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TOEPLITZ AND HANKEL OPERATORS
ON BERGMAN SPACES

KAREL STROETHOFF AND DECHAO ZHENG

ABSTRACT. In this paper we consider Toeplitz and Hankel operators on the
Bergman spaces of the unit ball and the polydisk in C” whose symbols are
bounded measurable functions. We give necessary and sufficient conditions on
the symbols for these operators to be compact. We study the Fredholm theory
of Toeplitz operators for which the corresponding Hankel operator is compact.
For these Toeplitz operators the essential spectrum is computed and shown to
be connected. We also consider symbols that extend to continuous functions on
the maximal ideal space of H*°(Q); for these symbols we describe when the
Toeplitz or Hankel operators are compact.

1. INTRODUCTION

For a bounded domain Q in C”, let V' denote the Lebesgue measure on
Q normalized so that  has measure 1. For 1 < p < oo and a Lebesgue
measurable function f: Q — C let ||f||, = (Jo |f(2)IP dV(z))!/? . The Bergman
space L5(Q) is the Banach space of analytic functions f: Q — C such that
Ifllp < co. The Bergman space L2() is a closed subspace of the Hilbert
space L*(Q, dV) with inner product given by (f, g) = Ja f(2)g(2)dV(z),
for f, g € L2(Q, dV). Let P denote the orthogonal projection of L2(Q, dV)
onto L2(Q). For a function f € L*(Q), the Toeplitz operator Ty L2(Q) —
LZ(Q) and the Hankel operator Hy: L2(Q) — L2(Q)* are defined by

T g =P(fg), Hig=(I-P)(fg), geclLiQ).

These are clearly bounded operators for every function f € L>*°(Q). In this
paper we consider the question of characterizing the functions f € L*(Q)
for which these operators are compact on L2(Q), for Q the open unit ball
B, = {z € C": ||z|]| < 1} or the polydisk D" = {z € C": |zj| < 1 for 1 < j< n}
in C". The question of characterizing the bounded measurable functions on
D, the unit disk in C, for which the Hankel operator H, is compact was
raised by Sheldon Axler in [1]. Sheldon Axler answered a special case of this
problem in [2] where he considered conjugate analytic symbols on the unit disk
D. Recently both of the authors independently obtained a complete answer for
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774 KAREL STROETHOFF AND DECHAO ZHENG

Axler’s question in [17, 18, 21]. In this paper we will combine and extend our
results.

Throughout the paper let Q denote either the unit ball B, or the polydisk
D" . In our characterization of the compact Toeplitz and Hankel operators on
L2(Q) the Mébius transformations on Q will play a crucial role: for each
A € Q there is an automorphism of Q with the following properties:

(1) ¢a(4) =0, and

(ii) @;0¢; =idg (the identity map on Q).

For the unit ball B, these Mobius transformations are described in §2.2 of [16];
for the polydisk D" they are described in §10.1 of [13].

We denote the topological boundary of Q in C” by Q. The statement
A — 0Q will simply mean that A € Q and the usual distance of 4 to 9Q tends
to 0.

In the first part of the paper (§§2-4) we consider general bounded symbols
on Q. In §2 we will give the preliminaries needed for the rest of the paper.
In §3 we will give our characterization of the compact Toeplitz and Hankel
operators. Our main result in this section states that for Q the unit ball or
the polydisk in C" the Toeplitz operator 7, is a compact operator on L2(Q)
if and only if for some p € [1, 00), ||[P(fo@i)ll, — 0 as A — 9Q; and the
Hankel operator H, is a compact operator on LZ(Q) if and only if for some
pell,o0), |[fopi—P(fopi)ll, — 0 as A — 0Q. We give several descriptions
for compactness of Hankel operators with Berezin symbols in §4. In §5 we will
consider Toeplitz operators of bounded symbols for which the Hankel operator
is compact. For these Toeplitz operators we describe the essential spectrum, give
necessary and sufficient conditions for the operator to be Fredholm, and for the
Toeplitz operators which are Fredholm we prove an index theorem. In §6 we
specialize to symbols that extend to continuous functions on the maximal ideal
space of H>®(Q). For these symbols we give a condition for compactness of the
Toeplitz operator, and we give several conditions equivalent to compactness of
the Hankel operator. We end the paper with some remarks and open questions
in §7.

2. PRELIMINARIES

Point evaluation is a bounded linear functional on the Hilbert space L2(Q),
thus for every 4 € Q there exists a unique analytic function k; € L2(Q) such
that

f(A)=(f, k), forall fe LX)

These functions k; (A € Q) are called the reproducing kernels for L2(Q).
For the unit ball and the polydisk in C” these reproducing kernels can be
computed explicitly (see, for example, §1.4 in [13]): for Q = B, we have
ki(z) = (1 —(z,A))™""' (z € By). For f € L*(Q), g € L*(Q,dV) and
z € Q we have (T,g)(z) = (P(fg), k:) = (fg, k:), so we get the following
formula for T,g :

(1) (T,8)(z) = /Q fw)gw@)dV(w), zeQ

Also using the reproducing property of k. we get the following formula for
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TOEPLITZ AND HANKEL OPERATORS ON BERGMAN SPACES 775
Hgg:
@ (Hg)(z / (f(2) gk @ dV(w), zeQ.

For A € Q the substitution z = ¢;{w) results in the Jacobian change in measure
given by dV(w) = (Jgre;)(z)dV(z), where Jrg; is the real Jacobian of ¢;.
Using that Jge; = |Jc@;|*> (Proposition 1.4.10 in [13]), it is easy to verify that
Jr@, is given by the formula (Jre;)(z) = |ki(2)|?/ki(A) . Thus, for a Lebesgue
integrable or nonnegative Lebesgue measurable function 2 on Q we have the
change-of-variable formula:

_ ,
3) [ hoswnavw = oo [ nalkErav )

In the next section we will give our characterization of compact Toeplitz and
Hankel operators. The following proposition, which gives formulas for the
images of the reproducing kernels k; (4 € Q) under the operators T, and Hy,
will play an important role in our characterization.

Proposition 1. Let f € L>(Q). For each A € Q we have

(4) Ty(ki) = (P(f o 1) o pa)k;
and
(5) He(k)) = (f = P(fo9;)000)k;.

Proof. Take f € L*>*(Q) and A € Q. Clearly it suffices to prove (4). Let z € Q.
Using (3) we see that for a function g € L2(Q) we have {(fog,)k;, (gopi)k;) =
ki(A)(f, &) = k(A(P(S), &) = ((P(f) o pa)ka, (g o pa)ks). Replacing f by
fop; and g by (go ¢;)/(kyo ¢;) (which using that the k; never vanish
and are bounded on Q is easily seen to belong to L2(Q2)) we see that for every
g € L2(Q) we have {(P(fopi)opi)ki, &) = (fka, g) , from which we conclude
that Tp(k;) = P(fk;) = (P(fo@i)opa)k;. D

3. CoMPACT TOEPLITZ AND HANKEL OPERATORS

In this section we will characterize the functions f in L°(Q) for which
the Toeplitz operator T, or the Hankel operator Hy is compact. We will need
estimates on certain integrals involving the reproducing kernels. For g € [1, o)
and ¢ > 0 we introduce the notation

= sup [ k()" ()" AV (w)
1eQ

It will be important to know when these quantities are finite. The following

lemma tells us when this is the case for Q the unit ball or the polydisk in C".

Lemma 2. Let Q be the unit ball or the polydisk in C". Then there exist qq > 1
and eq > 0 such that M, (Q) < oo for every g €[1, qq) and ¢ € (0, &q].

