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TOEPLITZ EQUATIONS BY CONJUGATE GRADIENTS WITH
CIRCULANT PRECONDITIONER*

RAYMOND’ H. CHAN AND GILBERT STRANG

Abstract. This paper studies the solution of symmetric positive definite Toeplitz systems Ax b by the
preconditioned conjugate gradient method. The preconditioner is a circulant matrix C that copies the middle
diagonals of A, and each iteration uses the Fast Fourier Transform. Convergence is governed by the
eigenvalues of C-A--a Toeplitz-circulant eigenvalue problemnand it is fast if those eigenvalues are
clustered. The limiting behavior of the eigenvalues is found as the dimension increases, and it is proved
that they cluster around A 1. For a wide class of problems the error after q conjugate gradient steps
decreases as q2.
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1. Introduction. In this paper we discuss a class of linear systems Ax--b. The
matrix A has the Toeplitz Property: Down each diagonal its entries are constant.
The i, j entry is ai_, and we assume symmetry and positive definiteness. Such
systems are fundamental in signal processing and time series, where the convolution
form reflects invariance in time or in space (stationarity or homogeneity). Toeplitz
matrices also arise directly from constant-coefficient partial differential equations, and
from integral equations with a convolution kernel, when those equations are made
discrete.

With periodicity, these problems can be solved quickly by Fourier transform. The
convolution becomes a multiplication and deconvolution is straightforward. In the
nonperiodic case, which is analogous to a problem on a finite interval (or on a bounded
region in the multidimensional case), this direct solution is lost. The inverse of a
Toeplitz matrix is not Toeplitz, because of the presence of a boundary and the absence
of periodicity. Nevertheless the matrix A is determined by only n coefficients
ao, , an-l, rather than by n 2. Algorithms that exploit the Toeplitz property are much
faster than the n3/6 operations of symmetric elimination, and direct methods based on
the Levinson recursion formula 1 are in constant use. A number of superfast methods
have been created in the last ten years, and an implementation by Ammar and Gragg
[2] is giving excellent results. (See [2]-[5] for references, and note also the algorithms
developed for systolic arrays [6].) More recently, the second author proposed an
iterative method [7] that, it is hoped, will be fast and flexible. We report at the end on
recent experiments, after an analysis of this iterative method.

Note. The Levinson algorithm conventionally uses 2n 2 multiplications, but the
"split-Levinson" form [8] reduces the count to nearly n 2. The superfast methods are
O(n log2 n), and the constant in the new implementation based on Schur’s algorithm
is about 8. It has become competitive with Levinson at reasonable n--a remarkable
achievement. Our iterative algorithm needs O(n log n) operations per step from the
Fast Fourier Transform (FFT), and the number of steps depends (inevitably) on the
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TOEPLITZ EQUATIONS BY CONJUGATE GRADIENTS 105

Toeplitz matrix and the accuracy required. The goal of this paper is to analyze the
rate of convergence in terms of the function f akZ

k constructed from the matrix,
and to show that for analyticf (and many other functions) the number of iterations is

independent ofn. Tests on serious applications (to time series, scattering, or exploration
data) are still in the future.

The iterative method uses a preconditioner. The Toeplitz matrix is replaced by a
circulant matrix. It retains the Toeplitz property and adds periodicity. Each diagonal
in the lower triangular part wraps around into a diagonal in the upper triangular part,
and the entries satisfy c0 ci_j ci-+n. The distinction between Toeplitz and circulant
matrices is seen (in the symmetric case) in

ao al an -2 an -1 ] Co Cl c2 c1
al ao al an-2[ Cl Co cl c2

A= ae a a0 and C= ce c Co
a | Cl

an- ae al ao J c ce c Co

The diagonals containing c reappear in the corners, where the matrix A has a new
(and probably smaller) entry an-1. To go from A to C will require changing about
n2/4 entries, and the key question in analyzing convergence will be the eigenvalues of
C-A.

Multiplication by a circulant C is identical to discrete convolution. The linear
system Cz b is the convolution equation c. z--b, where c is the first column of C.
After a discrete Fourier transform it becomes c--b. Therefore .is given by a com-
ponent-by-component division, and z is recovered from the inverse Fourier transform.
The components of t are proportional to the eigenvalues of C, and this convolution
rule is the diagonalization of the circulant matrix [9]" z F-1A-Fb. This is one of the
rare instances in which a linear system is solved by diagonalizing the coefficient matrix!
Normally elimination is much faster, but the Fourier matrix F (its entries are the
complex roots of unity Fk wJk= exp 27rijk/n, and its columns are the eigenvectors
of every circulant matrix) is very special.

