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Abstract

Compressed sensing (CS) has recently emerged as a powerful signal acquisition paradigm. In essence, CS enables

the recovery of high-dimensional but sparse (or nearly sparse) vectors from relatively few linear observations in the

form of projections of the signal onto a collection of test vectors. Existing results show, for example, that if the entries

of the test vectors are independent realizations of random variables with certain distributions, such as zero-mean

Gaussian, then with high probability the resulting observations sufficiently encode the information in the unknown

signal and recovery can be accomplished by solving a tractable convex optimization. This work provides a significant

extension of current CS theory. A novel technique is proposed that allows theoretical treatment of CS in settings

where the entries of the test vectors exhibit structured statistical dependencies, from which it follows that CS can

be effectively utilized in linear, time-invariant (LTI) system identification problems. An immediate application is in

the area of sparse channel estimation, where the main results of this work can be applied to the recovery of sparse

(or nearly sparse) wireless multipath channels. Specifically, it is shown in the paper that time-domain probing of a

wireless channel with a (pseudo-)random binary sequence, along with the utilization of CS reconstruction techniques,

provides significant improvements in estimation accuracy when compared with traditional least-squares based linear

channel estimation strategies. Abstract extensions of the main results, utilizing the theory of equitable graph coloring

to tolerate more general statistical dependencies across the test vectors, are also discussed.

I. INTRODUCTION

Compressed sensing (CS) describes a new signal acquisition paradigm in which sparse, high-dimensional vectors

β ∈ Rn can be accurately recovered from a small number of linear observations of the form Xβ = y ∈ Rk. The

conditions under which CS succeeds depend on the structure of the measurement matrix X ∈ Rk×n. Specifically,

recent theoretical results establish that the observations y = Xβ can be used to efficiently recover any “sparse

enough” signal provided that the matrix X satisfies the so-called restricted isometry property (RIP) [1]–[3].

Essentially, the RIP condition guarantees that all column submatrices of X (the k × m submatrices formed by
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all subsets of m columns, where m is proportional to the level of sparsity in β) are well-conditioned. The use of

such measurement matrices to recover sparse vectors leads to remarkable results. First, the number of observations

required for accurate recovery, k, is on the order of the number of nonzero entries in the signal, which can be far

fewer than the ambient signal dimension n. In addition, signal recovery can be accomplished by solving a tractable

convex optimization. And both of these results remain true even when y is corrupted by some (deterministic or

stochastic) additive noise η ∈ Rk, where “recovery” in these settings means that the signal estimate is close to the

true signal in terms of a suitable error metric (such as the mean squared error).

This paper explores whether the sparsity-exploiting power of CS can be used for the identification of discrete,

linear, time-invariant (LTI) systems. Specifically, we examine the effectiveness of random probing of LTI systems

having sparse impulse responses, coupled with the utilization of CS reconstruction methods. The practical importance

of this problem is evidenced by many wireless communication applications in which the underlying multipath

channel can be modeled as an LTI system with a sparse impulse response [4]. Compared to the conventional

channel estimation methods that do not explicitly account for the underlying multipath sparsity, reliable estimation

of the channel impulse response in these settings can lead to significant reductions in transmission energy and

improvements in spectral efficiency.

Existing results in CS show that if the entries of the observation (measurement) matrix are independent realizations

of random variables with certain distributions, such as zero-mean Gaussian, then with high probability the resulting

matrix satisfies the RIP [5]. Toeplitz matrices are matrices having constant diagonals and they arise naturally in the

context of estimation of wireless multipath channels. The major contribution of this work is a significant extension

of CS theory to observation matrices containing statistical dependencies across rows, from which it follows that

random Toeplitz matrices satisfy the RIP with high probability. As a result, recent advances from the theory of CS

can be leveraged to devise quantitative error bounds for convex/linear programming based sparse channel estimation

schemes. Our proofs rely on a novel technique that facilitates analysis of the (structured) statistical dependencies

arising from the Toeplitz structure and, in general, our techniques can be applied in certain settings to obtain

deviation bounds for both the `2-norms of random vectors having dependent entries, and inner products between

certain dependent random vectors. The proofs and techniques outlined here generalize and build upon our own

previous works, which were the first to provide theoretical performance guarantees for CS using random Toeplitz-

structured matrices [4], [6].

The remainder of this paper is organized as follows. In the rest of this section, we provide the requisite background

on existing results in CS. In Section II, we describe how estimation of sparse wireless multipath channels fits into

the CS framework. In particular, we show that time-domain probing of a wireless channel with a (pseudo-)random

binary sequence, along with the utilization of CS reconstruction techniques, provides significant improvements in

estimation accuracy when compared with traditional least-squares based linear channel estimation strategies. The

major contributions of the paper appear in Section III, where we establish the RIP for random Toeplitz matrices

comprised of either Gaussian or bounded random variables. Finally, in Section IV, we present extensions of the

main results of the paper to accommodate more general statistical dependencies, and we discuss connections with
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previous works.

A. Compressed Sensing and the Restricted Isometry Property

Consider the problem of recovering an unknown vector β ∈ Rn from a collection of linear observations,

yj =
n∑

i=1

x(j)i βi = x(j)′β, j = 1, . . . , k (1)

where the vectors x(j) ∈ Rn are specified “test vectors.” The observation process can be written more compactly

in the matrix formulation y = Xβ where y ∈ Rk and X is the k × n observation matrix whose rows are the test

vectors. This very general signal model encompasses a wide variety of applications, including magnetic resonance

imaging, digital imaging, radio frequency surveillance. When the number of observations, k, equals or exceeds the

dimension of the unknown signal, n, (the so-called overdetermined setting) then results from classical linear algebra

show that any unknown signal can be recovered exactly using a suitable set of test vectors. The complete set of

basis vectors from any orthonormal transform suffices, for example.

Compressed sensing (CS) primarily addresses the question of what is possible when the number of observations

is fewer than the dimension of the unknown signal, the so-called underdetermined setting. The seminal works in

CS established that signals can theoretically be recovered exactly from such incomplete observations, provided the

signals are sparse. Further, CS is a viable practical technique because recovery is tractable—it can be accomplished

by convex optimization [7]–[9].

Proofs of these remarkable initial results all rely on the same properties of the observation matrix, namely that

the submatrix of the observation matrix corresponding to the true signal subspace should behave almost like an

orthonormal matrix. One concise way to quantify this is by the restricted isometry property (RIP), first introduced

in [1]. The RIP, defined below, can be leveraged to establish a series of fundamental results in CS.

Definition 1 (Restricted Isometry Property): The observation matrix X is said to satisfy the restricted isometry

property of order S with parameter δS ∈ (0, 1), if

(1− δS)‖z‖2
`2 ≤ ‖Xz‖2

`2 ≤ (1 + δS)‖z‖2
`2 (2)

holds for all S-sparse vectors z ∈ Rn.1

Remark 1: We will sometimes make use of shorthand notation, where instead of saying that a matrix X satisfies

RIP of order S with parameter δS , we will say X satisfies RIP (S, δS).

While there is currently no known way to test in polynomial time whether a given matrix satisfies RIP, certain

probabilistic constructions of matrices can be shown to satisfy RIP with high probability [1], [7]–[9]. The following

result is representative [5].

Lemma 1: Let X be a k×n matrix whose entries are independent and identically distributed (i.i.d.), drawn from

one of the following zero-mean distributions, each having variance 1/k:

1A vector z ∈ Rn is said to be S-sparse if ‖z‖`0 ≤ S, where ‖z‖`0 counts the number of nonzero entries in z.
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• xi,j ∼ N (0, 1/k),

• xi,j ∼

 1/
√

k with prob. 1/2

−1/
√

k w.p. 1/2
,

• xi,j ∼


√

3/k w.p. 1/6

0 w.p. 2/3

−
√

3/k w.p. 1/6

.

For any δS ∈ (0, 1) and any c1 < δ2
S(3− δS)/48, set

c2 =
192 log (12/δS)
3δ2

S − δ3
S − 48c1

. (3)

Then whenever k ≥ c2S log n, X satisfies RIP of order S with parameter δS with probability at least 1−exp (−c1k).

The initial contributions to the theory of CS established, essentially, that any sparse signal can be recovered

exactly from a collection of linear observations if the corresponding observation matrix satisfies RIP. The following

result is a generalization that also describes the recovery of signals that are not exactly sparse.

