-
holm if and only if the operator T + 3AA is invertible in the Calkin algebra
2f(L2a(Si))/3lA.
Corollary 22. Let f £ AQ(Si). Then Ty is a Fredholm operator if and only ifi
there exist r £ (0, 1) and ô > 0 such that \fi(w)\ > ô for every w g Q\rr2.
Proof. Observing that Ty is Fredholm if and only if 0 £ oe(Tf), the statement
follows immediately from Theorem 19.   D

Recall that for a Fredholm operator T in A¿?(Ll(Si)) its index, denoted by
ind( T), is defined to be the difference between the dimension of the kernel of
T and the codimension of the range of 7. In addition to the above charac-
terization of the Toeplitz operators that are Fredholm, we have a formula for
the index of such Toeplitz operators. Before stating and proving this index
theorem, we consider a special case in the following lemma.

Lemma 23. Let F £ AQ(Si)nBC(p.) be bounded away from 0 on Si, 0 < r < 1,
and suppose that F agrees with fih on Si\rSi where f £ AQ(Si) and h\Si\rSi
extends continuously to cl(Q\rQ). Then 7> is Fredholm, and ind(7» = 0.
Proof. Suppose F £ AQ(Si) n BC(Si) is bounded away from 0 on Si and F
agrees with 7A on Q\rQ where f £ AQ(Si) and A|Q\rQ extends continuously
to cl(Q\rQ). Let ó > 0 be such that \F(w)\ >ô for all w g Q. By Step 1 of
the proof of Theorem 19, 0 ^ oe(TF), so that Tp is Fredholm. We must show
that ind(7V ) = 0. For m g N let G be a continuous function on Si such that
Gm = F. Since F is bounded on Si, so is the function G. We assert that G
is in AQ(Si). Assuming that G £ AQ(Si), by (17) we have 7> = (TG)m + K,
where K is a compact operator. Since \G(w)\ > ôl/m for all w g Si, also
TG is Fredholm, and it follows that ind(7>) = wind(rG). Thus ind(7>) is
divisible by any m £ N, and we conclude that ind(7>) = 0.

It remains to show that G is in AQ(Si). Let {Xf} be a net in Q such that
Xa -, dSi and cpXa -^ cp in (ßSi)a for some cp £ <P. Then Jo tpla —yJßotp
uniformly on compact subsets of Q. We will show that also G o cpXa -y Gß o cp
uniformly on compact subsets of Q. It will then follow that F o cpxa —y Fß o cp
uniformly on compact subsets of Q. As in the proof of Theorem 14 this
implies that Fß ocp is analytic on Q. Since Gß o cp is continuous on Í2, and
(Gß o cp)m = Fß o cp is analytic on Si, we have that Gß o cp is analytic on Si.
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Also G o <pxa -, Gß o tp in L2(Si, dV), and thus \\Go cpXa - P(G o <pxa)\\2 -, 0,
so that we can conclude that Hq is compact.

To finish the proof we have to show that GocpXa —y Gß otp uniformly on com-
pact subsets of Q. We have pointwise convergence, so by a standard argument
it suffices to show that for arbitrary e > 0 and w £Si there are p > 0 and an
index a0 such that for every a > a0 we have: \G o cpxfz) -Go tpxa(w)\ < e
whenever b(z, w) < p. Since A is bounded away from 0 on cl(fl\rQ) we can
choose a continuous function k on cl(Q\rf2) so that km = h on cl(fi\rQ).
Putting g = G/k on Si\rSi, we then also have gm = J on Si\rSi. Now
let e > 0 and w £ Si be given. Note that rj = inf{|7(z)|: z g Si\rSi}
is positive; let p = ^menl~l^m/(Cy\\k\\00), where Cy is the constant for
which inequality (15) holds. Let E(w, p) = {z £ Si: b(z, w) < p}. Since
cpxfw) —> dSi we can choose an index q0 (depending on w) such that for
a > a0: cpxa(E(w, p)) c r¿\rfi. Now let z G E(w, p). Then taking for
a: [0, 1] —> Si a geodesic from w to z in the Bergman metric b it follows
from (15) that

• i
\gi<Pxfz))-gi<Pxaiw))\<Jo  l^áKrMXO))