The speed of the iterative method depends on the fact that multiplication by F
and F-l--the discrete Fourier transform and its inversemcan be done so quickly.
Those multiplications are computed by the FFT, which dominates each step of the
iteration. It requires only n log n multiplications, and the calculations can be done in
parallel. It applies directly to C and our goal is to apply it also to Ax b--reaching
the required tolerance in a number of steps which in the best case is independent of n.

We mention that multiplication by a Toeplitz matrix A (but not inversion) is also
quick by the FFT. The matrix is extended to a circulant A* of order 2n, the vector d
is completed to d* by n zeros, and Ad appears in the first n components of A’d*,
which is another discrete convolution. The goal is to replace A by C in any linear
system to be solved, and to use A itself only in matrix multiplications.

This is exactly what is achieved by the ordinary iterative method Cxn+
(C-A)xn + b, and also by the preconditioned conjugate gradient method. There is a
Toeplitz multiplication on the right side and a circulant inversion on the left. We will
see that the ordinary iterations can diverge; they depend on the extreme eigenvalues
of C-A, which are not in close control. However the conjugate gradient method can
be very effective. Its convergence rate also depends on the eigenvalues Ai of C-A,
but not exclusively on A and An. Conjugate gradient convergence is fast when the
eigenvalues are clustered, and that is the property established in this paper. Thus we
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106 R. H. CHAN AND G. STRANG

want to show that the circulant matrix satisfies, for large n, the following two essential
requirements for a good preconditioner:

(1) Cz= d can be solved quickly and stably (Theorem 1 will estimate [IC-1[[).
(2) C is close to A (the eigenvalues of C-1A are clustered near 1).
For completeness we list the steps of the preconditioned conjugate gradient

method, which gives the exact solution at step n; however, it is treated as an iterative
method and stops earlier. Each iteration contains the periodic linear system with
coefficient matrix C, the multiplication by A, and the two inner products that appropri-
ately orthogonalize the directions dr. Starting from Xo 0 and ro b,

Solve Cz_ )-1,

[j-- Z._li_I/zjT’_21_2 (except fl =0),
d z_ +/3d_1 (except dl Zo),

T

x= x_ + ad,
r r_ aAd..

2. The eigenvalues of C-IA. We want to choose C close to A. The simplest
construction is to copy the central diagonals ofA and bring them around to complete
the circulant. Starting from the first column ao," ", a,_ of A, with n 2m, the first
column of C is ao, , am, a. IfA decays quickly away from the main diagonal,
then C starts to do the same but increases again as we approach the corner. By
substituting the vector (1, 0,. ., 0, -1) into the Rayleigh quotient xTAx/x TCx, we see
that the largest eigenvalue of C-A is at least

(1) ao-an-1 <=Am, (C-A).
ao- al

This can easily exceed 2, in which case the ordinary iteration Cxn/ C A)xn + b will
fail The iterating matrix I-C-A has 1--Ama outside the unit circle. However, the
conjugate gradient method can compensate for any single outlying eigenvalue in a
single iteration. The question is whether many other eigenvalues are far from unity,
when corners of order m- n/2 are ditterent in C and A.

Our first results are experimental [7]. With diagonal entries ak--1/(l+k) the
eigenvalues for n-- 12 are .707, .957,. , 1.047, 1.880. The largest and smallest make
ordinary iteration too slow, but the other eigenvalues are clustered around 1. As the
order n is increased, they approach limiting values. It is not always clear numerically,
say for A4, whether the limit is 1. In these experiments, and in others with ditterent
diagonals ak, the x converge quickly to x--A-lb.

The next results are theoretical [10]. The matrices with geometrically decreasing
diagonals ak

k exhibit a remarkable pattern in the computations, and the eigenvalues
(and eigenvectors) of C-A can be verified analytically. The extremes are 1/(1 + t)
and 1/(1- t), and A 1 is a double eigenvalue. What is striking is that there are only
two other eigenvalues of C-1A. For a matrix of order 1024, each is repeated 510 times!
Those eigenvalues are exponentially close to 1: A 1/(1 + t/2) and
Convergence of conjugate gradients is extremely fast, and our goal is to see when this
exponential clustering can be predicted.