Proof. For Q = B, it is an easy consequence of Proposition 1.4.10 in [16]
that the above statement holds with go = (2n + 2)/(2n + 1) and &g =
1/(2n + 2). Using that the reproducing kernel of the polydisk is the prod-
uct of the reproducing kernels of the disk, the statement for £2 = D" follows
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776 KAREL STROETHOFF AND DECHAO ZHENG

from that for the disk D = B, : the numbers gg = 4/3 and &g = 1/4 are easily
seen to give the desired statement. 0O

The following lemma gives an estimate that will be used in the proofs of The-
orems 6 and 7, our characterization of compact Toeplitz and Hankel operators
on the Bergman space L2(Q).

Lemma 3. Let F be a nonnegative measurable functionon QxQ, 1 < g < oo,
p=q/(g—1) and ¢ > 0. Then for every w € Q.

/Q Fw, pu(2))lku(2)lk:(2)° dV (2)

1/
< kulw)My (5 ( [ Flw, 2pav(a))

Proof. Let F be a nonnegative measurable function on Q x Q. In the integral
at the left make the change-of-variable z = ¢,,(1). Using (3) we get

/Q F(w, pul(2))lku(2)lk:(2)F AV (2)

=kw(w)5/QF(w, ) ()|~ 2 () V()

t/p
< u(w)'My (@0 [ Flw, 27 av ()
Q
(by Holder’s inequality). O

In the proofs of Theorems 6 and 7 we will also need the estimates contained
in the following lemma.

Lemma 4. Let f € L>(Q) and ¢ > 0. Then for every z € Q:

(6) /Qll”(fo 9uw) (9w (2))] 1w (2)lkw(w)* dV (W) < My, (|| llockz(2)°
and

(7 /Qlf(Z) — P(f 0 9u)(puw(2))] [kuw(2) |k ()" dV (w)

< 2My Q|| llokz(2)°.

Proof. Let f € L>*(Q), ¢ >0, and z € Q. We will only show (6); the proof
of (7) will be similar. Using (4) and (1) we have

|P(f o 9u)(@u(2))] |kuw(2)| = [(Trky)(2)] =

/Q f (kW) dV ()
< 11f]loo /ﬂ Ve (0)| ez ()| AV ().

Thus

L 1P 0 0)@ale) a2 lkut) AV (w)
<1l [ |kz(u>|( / |kw(u>|1qu(w>edV<w>) dv (u).
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TOEPLITZ AND HANKEL OPERATORS ON BERGMAN SPACES 777

As in the proof of Lemma 2, a change-of-variable yields
(9) /Q |k (1) |k (w)* dV(w) < My o(Q)ku(u)’.

Applying inequality (9) twice in (8) we get (6). O
To estimate the norms of certain (integral) operators we will make use of the
Schur Test as stated in the following proposition [11, Theorem 5.2].

Proposition 5. Let (X, v) be a measure space and K a measurable function
on X x X . Suppose there is a positive measurable function h on X and positive
numbers o and B such that

(10) /x K(x, V() dv(y) < ah(x) for [vl-ae x in X
and
(11) [ IKGe ) v < Bh) for 1-ae. v in X,
Then

(Af)(x) = /X K, )f0)dvy), feLl’X,v)andxeX,

defines a bounded linear operator A from L2*(X,v) into itself. Moreover,
4l < af.

We are now ready to state and prove our main result, contained in Theorems
6 and 7. The proofs of these theorems will be combined into one proof.

Theorem 6. Let f € L°°(Q). The following statements are equivalent:
(a) Ty is compact,
(b) |P(fop)llp =0 as L — 0Q for some p €[1, x0);
(©) IP(fopllp = 0 as 4 — 0Q for every p €1, o0).

Theorem 7. Let f € L>°(Q). The following statements are equivalent.

(a) Hjy is compact,

() IS e@s—P(fopi)ll, =0 as A — 0Q for some p € [1, o0);

©) Ifepi—P(fopi)llp =0 as A— 0T forevery p €[1, o).

Proof of Theorems 6 and 7. Fix a function f € L>*°(Q). Let M, be the
multiplication operator L2(Q) — L2(Q, dV) defined by M,(g) = fg for
g € L%(Q). Writing Q for either P or I — P we note that both H, and T
are of the form QM ; the proofs of Theorems 6 and 7 will be combined into
one proof.

Proof that (a) = (b). Suppose that the operator QM is compact. By the
reproducing property we have that ||k;||3 = k;(4). If g is a bounded analytic
function on Q, then (g, k;/||k:||2) = ka(4)~/2g(A) — 0 as A — dQ (because
ky(A) = o as 4 — 8Q). Since the bounded analytic functions on Q are
dense in the Bergman space L2(Q), this shows that k;/||k;}| — 0 weakly in
LZ(Q) as A — Q. Compact operators map weakly null sequences to norm null
sequences, thus we have ||QM,(k;/||k;||2)||2 — O as A — 8Q. By Proposition
1, QMy(ky) = (Q(f © 9;) o p1)k;. Using change-of-variable formula (3) it is
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778 KAREL STROETHOFF AND DECHAO ZHENG

iasily ;;en that ||QM(k;/llkill2)|l2 = ||Q(f o @1)ll2 thus [|Q(f o @i)|l2 — 0 as
—0Q.

Proof that (b) = (c). Suppose that ||Q(f o 9;)|[, — 0 as A — dQ for some
Do € [1,00). Let p € [1, 00) be arbitrary. If p < pg, then [|Q(f o ¢i)|l, <

HQ(f o @)llp,» thus [|Q(fop)ll, » 0 as A — 8Q. If p > poy, then using
Hoélder’s inequality it is easy to verify that

1Q(f o o)IE < 11Q(f o oI5 21 Q(f 0 )52,

where g = po(2p — 1)/(2pp — 1) > 1. Now, since the Bergman projection P
maps L(Q, dV) boundedly onto LI(Q) and Q is either P or I — P, there
is a constant C, such that

NQ(f o 0)llg < ClO(f o pi)llg < Cyllfloo-

Hence ||Q(fop)Il5 < (Cyllflloo)/?[1Q(fo02)I5” , which immediately implies
that also ||Q(fo @)l =0 as A — 9Q.

Proof that (c) = (a). Suppose that ||Q(f o ¢))|], —» 0 as 4 — 9Q for
every p € [1,00). We will prove that the operator (QM/)* is compact by
showing that (QM/)* can be approximated-in the operator norm-by compact
operators.

Let g € Q(L*(Q, dV)). Then (QM/)*g € L%(Q), so that for w € Q we
have

(QM)* ) (w) = (QM)* g , k) = (2. (Q(f © Pu) © Pu k)
- /Q ()0 ° pu) (Pu (DD dV (2).

In view of this we define for 0 < r < 1 an operator S,: Q(L*(Q, dV)) — L2(Q)
by

(12)

(S,8)(w) = 1ra(w) /Q 2(2)0 5 ) Pu(eha(2) dV (),

for g € Q(L*(Q,dV)), w € Q. Then S, is a Hilbert-Schmidt operator. To
see this, observe that change-of-variable formula (3) and Fubini’s Theorem give

/Q ( /Q x,g(an(fo¢w><¢w<z>)|2|kw<z)|2dV(z)) v (z)
- /ka(U))lIQ(fo ou)3dV(w) < oo,

and it follows that S, is Hilbert-Schmidt. Using (12) and the definition of S,
we see that for h € Q(L*(Q,dV)) and w € Q:

((QMp)* - S,) /Kw 2)g(2)dV(2)

where K(w, z) = xava(w)Q(f o 0u)(0w(z))kw(z). We claim that S, —
(QMy)* in operator norm as r — 1. Since the S, are compact, it will fol-
low from this claim that (QM/)* is compact, and therefore QM is compact.
To prove our claim we will apply Proposition 5 to get an estimate on the opera-
tor norm ||(QMy)* —S,||. For &€ = &g, the constant from Lemma 2, let A(w) =
ky(w)é(w € Q). By Lemma 4 inequality (11) in Proposition 5 is satisfied with
B =2M (Q)||flloc - For w, z € Q put F(w, 2) = xa\,o(w)|Q(f ° ¢u)(2)|.
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TOEPLITZ AND HANKEL OPERATORS ON BERGMAN SPACES 779

Let go be as in Lemma 2. Choose ¢ € (1, 4q), and let p = g/(q — 1) be
the conjugate exponent of ¢g. Using that |K(w, z)| = F(w, ¢w(2))|kw(2)|,
Lemma 3 tells us

1/p
[ K@, Dketayav () < kw(w)qu,e(m‘/q( | Fw, z)ﬂdV(z))
Q Q

= ku(w)* My, ()" 2y (W)I1Q(S © pu)llp »
so that inequality (10) in Proposition 5 holds with

a =My, () sup{||Q(f o 9)ll,: 1 € Q\rQ}.