Jo  m

dt

ri  ~ I
dt1 W(*W))(1-m)/m^7(?M>W))

<^-m)lmCyb(cpxaiz),Çxfw))

= ^-m)lmCyb(z,w)<e/(2\\k\\00)

whenever z g E(w , p) and a > ao. Since fc is uniformly continuous on
Si\rSi we may assume that furthermore \k(tpXa(z)) - k(cpka(w))\ < el(2\\g\\00)
whenever z G E(w , p) and a > ao . It follows immediately that \G(cpxa(z)) -
G(tpxa(w))\<£ whenever z£E(w,p) and a>ao, and our claim is proved.   D

Now we are in a position to prove the following index theorem.

Theorem 24. Let f £ AQ(Si) and suppose that Ty is a Fredholm operator.
Then

-winding number off\{lz\=r}
for some r < 1 close to 1 ifin = 1 ;
0 ifin > 2.

Proof. Let / G AQ(SÏ) be such that Ty is Fredholm. By Corollary 17, there
is an r £ (0, 1) and S > 0 such that \J(w)\ > ô for all w £ Si\rSi. Also, we
have proved that Ty = Tj+K, for some compact operator K (Proposition 12).

Thus Tj is Fredholm and ind(7» = ind(7~). Note that 7g AQ(Si)nBC(Si).
Now consider the following two cases.

Case 1: n = 1. Suppose that J has winding number m on \z\ = r. Then
the function 7(z)(|z|/z)m on D\rD extends to a function F £ BC(U>) bounded
away from 0 on D. Let g be the function defined by

f |z|/z    if z GD\rD;
*(Z) = \1 ifzGrD.

ind(7»
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One easily verifies that H\z\ is compact, and using this it follows that Hg is
compact, i.e., g £ AQ(Bi). Using that AQ(B) is an algebra (and if necessary
Lemma 18), we see that gm £ AQ{ß), hence Jgm £ AQ(B). Since F agrees
with Jgm on D\rD, also F £ AQ(B). By Lemma 23, ind(7» = 0. Using
(17), 7> = Tj{Tg)m + K, for some compact operator K, and thus ind(7>) =
ind(7~) + mind(r^). We get ind(Tj) = -mind(Tg), and it remains to show
that ind(Tg) = 1. Let the function A be defined by

f |z|    ifzGD\rD;
(Z)     \r      if z G rit.

Then zg and A differ only on rD, so that ind(Tzg) = ind(Th). But by Lemma
23, ind(rA) = 0. Also, ind(Tzg) = ind(Tz) + ind(Tg). Thus ia.d(Tg) =
-ind(Tz). It is easy to see that ind^) = -1, so that ind(T^) = 1, and
we are done with this case.

Case 2: n > 2. In this case there is a bounded continuous function g on
Si such that g(w) = J(w) for w £ Si\rSi, and g is bounded away from
0 on all of Si. Since g - f is supported on rSi, Tg - Tj is compact (by
Corollary 9). Thus Tg is also Fredholm, and ind(Tj) = ind(Tg). By Lemma
23, ind(r^) = 0, hence ind(r7) = 0.    D

6. TOEPLITZ AND HANKEL OPERATORS WITH SPECIAL SYMBOLS

Let %A(Si) be the norm-closed subalgebra of L°°(Si) generated by the
bounded analytic functions on Si and their complex conjugates. In this section
we will characterize more precisely the functions / in W(Si) such that Ty or
H y is compact. First we describe an alternative way of looking at the algebra
if (Si). Let JA denote the maximal ideal space of H°°(Si), which is defined
to be the set of all multiplicative linear functions from H°°(Si) onto the com-
plex plane. The space JiA endowed with the weak-star topology inherited from
the dual of H°°(Si) is a compact Hausdorff space. Using the Gelfand trans-
form we can think of H°°(Si) as a subset of C(JA), the algebra of continuous
complex-valued functions on JA. For X in Q the evaluation / «-, fi(X) is a
multiplicative linear functional on H°° (Si), thus we can think of Q as a sub-
set of JA. We note that Lemma 4.4 in [12] can be extended to show that the
algebra W(Si) is precisely the set of functions on Si that extend continuously
to the maximal ideal space of H°°(Si).