These matrices A were studied by Kac, Murdock, and Szeg6 [11], who observed
that they have a special property: A -1 is tridiagonal. The generating function of A is

(2) f E ak e ikO tlkl e ikO 1

(1- e i)(1 e-i)"
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TOEPLITZ EQUATIONS BY CONJUGATE GRADIENTS 107

It is real and positive, so that A is symmetric positive definite (for It[< 1). It is the
reciprocal of a three-term polynomial, which underlies the fact that A- is banded and
that only two limiting eigenvalues are different from 1.

The ideal approach is to learn about the spectrum of C-1A from this function f(O).
We recognize that in practice the matrices are finite and the very distant diagonals ak
will not be used. But the asymptotic properties appear to be decisive, and all the
information about C and A is in f The goal is to turn a problem in operator theory
into a problem in function theory.

Remark. The eigenvalues of the Toeplitz matrix alone have been studied in detail
[12]-[14] and their behavior is entirely different. Instead of clustering around 1, they
are "equidistributed" with the values off itself 15]. The same is true for the circulants
alone [16]. The new problem is to study the product C-A, and this paper computes
the limits of the eigenvalues as n-. We believe it will also be a key to the finite
casemwhere we look first at examples.

3. Uniform invertibility of C. Suppose that the Toeplitz matrices An, of order n,
are finite sections of a fixed singly infinite positive definite matrix A. The i,j entries
of An and A are ai_.j, and the associated function

f O ak e ik

is real and positive. We will assume that the sequence ak is in , so that f belongs to
the Wiener class" lal c. Then the function 1/f associated with A% belongs to the
same class, and a more precise analysis becomes possible.

The first step is to consider C. The construction that copies the middle diagonals
of A does not guarantee the invertibility of C.

Example 1.

2 -1 0 0 2 -1 0 -1

-1 2 -1 0
and C=

-1 2 -1 01A=
0 -1 2 -1 0 -1 2
0 0 -1 2 -1 0 -1

For this "second-difference matrix" the construction produces a singular C. That occurs
whenever A comes from discretizing an operator with no zero-order term. Dirichlet
boundary conditions leave A invertible, while periodic boundary conditions make C
singular. It is a case when sines should replace exponentials. The matrix S with entries
sinjkr/(n + 1) has the eigenvectors of this A as its columns. The Fast Sine Transform
carries out multiplication by S and S- in n log n steps. Therefore the new precon-
ditioner can be SDS-, where the diagonal matrix D has entries d =Y a ek, 0---
r/(n+ 1).

In this example A, is only semidefinite, and f(0) 2 2 cos 0 is only nonnegative.
Iteration is not needed because the matrix is banded, but for a full matrix with Y ak 0
the idea may be useful--conjugate gradients preconditioned by a sine transform. In
this paper we stay with the positive definite case f> 0.

Example 2.

.7 1/2
_

y .7 1/2
1/4 .7

and C

7 _1
7
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108 R.H. CHAN AND G. STRANG

The smallest eigenvalue of A is 3/40, whereas C has the eigenvalue -1/20. The new
feature is that this A extends to a positive definite Amit is the Kac-Murdock-Szeg6
matrix with diagonals ak (1/2)k and with ao changed to .7. Note that our algorithm
will recognize the indefiniteness of C at the first step, when Czo ro is solved by the
FFT. C is diagonalized so its eigenvalues are made explicit, and the algorithm can
adapt by making a different choice of the circulant.

We now prove that when A is positive definite and n is sufficiently large, the
eirculants Cn are uniformly positive definite. Of course the finite sections An are also
positive definite. The point is that an indefinite Cn--the possibility illustrated in
Example 2--cannot continue as n increases.

THEOREM 1. Suppose f(O) .-o ak elk is real and positive and in the Wiener class
( ]akl < ). Then the circulants Cn and C- are uniformly bounded and positive definite
for large n.

Proof The first column of Cn contains by construction the numbers
ao," ", am," ", a. (For simplicity we take n even and m n/2.) Because the matrix
is a circulant, its jth eigenvalue is

(3) A.i ao+ a w +. + amwjm +" + a W j(n-1).