It follows from Proposition 5 that

@M )* = S/II> < 2M, (Q)° M, ()| flleo sup {1Q(S 0 @1)llp-
AEO\IQ

Since ||Q(f o ¢;)ll[, = 0 as A — Q our claim that S, — (QM/)* in operator
norm as r — 1~ follows. O

For f € L*Q, dV) define f, the Berezin symbol of f, by
) = (frafllkall2, ka/ ki)
_ 1 2
-5 /Qf(z)|k,1(z)| dv(z), JAeqQ.

Note that by change-of-variable formula (3), f(l) = [ofopdV (A e Q).
Thus for a function f € L2(Q) we have, [, fop,dV = (fo9,)(0) = f(4),

and therefore f~= f.

As in the above proof, for f € L>(Q) let M, be the multiplication operator
LY(Q) — L%(Q, dV) defined by Ms(g) = fg for g € L2(Q). As an easy
corollary of Theorems 6 and 7 we get the following result.

Corollary 8. Let f € L*(Q). The following statements are equivalent.

(a) My is compact,

(b) |f12(A) = 0 as A — 0Q.

Proof. Tt is easily verified that for A € Q :

(13)  IfPA =1fo0all3 = IP(f o o)I3 + 1S 0 92— P(f o 92)II2.
So if |f]2(A) — 0 as 4 — 8Q, then both

[|P(fo@)lla—0 and |[fop,—P(fop)l—0 asi—aoQ,

so that by Theorems 6 and 7 both 7, and H; are compact, thus M r is com-
pact.

It is easily seen that |j7|3(l) = ||Ms(k;/||ki]12)I13 . We have already observed
that k;/||k;|l — O weakly in L2(Q) as 4 — 8Q, so if M, is compact, then
|fl2(A) -0 as A—-0Q. O

In the next section we will frequently make use of the following consequence
of the above corollary.
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Corollary 9. Let f € L>®(Q) be supported on a compact subset of Q. Then both
Ty and H; are compact.

Proof. If f € L*°(Q) has compact support, then |f~|2(/1) —-0as A—-0Q. O
As a corollary of Theorem 7 we also obtain some of the main results in [8].

Corollary 10. Let f € L>*°(Q). The following statements are equivalent:
(a) Hy and HT are compact,

(b) llf ooz — f(Dllp — 0 as 2 — 9Q for some p € (1, 0);
(©) Ifopa=S(Allp =0 as A — 0Q forevery p € (1, c0).
Proof. Proof that (a) = (c). Suppose that H,; and H7 are compact and

p€(1,00). Then
Ifo@s—P(fop)ll,=IISops—P(fop)ll, >0 asi—oQ.

By continuity of P we get [|P(f 0 9:) — F(A)ll, = [|P(f 0 9, — P(f o :)ll, — O
as A — 90Q. Combining this with |[fo@; — P(fog)|l, — 0 as 41 — 9Q
statement (c) follows.

That (c) = (b) is trivial.

Proof that (b) = (a). Suppose that |[fo¢; — f(A)]l[, — 0 as A — 9Q for
some p € (1, oo). Again using the continuity of P it follows that

IP(fop) = f(Dll, 0 asd—6Q,
thus ||fo@s— P(fopy)ll, » 0 as A — 9Q. By Theorem 7, Hy is compact.

Since also ||f o ¢; — f(A)|l, = 0 as A — Q the above reasoning shows that
H7 is also compact. O

In §5 we will discuss the essential spectrum of the Toeplitz operators for
which the corresponding Hankel operator is compact. We will need some results

relating the Toeplitz and Hankel operator associated to f with those associated
to f. This will be done in Proposition 12. First we need a lemma.
Lemma 11. Let g € L?(Q, dV) and ¢ > 0. Then ||g||2 < 2" M, .(Q)|g]]2-

Proof. Tt is readily verified that |k, (z)| < 2"k, (w) (remember that Q is the
unit ball or the polydisk in C"), so that for g € L2(Q, dV) and w € Q

E(w)] < 27! /Q 18(2) k()| AV (2).

Using (9) and Proposition 5 (with 2(w) = ky(w)¢) the statement follows eas-
ily. O
Proposition 12. Let f € L>°(Q) be such that Hy is compact. Then.

(1) Tf_f~ is compact,

(2) H7 is compact.
Proof. Suppose f € L>(Q) is such that H, is compact. Let ¢ = gg be as in
Lemma 2. Let 1 € Q. Apply Lemma 11 with g = fog; — P(fo¢;). Since

P(fop;) € LE(Q) its Berezin symbol is equal to itself. Also, if w € Q, then by
Cartan’s Theorem [16, Theorem 2.1.3] there exists a unitary # x n matrix U
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TOEPLITZ AND HANKEL OPERATORS ON BERGMAN SPACES 781

such that U(Q) = Q and ¢,09, = @y,w)o U, and consequently (fog;)~(w) =

JafoviopwdV = o fopywdV = f(pa(w)). Thus g = fop; —P(fop;),
and by Lemmas 2 and 11 there is a finite constant C such that forevery 1 € Q :

(14) 1f o pa— P(foplla < Cllf 09— P(f o 92)ll2.

By Theorem 7 we have ||fo¢@;, — P(fog,)||» — 0 as A — 9Q, so that by (14)
1fopa—P(fopy)llz — 0 as A— 8Q, hence ||fop,— fogilla = 0 as A — 8Q.
By continuity of P, ||P(fo ¢i—Jfo@)|l2— 0 as 1 — 9Q, and by Theorem 6
it follows that Tf_f is compact. Also ||fo 0 — P(f~o ¢)|l2—0 as 1 —0Q,
so that also H; is compact (by Theorem 7). O

4., HANKEL OPERATORS WITH BEREZIN SYMBOLS

In this section we will give several descriptions for compactness of a Hankel
operator associated with the Berezin symbol of a bounded measurable function.

It is easy to see that the Berezin symbol of a bounded measurable function is
continuous. We will write BC() to denote the algebra of bounded continuous
functions on Q. Let Q denote the Stone-Cech compactification of Q. Every
function f in BC(Q) has a unique continuous extension to S which we
will denote by f#. Let & be the set of all possible limits in the product space
(BY)? of nets {g; } for which A, — Q. Note that by Tychonoff’s Theorem
the space (BQ)® is compact, so that every net {4,} in Q tending to Q hasa
subnet {w,} such that {¢,,} converges in (BQ)® to some ¢ € ®. Also note
that if {¢,} isanetin (BQ)? such that ¢, — ¢ in (BQ)%, then forall A€ Q,
¢.(A) = @(4) in BQ (because the projection of (BQ)? onto its A-coordinate
is continuous). So if also f € BC(Q), then fo ¢, — f# o ¢ pointwise on Q.
The P-parts of BQ are by definition the images of the elements in ®. We
introduce two subalgebras of BC(Q). Let AO® (which stands for “analytic
on ®-parts”) be defined by

AO® = {f € BC(Q): 2 o9 e H®(Q) for all ¢ € D},
and let CO® (which stands for “constant on ®-parts”) be defined by
CO® = {f € BC(Q): f# o ¢ is constant for all ¢ € ®}.