For the unit ball B„ , the algebra %A(Mn) is furthermore equal to the norm-
closed subalgebra of L°°(Q) generated by the bounded pluriharmonic functions
on B„ (see [22]).

Clearly ÎA(Si) is contained in BC(Si). The following lemma should be
compared with Lemma 13.

Lemma 25. Let f £ %A(Si), and let {wa} be a net in Si tending to dSi such
that cpWa —y cp in (ßSi)n. Then fiotpWa converges to fpocp uniformly on each
compact subset of Si.

Proof. For g\, ... , gN, h\,... ,hN e H°°(Si), we have hj = hj and gj =
gj (j = 1, ... , n) so that by Lemma 13 the statement is true for each of the
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functions gj and hj , and thus for u = gxh\-\-\-gNhfi. Since these functions
u are dense in if (Si) the statement holds for every / G if (Si).   D

As a consequence of the above lemma we see that for / G if (Si), and {wa} a
net in Si tending to dSi suchthat <pWa —> tp in (ßSi)a, we have fotpWa —, fißocp
in L2(Si, dV); from this we obtain the following version of Theorem 7.

Theorem 26. For f £ if (Si) we have.
(1) H y is compact & f £ AOO;
(2) both H y and Hj are compact •& f £ COO.

We will use the above theorem to characterize the symbols in if (Si) for
which the Toeplitz operator is compact. We have the following generalization
of Proposition 5 in [15].

Theorem 27. Let f £ if (Si). Then Ty is compact if and only if f is continu-
ously extendable to clSi with f\dSi = 0.

Before we prove this theorem we recall the following algebraic properties of
Toeplitz operators:

(20)    Tfh = TfTh and Tlf = T*gTf, for all / G L°°(Si) and g, A G H°°(Si).
The following lemma is a straightforward generalization of a lemma in [15].
For completeness we will give a proof.

Lemma 28. The set {/ £Íf(Si): Ty is compact} is a closed ideal in if (Si).
Proof. Put y = {f £ if (Si): Ty is compact}. It is clear that y is a closed
linear subspace of if (Si). To show that it is an ideal, suppose that / G y . Let
g\, ... , gN and hx, ... , hN be in H°°(Si), and set u = gxhx H-h gNhN.
Then, using (20) we have Tyu = T*tTyThl +-h T*NTfThN , and thus Tyu is
compact, i.e., fu £ y . Functions of the above form are dense in if (Si), so
y is an ideal in if (Si).   D

Proof of Theorem 27. If /  is continuous on  clQ  and  f\dSi = 0, then
||/o0M||2 -* 0 as X —y dSi (by the Lebesgue Dominated Convergence Theorem),
so that certainly ||P(/o <px)\\2 —* 0 as X —> dSi, and thus Ty is compact.

Conversely, suppose that / G %A(Si) and Ty is compact. Since / G %A(Si),
by Lemma 28 also T\yp is compact, thus |/|2(A) -, 0 as X —> «9Í2, and by
Corollary 8 the operator My is compact. It follows that both H y and Hj are
compact. By Theorem 26, / G COO, i.e., fiß o tp is constant for every tp £ O.
The compactness of Ty also implies that P(/° cm)(0) = J(X) —> 0 as X —> dSi.
This and the definition of O show that for a cp £ O, P(fß o tp)(0) = 0, which
combined with the fact that fiß o cp is constant gives us that fiß o tp = 0. It is
now easily seen that necessarily fi(X) —> 0 as A —► «9Q.   D

Using Theorem 6 we can also give another proof of Theorem 27.

Second Proof of Theorem 27. Suppose that Ty is compact for / G if (Si). Take
g, h £ H°°(Si). Since Tyg = TyTg is compact, using Lemma 25 and Theorem
6, we conclude that P((7^ ° <p)igß ° <p)) = 0 for every tp £ O. Thus we have
((hß o cp)(gß ocp),fßocp) = (hßocp, P((fß o cp)(gß o tp))) = 0. It follows that
(ußotp, fißocp) = 0 for every function u = gxhx H-\-gNhN, where gi, ... , gN
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and hi, ... , hN are in H°°(Si). Using that the functions u of the above form
are dense in if (Si), we get (fß o cp, fiß o cp) = 0, so that fiß o cp = 0.   □

More precise descriptions for compactness of Hankel operators with symbols
in if (Si) are in the following theorems. In these theorems we use the nota-
tion | is | to denote the normalized Lebesgue volume measure of a Lebesgue
measurable set E contained in Si.