Here w e2i/n is the primitive nth root of unity. The corresponding eigenvector of
C (and of every circulant) is xj =(1, w J, wJn-)); a direct multiplication gives
Cxj Ajxj. Simplifying (3) by w"= yields

(3’) Xi ao+ a( wJ+ w -j) +... + am_(wJ’- + w-’) + amwJ’L
ikOThus the eigenvalue equals the partial sum from k m to m of the series a e

evaluated at the point 0 2rj/n (where ei w). Since the infinite series is absolutely
convergent and its sum satisfies f(0)_-> 6 > 0, the partial sums are uniformly positive
for large n and the proof is complete.

Example 3. Diagonally dominant matrices, with ao>2Yola], are positive
definite and so are the circulants

Example 4. The function f= cosh 0 is even and positive. Therefore the matrices
with ak (1 + k2)- cos kr lead to uniformly bounded C, andC-, although the original
matrix A is not diagonally dominant.

4. The limits of the eigenvMues. We come now to the central problem, to study
the eigenvalues of C-A, for large n. In the next sections we transform that problem
in order to carry out the analysis, and a Hankel matrix appears. At the end, when the
limit is found, we transform back. The result was anticipated in [10], and it may be
useful to separate its statement from the details of its proof.

THEOREM 2. As n->o, the eigenvalues of C-An approach the eigenvalues of the
following doubly infinite problem:

(4)

ao_] a ao a
a a

Xo

The matrix on the right is an infinite circulant. The matrix on the left contains
two back-to-back copies of the singly infinite Toeplitz matrix A. Somehow the source
of all the difficulty--the two boundaries that prevented the finite matrices An from
being directly invertible by Fourier analysismhas reappeared in a new form.
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TOEPLITZ EQUATIONS BY CONJUGATE GRADIENTS 109

Later in this paper we give an expression for the limiting eigenvalues A, by
connecting them to a Hankel matrix and thus to a problem in rational approximation.
That problem is approximation on the unit circle of a function g(0) derived from f(0),
and it achieves our goal. The limits of the eigenvalues are determined from f (The
function has I(0)1 1 and it appears as a "phase function" in systems theory [17]-[18]
and apparently also in methods for numerical conformal mapping.)

At the end we return to the preconditioned conjugate gradient method, to prove
superlinear convergence.

5. Orthogonal similarity and Hankel matrices. The key problem is Ax A Cx. There
is a preliminary transformation which cuts this problem in half (for n 2m), since all
eigenvectors are odd or even:

1

Y and x/= with J=(5) x_
-JY Sz

1

This property comes from the "centrosymmetry" of C and A, and it leads to the
orthogonal transformation suggested by Cantoni and Butler [19]:

_j

This combination of the identity I and the counteridentity J will produce two diagonal
blocks in Q-1AQ and Q-1CQ. Suppose we write

(6) A=
R r and C= Sr

in which T, R, S are Toeplitz of order m. T is symmetric around its main diagonal ao,
and S is symmetric around am, while R has diagonals al,..., an- and is displayed
below. From JTJ T and JRJ--R r we reach

(7)
Q_IAQ=QrAQ=[T-RJ 0 ]0 T+ RJ

Q-ICQ QTCQ [ T-
Thus the eigenvalue problem Ax ACx splits into

(8) (T- RJ)y A_( T- SJ)y and T+ RJ)z A+(T+ SJ)z.

(Note. Those equations also appear directly when (5) and (6) are substituted into
Ax ACx.) There are m eigenvalues A/ and m eigenvalues A_ which together represent
the n 2m eigenvalues A. The eigenvectors x+ and x_ are C-orthogonal as required
(x+Cx__=O), and they are also orthogonal.

We emphasize the effect of the counteridentity J. The matrices RJ and SJ are no
longer Toeplitz. Instead they are Hankel matrices. Like J itself, they are constant down
each counterdiagonal. The i,j entry depends on the sum +j instead of the difference
-j:

am an-1 an-1 am
R= ".. and RJ= .’"

al am am al
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110 R. H. CHAN AND G. STRANG

Thus equation (8) becomes a Toeplitz-Hankel eigenvalue problem. The northeast and
southwest quarters of the original Toeplitz matrices have swung into blocks on the
diagonal, and in the process they have become Hankel matrices.