In the following theorem we will relate these algebras to compactness of Hankel
operators with Berezin symbols. We first need to introduce the Bergman metric
and recall a few facts about this metric proved in [6].

The Bergman metric b is a complete Riemannian metric on Q which gives
the usual topology on Q. By definition, b is the integrated form of the in-
finitesimal metric

As a special case of Theorem F in [6] we have that for a smooth curve o: [0, 1]
—Q anda f € L*(Q)

ds

(15 o Ty /%
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782 KAREL STROETHOFF AND DECHAO ZHENG

for some positive constant C, only depending on f, where s = s(¢) is the arc-
length of ¢ with respect to the Bergman metric &. Choosing for ¢ a geodesic
joining two points z and w in Q it follows immediately that

(16) 1f(z) = f(w)| < Crb(z, w), forz,weQ.

We have already noted that if g € BC(Q) and {w,} is a net in Q tending
to 0Q such that ¢, — ¢ in (BQ)%, then go g, — gf o ¢ pointwise on
Q. The following lemma shows that for Berezin symbols this convergence is
uniform on compact subsets of Q.

Lemma 13. Let f € L*(Q), and let {w,} be a net in Q tending to dQ such
that ¢, — ¢ in (BQ)?. Then fo g, convergesto fFoq uniformly on each
compact subset of €.

Proof. Suppose that f € L>(Q). We have already seen that f © Py, converges

to f 8o ¢ pointwise on Q, so it suffices to prove that the family { f © Py, } is
equicontinuous on each compact subset of . Inequality (16) ang the Mo6bius-

invariance of the Bergman metric 5 imply that |(fo Puw,)(2) = (f o pu,)(W)| <
C¢b(z, w), from which the equicontinuity of the family {f o ¢, } follows at
once. O

The following theorem relates the algebras A0® and CO® to compact-
ness of the Hankel operator associated with the Berezin symbol of a bounded
measurable function.

Theorem 14. Let f € L>(Q). Then:_
(1) Hf~ is compact if and only if f € AOD;

(2) both Hf~ and H7 are compact if and only if fe COd.

Proof. Since clearly CO® = AOPNAOD it suffices to prove (1). By Theorem 7
we have that H7 is compact if and only if ||foqo,1—P(f~o¢,1)||2 — 0 as 4 - 9Q.
By the previous lemma, if {w(,} isanetin Q tending to dQ such that ¢,,, — ¢
in (BQ)%, then || f 0@y, —f 75 op||2 — 0. Using this observation, the compactness
of H is easily seen to be equivalent with |[f# o ¢ — P(ff o 9)|l, = 0, ie.,

fﬂo¢—P(fﬂo¢),forevery peQ. O
In the sequel we will also need the following lemma.

Lemma 15. Let ¢ € ® and w € Q. Then there exist a w € ® and a unitary n
by n matrix U such that UQ)=Q and popy, =yoU.

Proof. Fix p ¢ ® and w € Q, and let {w,} beanetin Q such that w, — 8Q
and ¢,, — ¢ in (BQ)?. By Cartan’s Theorem [16, Theorem 2.1.3] there is a
unitary n by n matrix U, such that U,(Q) = Q and ¢y, 0o ¢y = ¢, 0 U,,
where z, = Puw, (w). It is easy to verify that also z, — 9€Q. Using that the
unitary group is compact, we may assume—Dby going to a subnet which we do not
relabel—that {@, } converges in (BQ)?, say to v, and that {U,} converges
in the unitary group, say to U. Clearly U(Q) = Q, and since z, — 8%,
w € ®@. It is now readily verified that p o ¢, = wo U. O

For w € Q and r € (0, 1) let the pseudohyperbolic ball Q(w, r), with
center w and radius r, be defined by Q(w, r) = @, (rQ). For the unit ball
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B, these pseudohyperbolic balls are ellipsoids (see §2.2.7 in [16]); for the poly-
disk D" these pseudohyperbolic balls are cartesian products of pseudohyper-
bolic disks in D.

The following proposition gives a more precise description of the algebra
AO®. The result is a generalization of Sheldon Axler’s description of AOP
for the unit disk [3]. The “distance” in the statement of this proposition is with
respect to the supremum norm.

Proposition 16. Let [ € L>(Q). Then the following statements are equivalent.

(i) fe A0®;

(ii) distance(f|QAw, r), H®(Q(w,r))) — 0 as w — 9Q for every r €
0, 1); N

(iii) distance(f|Q(w, r), H®(Q(w, r))) — 0 as w — 8Q for some r €
0, 1).

Proof. Let f e L>*(Q).

Proof that (i) = (ii). Suppose that (ii) does not hold. Then there exist
re(0,1), 6 >0, and a sequence {w;} in Q such that w; - 9Q as j — o,
and

distance(f|Q(w;, r), H*(Q(w;, r))) >4, forall j> 1.
Let {w.} be a subnet of {w;} such that {¢,,} convergesin ( B2, say to

¢ € ®. Then by Lemma 13, fo ¢, — f# o ¢ uniformly on rQ. For every
index a we have

distance(f o P, |1, H®(rQ)) >4,

so it follows that distance(fop|rQ, H(rQ)) > & , which implies that ffop ¢
H>(Q), thus f ¢ AO®. This proves that (i) implies (ii).
That (ii) = (iii) is trivial.
Proof that (iii) = (i) . Suppose that r € (0, 1) is such that
distance(ﬂQ(w , 0, H(Qw, r) -0 asw — Q.

Take p € @. Let {w,} be a netin Q such that w, —» dQ and ¢,, — ¢
in (BQ)?. For each index a let g, € H®(Q(w,, r)) be such that

If1QWa, 7) = galloo < 2 distance(f1Q(w, , r), H®(Q(w,, r))).
Then ||J7|Q(w,, , 1) — &lloo — 0. Putting sy, = g, 0 ¢y,, we have
1/ © 9w, 7R ~ ha||oo — O.

Since {fo ¢w,} 1s uniformly bounded on rQ, there is no loss of generality
in assuming that the same is true for {A,}. Then there is a subnet {A,} and
h € H*(rQ) such that h, — h weak-star in H*(rQ). In particular, b, — h

pointwise on rQ. But also f o @y, — fP o ¢ pointwise on rQ, and ||fo

9w, |rQ — hy|lc — 0. We conclude that f£og = h on rQ, thus ffog is
analytic on rQ.

Now let w € Q be arbitrary. By Lemma 15 there is a unitary n by » matrix
U and a y € ® such that U(Q) = Q and ¢ o ¢, = ¥ o U. By the previous
paragraph f# o y is analytic on rQ. Because U maps rQ analytically onto
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itself, we see that f'g o o U is analytic on rQ, i.e., f~ﬂ o @ o @ 1is analytic
on rQ). Thus fﬂ o @ is analyticon Q(w, r). Because w €  was an arbitrary
point of Q, fﬁ og@ is analytic on all of €. This holds for every ¢ € ®, hence
fedod. O

Remark. 1t is clear from the proof that the above proposition remains true if the
pseudohyperbolic balls Q(w, r) are replaced by sets ¢,,(G) , where G is a fixed
nonempty open subset of Q whose closure is contained in Q. In particular,
the proposition holds for the balls with respect to the Bergman metric.