Theorem 29. Let f G if (Si), 0 < r < 1, and 1 < p < oo. Then the following
statements are equivalent:

(a) H y is compact;
(b) f£AOO;
(c) distance(/|Q(w , r), H°°(Si(w, r))) ^ 0 as w -, dSi;
(d) \\f ° <l>w - Pif ° fw)\\p ̂  0 as w^dSi;
(e) (l/\Si(w,r)\)fa{wr)\f-P(fo<pw)o<pw\PdV^O asw^dSi.

Proof. We have already shown the equivalence of statements (a), (b), and (d).
Proof that (a) => (c). Suppose H y is compact. By Proposition 12 also //-

is compact, and according to Proposition 16 we have

distance(7|ß(w, r), H°°(Si(w, r))) ^ 0   as w -* dSi.

It follows from the analyticity of / o cp that f o tp = fi o cp for every cp g O.
Using Lemmas 13 and 25 this implies that

sup{|/(z)-7(z)|: z£Si(w,r)}
= sup{|(/o cpw)(u) - (Jo cpw)(u)\: u £ rSi} -, 0.

Hence distance(/ | Si(w, r), H°°(Si(w, /■))) -, 0 as w -, dSi.
The proof that (c) =$■ (b) is the same as the implication (hi) => (i) in

Proposition 16.
Proof that (d) => (e). Using the same arguments as in §2 of [8] it is easy to

show that there is a positive constant Cr such that for all w g íí and every
z G Si(w, r):

Cflkw(w) < \kw(z)\ < Crkw(w),      and
CflK,iw) < \Si(w, r)\~l < Crkviw).

Using these inequalities and change-of-variable formula (3) we have

loJ   r)l (        \f-Pifiocpw)otpw\"dV\\l(W , r)\ Jsi(w,r)

<C [   \fi o cpw - P(f o cpw)\P dV
Jra

<C\\focpw-P(fiocpwWp
and the implication follows.

Proof that (e) => (b). Let cp g O. Choose a net {wa} in Si tending to dSi
such that cpWa -, cp in (ßSi)a. It

\P(foCpWa)(z) - P(fß o cp)(z)\ = \(fiocpWa -fißocp, kz)\

<WfioCpWa-fßocp\\2kz(zfl2
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that P(fi o cpwf) -, P(fiß o cp) uniformly on rSi, thus

/   |/o^-P(/o^J|^F-,   /   \f» o cp - P(fß o <p)\P dV.
Jra Jra

On the other hand, using the above inequalities as well as change-of-variable
formula (3) we have

/   \f o cpw - P(f o cpw)\P dV
Jra

< cñh)\S^ff-p{f°f"]°rA'dv-
thus Tn \fß o tp - P(fß o cp)\p dV = 0, and we conclude that fiß ocp = P(fß o tp)
on rSi, thus fiß o tp is analytic on rSi. As before we deduce that fiß o tp is
analytic on all of Si. This for every tp g O, and it follows that / G AOO.   D
Theorem 30. Let f £ if (Si). Then the following statements are equivalent:

(a) H y and Hj are compact;
(b) f£COO;
(c) sup{|/(z)-/(iyj)|: z £ Si(w , r)}-* 0 as w -, dSi;
(d) \\f o tpw - J{w)\\p ̂  0 asw^dSi;
(e) l/(\Si(w,r)\)icl{wr)\f-f(w)\PdV^Oasw^dSi.

Proof. We have already shown the equivalence of statements (a), (b), and (d).
Proof that (a) => (c). Suppose H y and Hj are compact. By Proposition

12 also Hj and //- are compact, and according to Proposition 17 we have

sup{|7(z) - f(w)\: z £ Si(w, r)} -, 0 as w —, dSi. As in the above proof,
we also have sup{|/(z) - f(z)\: z £ Si(w, r)} —» 0 as w —> dSi, hence
sup{|/(z) - fi(w)\: z £ Si(w, r)} -» 0 as w -, dSi.