A Hankel matrix is determined from its first column entries v, v2," by V0

vi+j-. In the singly infinite case its operator norm comes from the associated function
v(0)=Y v.ie

ij by Nehari’s theorem [20]-[21], but not quite in the same way that
the norm of a Toeplitz matrix comes from f(O)" The anti-analytic terms are at our
disposal"

(9) IIAl=sup If(o)l and vii =sup It(o)l inf sup
t0,/)_ ,""

vje
/jo

We emphasize that the eigenvalues in the two cases are very different. The spectrum
of A is the interval [fmin,fmax], while V is a compact operator for v in /--and its
eigenvalues are the errors in a rational approximation problem.

6. The limiting equation Hg Tg. This section begins our first approach to the
eigenvalues of C-IAn as n- c. We return to (8), where the problem was split in half,
and look at either of the two problems of order m"

(10) T + RJ)z A+( T+ SJ)z.

Our intention is to find the limits of the eigenvalues A+ as n -; numerical experiments
indicate that limits exist.

First a simplification Recall that the Hankel matrices RJ and SJ are identical on
and below the main counterdiagonal. Their difference is the Hankel matrix:

hi h2 0

H SJ- RJ= h 0
with hj aj- an_j forj-<m.

0

0 0 0 0

Subtracting +( T+ RJ)z from both sides of (10) and dividing through by A+, we obtain
the result

(11) A+____)((1 T+ RJ)z Hz.
+

We study that form of the problem, writing v for the eigenvalue: Hz v( T+ RJ)z with

1 -A+
v- and A+-

h+ l+v

The clustering of A+ around corresponds to the clustering of u around 0.
We go directly to a statement of the limiting problem, and then consider its

justification. As the order n increases, T and H approach singly infinite Toeplitz and
Hankel matrices:

ao al a2 a

= al ao a
and = a:

2 al a0 a3

a2 a3
a
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TOEPLITZ EQUATIONS BY CONJUGATE GRADIENTS 111

This is strong convergence of operators, if we think of all operators as acting on or
12. The matrices T and H represent operators Tm and Hm, which act as the zero
operator after the first rn components:

T
and H,Tm-o O0

LEMMA 1. The Hankel sequence H, converges uniformly to H" H- Hm O. The
Toeplitz sequence Tm converges strongly to T, and the sequence RJ),, converges strongly
to the zero operator"

I1[ x 0 for each vectorx.
0

Proof. For the Hankel matrices H H, the norm is given by (9)"

(12)

H H. --< sup
-1

ijo e ijOa,_e +_, a

-< 2 laj[-> 0

For the others, the estimate for (RJ)m is typical. With N fixed, the N-by-N submatrix
in the upper left corner has operator norm going to zero. (Its entries are an-j, displayed
earlier.) The larger entry a is in the (m, m) position and it moves out as rn- oo. There
is convergence to zero for each fixed x but not uniform convergence--pointwise
convergence but not norm convergence. Here we give only the simplest consequence
for the eigenvalues.

THEOREM 3. Each eigenvalue f, of the infinite Hankel-Toeplitz problem

(13) n=T
is a limit of eigenvalues of the finite problems Hz u( T+ RJ)z.

Proof The eigenvector will be our fixed vector x. Then the strong convergence
noted above gives

Hm f’( T+ RJ)m --> O.

Looking only at the m-by-m submatrices, where the operators are nonzero, and at the
vector Zm taken from the first rn components of , this is

(14) [[Hz,,- ,(T+ RJ)zmll-->0.
By writing B for T+ RJ, this means that [I(H B)-lll -> as rn -> oo. In case H B
is singular it means that is an exact eigenvalue of the finite problem.

Because this is the generalized eigenvalue problem, with a matrix B on the right
side instead ofthe identity, we need one extra step. Notice that these matrices B T+ RJ
are uniformly invertible. They are diagonal blocks in the original QTAQ of (7). The
matrices A are uniformly invertible because they are finite sections of a positive definite
singly infinite Toeplitz matrix (it is T!). Therefore we can convert to the ordinary
eigenvalue problem for B-/2HB-1/2, maintaining symmetry with the symmetric positive
definite square root of B:

H-B B/2(B-/ZHB-1/2- I)B 1/2.