Lemma 2 (Noiseless Recovery [3]): Let X be an observation matrix satisfying RIP of order 2S with parameter

δ2S <
√

2− 1, and let y = Xβ be a vector of observations of any sparse unknown signal β having no more than

S nonzero entries. The estimate β̂ obtained as the solution of

β̂ = arg min
z∈Rn

‖z‖`1 subject to y = Xz (4)

satisfies

‖β̂ − β‖2
`2 ≤ c0

‖βS − β‖2
`1

S
, (5)

where βS is the vector formed by setting all but the S largest entries (in magnitude) of β to zero, and

c0 = 4

(
1− δ2S +

√
2δ2S

1− δ2S −
√

2δ2S

)2

. (6)

Note that in the case where the signal β has no more than S nonzero entries, this result guarantees that signal

recovery is exact. Further, as shown in Lemma 1, there exist matrices for which this recovery is possible (with

high probability) using only k = O (S log n) observations. Finally, the optimization program (4), which goes by

the name of basis pursuit, is computationally tractable because it can be recast as a linear program. In this sense

the optimality of noiseless CS is evident.

Suppose now that the observations are corrupted by some additive noise. That is, the observations are given by

y = Xβ + η, where η ∈ Rk is either deterministic, or it is a vector whose entries are i.i.d. realizations of some

zero-mean random variable. In either case, it turns out that CS can be used to obtain a stable recovery of the

unknown signal.

The first work to establish theoretical results in the stochastic noise setting was [10], which used a reconstruction

procedure that required a combinatorial search. The result presented here gives similar reconstruction error bounds,

but is based on the RIP condition and utilizes a tractable convex optimization that goes by the name of Dantzig
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selector. The original specification of the result in [2] assumed a specific signal class, but the proof actually provides

a more general oracle result.

Lemma 3 (Dantzig Selector—Recovery in Stochastic Noise [2]): Let X be an observation matrix satisfying RIP

of order 2S such that δ2S <
√

2 − 1 for some integer S ≥ 1, and let y = Xβ + η be a vector of noisy

observations of β ∈ Rn, where the entries of η are i.i.d. zero-mean Gaussian variables with variance σ2. Choose

λn =
√

2(1 + a)(1 + δ1) log n for any a ≥ 0. The estimator

β̂ = arg min
z∈Rn

‖z‖`1 subject to ‖X ′(y −Xz)‖`∞ ≤ σλn (7)

satisfies

‖β̂ − β‖2
`2 ≤ c′0 min

1≤m≤S

(
σλn

√
m +

‖βm − β‖`1√
m

)2

(8)

with probability at least 1−
(√

π(1 + a) log n · na
)−1

. The constant c′0 = 16/
(
1− δ2S −

√
2δ2S

)2
, and as in the

previous lemma, βm is the vector formed by setting all but the m largest entries (in magnitude) of β to zero.

Remark 2: The sufficient condition stated in the original result in [2] was δ2S + θS,2S < 1, where θS,2S is

called the S, 2S-restricted orthogonality parameter of the matrix X . In general, the S, S′-restricted orthogonality

parameter is such that ∣∣(Xα)′ (Xβ)
∣∣ ≤ θS,S′‖α‖`2‖β‖`2 (9)

holds for all vectors α and β having no more than S and S′ nonzero entries, respectively, and such that the nonzero

entries of α and β occur at disjoint subsets of indices. However, it can be shown that θS,2S ≤
√

2δ2S , from which

the RIP condition stated in the lemma follows.

Notice that the reconstruction error in (8) is essentially comprised of two factors. One factor is due to the

“estimation error” that arises from determining m unknown quantities from noisy data, while the other is due to the

“approximation error” or bias arising from estimating the unknown vector using only m components. For a given

signal class, the best rate of error decay is obtained by balancing the two terms. That is, the best value of m is the

value m∗ such that
‖βm∗ − β‖`1

m∗ = σλn. (10)

Thus, to make the optimal rates achievable, the observation matrix should be chosen to recover signals with sparsity

S that is at least as large as the “effective sparsity” m∗.

Finally, when the perturbation (noise) vector is deterministic, a relaxation of the optimization program in (4)

guarantees stable signal recovery. The result given below is from [3], which refines the initial result of [11].

Lemma 4 (Recovery in Deterministic Noise [3]): Let X be an observation matrix satisfying RIP of order 2S

such that δ2S <
√

2−1 for some integer S ≥ 1, and let y = Xβ +η be a vector of noisy observations of β ∈ Rn,

where ‖η‖`2 ≤ ε. The solution of

β̂ = arg min
z∈Rn

‖z‖`1 subject to ‖y −Xz‖`2 ≤ ε (11)
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satisfies

‖β̂ − β‖2
`2 ≤ c′′0

(
ε +

‖βS − β‖`1√
S

)2

, (12)

where βS is as defined earlier and

c′′0 =
16 (1 + δ2S)(

1− δ2S −
√

2δ2S

)2 . (13)

Note that this result differs significantly from the stochastic noise result. Indeed, applying this result directly to

the stochastic noise setting (in which case ‖η‖`2 ∼
√

kσ) would yield an approximation error that grows like the

number of observations times the noise power. On the other hand, the Dantzig selector results in a much better

reconstruction error bound, with the estimation error scaling like the sparsity level times the noise power. In other

words, the estimation error bound of the Dantzig selector is adaptive to the sparsity level, while the error bound of

the relaxed `1 minimization in (11) is not. The difference in the two reconstruction error bounds could be significant,

especially when the number of observations is far greater than the sparsity (or effective sparsity).

II. RANDOM TOEPLITZ MATRICES AND SPARSE CHANNEL ESTIMATION

We now describe a different problem domain which yields an observation model similar to the canonical CS

setting. Consider point-to-point communication between two single-antenna transceivers over a wideband wireless

multipath channel. Such single-antenna communication channels can be characterized as discrete, linear, time-

invariant systems—see, e.g., [4] for further details. Optimal demodulation and decoding in wireless communication

systems often requires accurate knowledge of the channel impulse response. Typically, this is accomplished by

probing the channel with a known training sequence and linearly processing the channel output. Many real-

world channels of practical interest, such as underwater acoustic channels [12], digital television channels [13] and

residential ultrawideband channels [14], however, tend to have sparse or approximately sparse impulse responses. On

the other hand, conventional linear channel estimation schemes, such as the least-squares method, fail to capitalize on

the anticipated sparsity of the aforementioned channels. In contrast, it is established in this section that a channel

estimate obtained as a solution to the Dantzig selector significantly outperforms a least-squares based channel

estimate in terms of the mean squared error (MSE) when it comes to learning sparse (or approximately sparse)

channels.

To begin with, let {xi}p
i=1, p ∈ N, denote the training sequence, and consider using this sequence as the input

to a wireless channel characterized by a finite (discrete) impulse response β ∈ Rn. The resulting observations

y ∈ Rn+p−1 are described by the discrete-time convolution between the training signal x and the impulse response

β, and corruption by an additive noise vector η: y = x∗β+η. More specifically, if we use the notational convention

that xi = 0 for i /∈ {1, 2, . . . , p}, then each observation can be written as a sum,

yj =
p∑

i=1

βi xj+1−i + ηj , (14)

where the observations are corrupted by independent additive white Gaussian noise {ηj} of variance σ2 and contain

a channel impulse response component only for j = 1, . . . , n + p − 1. The resulting input-output relation can be
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expressed as a matrix-vector product



y1

y2

...

yn+p−2

yn+p−1


=



x1 0

x2
. . .

...
. . . x1

xp x2

. . .
...

0 xp




β1

β2

...

βn

+


η1

η2

...

ηn

 (15)

and the goal is to obtain an estimate of the channel impulse response β from knowledge of the observations y and

training signal x. Note that, by symmetry, either the training signal or the impulse response could be rewritten as

a convolution matrix in the above formulation. Writing it in this way casts the channel estimation problem into the

canonical CS framework.