The proof that (c) => (b) is the same as the implication (hi) => (i) in
Proposition 17.

Proof that (d) => (e). As in the above proof, there is a constant C such that
for every w £Si:

inJ,   rx. /        \f-J(w)\pdV<C\\fotpw-J(w)\\Pp,
\±t\w, r)\ Ja(w,r)

and the statement follows.
Proof that (e) => (b). Let tp £0. Choose a net {wa} in Si tending to dSi

such that tpWa -, cp in (ßSi)a . Using Lemma 25 we have

/  |/oÇ,Wa-/(WQ)|'W-> /  \fßoy>-(fißotp)(0)fdV.
Jra Jra

On the other hand, as in the above proof, there is a constant C such that for
every w £Si:

I  \focpw-J(w)\PdV<C       ) f        \f-J(w)\"dV,
Jra \U(W , r)\ Jn(w,r)

thus fin\fß °<p-(fiß otp)(0)\P dV = 0, and we conclude that fißocp = (fßocp)(0)
on rSi, thus fiß o cp is constant on rSi. As before we deduce that fiß o cp is
constant on all of Si. This for every tp £ O, and it follows that / G CO<p.   D
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7. Remarks and open questions

In this section we will make some remarks and formulate some open ques-
tions.

1. The results in this paper can be extended somewhat. If Si is a bounded
symmetric domain in C" and 0 £ Si, then for every X £ Si there is an au-
tomorphism cpx on Q such that cpx(X) = 0 and cm o cpx = idn. It is then
easy to see that Proposition 1 extends to arbitrary bounded symmetric domains
Í2. In trying to extend the results in §3 one would need to know when the
quantities Mq¡e(Si) are finite. In the proof of Lemma 2 we used the Forelli-
Rudin estimates on the reproducing kernels for the unit ball. Recently these
estimates have been extended somewhat in [10]. Unfortunately, the extended
Forelli-Rudin estimates obtained in [10] are only valid for a certain range of
parameters (depending on the domain), and do not give Lemma 2 for the do-
main. However, for the rank 2 domain Í23 in C3 consisting of 2x2 contractive
symmetric matrices it follows from the generalized Forelli-Rudin inequalities in
[10] that Mq<e(Sii) < oo for arbitrary small e > 0 and q > 1 sufficiently close
to 1; in fact, there are sequences (##) in (1, oo) and (sn) in (0, oo) con-
verging to 1 and 0 respectively such that for every positive integer AT we have
MqN ,zN(Sif) < oo . Using that the reproducing kernel of a product of domains is
the product of the reproducing kernels, it follows that for Q a finite product of
unit balls and copies of ÍÍ3, the quantity Mq<e(Si) is finite for arbitrary small
e > 0 and q > 1 sufficiently close to 1. In the proof of Theorems 6 and 7 it was
also needed that the Bergman projection is //-bounded for arbitrary p > 1 ; we
do not know whether this is true for arbitrary bounded symmetric domains, but
in the case of domain Q3 it follows easily from the generalized Forelli-Rudin
inequalities in [10]. Thus Theorems 6 and 7 hold for finite products of unit
balls and copies of Q3.

Question 1. Do Theorems 6 «and 7 hold for arbitrary bounded symmetric domains
in C" ?

Remark. The descriptions of the algebras AOO and COO in §6—equivalences
(b)-(f) in Theorems 29 and 30 respectively—do hold for arbitrary bounded
symmetric domains in C" .

2. We note that in [19] the first author has used the method of §3 to prove
that the analogous results hold for Hankel and Toeplitz operators on the Fock
space (Segal-Bargmann space), the space of entire functions on Ç" which are
square-integrable with respect to Gaussian measure on C" , thus providing an
alternate approach to the work of C. A. Berger and L. A. Coburn [7]. It would
be interesting to find other settings for which the results hold.