The following proposition gives a description of the algebra CO® in terms
of the oscillations over pseudohyperbolic balls of a fixed (pseudohyperbolic)
radius. The result is a generalization of Sheldon Axler’s description of COP
for the unit disk {3].

Proposition 17. Let f € L>(Q). Then the following statements are equivalent:
() feCoD; _
(i) sup{|f(z) - f(w)|: z€ Qw, r)} = 0 as w — IQ forevery r € (0, 1);
(ii1) sup{lf(z)—f(w)|: zeQw,r)} —0 as w— dQ forsome re (0, 1).
Proof. Let f e L>*(Q).
Proof that (i) = (ii). Suppose that (ii) does not hold. Then there exist
€ (0,1), 6 > 0, and sequences {w;} in Q and {4;} in rQ such that
w; — 0Q as j — oo and

I(f o pu,)(A) = f(w))| 2, forall j>1.

Let {w,} be a subnet of {w;} such that ¢, — ¢ in (BQ)? for some ¢ € .
Since the net {4,} is contained in a compact subset of Q, by going to a subnet
(that we will not relabel) we may assume that A, — 4 for some 1 € Q. By
Lemma 13 we have (fo Pw, )(Aa) — (fﬂ o ¢)(4). On the other hand, f~(w,,) =
(fo9u,)(0) = (f#00)(0). Since for every index a, |(fopu,)(As)—f(wa)| >4,
it follows that |(f% o ¢)(4) — (¥ 0 ¢)(0)| > &, hence f# o ¢ is not constant.
This proves that (i) implies (ii).

That (ii) = (iii) is trivial.

Proof that (iii) = (i). Suppose that sup{|f(z) — f(w)|: z € Qw, r)} = 0
as w — 9Q for some r € (0,1). Take ¢ € ®. Let {w,} be a net in Q
such that w, — 8Q and ¢, — ¢ in (BQ)?. For 4 € rQ, |(f3 Pu, )(A) —
f(wa)| < sup{|f(z) Nf(wa)|: z € Q(w,, 1)}, thus (f° Pw,)(4) = f(we) — 0.
On the other hand, (fo ., )(A) = (/80 @)(4) and f(w,) — (f# 0 )(0). Thus
(fﬂ o p)(A) = (fﬂ o ¢)(0), and we conclude that f/‘ o ¢ 1is constant on r{).

Now let w € Q be arbitrary. By Lemma 15 there is a unitary n by n matrix
U and a y € ® such that U(Q)=Q and ¢ o ¢, = o U. By the previous

paragraph f 78 oy is constant on rQ, so ffowo U is constant on rQ, ie.,
f 18 o @ o ¢, is constant on rQ. Thus f 75 o ¢ is constant on Q(w, r). By an
easy covering argument we conclude that fﬂ o ¢ is constant on all of Q. This
holds for every ¢ € ®, hence f € CO®P. O

Remark. Again it is clear from the proof that the above proposition is also
true if the pseudohyperbolic balls Q(w, r) are replaced by sets ¢,,(G), where
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G is a fixed nonempty open subset of € whose closure is contained in Q.
In particular, the proposition holds for the balls with respect to the Bergman
metric.

5. THE ESSENTIAL SPECTRUM OF TOEPLITZ OPERATORS

Let Z(L2(Q)) denote the Banach algebra of the bounded linear operators
on L2(Q), and let Z denote the ideal of compact operators in Z(L2(Q)).
For an operator T in #(L2(QQ)) the essential spectrum of T, denoted by
0.(T), is by definition the spectrum of the operator T + .# in the Calkin
algebra Z(L2(Q))/F , i.e., 6.(T) is the set of all complex numbers { such
that T — { +.% is not invertible in & (L2(Q))/%Z .

Let AQ(Q) = {f € L>(Q2): Hy is compact}. It is well known that AQ(Q)
is a closed subalgebra of L>°(Q2) (see for example p. 475 of [4]). In this section
we will describe the essential spectrum of the Toeplitz operator T, for f in
the algebra AQ(Q).

For £ C C", let cl E denote the closure of the set £ in C*. It is easy to
verify that C(clB,) C AQ(B,). Since trivially H*(B,) C AQ(B,), it follows
that the algebra H*(B,) + C(clB,) is contained in AQ(B,). Thus the results
in this section generalize the results of [14].

We will need the following lemma.

Lemma 18. Let F € AQ(Q) be such that for some 6 > 0, |F(w)| > 6 for all
weQ. Then 1/F € AQ(Q).

Proof. Suppose F € AQ(Q) is such that for some § > 0, |F(w)| > J for
all w € Q. Put G = 1/F. Then clearly G € L*(Q). We must show that
G € AQ(Q), which by Theorem 7 is equivalent to showing that

[|Gops—P(Gog;)ll2—0

as 1 — 0Q. Let {A,,} be a sequence in Q tending to Q. By the proof of
Proposition 12, ||Fog; —Fo ¢1,]2 — 0, and thus—by going to a subsequence
—we may assume that F o g, -— Fo 95, — 0 almost everywhere on Q as
m — co. Now let {4,} a subnet of {4,} such that ¢, — ¢ in (BQ)® for
some ¢ € ®. By Proposition 12 we have F € AQ(Q), thus the function
h=FFfope H®(Q). Since ||F o @4, —fomunz — 0 we have Fog; — h
in L*(Q, dV). Also note that |h(w)| > J for all w € Q. It follows from
IG o @3, — 1/h|l2 < ||F 0 @3, — hl2/6% that ||Gog,, —1/h||; — 0. Applying P
we also get [|[P(Gog;,)—1/h|l; — 0, thus ||Gog;, — P(Gog,)l2 — 0. We
conclude that ||Gog; — P(Go ¢,;)||l» — 0 as A — 8Q, and by Theorem 7, Hg;
is compact, i.e., Ge€ AQ(Q). D

It will be convenient to make use of the following well-known identity which
gives a simple relationship between Toeplitz and Hankel operators:

(17) Tgy— TeTy = HzHy,

for f, g€ L>°(Q).
The following theorem describes the essential spectrum of the Toeplitz oper-
ators for which the corresponding Hankel operator is compact.
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Theorem 19. Let f € AQ(Q). Then
o0e(Ty) = [ clf(Q\rQ).

O<r<i
Proof. Let f € AQ(Q). We will divide the proof into several steps.

Step 1. Suppose that { ¢ cl f(Q\rQ) for some r € (0, 1). Define the
function g: Q — C by g(z) = (f(z) - )7 if z € Q\rQ; gz) =1 if
z€rQ. Then g€ L>*(Q) and g(f —{) = xaa+ (f — {)xra, so that by (17)
we have

(18) Tng—C =1+ T(f—(—l) - Hng

Since both the operators H; and T(s_;_;y,, at the right-hand side of (18)
are compact it follows that T,_, + % is left-invertible in the Calkin algebra
L(L2(Q))/Z . Reversing the roles of f — ¢ and g we also have

(19) Tr-Tg =1+ Tiy—g-1y3q — H7Hg.

XrQ

Put F = (f - {)xa\re + Xro- Then clearly Hr is compact, i.e., F € AQ(Q).
There is a 6 > 0 such that [F(w)| > d forall w € Q. So by Lemma 18,
1/F € AQ(Q). But 1/F = g, so H, is compact. It follows from (19) that
Ty (+Z isalsoright-invertible in .2 (L2(Q))/% . Thus Ty—{+% = Tr_+%
is invertible in .#(L2(Q))/Z , so that { ¢ oe(Tr) . We conclude that o.(7y) C
cl f(Q\rQ) forall re (0, 1).