In the 12 matrix norm this yields

(15)
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112 R.H. CHAN AND G. STRANG

Since liB-ill is bounded and the left side approaches infinity, we conclude that some
eigenvalue vi of the finite problem converges to as m-* o.

This completes an argument that could be made more precise. The fact that the
eigenvectors belong to 11 was established by Adamjan, Arov, and Krein [22] and
pointed out to us by Nick Trefethen, who also led us into the eigenvalue theory of
Hankel operators. In the Kac-Murdock-Szeg6 example ak k, where nearly half the
eigenvalues are h- 1/(1 + tin), there is geometric convergence to h 1. In terms of
p (1- h)/h m, it is geometric convergence to the limit 0. In that special example
we will show that the only nonzero is the number t, corresponding to the eigenvalue
h 1/(1 + t) that stays away from 1.

We now check on the number of eigenvalues of the finite problem that are outside
an interval around 1, after a remark on the other half of our original problemmthe
A_ eigenvalues of C-IA.

7. The twin problem (T- RJ)y A_(T- SJ)y. The same simplification as in (11),
but now subtracting A__(T-RJ)y from both sides of the twin problem and dividing
by h_, yields

(16) h--------’((1 T- RJ y Hy.
h_

In this case we set

l-h_ 1- and, thus, h_-
A_ 1/

The finite problem is Hy =-I(T-RJ)y. Exactly as before, the strong convergence of
H to H, T to T, and RJ to 0 leads to the limiting problem

H.9 -12TY.
This is identical to H T except for the sign change" /2 . As before, each/2 is
the limit of eigenvalues of the finite problem. There is an interesting corollary for
the original eigenvalues A_ and A+: In the limit there are pairs A_ and A+ which satisfy

1
(17) ---t- 2.

A_ A+
The left side approaches (1 + 2) + (1 + ) 2. This was first noticed by Alan Edelman
in MATLAB experiments.

With this pair of limit problems, we have completed the proof of Theorem 2. The
splitting into odd and even eigenvectors of that doubly infinite eigenvalue problem
gives exactly (13) and its twin, with the same similarity Q and change from A to v
and x as in the finite case. A corresponding limit could be found for other constructions
of the circulant Cmand for multidimensional Toeplitz equations, in which our
algorithm may be particularly useful. We concentrate here on understanding more
clearly the asymptotic behavior for this choice of C-A.

8. The clustering of the spectrum of C-IA. The limit problem gives us precise
information about the asymptotic behavior of the algorithm. Even without that knowl-
edge we can show that the eigenvalues of C-A cluster at 1, by using the theory of
collectively compact operators:

A family S of bounded operators on 12 is collectively compact if the set {Kx: K S,
][x[]-< 1} is relatively compact in 12.
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This applies to {Hm} and {/-)-Hm} when [h,l< o. For every e we can choose n(e)
so that outside the leading submatrix of that order, all these matrices have norms less
than e. Anselone [23] established the following consequences for approximation of
the spectrum.

LEMMA 2 [23, Thm. 4.8]. Ifan open set contains the spectrum ofH, it also contains
the spectrum of Hm for all sufficiently large m.

LEMMA 3 [23, Thm. 4.14]. The number of eigenvalues of H,, in a small ball around
a nonzero eigenvalue/x ofH is, for large m, no greater than the multiplicity of/x.

Since H is compact, those multiplicities are finite. (Our H is the norm limit of
the finite-dimensional Hm, by (12). From Hartman’s theorem [21] it remains compact
if its associated function is only continuous, and not necessarily in the Wiener class.)
It follows easily that the eigenvalues of H are clustered around zero.

THEOREM 4. There exist M(e) and N(e) such thatform > M, at most Neigenvalues
ofHm and of (T+ Rj)-lH have absolute value exceeding e.

Only a finite number of eigenvalues of have I/x] > e. Therefore Lemma 2 allows
us to locate the eigenvalues of Hm for large m, and Lemma 3 allows us to count them.
The total cannot exceed the total for H.

It is this count that was not included in Theorem 3 on the limiting values. As
there, we have to handle the matrices B T + RJ on the right side of the eigenvalue
problem. They are diagonal blocks in QTAQ, and their eigenvalues are between fmin
and fma (where f= ak e ik). Therefore the eigenvalues of (T+ RJ)-lH are also
counted by Theorem 4.