The purpose of channel estimation in communication systems is to aid them in achieving their primary objective,

which is reliable communication of data (information) from one point to another. Further, because of the dynamic

nature of the wireless medium, the impulse response of a channel is bound to change over time [15]. As such,

the input data sequence at the transmitter is periodically interspersed with the training sequence so as to maintain

an up-to-date estimate of the channel impulse response at the receiver. We treat two facets of the sparse channel

estimation problem in this section. The first one, corresponding to the lack of a “guard interval” of length n − 1

between the data and training sequence, most closely resembles the canonical CS observation model, where the

number of observations is far fewer than the length of the unknown signal. Specifically, consider a setting where

the length of the training sequence p = n + k − 1 for some k ≥ 1 and the training sequence is immediately

preceded and succeeded by the data sequence. In this case, the first and last n− 1 observations in (15) also contain

contributions from the unknown data, rendering them useless for estimation purposes (the 0’s in the convolution

matrix in (15) would be replaced by the data sequence). Therefore, the channel estimation problem in this case

reduces to reconstructing the unknown impulse response β from y = Xβ + η, where the observation matrix X is

a “partial” Toeplitz matrix of the form

X =


xn xn−1 . . . x2 x1

xn+1 xn . . . x3 x2

...
...

...
...

...

xn+k−1 xn+k−2 . . . xk+1 xk

 . (16)

The second setting we consider corresponds to the case when the training sequence is immediately preceded and

succeeded by n−1 zeros (i.e., a guard interval of length n−1 exists between the data and the training sequence). In

this setting, the channel estimation problem corresponds to obtaining an estimate of the channel impulse response

from the “full” set of observations described by (15). Notice that when p ≥ n, the partial Toeplitz matrix described

in (16) above is a submatrix of the observation matrix in this setting. In contrast, when p < n, every row of the
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observation matrix in this setting has at least one zero entry, and in the limiting case when p = 1, the observation

matrix is just a scaled version of the n× n identity matrix.

The question we address in this section for both of the aforementioned settings is whether random binary

probing, along with the use of a nonlinear Dantzig selector based estimator, can be employed to efficiently estimate

a sparse channel, quantified by the condition ‖β‖`0 = S � n. Note that initial theoretical analysis of CS systems

that utilized random observation matrices relied inherently upon statistical independence among observations. The

problem considered here is significantly more challenging—the Toeplitz structure of the (partial and full) observation

matrices introduces statistical dependencies among observations and hence, existing techniques can no longer be

employed. Instead, we develop a novel technique in Section III that facilitates analysis in the presence of such

(structured) dependencies.

A. MSE of Least-Squares Channel Estimates

Estimation of an unknown vector β from linear observation models of the form y = Xβ + η is a well-studied

problem in the area of estimation theory—see, e.g., [16]. Traditionally, channel estimates are usually obtained from

y by solving the least-squares (LS) problem (or a variant of it). Note that in the case that the observation matrix

X is given by (16), LS solution requires that k ≥ n so as to obtain a meaningful channel estimate [16]. Under this

assumption, the LS channel estimate is given by

β̂LS = (X ′X)−1X ′y (17)

where the observation matrix X corresponds to (16) in the case of training without guard intervals and to the full

Toeplitz matrix in the case of training with guard intervals. Below, we lower bound the MSE performance of an

LS channel estimate corresponding to random binary probing (binary phase shift keying signaling).

Theorem 1: Let the training sequence {xi}p
i=1 be given by a sequence of i.i.d. binary random variables taking

values +1 or −1 with probability 1/2 each. Further, let p = n + k − 1 for some k ≥ n for the case of training

without guard intervals. Then the MSE of the LS channel estimate β̂LS is lower bounded by

E
[
‖β̂LS − β‖2

`2

]
≥ nσ2

p
(18)

and

E
[
‖β̂LS − β‖2

`2

]
≥ nσ2

k
(19)

for training with and without guard intervals, respectively. Further, the equality in the above two expressions hold

if and only if the corresponding observation matrices have orthogonal columns.

Proof: To establish this theorem, note that for both the cases of training with or without guard intervals

E
[
‖β̂LS − β‖2

`2

]
= trace

{
(X ′X)−1

}
σ2. (20)
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Further, let {λi}n
i=1 denote the n eigenvalues of X ′X . Then, from elementary linear algebra, we have

trace
{
(X ′X)−1

}
=

n∑
i=1

1
λi

= n

(∑n
i=1

1
λi

n

)
(a)

≥ n

(
n∑n

i=1 λi

)
=

n2

trace
{
X ′X

} (21)

where (a) follows from the arithmetic-harmonic means inequality. Also, from the arithmetic-harmonic means

inequality, the equality in (a) holds if and only if λ1 = λ2 = · · · = λn, resulting in the condition that X

must have orthogonal columns for the equality to hold in (a). Finally, note that trace
{
X ′X

}
= np for the case

of training with guard intervals, while trace
{
X ′X

}
= nk for the case of training without guard intervals and this

completes the proof of the theorem.

B. MSE of Dantzig Selector Channel Estimates

We have seen in the previous section that the MSE of an LS channel estimate is lower bounded by (ambient

dimension of β) · σ2/(# of effective observations). Conventional channel learning techniques based on the LS

criterion, however, fail to take into account the anticipated sparsity of the channel impulse response. To get an idea

of the potential MSE gains that are possible when incorporating the sparsity assumption into the channel estimation

strategy, we compare the performance of an LS based channel estimator to that of a channel estimation strategy

that has been equipped with an oracle. The oracle does not reveal the true β, but does inform us of the indices

of nonzero entries of β. Clearly this represents an ideal estimation strategy and one cannot expect to attain its

performance level. Nevertheless, it is the target that one should consider.

To begin with, let T∗ ⊂ {1, . . . , n} be the set of indices of the S nonzero entries of β and suppose that an oracle

provides us with the sparsity pattern T∗. Then an ideal channel estimate β∗ can be obtained for both the cases of

training with or without guard intervals by first forming a restricted LS estimator from y

βT∗ = (X ′
T∗XT∗)

−1X ′
T∗y (22)

where XT∗ is a submatrix obtained by extracting the S columns of X corresponding to the indices in T∗, and then

setting β∗ to βT∗ on the indices in T∗ and zero on the indices in T c
∗ . Appealing to the proof of Theorem 1, the

MSE of this oracle channel estimator can be lower bounded as

E
[
‖β∗ − β‖2

`2

]
= trace

{
(X ′

T∗XT∗)
−1
}

σ2

≥ S2σ2

trace
{
X ′

T∗XT∗

} (23)

which results in the lower bound of Sσ2/k for training without the guard intervals and Sσ2/p for training

with the guard intervals. In other words, the MSE of an oracle based channel estimate is lower bounded by

(# of nonzero entries of β) · σ2/(# of effective observations). Comparison of this lower bound with that for the

MSE of an LS channel estimate shows that linear channel estimates based on the LS criterion may be at a significant

disadvantage when it comes to estimating sparse channels. Finally, notice that in the case of training without guard

August 29, 2008 DRAFT



10

intervals (corresponding to the observation matrix given by (16)), the oracle estimator only requires that k ≥ S as

opposed to k ≥ n for an LS channel estimate.

While the ideal channel estimate β∗ is impossible to construct in practice, we now show that it is possible to

obtain a more reliable estimate of β as a solution to the Dantzig selector (DS). This is accomplished by readily

adapting the results from Lemma 3 in Section I-A and Theorems 5 and 6 in Section III-A. Below, we summarize

these adapted results in terms of two theorems.

Theorem 2 (Training Without Guard Intervals): Let the training sequence {xi}p
i=1 be given by a sequence of

i.i.d. binary random variables taking values +1 or −1 with probability 1/2 each. Further, let p = n + k − 1 for

some k ≥ 4c2S
2 log n. Choose λn =

√
2(1 + a) log n for any a ≥ 0. Then the DS channel estimate

β̂ = arg min
z∈Rn

‖z‖`1 subject to ‖X ′(y −Xz)‖`∞ ≤ σλn

√
k (24)

satisfies

‖β̂ − β‖2
`2 ≤ 2c′0(1 + a) log n ·

(
Sσ2

k

)
(25)

with probability at least 1 − 2 max
{(√

π(1 + a) log n · na
)−1

, exp(−c1k/4S2)
}

. Here, the observation matrix

X corresponds to the partial Toeplitz matrix given in (16), c′0 is as defined in Lemma 3, and c1 and c2 are positive

constants that depend only on S and are given in Theorem 5.