3. In this paper we defined AQ(Si) = {/ G L°°(Si): Hy is compact}. Al-
though Theorem 7 characterizes the algebra AQ(Si) and Proposition 12 tells
us that AQ(Si) is decomposed as AQ(Si)j= y (Si) + AQ(Si) n BC(Si) where
y (Si) denotes the ideal {g £ L°°(Si): \g\2(X) -» 0 as X -» dSi} , it would be
nice to have more precise descriptions of the algebra AQ(Si). The C*-algebra
Q(Si) = {/ G L°°(Si): Hf and Hj are compact} has been studied extensively
in [6, 8, and 23]. It is obvious that H°°(Si) + Q(Si) c AQ(Si).

Question 2. Is AQ(Si) equal to H°°(Si) + ß(fi)?
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This question extends Sheldon Axler and Pamela Gorkin's question raised in
[5] whether for the unit disk D one has AOP = //°°(D) + COP ?

References

1. Sheldon Axler, Hankel operators on Bergman spaces, Linear and Complex Analysis Problem
Book, edited by V. P. Havin, S. V. Hruscëv, and N. K. Nikol'skil, Lecture Notes in Math.,
vol. 1043, Springer, Berlin, 1984, pp. 262-263.

2. -, The Bergman space, the Bloch space, and commutators of multiplication operators,
Duke Math. J. 53 (1986), 315-332.

3. -, Informal notes on COP and AOP, unpublished manuscript.
4. Sheldon Axler, John B. Conway, and Gerald McDonald, Toeplitz operators on Bergman

spaces, Cañad. J. Math. 34 (1982), 466-483.
5. Sheldon Axler and Pamela Gorkin, Algebras on the disk and doubly commuting multiplica-

tion operators, Trans. Amer. Math. Soc. 309 (1988), 711-723.
6. D. Békollé, C. A. Berger, L. A. Coburn, and K. H. Zhu, BMO in the Bergman metric on

bounded symmetric domains, J. Funct. Anal. 93 (1990), 310-350.
7. C. A. Berger and L. A. Coburn, Toeplitz operators on the Segal-Bargmann space, Trans.

Amer. Math. Soc. 301 (1987), 813-829.
8. C. A. Berger, L. A. Coburn, and K. H. Zhu, Function theory on Cartan domains and the

Berezin-Toeplitz symbol calculus, Amer. J. Math. 110 (1988), 921-953.
9. John B. Conway, Subnormal operators, Pitman, London, 1981.

10. J. Faraut and A. Korányi, Function spaces and reproducing kernels on bounded symmetric
domains, J. Funct. Anal. 88 (1990), 64-89.

11. P. R. Halmos and V. S. Sunder, Bounded integral operators on L2-spaces, Springer, Berlin-
Heidelberg, 1978.

12. Kenneth Hoffman, Bounded analytic functions and Gleason parts, Ann. of Math. 86 (1967),
74-111.

13. Steven G. Krantz, Function theory of several complex variables, Wiley, New York, 1982.
14. Gerald McDonald, Fredholm properties of a class of Toeplitz operators on the ball, Indiana

Univ. Math. J. 26 (1977), 567-576.
15. Gerald McDonald and Carl Sundberg, Toeplitz operators on the disc, Indiana Univ. Math.

J. 28(1979), 595-611.
16. Walter Rudin, Function theory in the unit ball of C" , Springer, Berlin, 1980.
17. Karel Stroethoff, Compact Hankel operators on the Bergman space, Illinois J. Math. 34

(1990), 159-174.
18. _, Compact Hankel operators on the Bergman spaces of the unit ball and the polydisk in

C , J. Operator Theory 23 (1990), 153-170.
19. _, Hankel and Toeplitz operators on the Fock space, Michigan Math. J. (to appear).
20. Dechao Zheng, Hankel operators and Toeplitz operators on the Bergman space, J. Funct.

Anal. 83 (1989), 98-120.
21. _, Toeplitz operators and Hankel operators on the Bergman space, Integral Equations

Operator Theory 12 (1989), 280-299.
22. _, Semi-commutators of Toeplitz operators on the Bergman space, preprint.
23. Kehe Zhu, VMO, ESV, and Toeplitz operators on the Bergman space, Trans. Amer. Math.

Soc. 302(1987), 617-646.

Department of Mathematical Sciences, University of Montana, Missoula, Montana
59812

Department of Mathematics, State University of New York, Stony Brook, New York
11794

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