Thus the eigenvalues A of C-A cluster around 1. Only a fixed number, indepen-
dent of n, can be outside (1- e, 1 + e). Now we go back to the equation H T,
which identifies the asymptotic limits of the eigenvalues.

9. The eigenvalues of -k]r. It is this singly infinite problem that is attractive to
work with, because all the information is in the function f(O)= . ak e ig. The difficulty
is to extract it. One preliminary difficulty is that we still have a generalized eigenvalue
problem, with T on the right-hand side: H T. The inverse of T is not Toeplitz,
and -1 is not Hankel, but there is a way to preserve those properties, by factoring

and putting part of -- on each side of "" WWr with W upper triangular Toeplitz operator.

This is equivalent to representing the positive function f as a square"

f=. ae ikO
0

E Wk ikO

From the Wiener theory the sequence ., w_2, W_l, 1420 is in I. The function w, with
no zeros on or outside the unit circle, corresponds to W in the same way that f
corresponds to T:

1420 W_

0 WO W_
w= Z wew=

W0

Note that w is anti-analytic, with negative k. The same properties hold for the matrix
U W-1, associated with the reciprocal function u w -1".

u (O) Z u e io wk e iko
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These functions will take us from the Toeplitz-Hankel product- (the eigenvalue
problem with T on the right side) to a single Hankel matrix V. It has the same
eigenvalues P, and to study them we need to know its associated function.

THEOREM 5. The matrix -I2I W-rW-ffI UrUH is similar to the Hankel
matrix V UHU r. The associated function is

(18)
v(z) Y vkz

k analytic part of (O_c WkZk)2
analytic part of /w.

Proof Certainly UrUH is similar to V UHU r. To verify that this is a Hankel
matrix, and to identify its function v(z), we carry out an example with two nonzero
coefficients hi, h2 and Uo, u. (The general rule is that upper triangular Toeplitz times
Hankel is Hankel, and Hankel times lower triangular Toeplitz is Hankel; we hope the
example will be convincing.) The infinite matrices can be cut off after three rows and
columns:

0 Uo U h2 0 0 ul Uo 0 h2u 0 0

0 0 Uo 0 0 0 0 u Uo 0 0 0

The corresponding multiplication of functions correctly gives the analytic part of
2(hlZ q- h2z2)(Uo q’- Ul/Z) 2 hlUoz + 2h2uouz q- h2uoz v(z). This verifies the first line of

(18), since u 1/w, and we only mention a surprise in comparison with the Toeplitz
case. If the matrix H in the middle were Toeplitz, with associated function h, then the
product UHUr would again be Toeplitz, but its associated function would be h[ul2
where in the Hankel case it is the analytic part of hu 2. Note that the analytic part is
taken to start at the linear term in zm because the Hankel matrix starts at v.

Now we look at the last step in (18), the elegant form for v. It was noticed by
Alan Edelman, and the second author observed that it follows immediately from the
line above: We can add the anti-analytic terms Y_oo akz to the numerator to obtain
f, without changing the analytic part. Therefore

v is the analytic part of f wff

141 141
2

142

Now the asymptotic problem is the spectrum of V. We recall that it is a compact
operator, so its eigenvalues cluster at zero. It is also a Hankel operator, and the
eigenvalues are connected to a part of mathematics that looks entirely separate:
approximation by rational functions on the unit circle.

I0. Hankel eigenvalues and rational approximation. We recall the main facts from
[22] and [24]. The singular values of a Hankel matrix V--which in our symmetric
case means the absolute values [o[ -> I1 => are the errors in the best approximation
of the function v(z) from the class Rn. The error is measured in the sup norm on the
unit circle"

(19)
R

It is important that R, is larger than the class R, of rational functions (ratios of
polynomials of degree n ). The anti-analytic part of is arbitrary" R R + anti-analytic.
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Thus the approximation problem for v is the same as for /w, because the analytic
parts are the same. The approximants have the form

d,z ekZ k,

where the numerator is bounded in any bounded subset of {[z[-> 1}. The optimal error
curve v-* is a circle of radius 11 around the origin. Except in degenerate cases its
winding number is 2n + 1 [25].