Step 2. By Proposition 12, Tf_~ is compact, thus o.(T,) = ae(Tj;) , 8O that

by Step 1, 6.(Ty) C cl f(Q\rQ) forall re (0, 1).

Step 3. Now suppose that { € clf(Q\rQ) for all r € (0, 1). Pick a net
{4} in Q such that f(4,) — {, 4 — 0Q and ¢, — ¢ in (BQ)® for
some ¢ € ®. Note that fﬂ o @(0) = ¢. Since fBo @ is analytic on Q, we
have P(f#o¢) = P(ffop) = fBop(0) = T, so that P_(fﬂ op—-0)=0.
Hence ||T;_z(ki,/llksll2)ll2 = IP(f% 0 0;, = Dl = IP(ff o9 - D2 = 0,
and Tf—f + % cannot be left-invertible in the Calkin algebra .#(L2(Q))/.% .
Therefore Ty_, + % is not right-invertible in the Calkin algebra, and thus
C € Ge(Tf) = Ue(Tf) .

Remark. The above proof shows that for f in AQ(Q) the left-essential and
the right-essential spectra coincide with the essential spectrum.

Corollary 20. Let f € AQ(L2). Then the essential spectrum o.(Ty) is connected.

Proof. Since the function f is a bounded continuous function on 2, the sets
cl f(Q\rQ) are compact and connected. By Theorem 19, g.(7y) is the inter-
section of a nested family of compact connected sets. O

The essential norm of an operator is its distance to the compact operators,
i.e., if T is an operator in .Z(L2(Q)), then its essential norm, denoted by
||T|le , is by definition the norm of the operator T +.% in the Calkin algebra
Z(L2(Q))/Z . The following corollary gives the essential norm for the Toeplitz
operators on the Bergman space L2(Q) for which the corresponding Hankel
operator is compact.
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Corollary 21. Let f € AQ(Q). Then

[|T¢|le = limsup | f(w)l.
w—aQ

Proof. Let f € AQ(Q). It is an easy consequence of identity (17) that T;Ty-
I T; = H%HT—H;H ', which together with the fact that H; is compact implies

that T;+.% is a hyponormal element of the Calkin algebra .#(L2(Q))/% . By
Stampfli’s Theorem [9, III. Proposition 4.7], the norm of T+ .%Z is equal to
its spectral radius max{|{|: { € 6.(T)} . By Theorem 19 this quantity is equal

to limsup,,_ 0 |f(w)l. O

To state yet another corollary of Theorem 19 we recall that an operator in
Z(L:(Q)) is called Fredholm if its kernel has finite dimension and its range
has finite codimension. It is a standard fact that 7 in 2 (L%(Q)) is Fred-
holm if and only if the operator T + .7 is invertible in the Calkin algebra
Z(LAQ)/7 .

Corollary 22. Let f € AQ(Q). Then Ty is a Fredholm operator if and only if

there exist r € (0, 1) and 0 >0 such that |f(w)| > for every w € Q\rQ.

Proof. Observing that T is Fredholm if and only if 0 ¢ g.(7Y), the statement
follows immediately from Theorem 19. O

Recall that for a Fredholm operator T in Z(L2(Q)) its index, denoted by
ind(TY), is defined to be the difference between the dimension of the kernel of
T and the codimension of the range of 7. In addition to the above charac-
terization of the Toeplitz operators that are Fredholm, we have a formula for
the index of such Toeplitz operators. Before stating and proving this index
theorem, we consider a special case in the following lemma.

Lemma 23. Let F € AQ(Q)NBC(Q) be bounded away fromQon Q, 0<r< 1,

and suppose that F agrees with fh on Q\rQ where f € AQ(Q) and h|Q\rQ
extends continuously to cl(Q\rQ). Then Tr is Fredholm, and ind(Tr) =0.
Proof. Suppose F € AQ(Q) N BC(Q) is bounded away from 0 on Q and F
agrees with fh on Q\rQ where f € AQ(Q) and A|Q\rQ extends continuously
to cl(Q2\rQ). Let J > 0 be such that |F(w)| >d forall w € Q. By Step 1 of
the proof of Theorem 19, 0 ¢ 0.(TF), so that Tr is Fredholm. We must show
that ind(7r) =0. For m € N let G be a continuous function on Q such that
G™ = F . Since F is bounded on Q, so is the function G. We assert that G
isin AQ(Q). Assuming that G € AQ(Q), by (17) we have Tr = (T5)" + K,
where K is a compact operator. Since |G(w)] > /™ for all w € Q, also
T is Fredholm, and it follows that ind(7r) = mind(Tg). Thus ind(TF) is
divisible by any m € N, and we conclude that ind(7F) =0.

It remains to show that G is in AQ(Q). Let {4,} be a net in Q such that
Ao — 0Q and @;, — ¢ in (BQ) for some ¢ € ®. Then fog; — fPoygp
uniformly on compact subsets of Q. We will show that also Gog; — Gfog
uniformly on compact subsets of Q. It will then follow that Fog; — Ffog
uniformly on compact subsets of Q. As in the proof of Theorem 14 this
implies that F# o ¢ is analytic on Q. Since G o ¢ is continuous on Q, and
(GP o p)™ = FP o p is analytic on Q, we have that G# o ¢ is analytic on Q.
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Also Gog,, — GPoyp in L*(Q, dV), and thus ||Go g, — P(Gog; )|l — 0,
so that we can conclude that Hg is compact.

To finish the proof we have to show that Gog; — G#o¢ uniformly on com-
pact subsets of . We have pointwise convergence, so by a standard argument
it suffices to show that for arbitrary ¢ > 0 and w € Q there are p > 0 and an
index g such that for every a > ap we have: |Gog; (2) — Go gy (w)| < ¢
whenever b(z, w) < p. Since % is bounded away from 0 on cl(Q\rQ) we can
choose a continuous function k on cl(Q\rQ) so that k™ = A on cl(Q\rQ).
Putting g = G/k on Q\rQ, we then also have g™ = f on Q\rQ. Now

let ¢ >0 and w € Q be given. Note that n = inf{|f(2)|: z € Q\rQ}
is positive; let p = Imen'~1/"/(C/||k||l), where C; is the constant for
which inequality (15) holds. Let E(w, p) = {z € Q b(z, w) < p}. Since
¢, (w) — 8Q we can choose an index ag (depending on w) such that for
a > ap: ¢ (E(w, p)) C Q\rQ. Now let z € E(w, p). Then taking for
o: [0, 1] — Q a geodesic from w to z in the Bergman metric b it follows
from (15) that

1
8002, (2) ~ g(ps, ) < [ | S8t (o)) d
1 -~ ~
= [ |t oei=mim & Fps oo a

1 _
< %’7(1 MIMCb(9,,(2), Pa,(w))

1o
—n=mIMCrb(z, w) < &/(2kllo)

whenever z € E(w, p) and a > ag. Since k is uniformly continuous on
Q\rQ2 we may assume that furthermore |k(¢;, (2)) — k(s (w))] < €/(2]|gllo0)
whenever z € E(w, p) and a > ap. It follows immediately that |G(¢;_ (z)) —
G(p; (w))|<e whenever ze E(w, p) and a>ag, and our claim is proved. O

Now we are in a position to prove the following index theorem.

Theorem 24. Let f € AQ(Q) and suppose that T, is a Fredholm operator.
Then —winding number of f|{|z|=,}
ind(Ty) = for some r < 1 close to 1 ifn=1;
0 ifn>2.
Proof. Let f € AQ(Q) be such that T, is Fredholm. By Corollary 17, there
isan r € (0, 1) and J > 0 such that |f(w)| > ¢ forall we Q\rQ. Also, we
have proved that T, = T7+K , for some compact operator K (Proposition 12).