Theorem 3 (Training With Guard Intervals): Let the training sequence {xi}p
i=1 be given by a sequence of i.i.d.

binary random variables taking values +1 or −1 with probability 1/2 each. Further, let p ≥ 4c2S
2 log n and choose

λn =
√

2(1 + a) log n for any a ≥ 0. Then the DS channel estimate

β̂ = arg min
z∈Rn

‖z‖`1 subject to ‖X ′(y −Xz)‖`∞ ≤ σλn
√

p (26)

satisfies

‖β̂ − β‖2
`2 ≤ 2c′0(1 + a) log n ·

(
Sσ2

p

)
(27)

with probability at least 1 − 2 max
{(√

π(1 + a) log n · na
)−1

, exp(−c1p/4S2)
}

. Here, the observation matrix

X corresponds to the full Toeplitz matrix given in (15), c′0 is as defined in Lemma 3, and c1 and c2 are positive

constants that depend only on S and are given in Theorem 6.

The proofs of these theorems are essentially a direct application of Lemma 3 and Theorems 5 and 6, and are

therefore omitted for the sake of brevity. These two theorems show that the DS channel estimate achieves squared

error (roughly) within a factor of log n of the oracle based MSE lower bound of (# of nonzero entries of β) ·

σ2/(# of effective observations).

The appeal of the DS channel estimator, however, goes beyond the estimation of truly sparse channels. Indeed,

it is to be expected that physical channels in certain scattering environments happen to be only “approximately”

sparse [14]. Specifically, rearrange (and reindex) the entries of the channel impulse response β by decreasing order

of magnitude: |β(1)| ≥ |β(2)| ≥ · · · ≥ |β(n)|. We term a wireless channel approximately sparse if the ordered

entries {β(j)} of its impulse response decay with the index j. The following theorem, which focuses on the case

August 29, 2008 DRAFT



11

of training with guard intervals and basically follows from Lemma 3 and Theorem 6, quantifies the reconstruction

performance of the DS channel estimator in this setting.

Theorem 4 (Estimating Approximately Sparse Channels): Let the training sequence {xi}p
i=1 be given by a se-

quence of i.i.d. binary random variables taking values +1 or −1 with probability 1/2 each. Fix any S ∈ N, and

choose p ≥ 4c2S
2 log n and λn =

√
2(1 + a) log n for any a ≥ 0. Then the DS channel estimate (26) satisfies

‖β̂ − β‖2
`2 ≤ c′0 min

1≤m≤S

σλn
√

m
√

p
+

n∑
j=m+1

|β(j)|
√

m


2

(28)

with probability at least 1 − 2 max
{(√

π(1 + a) log n · na
)−1

, exp(−c1p/4S2)
}

. Here, the observation matrix

X corresponds to the full Toeplitz matrix given in (15), and the constants c′0, c1 and c2 are as in Theorem 3.

While the immediate significance of this result is obscured by the minimization over m in (28), its implications

can be better understood by focusing on a specific decay structure of the ordered entries of β. One such decay

structure, which is widely-studied in the literature [17], assumes that the j-th largest entry of β obeys

|β(j)| ≤ R · j−α−1/2 (29)

for some R > 0 and α > 1/2. The parameter α here controls the rate of decay of the magnitudes of the ordered en-

tries. Under this decay condition, the summation in (28) can be explicitly written as
n∑

j=m+1

|β(j)| ≤ CαR m−α+1/2,

where Cα > 0 is a constant that depends only on α. We then have the following corollary of Theorem 4.

Corollary 1: Suppose that the channel impulse response β ∈ Rn obeys (29) and let {xi = ±1}p
i=1 be the

random binary sequence used to probe the channel for the case of training with guard intervals. Choose p ≥

C2 (log n)
2α−3
2α−1 (σ2)−

2
2α−1 and λn =

√
2(1 + a) log n for any a ≥ 0. Then the reconstruction error of the DS

channel estimate (26) is upper bounded by

‖β̂ − β‖2
`2 ≤ C0 (log n)

2α
2α+1 ·

(
σ2

p

) 2α
2α+1

(30)

with probability at least 1 − 2 max
{(√

π(1 + a) log n · na
)−1

, exp
(
−C1 (log n · σ2)

2
2α+1 p

2α−1
2α+1

)}
. Here, the

absolute constants C0(a, α, c′0, R), C1(a, α, c1, R), and C2(a, α, c2, R) are strictly positive and depend only on the

parameters a, α, c′0, c1, c2, and R.

It is instructive at this point to compare the reconstruction error performance of the DS channel estimate (given

in (30)) with that of the LS channel estimate. Notice that since the MSE lower bound of O(nσ2/p) (given in (18))

holds for the LS channel estimate for all β ∈ Rn, it remains valid under the decay condition (29). On the other

hand, ignoring the log n factor in (30), we see that the reconstruction error of the DS solution essentially behaves

like O
(
(σ2/p)

2α
2α+1

)
. Thus, even in the case of an approximately sparse channel impulse response, the DS channel

estimate shows an MSE improvement by a factor of (roughly) O(n · (σ2/p)1/(2α+1)) over the LS MSE of nσ2/p.

In fact, it can also be shown that O
(
(σ2/p)

2α
2α+1

)
is the minimax MSE rate for the class of channels exhibiting

the decay (29) and hence, the performance of the DS channel estimator comes within a log n factor of a minimax
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estimator. Finally, note that performance guarantees similar to the ones provided in Theorem 4 and Corollary 1 can

also be obtained from Lemma 3 and Theorem 5 for the case of training without guard intervals.

III. RANDOM TOEPLITZ MATRICES SATISFY RIP

Because of the ubiquity of binary phase shift keying signaling in wireless communications, the channel estimation

results in the previous section were stated in terms of random binary (±1) probe sequences. However, the results

also hold in settings where the probe sequence consists of realizations of random variables drawn from any bounded

zero-mean distribution. In fact, the same results hold if the probe sequence is drawn from certain unbounded zero-

mean distributions, such as the Gaussian distribution.

More generally, Toeplitz CS matrices have some additional benefits compared to completely independent (i.i.d.)

random CS matrices. First, Toeplitz matrices are more efficient to generate and store. A k × n (random) partial

Toeplitz matrix only requires the generation and storage of k+n independent realizations of a random variable, while

a fully-random matrix of the same size requires the generation and storage of kn random quantities. In addition, the

use of Toeplitz matrices in CS applications leads to a general reduction in computational complexity. Performing a

matrix-vector multiplication between a fully-random k × n matrix and an n× 1 vector requires kn operations. In

contrast, multiplication by a Toeplitz matrix can be performed in the frequency domain, because of the convolutional

nature of Toeplitz matrices. Using fast Fourier transforms, the complexity of the multiplication can be reduced to

O(n log n) operations, resulting in a significant speedup of the mixed-norm optimizations that are essential to

several commonly-utilized CS reconstruction procedures such as GPSR [18] and SpaRSA [19]. Depending on the

computational resources available, this speedup can literally be the difference between intractable and solvable

problems.

In this section we establish the main claim of this paper, that Toeplitz matrices with entries drawn from either

zero-mean bounded distributions or the zero-mean Gaussian distribution satisfy the restricted isometry property

(RIP). Recall the definition of the Restricted Isometry Property from (1) of Section I-A. The RIP statement is

essentially a statement about singular values, and to establish RIP for a given matrix it suffices to bound the

extremal eigenvalues of the Gram matrices of all column submatrices (having no more than S columns) in the

range (1 − δS , 1 + δS). We will use this interpretation in our proofs, and the main results will be obtained using

Geršgorin’s Disc Theorem, which is an elegant result in classical eigenanalysis. We state this result here as a lemma,

without proof. There are many valid references—see, for example, [20].

Lemma 5 (Geršgorin): The eigenvalues of an m×m matrix M all lie in the union of m discs di = di(ci, ri),

i = 1, 2, . . . ,m, centered at ci = Mi,i, and with radius

ri =
m∑

j=1
j 6=i

|Mi,j |. (31)

To begin, we consider any subset of column indices T ⊂ {1, . . . , n} of size |T | ≤ S, and let XT be the

submatrix formed by retaining the columns of X indexed by the entries of T . The singular values of XT are the

eigenvalues of its |T | × |T | Gram matrix G(X, T ) = X ′
T XT . Suppose that, for some integer S ≥ 1 and some
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positive values δd and δo chosen such that δd + δo = δS ∈ (0, 1), every diagonal element of G(X, T ) satisfies

|Gi,i(X, T )− 1| < δd and every off-diagonal element Gi,j(X, T ), i 6= j, satisfies |Gi,j(X, T )| < δo/S. Then the

center of each Geršgorin disc associated with the matrix G(X, T ) deviates from 1 by no more than δd and the

radius of each disc is no larger than (S − 1)δo/S < δo. By Lemma 5, the eigenvalues of G(X, T ) are all in the

range (1− δd − δo, 1 + δd + δo) = (1− δS , 1 + δS).