Thus Tf is Fredholm and ind(7) = ind(Tj:) . Note that f~ € AQ(Q)NBC(Q).
Now consider the following two cases.

Case 1: n = 1. Suppose that f~ has winding number m on |z| =r. Then
the function f(z)(|z| /z)™ on D\rD extends to a function F € BC(D) bounded
away from O on D. Let g be the function defined by

|z|/z if z € D\rD;
g(z)={ 1 if z € rD.
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One easily verifies that H|, is compact, and using this it follows that H, is
compact, i.e., g € AQ(D). Using that AQ(D) is an algebra (and if necessary
Lemma 18), we see that g” € AQ(D), hence fg'" € AQ(D). Since F agrees
with fg”’ on D\rD, also F € AQ(D). By Lemma 23, ind(7Tr) = 0. Using
(17), Tr = T;(Tg)’" + K, for some compact operator K, and thus ind(7F) =
ind(T7) + mind(T,). We get ind(Tf) = —mind(Ty), and it remains to show
that ind(7g) = 1. Let the function & be defined by

_ [ lz| if z € D\rD;
h(z)_{r if z € rD.

Then zg and & differ only on rD, so that ind(7,,) = ind(7}). But by Lemma
23, ind(T,) = 0. Also, ind(T;,) = ind(T;) + ind(T,). Thus ind(T,) =
—ind(T;). It is easy to see that ind(7;) = —1, so that ind(T,) = 1, and
we are done with this case.

Case 2: n > 2. In this case there is a bounded continuous function g on
Q such that g(w) = f(w) for w € Q\rQ, and g is bounded away from
O on all of Q. Since g — f is supported on rQ, T, — T7 is compact (by
Corollary 9). Thus T, is also Fredholm, and ind(Tf~) = ind(Tg). By Lemma

23, ind(T,) = 0, hence ind(Ty)=0. O

6. TOEPLITZ AND HANKEL OPERATORS WITH SPECIAL SYMBOLS

Let Z(Q) be the norm-closed subalgebra of L>*(Q) generated by the
bounded analytic functions on Q and their complex conjugates. In this section
we will characterize more precisely the functions f in %(Q) such that T, or
H is compact. First we describe an alternative way of looking at the algebra
#(Q). Let .# denote the maximal ideal space of H>(Q), which is defined
to be the set of all multiplicative linear functions from H*>(Q) onto the com-
plex plane. The space .# endowed with the weak-star topology inherited from
the dual of H*°(Q) is a compact Hausdorff space. Using the Gelfand trans-
form we can think of H>°(Q) as a subset of C(.#), the algebra of continuous
complex-valued functions on .# . For A in Q the evaluation f + f(4) is a
multiplicative linear functional on H*(Q), thus we can think of Q as a sub-
set of .# . We note that Lemma 4.4 in [12] can be extended to show that the
algebra 7/(Q) is precisely the set of functions on Q that extend continuously
to the maximal ideal space of H>(Q).

For the unit ball B,, the algebra % (B,) is furthermore equal to the norm-
closed subalgebra of L>°(€2) generated by the bounded pluriharmonic functions
on B, (see [22]).

Clearly 7Z(Q) is contained in BC(). The following lemma should be
compared with Lemma 13.

Lemma 25. Let f € % (Q), and let {w,} be a net in Q tending to 0Q such
that ¢, — ¢ in (BQ)?. Then fog,, convergesto fog uniformly on each
compact subset of Q.

Proof. For g1,...,8n, Ry, ..., hy € H®(Q), we have Z,- =h; and §; =
g; (j=1,...,n) sothat by Lemma 13 the statement is true for each of the
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functions g; and 4;, and thus for u = gk +---+gyhn . Since these functions
u are dense in Z(Q) the statement holds for every f e Z(Q). O

As a consequence of the above lemma we see that for f € Z(Q), and {w,} a
netin Q tendingto dQ such that ¢, — ¢ in (BQ)?, we have fog,, — fPoy
in L?(Q, dV); from this we obtain the following version of Theorem 7.

Theorem 26. For f € Z(Q) we have:
(1) Hy is compact & f € AOP;
(2) both Hy and H; are compact feCOD.

We will use the above theorem to characterize the symbols in #Z(Q) for
which the Toeplitz operator is compact. We have the following generalization
of Proposition S in [15].

Theorem 27. Let f € Z(Q). Then T, is compact if and only if f is continu-
ously extendable to clQ with floQ =0.

Before we prove this theorem we recall the following algebraic properties of
Toeplitz operators:

(20) Ty =T;Tpand Tgp =TTy, forall f € L*(Q) and g, h € H*(Q).
The following lemma is a straightforward generalization of a lemma in [15].
For completeness we will give a proof.

Lemma 28. The set {f € % (Q): Ty is compact} is a closed ideal in % (Q).

Proof. Put & = {f € % (Q): Ty is compact}. It is clear that .¥ is a closed
linear subspace of Z(Q). To show that it is an ideal, suppose that f € .# . Let

g,...,8v and hy, ..., hy bein H®(Q), and set u = g,h +---+ Zxhn.
Then, using (20) we have Ty, = T3 T;T), +--- + T, 17T}, , and thus Tp, is

compact, i.e., fu € ¥ . Functions of the above form are dense in Z(Q), so
 isanideal in Z(Q). O
Proof of Theorem 27. If f is continuous on clQ and f|0Q = 0, then
[|fo@iil2 — 0 as 4 — 8Q (by the Lebesgue Dominated Convergence Theorem),
so that certainly ||P(f o ¢;)|[2 =0 as 4 — 94, and thus T is compact.
Conversely, suppose that f € Z(Q) and T, is compact. Since f € Z(Q),
by Lemma 28 also 7, is compact, thus |fI2(A) — 0 as 4 — 8Q, and by
Corollary 8 the operator M is compact. It follows that both H, and H7 are
compact. By Theorem 26, f € CO®, i.c., ffo¢ is constant for every ¢ € ®.
The compactness of T, also implies that P(f0¢;)(0) = f(A) — 0 as A — 0Q.
This and the definition of ® show that fora ¢ € ®, P(f# 0 ¢)(0) = 0, which
combined with the fact that f# o ¢ is constant gives us that ffop =0. Itis
now easily seen that necessarily f(1) -0 as 1 - 9Q. O

Using Theorem 6 we can also give another proof of Theorem 27.

Second Proof of Theorem 27. Suppose that T is compact for f € #(Q). Take
g,he H*(Q). Since Ty, = T,T, is compact, using Lemma 25 and Theorem
6, we conclude that P((f? o p)(gf o 9)) = 0 for every ¢ € ®. Thus we have
(B2 0 0)(EF 0 9p), fPog)=(RPop, P(ffop)(gfop))=0. It follows that
(uPop, fBop) =0 for every function u = g h+---+Zyhn, where g1, ..., gn
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and &y, ..., hy arein H°°(Q). Using that the functions u# of the above form
are dense in Z(Q), we get (ffop, ffogp)=0,s0that ffop=0. O

More precise descriptions for compactness of Hankel operators with symbols
in Z(Q) are in the following theorems. In these theorems we use the nota-
tion |E| to denote the normalized Lebesgue volume measure of a Lebesgue
measurable set £ contained in Q.

Theorem 29. Let f € Z(Q), 0<r<1,and 1 < p < oo. Then the following
statements are equivalent:
(a) Hy is compact,
(b) fe AOD;
(c) distance(f|Q(w, r), H®(Q(w, r))) — 0 as w — 8Q;
(d) [If o @w—P(fopu)llp =0 as w - 0Q;
(e) (1/1Qw, N) fou oS = P(fopu)opulPdV — 0 as w — 0Q.
Proof. We have already shown the equivalence of statements (a), (b), and (d).
Proof that (a) = (c). Suppose H; is compact. By Proposition 12 also H7

is compact, and according to Proposition 16 we have
distance(f|Q(w, r), H®(Q(w, r))) = 0 as w — dQ.