Now, notice that every Gram matrix G(X, T ) is a submatrix of the full Gram matrix G = G(X, {1, . . . , n}).

Thus, instead of considering each submatrix separately, we can instead establish the above conditions on the elements

of the full Gram matrix G, and that suffices to ensure that the eigenvalues of all submatrices (formed by any choice

of T , |T | ≤ S) are controlled simultaneously. In the proofs that follow, we will show that every diagonal element

of G is close to one (with high probability), and every off-diagonal element is bounded in magnitude (again, with

high probability), and the final result will follow from a simple union bound.

It is instructive to note that because of the convolutional structure imposed by the linear, time-invariant observation

model we consider here, the sufficient conditions to establish on the diagonal and off-diagonal elements of the Gram

matrix of the resulting observation matrix essentially amount to properties of the autocorrelation function of the

probe sequence. For the full observation matrix shown in (15), for example, each diagonal element is identical and

equal to the autocorrelation of the probe sequence at lag zero. Similarly, each off-diagonal element corresponds

to the autocorrelation at different nonzero lags (as stated in Section II, the probe sequence is assumed to be zero

outside of the specified range). For the partial observation matrix of (16), the diagonal and off-diagonal elements

correspond to windowed versions of the autocorrelation function at different lags. In the following subsections

we quantify these autocorrelations for certain random input sequences. However, we note that the proof technique

described above can be used to establish RIP for any input sequence (including possibly deterministic sequences);

one would only need to verify that the autocorrelation function of the sequence satisfies the required conditions.

A. Bounded Entries

First we establish RIP for random Toeplitz matrices, for both the full observation matrices as shown in (15) as

well as the partial matrices like (16), when the probe sequence {xi} consists of i.i.d. realizations of any bounded

zero-mean random variable. We scale the distributions on xi appropriately so that columns of the observation

matrices are unit-normed in expectation. Suitable distributions are

• xi ∼ unif
[
−
√

3/ξ,
√

3/ξ
]
,

• xi ∼

 1/
√

ξ with prob. 1/2

−1/
√

ξ w.p. 1/2
,

• For q ∈ (0, 1), xi ∼


1/
√

ξq w.p. q/2

0 w.p. 1− q

−1/
√

ξq w.p. q/2

,

where ξ = k for partial matrices and ξ = p for full matrices.
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Before we state the first main results of the paper, we provide two lemmas that will be useful in the proofs. First,

we describe the concentration of a sum of squares of bounded random variables.

Lemma 6: Let xi, i = 1, . . . , k be a sequence of i.i.d., zero-mean bounded random variables such that |xi| ≤ a,

and with variance E
[
x2

i

]
= σ2. Then,

Pr

(∣∣∣∣∣
k∑

i=1

x2
i − kσ2

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− 2t2

ka4

)
(32)

Proof: Recall Hoeffding’s inequality, which states that a sequence of k independent bounded random variables

zi satisfying ai ≤ zi ≤ bi with probability one, satisfies

Pr (|sk − E [sk]| ≥ t) ≤ 2 exp

(
− 2t2∑k

i=1(bi − ai)2

)
, (33)

where sk =
∑k

i=1 zi. In our case, we let zi = x2
i , so zi ∈ [0, a2] with probability one, and since sk =

∑k
i=1 x2

i ,

E [sk] = kσ2. The result follows.

Next, we describe how the inner product between vectors whose entries are bounded random variables concentrates

about its mean.

Lemma 7: Let xi and yi, i = 1, . . . , k be sequences of i.i.d., zero-mean, bounded random variables satisfying

|xi| ≤ a (and thus |xiyi| ≤ a2). Then,

Pr

(∣∣∣∣∣
k∑

i=1

xiyi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− t2

2ka4

)
. (34)

Proof: Again we apply Hoeffding’s inequality to the sum sk =
∑k

i=1 zi, this time with zi = xiyi. In this

case we have −a2 ≤ zi ≤ a2 and since the elements are independent and have zero mean, E [sk] = 0. The result

follows.

We are now in a position to state and prove the first main result of the paper.

Theorem 5: Let {xi}n+k−1
i=1 be a sequence whose entries are i.i.d. realizations of bounded zero-mean random

variables with variance E
[
x2

i

]
= 1/k, satisfying |xi| ≤

√
c/k for some c ≥ 1 (several such distributions are given

above). Let

X =


xn xn−1 . . . x2 x1

xn+1 xn . . . x3 x2

...
...

...
...

...

xn+k−1 xn+k−2 . . . xk+1 xk

 , (35)

be the k × n Toeplitz matrix generated by the sequence, and assume n > 2. Then, for any δS ∈ (0, 1), there exist

constants c1 and c2 depending only on δS and c, such that whenever k ≥ c2S
2 log n, X satisfies RIP of order S

with parameter δS with probability exceeding 1− exp(−c1k/S2).

Proof: Following the discussion of Geršgorin’s Theorem, we need to establish conditions on the diagonal and

off-diagonal elements of the Gram matrix G = X ′X . Applying Lemma 6 we see that each diagonal element

Gi,i =
∑k

j=1 x2
j satisfies

Pr (|Gi,i − 1| ≥ δd) ≤ 2 exp
(
−2kδ2

d

c2

)
(36)
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and by the union bound

Pr

(
n⋃

i=1

{|Gi,i − 1| ≥ δd}

)
≤ 2n exp

(
−2kδ2

d

c2

)
. (37)

This establishes the required condition on the diagonal elements of the Gram matrix.

Next we treat the off-diagonal elements. Notice that entry Gi,j is simply the inner product between columns i

and j of the matrix X . For example, one such term for the matrix specified in Theorem 5 is given by

Gn−1,n = x1x2 + x2x3 + x3x4 + x4x5 + · · ·+ xkxk+1. (38)

One issue is immediately apparent—the entries of the sum are not independent, so standard concentration inequalities

cannot be applied directly. In the example here, the first two terms are dependent (they both depend on x2), as are

the second and third (both depend on x3), and the third and fourth (both depend on x4). But notice that the first

and third terms are independent, as are the second and fourth, etc. Overall the sum may be split into two sums of

i.i.d. random variables, where each component sum is formed simply by grouping alternating terms. The number

of terms in each sum is either the same (if k is even) or differs by one if k is odd.

In fact this decomposition into two sums over independent entries is possible for every Gi,j , and this observation

is the key to tolerating the dependencies that arise from the structure in the sensing matrix. Note that the terms in

any such sum are each dependent with at most two other terms in the sum. Each sum can be rearranged such that

the dependent terms are “chained”—that is, the `-th (rearranged) term is dependent with (at most) the (` − 1)-st

term and the (` + 1)-st terms. This rearranged sum has the same structure as the example above, and can be split

in a similar fashion simply by grouping alternating terms.

Rewrite the sum Gi,j =
∑k

i=1 zi, where the zi’s are identically distributed zero-mean random variables that

satisfy −c/k ≤ zi ≤ c/k. When k is even, the sum can be decomposed as

Gi,j =
t1=k/2∑

i=1

zπ1(i) +
t2=k/2∑

i=1

zπ2(i) (39)

where t1 and t2 denote the number of terms in each sum, and zπ1(i) and zπ2(i) denote the rearranged and reindexed

terms. The permutation operators π1 and π2 need not be known explicitly—it is enough to simply know such

operators exist. When k is odd, we can write

Gi,j =
t1=(k−1)/2∑

i=1

zπ1(i) +
t2=(k+1)/2∑

i=1

zπ2(i). (40)

Generically, we write Gi,j = G1
i,j + G2

i,j . Applying Lemma 7 with a2 = c/k to the component sums having t1

and t2 terms gives

Pr
(
|Gi,j | ≥

δo

S

)
≤ Pr

({∣∣G1
i,j

∣∣ > δo

2S

}
or
{∣∣G2

i,j

∣∣ > δo

2S

})
≤ 2 max

{
Pr
(∣∣G1

i,j

∣∣ > δo

2S

)
,Pr

(∣∣G2
i,j

∣∣ > δo

2S

)}
≤ 2 max

{
2 exp

(
− k2δ2

o

8t1c2S2

)
, 2 exp

(
− k2δ2

o

8t2c2S2

)}
. (41)
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It is easy to see that larger values of t1 and t2 decrease the error exponent, resulting in bounds that decay more

slowly. For our purposes, to obtain a uniform bound independent of the parity of k, we use the (loose) upper bound

t1 ≤ t2 < k to obtain

Pr
(
|Gi,j | ≥

δo

S

)
≤ 4 exp

(
− kδ2

o

8c2S2

)
. (42)

To establish the condition for every off-diagonal element, we first note that, by symmetry, Gi,j = Gj,i. Thus, the

total number of unique off-diagonal elements Gi,j is (n2 − n)/2 < n2/2, and we can apply the union of events

bound to obtain

Pr

 n⋃
i=1

n⋃
j=1
j 6=i

{
|Gi,j | ≥

δo

S

} ≤ 2n2 exp
(
− kδ2

o

8c2S2

)
. (43)

This establishes the required condition on the off-diagonal elements of the Gram matrix.

Now, recall that RIP of order S holds with a prescribed δS ∈ (0, 1) where δS = δd + δo, when every diagonal

element deviates from 1 by no more than δd, and every off-diagonal element is less than δo/S in magnitude. To

obtain the result claimed in Theorem 5, we assume n ≥ 3, let δd = δo = δS/2 and use the union bound to obtain

Pr (X does not satisfy RIP (S, δS)) ≤ 2n2 exp
(
− kδ2

o

8c2S2

)
+ 2n exp

(
−2kδ2

d

c2

)
(44)

≤ 3n2 exp
(
− kδ2

S

32c2S2

)
. (45)

For c1 < δ2
S/32c2, the upper bound

Pr (X does not satisfy RIP (S, δS)) ≤ exp
(
−c1k

S2

)
(46)

holds whenever

k ≥
(

96c2

δ2
S − 32c1c2

)
S2 log n, (47)

which proves the theorem.

The same technique can be applied to the full observation matrices as in (15). This leads to the second main

result of the paper.

Theorem 6: Let {xi}p
i=1 be a sequence whose entries are i.i.d. realizations of bounded zero-mean random

variables with variance E
[
x2

i

]
= 1/p, satisfying |xi| ≤

√
c/p for some c ≥ 1 (the example distributions listed at

the start of the section again suffice). Let

X =



x1 0

x2
. . .

...
. . . x1

xp x2

. . .
...

0 xp


(48)
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be the (n+p−1)×n full Toeplitz matrix generated by the sequence, and assume n > 2. Then, for any δS ∈ (0, 1)

there exist constants c1 and c2 depending only on δS and c, such that for any sparsity level S ≤ c2

√
p/ log n, X

satisfies RIP of order S with parameter δS with probability exceeding 1− exp(−c1p/S2).

Remark 3: Notice the difference in the statements of results in Theorems 5 and 6, which highlight an inherent

difference in the respective observation models. In the setting of Theorem 5, the user is allowed the flexibility to

obtain more measurements “on the fly,” and the resulting (rescaled) matrices satisfy RIP with higher orders S (or

smaller parameters δS). Contrast that with the setting of Theorem 6, where the number of observations is fixed a

priori. This effectively imposes an upper limit on the order S (or a lower limit on the parameter δS) for which RIP

is satisfied.

Proof: The proof proceeds in a similar fashion to the proof of Theorem 5. Each column of the “full” observation

matrix now contains p entries of the probe sequence, and is identical modulo an integer shift. From Lemma 6, the

diagonal elements of the Gram matrix satisfy

Pr

(
n⋃

i=1

{|Gi,i − 1| ≥ δd}

)
≤ 2 exp

(
−2pδ2

d

c2

)
. (49)

The off-diagonal elements are still composed of sums of dependent random variables, however, in this case the

number of nonzero terms comprising each sum varies. At most (when i and j differ by 1), Gi,j will consist of

a sum of p − 1 terms. On the other extreme, if p ≤ |j − i|, each term of the inner product is zero trivially. In

any event, we can still apply the results of Lemma 7 and upper-bound the error for each term by the worst-case

behavior. This gives

Pr
(
|Gi,j | ≥

δo

S

)
≤ Pr

({∣∣G1
i,j

∣∣ > δo

2S

}
or
{∣∣G2

i,j

∣∣ > δo

2S

})
≤ 2 max

{
Pr
(∣∣G1

i,j

∣∣ > δo

2S

)
,Pr

(∣∣G2
i,j

∣∣ > δo

2S

)}
≤ 2 max

{
2 exp

(
− p2δ2

o

8t1c2S2

)
, 2 exp

(
− p2δ2

o

8t2c2S2

)}
. (50)

Notice that now, regardless of the parity of p, the number of terms in each partial sum (t1 and t2) is no greater

than p/2. The bound

Pr

 n⋃
i=1

n⋃
j=1
j 6=i

{
|Gi,j | ≥

δo

S

} ≤ 2n2 exp
(
− pδ2

o

4c2S2

)
. (51)

follows. As before, we let δd = δo = δS/2 and assume n ≥ 3, to obtain

Pr (X does not satisfy RIP (S, δS)) ≤ 3n2 exp
(
− pδ2

S

16c2S2

)
. (52)

For any c1 < δ2
S/16c2 and

S ≤
√

δ2
S − 16c1c2

48c2
·
√

p

log n
, (53)
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the matrix X satisfies RIP of order S with parameter δS with probability at least 1− exp(−c1p/S2), proving the

theorem.

B. Gaussian Entries

Results analogous to those of Theorems 5 and 6 can also be obtained if the entries of the probe sequence

are drawn independently from certain unbounded distributions. For example, probe sequences consisting of i.i.d.

Gaussian entries also generate Toeplitz matrices that satisfy RIP.

Following the proof techniques above, we first need to establish that the sum of squares of i.i.d. Gaussian random

variables concentrates about its mean. For that, we utilize the following result from [21, Sec. 4, Lem. 1].

Lemma 8: Let {xi}k
i=1 be i.i.d. Gaussian variables with mean 0 and variance σ2. The sum of squares of the xi’s

satisfies

Pr

(
k∑

i=1

x2
i − kσ2 ≥ 2σ2

√
kt + 2σ2t

)
≤ exp(−t) (54)

and

Pr

(
k∑

i=1

x2
i − kσ2 ≤ −2σ2

√
kt

)
≤ exp(−t). (55)

For 0 ≤ t ≤ 1, the symmetric bound

Pr

(∣∣∣∣∣
k∑

i=1

x2
i − kσ2

∣∣∣∣∣ ≥ 4σ2
√

kt

)
≤ 2 exp(−t) (56)

follows.

In addition, we can quantify the concentration of inner products between zero-mean Gaussian random vectors as

follows.

Lemma 9: Let xi and yi, i = 1, . . . , k be sequences of i.i.d., zero-mean Gaussian random variables with variance

σ2. Then,

Pr

(∣∣∣∣∣
k∑

i=1

xiyi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− t2

4σ2(kσ2 + t/2)

)
. (57)

Proof: The proof basically follows the derivation of Bernstein’s Inequality. Using the Chernoff bound, we

obtain

Pr

(
k∑

i=1

xiyi ≥ t

)
≤ exp (−st)

k∏
i=1

E [exp (sxiyi)] , (58)

which holds for all s ≥ 0 and all t > 0. Fix a term inside the product and expand the exponential in a Taylor

Series, which gives

E [exp (sxiyi)] = E
[
1 + (sxiyi) +

(sxiyi)2

2!
+

(sxiyi)3

3!
+

(sxiyi)4

4!
+ . . .

]
(59)

≤ E
[
1 +

(sxiyi)2

2!
+
|sxiyi|3

3!
+

(sxiyi)4

4!
+
|sxiyi|5

5!
+ . . .