It follows from the analyticity of f o ¢ that fo p=fop forevery p € D.
Using Lemmas 13 and 25 this implies that
sup{lf(2) - f(2)|: z € Qw, r)}
= sup{|(f o pu)(#) = (f 0 pu)(W)|: u € rQ} — 0.
Hence distance(f | Q(w, r), H®(Q(w, r))) — 0 as w — Q.

The proof that (c) = (b) is the same as the implication (iii) = (i) in
Proposition 16.

Proof that (d) = (e). Using the same arguments as in §2 of [8] it is easy to
show that there is a positive constant C, such that for all w € Q and every
zeQw,r):

C hw(w) < Jkw(2)] < Crhy(w),  and
Cr 'k (w) < Qw, 7)™ < Gk (w).
Using these inequalities and change-of-variable formula (3) we have

1
—_ - P w rdv
2w, Al Jag, /7 FV 00w 000l

< c/g 1f o 0w = P(f o pu)P dV

SClfopu—P(fo (010)”5
and the implication follows.
Proof that (e) = (b). Let ¢ € ®. Choose a net {w,} in Q tending to 9Q
such that ¢, — ¢ in (BQ)?. It
IP(f © 9w, )(2) = P(f# 0 9)(2)| = [{f 0 pu, — [P o9, k2)|
<|If o Qu, = f7 0 pllak=(2)'/?
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that P(f o ¢y, ) — P(f% o ) uniformly on rQ, thus
170 =PIl aV — [ 1/ op-P(fF op)rav.

On the other hand, using the above inequalities as well as change-of-variable
formula (3) we have

/Q £ o 9w — P(fopu)lPdV

1
<Co— iy WP av,
= i, 7l Ja, !~ PV o) 00]

thus [ |ffop—P(fPop)PdV =0, and we conclude that ffo¢p = P(ffop)
on rQ, thus f# o ¢ is analytic on rQ. As before we deduce that ff o ¢ is
analytic on all of Q. This for every ¢ € @, and it follows that f € AO®. O

Theorem 30. Let f € Z(Q). Then the following statements are equivalent:
(a) Hr and H7 are compact,
(b) feCOP;
(¢) sup{|f(z) - f(w)]: ze Qw, r)} -0 as w— dQ;
() |If o puw— f(w)llp =0 as w— 9Q;
(€) 1/(1(w, N Jou o/ = f(W)PdV -0 as w — 0Q.
Proof. We have already shown the equivalence of statements (a), (b), and (d).
Proof that (a) = (c). Suppose H; and H7 are compact. By Proposition
12 also H;; and H—N- are compact, and according to Proposition 17 we have

SUP{|f(Z) - f~(w)]: z€Qw,r)} -0 as w— Q. As in the above proof,

we also have sup{|f(z) — f( ) z € Qw,r)} - 0 as w — 8%, hence
sup{|f(z) — f(w)|: z € Qw, r}—»O as w— 9Q.

The proof that (c¢) = (b) is the same as the implication (iii)) = (i) in
Proposition 17.

Proof that (d) = (e). As in the above proof, there is a constant C such that
for every w € Q:

1
IQ(’LU P r)l Q(w,r)

and the statement follows.
Proof that (e) = (b). Let p € ®. Choose a net {w,} in Q tending to 9Q
such that ¢,, — ¢ in (fQ)?. Using Lemma 25 we have

[ 17 o0u, = Fwpav— [ | o= (s o p)OP av.

On the other hand, as in the above proof, there is a constant C such that for
every w € Q:
1

[V o= Twpay < Crm [ 7= foopav,

thus [ |ffop—(fPop)(0)PdV =0, and we conclude that ffop = (fPop)(0)
on rQ, thus f? o ¢ is constant on rQ. As before we deduce that ffo ¢ is
constant on all of Q. This for every ¢ € @, and it follows that f € COP. 0O

If = fw)P dV < C|If o g — f(w)][2,
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7. REMARKS AND OPEN QUESTIONS

In this section we will make some remarks and formulate some open ques-
tions.

1. The results in this paper can be extended somewhat. If Q is a bounded
symmetric domain in C* and 0 € Q, then for every A € Q there is an au-
tomorphism ¢; on Q such that ¢;(A) = 0 and ¢, 0 ¢; = idg. It is then
easy to see that Proposition 1 extends to arbitrary bounded symmetric domains
Q. In trying to extend the results in §3 one would need to know when the
quantities M, () are finite. In the proof of Lemma 2 we used the Forelli-
Rudin estimates on the reproducing kernels for the unit ball. Recently these
estimates have been extended somewhat in [10]. Unfortunately, the extended
Forelli-Rudin estimates obtained in [10] are only valid for a certain range of
parameters {(depending on the domain), and do not give Lemma 2 for the do-
main. However, for the rank 2 domain Q; in C? consisting of 2x2 contractive
symmetric matrices it follows from the generalized Forelli-Rudin inequalities in
[10] that M, .(€3) < oo for arbitrary small ¢ > 0 and g > | sufficiently close
to 1; in fact, there are sequences (gn) in (1, co) and (ey) in (0, co) con-
verging to 1 and O respectively such that for every positive integer N we have
My, £y(€3) < oo. Using that the reproducing kernel of a product of domains is
the product of the reproducing kernels, it follows that for Q a finite product of
unit balls and copies of Qj, the quantity M, () is finite for arbitrary small
€ >0 and ¢ > 1 sufficiently close to 1. In the proof of Theorems 6 and 7 it was
also needed that the Bergman projection is LP-bounded for arbitrary p > 1 ; we
do not know whether this is true for arbitrary bounded symmetric domains, but
in the case of domain 3 it follows easily from the generalized Forelli-Rudin
inequalities in [10]. Thus Theorems 6 and 7 hold for finite products of unit
balls and copies of 3.

Question 1. Do Theorems 6 and 7 hold for arbitrary bounded symmetric domains
in C*?

Remark. The descriptions of the algebras 4O® and CO® in §6—equivalences
(b)-(f) in Theorems 29 and 30 respectively—do hold for arbitrary bounded
symmetric domains in C”.

2. We note that in [19] the first author has used the method of §3 to prove
that the analogous results hold for Hankel and Toeplitz operators on the Fock
space (Segal-Bargmann space), the space of entire functions on C* which are
square-integrable with respect to Gaussian measure on C”, thus providing an
alternate approach to the work of C. A. Berger and L. A. Coburn [7]. It would
be interesting to find other settings for which the results hold.

3. In this paper we defined 4Q(Q) = {f € L>(Q): H, is compact}. Al-
though Theorem 7 characterizes the algebra 4Q(L2) and Proposition 12 tells
us that AQ(Q) is decomposed as AQ(Q) = 7 (Q) + 40(Q) N BC(Q) where
# (L) denotes the ideal {g € L>(Q): |g|>(4) - 0 as 4 — §Q}, it would be
nice to have more precise descriptions of the algebra AQ(Q). The C*-algebra
Q(Q) = {f € L*(Q): H; and H; are compact} has been studied extensively

in [6, 8, and 23]. It is obvious that H®(Q) + Q(Q) c AQ(Q).
Question 2. Is AQ(Q) equal to H*(Q) + Q(Q)?
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This question extends Sheldon Axler and Pamela Gorkin’s question raised in
[5] whether for the unit disk D one has AOP = H>®(D) + COP?

11.

12

13.
14.

15.

16.
17.

18.

19.
20.

21.

22.
23.
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