]
(60)
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Now, since the xi’s and yi’s are Gaussian and independent, it is easy to verify that E [|xiyi|p] = E [|xi|p] ·

E [|yi|p] ≤ p! σ2p for p ≥ 2, and so the expectation can be bounded by

E [exp (sxiyi)] ≤ 1 + s2σ4 + s3σ6 + s4σ8 + . . . (61)

= 1 + s2σ4
∞∑

j=0

(sσ2)j . (62)

Now, assume sσ2 = ν < 1 to obtain

E [exp (sxiyi)] ≤ 1 +
s2σ4

1− ν
≤ exp

(
s2σ4

1− ν

)
. (63)

Combining results, we have

Pr

(
k∑

i=1

xiyi ≥ t

)
≤ exp

(
−st +

ks2σ4

1− ν

)
, (64)

or equivalently,

Pr

(
k∑

i=1

xiyi ≥
γ

s
+

ksσ4

1− ν

)
≤ exp (−γ) . (65)

Now substitute s = ν/σ2, let α = kνσ2/(1− ν) and β = γσ2/ν, and simplify to obtain

Pr (Z ≥ α + β) ≤ exp
(
− αβ

σ2(kσ2 + α)

)
. (66)

Letting α = β = t/2, for t < 2, we obtain

Pr (Z ≥ t) ≤ exp
(
− t2

4σ2(kσ2 + t/2)

)
. (67)

The other half of the bound can be obtained similarly using the fact that

Pr (Z ≤ −t) ≤ Pr (−sZ ≥ st) ≤ exp (−st) E [exp (−sZ)] , (68)

and

E [exp (−sZ)] ≤ E
[
1 +

(sxiyi)2

2!
+
|sxiyi|3

3!
+

(sxiyi)4

4!
+
|sxiyi|5

5!
+ . . .

]
(69)

as above, making the bounds symmetric and identical. The result follows.

Leveraging the above lemmas, we can establish the following.

Theorem 7: Let {xi}n+k−1
i=1 be a sequence whose entries are i.i.d. Gaussian random variables with mean zero

and variance E
[
x2

i

]
= 1/k. Let

X =


xn xn−1 . . . x2 x1

xn+1 xn . . . x3 x2

...
...

...
...

...

xn+k−1 xn+k−2 . . . xk+1 xk

 , (70)

be the k × n Toeplitz matrix generated by the sequence, and assume n > 2. Then, for any δS ∈ (0, 1) there exist

constants c1 an c2 depending only on δS , such that whenever k ≥ c2S
2 log n, X satisfies RIP of order S with

parameter δS with probability exceeding 1− exp(−c1k/S2).
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Proof: Following the proof method used in the previous subsection, we first use the symmetric bound in

Lemma 8 to establish that

Pr

(
n⋃

i=1

{|Gi,i − 1| ≥ δd}

)
≤ 2n exp

(
−kδ2

d

16

)
. (71)

The off-diagonal elements exhibit the same dependencies treated in the proofs of Theorems 5 and 6. Again splitting

each sum into two sums over independent entries, we leverage Lemma 9 to obtain

Pr
(
|Gi,j | ≥

δo

S

)
≤ 2 max

{
2 exp

(
− kδ2

o

4S2(t1/k + 1/2)

)
, 2 exp

(
− kδ2

o

4S2(t2/k + 1/2)

)}
(72)

for any 0 ≤ δd ≤ 1, where again t1 and t2 are the number of terms in each sum. Using the conservative upper

bound t1 ≤ t2 ≤ k we obtain

Pr

 n⋃
i=1

n⋃
j=1
j 6=i

{
|Gi,j | ≥

δo

S

} ≤ 2n2 exp
(
− kδ2

o

6S2

)
. (73)

Now, let δd = 2δS/3 and δo = δS/3 and assume n ≥ 3, to obtain

Pr (X does not satisfy RIP (S, δS)) ≤ 3n2 exp
(
− kδ2

S

54S2

)
. (74)

For any c1 < δ2
S/54 and

k ≥
(

162
δ2
S − 54c1

)
S2 log n, (75)

the matrix X satisfies RIP of order S with parameter δS with probability at least 1− exp(−c1k/S2), proving the

theorem.

For the full observation matrix, composed of entries from a Gaussian sequence, the following is true.

Theorem 8: Let {xi}p
i=1 be a sequence whose entries are i.i.d. realizations of zero-mean Gaussian random

variables with variance 1/p. Let

X =



x1 0

x2
. . .

...
. . . x1

xp x2

. . .
...

0 xp


(76)

be the (n+p−1)×n full Toeplitz matrix generated by the sequence, and assume n > 2. Then, for any δS ∈ (0, 1)

there exist constants c1 and c2 depending only on δS , such that for any sparsity level S ≤ c2

√
p/ log n X satisfies

RIP of order S with parameter δS with probability exceeding 1− exp(−c1p/S2).

Proof: The proof is analogous to the proof of Theorem 6. The columns of X are identical (modulo an integer

shift), so

Pr

(
n⋃

i=1

{|Gi,i − 1| ≥ δd}

)
≤ 2 exp

(
−pδ2

d

16

)
. (77)

August 29, 2008 DRAFT



21

and now,

Pr

 n⋃
i=1

n⋃
j=1
j 6=i

{
|Gi,j | ≥

δo

S

} ≤ 2n2 exp
(
− pδ2

o

4S2

)
. (78)

Letting δd = 2δS/3 and δo = δS/3 and assuming n ≥ 3, we have that for any c1 < δ2
S/36 and

S ≤
√

δ2
S − 36c1

108
·
√

p

log n
, (79)

the matrix X satisfies RIP of order S with parameter δS with probability at least 1− exp(−c1p/S2), proving the

theorem.

IV. DISCUSSION

A. Generalizations and Dependency Tolerance using Graph Coloring

It is easy to see that the results of Theorems 5-8 also apply directly to Hankel matrices, which are Toeplitz-like

matrices whose entries are identical along anti-diagonals. In addition, the proof techniques utilized to obtain the

results of Theorems 5 and 7 also can be used to establish RIP for (left- or right-shifted) partial circulant matrices

of the form

X =


xn xn−1 . . . . . . . . . x3 x2 x1

x1 xn . . . . . . . . . x4 x3 x2

...
...

...
...

...
...

...
...

xk−1 xk−2 . . . x1 xn . . . xk+1 xk

 , (80)

generated by a random sequence of length n.

The techniques developed here can also be applied in more general settings where the observation matrices exhibit

structured statistical dependencies. Recall that, in the above proofs, dependencies were tolerated by partitioning

sums of dependent random variables into two component sums of fully independent random variables. The actual

partitioning was not performed directly, rather the only facts required in the proof were that such partitions exist,

and that the number of terms in each component sum was specified. If, for a given observation matrix, similar

partitioning can be established, analogous results will follow.

We generalize the approach utilized in this paper using techniques from graph theory. See, for example, [22] for

basic reference. Let

Σ =
k∑

i=1

xi (81)

be a sum of identically distributed random variables. We associate the sum Σ with an undirected graph g(Σ) = (V,E)

of degree ∆g , by associating a vertex i ∈ V = {1, 2, . . . , k} to each term xi in the sum and creating an edge set E

such that an edge e = (i, j) between vertices is in the set if and only if xi and xj are statistically dependent. The

degree of the graph ∆g is defined to be the maximum number of edges originating from any of the vertices. Notice

that any fully-disconnected subgraph of g(Σ), by definition, represents a collection of i.i.d. random variables.
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The goal, then, is to partition g(Σ) into some number of fully-disconnected subgraphs. In graph theory

terminology, any such partitioning—essentially a labeling of each vertex such that vertices sharing an edge are

labeled differently—is called a (proper) coloring of the graph. Given a coloring of g(Σ), the concentration behavior

of each partial sum associated with each subgraph can be obtained in a straightforward manner by standard

concentration inequalities, and the contribution of several such subgraphs can be quantified using the union bound.

Note, however, that trivial partitions exist (let each subgraph contain only one vertex, for example), leading to

particularly poor concentration bounds. We seek to partition g(Σ) into as few fully-disconnected subgraphs as

possible while ensuring that each subgraph contains as many vertices as possible.

To achieve this, we consider equitable coloring of g(Σ). An equitable coloring is a proper graph coloring where

the difference in size between the smallest and largest collections of vertices sharing the same color is at most one.

Proving a conjecture of Paul Erdös, Hajnal and Szemerédi showed that equitable colorings of a graph with degree

∆ exist for any number of colors greater or equal to (∆+1) [23]. Along with the above argument, this shows that

the concentration behavior of any sum Σ exhibiting limited statistical dependence, as defined by the degree ∆g of

the associated dependency graph g(Σ), can be controlled using equitable graph coloring. This procedure was also

used to extend Hoeffding’s inequality to such graph-dependent random variables in [24].

Utilizing this framework, we can obtain results that apply to observation matrices with more general dependency

structures. The following result is representative.

Theorem 9: Let X be a k×n matrix whose entries are identically distributed realizations of bounded zero-mean

random variables with variance E
[
x2

i

]
= 1/k, satisfying x2

i ≤ c/k for some c ≥ 1. Assume that the dependency

degree among elements in any column of X is no greater than some integer ∆d ≥ 0, and each inner product

between columns exhibits dependency degree no greater than some integer ∆o ≥ 0. Then, for any δS ∈ (0, 1),

there exist constants c1 and c2 depending on δS , the dependency degrees ∆d and ∆o, and c, such that whenever

k ≥ c2S
2 log n, X satisfies RIP of order S with parameter δS with probability exceeding 1− exp(−c1k/S2).

Proof: First consider the diagonal elements of the Gram matrix of X , each of which satisfies

Pr (|Gi,i − 1| ≥ δd) ≤ 2(∆d + 1) exp
(
−2kδ2

d

c2

⌊
k

∆d + 1

⌋)
(82)

and by the union bound

Pr

(
n⋃

i=1

{|Gi,i − 1| ≥ δd}

)
≤ 2n(∆d + 1) exp

(
−2δ2

d

c2

⌊
k

∆d + 1

⌋)
, (83)

where b·c is the floor function, which returns the largest integer less than the argument. Similarly, the off-diagonal

elements satisfy

Pr

 n⋃
i=1

n⋃
j=1
j 6=i

{
|Gi,j | ≥

δo

S

} ≤ 2n2(∆o + 1) exp
(
− δ2

o

8c2S2

⌊
k

∆o + 1

⌋)
. (84)

The result follows from suitable bounding of the overall error probability.
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B. Connections with Other Works

To the best of our knowledge, this paper is the first work to establish the restricted isometry property for random

Toeplitz matrices with bounded or Gaussian entries. Here we briefly describe connections between this paper and

several related existing works.

In the compressed sensing literature, the first work to propose Toeplitz-structured observation matrices was [25],

where observations were obtained by convolving the incoming unknown signal with a random filter—a filter whose

taps were generated as realizations of certain random variables—followed by periodic downsampling of the output

stream. While this approach was shown to be effective in practice, no theoretical guarantees were given. Without

downsampling this initial approach is identical to the full observation model analyzed here, and in fact the techniques

presented here could be utilized to establish conditions under which RIP would be satisfied for certain downsampled

random filtering systems.

The first theoretical results for using random Toeplitz matrices in compresed sensing were established in [6].

Using an equitable graph coloring approach applied to the RIP proof of [5], we showed that k×n partial Toeplitz,

Hankel, and left- or right-shifted circulant random matrices satisfy RIP of order S with high probability, provided

k = O
(
S3 log n

)
. This sufficient condition is more restrictive than what we establish here, where we reduce the

exponent on S by one order of magnitude.

In [26], techniques in sparse representation are applied to recover matrices that can be expressed as the

superposition of a small number of component matrices—the so-called sparse matrix identification problem. When

the component matrices are time-frequency shift matrices, the matrix identification problem becomes similar to the

convolutional sparse signal recovery problem considered here. However, this work differs from our own in several

significant ways. First, the work in [26] considers noise-free observations, and requires circular convolution with

certain deterministic (Alltop) probe sequences. Second, and perhaps most notably, the theoretical analysis in [26]

focuses on the coherence property of the dictionary (maximum absolute inner product between any two distinct

columns), instead of RIP. Consequently, while we can establish that, for a given probe sequence, any sparse signal

can be recovered with high probability from a collection of convolutional observations, the results in [26] only

guarantee recovery of most signals defined on a randomly chosen signal support.

The problem of matrix identification was also studied in [27]. While this work did consider noisy observations,

the recovery procedure proposed was the “bounded-noise” optimization (11). As explained in Section I-A the error

bounds resulting from this optimization can be sufficiently weaker than the bounds that can be obtained using the

Dantzig selector, given in (7). In fact, in addition to being restricted to circularly convolutional observations, and

theoretical guarantees only on coherence (instead of RIP), the work in [27] provides no theoretical analysis to

quantify the MSE of reconstructions obtained from noisy observations.

Our own previous work [4] was the first to use Geršgorin’s Theorem to establish RIP for Toeplitz random matrices,

achieving the less restrictive sufficient condition on the number of observations required, k = O
(
S2 log n

)
. While

that work only treated matrices whose entries were drawn from a symmetric Bernoulli distribution, here we extend
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the results to random matrices whose entries are bounded or Gaussian-distributed.

In addition to the directly-related contributions described above, we briefly mention several tangentially-related

contributions. While this paper was in preparation we became aware of the work of [28], which also examines

random convolution in compressed sensing. There are several significant differences between this work and our

own. First, in [28], the probe sequence (while randomly generated) is assumed to have orthogonal shifts, while we

can tolerate probe sequences that simply consist of independent realizations of certain random variables. Second,

our results establish RIP for the observation matrices resulting from convolution with a random sequence, from

which it follows that any sparse (or nearly sparse) signal can be recovered with high probability from the same

set of observations. In contrast, for a given random probe, the results in [28] only guarantee recoverability of

most sparse signals defined on a fixed support, albeit with a potentially less restrictive condition on the number of

observations required, k = O
(
max

{
S log n, log3 n

})
compared to our requirement of k = O(S2 log n). Perhaps

the most significant difference, however, is that our observation model prescribes collecting a consecutive set of

samples of the linear convolution between the unknown signal and a random probe sequence, while the observation

model in [28] requires circular convolution of the unknown sparse signal with a random probe sequence, followed

by either random subsampling or randomized “block averaging” of the full set of observations. Thus, while our

observation model occurs naturally in the context of linear system identification, the methods proposed in [28] do

not.

Finally, in [29] it was established that, subject to a similar condition as what we obtain here—namely that

the number of rows of the matrix must be on the order of the square of the sparsity level of the target signal,

certain deterministic matrices satisfy RIP. Among these was a special type of block-circulant matrix generated by a

collection of ` > 1 columns, where the elements of the matrix satisfy Xi+1,j+` = Xi,j , and the arithmetic on the

indices is done modulo the signal length n. In contrast, the generalization of our Toeplitz results apply to “true”

circulant matrices that are generated by a single (random) column.

C. Eigenvalues by Geršgorin’s Theorem

The theory of sparse representation was an active area of research even before the advent of compressed sensing.

The techniques that were developed in early works relied on the notion of coherence of a matrix, which is quantified

by the largest (in magnitude) inner product between distinct columns of the matrix. The interesting point to note is

that the notion of coherence can be parlayed into statements about RIP, the connection coming by way of Geršgorin’s

Theorem. Reminiscent constructs can be found, for example, in [30]. In addition, Geršgorin-like techniques arise in

the proof of RIP for the deterministic constructions of [29], and are mentioned in [31] in the context of determining

the eigenvalues of randomly chosen submatrices of a given dictionary matrix.

Using Geršgorin’s Theorem to establish eigenvalues for general dictionaries is not without its limitations. For

example, as noted in [31], the work of [32] shows that the minimum coherence between columns of any (generally

overcomplete) finite Grassmanian frame cannot be too small. For large k and n, the coherence scales like
√

1/k,

which would essentially imply a k = O(S2) requirement on the number of observations, similar to what we obtain
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in our proofs. Applying Geršgorin’s theorem to fully-independent random matrices leads to similar restrictions. For

example, a simple application of Lemma 7 (analogous to the approach in the proof of Theorem 5, but without the

dependency tolerance steps) shows that Geršgorin’s Theorem leads to the requirement that O(S2 log n) rows are

needed in order for a fully random observation matrix to satisfy RIP of order S with some fixed success probability.

On the other hand, we know from [1], [5], [7]–[9] that k = O(S log n) requirements suffice to establish RIP with

the same probability of success.

Thus, while it is tempting to claim that the presence of dependencies in the Toeplitz-structured matrices amounts

to an increase in the number of observations required for RIP to be satisfied, such a claim does not follow from the

work presented here. Indeed, it is fully possible that the random matrices considered in this work do satisfy RIP

when k = O(S log n), but the proof techniques utilized here are insufficient to establish that stronger result. The

takeaway message here is that Geršgorin’s Theorem provides a straightforward, but possibly suboptimal, approach

to establishing RIP for general observation matrices.
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