Thus the estimation of the asymptotic eigenvalues is equivalent to a problem
in rational approximation. That may not be a simplification; most applications go the
other way. Of course there is a special (but important) case when f itself is rational;
this corresponds to banded Toeplitz matrices times banded inverses, and the Hankel
matrix V has only finitely many nonzero eigenvalues. That was the case for the Kac-
Murdock-Szeg6 example in which

1- 2 1- t/ z (1 2)tz
o(20) f--ll_tz[2, U=(l_t2),/2, v=
1-tz

Here v maps the unit circle to a circle with center at and radius t. Therefore the
best constant approximation to v is r 2, and the error is I[ t. The corresponding
,’s are 1/(1 + t). That is the correct limit, from our explicit calculation, of the original
eigenvalue problem Ax A Cx, in which all other eigenvalues approached 1.

A second example will bring out the important point, which is the very rapid
decrease of the errors I1 in rational approximation. Suppose the matrix is not
tridiagonal but pentadiagonal. The function f will be

f= I(1- ei)(1-s ei)12.
As s approaches zero this goes back to the previous example (or more precisely to its
inverse--it is a corollary of (18) that f and f- lead to the same results, and now it is
a instead ofa- that is banded). There are two nonzero errors I ol and I,1, after which
the approximation is exact and all eigenvalues approach 0 (which is A 1). Those
two errors are given by the quadratic equation

(21) ,2_ ,( + s)( ts 1) tZs O.

For s t= 1/2the limiting eigenvalues are I ol- .825 and I ,1- .076. Thus it is not the
case that the two limits are near and s. For t= s the leading terms in are 2t
and t3/2, and it is this cube of that indicates rapid decrease. A similar phenomenon
was noticed by Trefethen [24, Thm. 6.3].

We turn to the consequences for the iterative algorithm when there is rapid decrease
of the I1.

11. The rate of convergence to x=A-lb. The conjugate gradient method is a
recursive calculation of a sequence of projections. After q cycles, Xq is as close as
possible (in an appropriate norm) to the solution x A-b, among all vectors in the
Krylov subspace spanned by C-lb, C-AC-Ib, C-AC-AC-b, .. This makes
possible an estimate of the error eq x- Xq"

(22) Ilell <_-[min max IPq(A)l]lleoll.
P,

The maximum is taken over the eigenvalues of C-A. The minimum is over polynomials
of degree q with constant term 1. The problem is to estimate that minimum.
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One choice of Pq, if the eigenvalues are known to lie in the interval a,/3 ], is the
Chebyshev choice: the best polynomial when the maximization is taken over all
a <_- h _-</3. That has the drawback of using only a and/3; it cannot take advantage of
clustering of the eigenvalues. By scale invariance, the estimate depends only on the
condition number fl/a.

At the other extreme, we can choose Pq to annihilate the q extreme eigenvalues. In
our problem those eigenvalues come in pairs h+ and h_, on opposite sides of 1, and
such a pair is annihilated by the factor

Between those roots the maximum of [pl is attained at the average x 1/2(h+ + h_), where
Ipl--(A+-A_)/4;+A_. It is easy to find the asymptotic convergence rate of the
conjugate gradient method in the important case when the rational approximation
errors decrease geometrically to zero:

(24) [j[=O(rj) with r<l.

THEOREM 6. Suppose (24) holds, which depends on the original f (It is certainly
true if f is analytic in a neighborhood of [z[= 1.) Then the errors in the circulant-
preconditioned conjugate gradient method decrease, asymptotically as n-c, at the
superlinear rate

(25) Ile cqrq2/4+q/211eoll.
The decisive factor is rq214. To find it we note that 1/(lq: ):

(,X+- h_) c2Ipl-<- ’2 < r2J
4h+jh_./ 1- v

by (24).

The polynomial P2q--PlP2"’’Pq annihilates the q extreme pairs of eigenvalues and
satisfies

Ip(A)I__< caqr2r4 raO c2qrq:+o.

This holds for all A in the inner interval between A+ o and A_o, where the remaining
eigenvalues are. Therefore (25) comes directly from (22), after a change from 2q to q.

12. Superlinear convergence. In a sense the convergence rate r/ was the object
of this paper. By connecting the eigenvalues of C-’A to the spectrum of the Hankel
matrix V, and by assuming (24), we were led to that unusual rate. Trefethen observed
that (24) will hold /f the original f(z)= 2 az is analytic in a neighborhood of Izl 1,
and, further, that this condition is far from necessary. We expect that rate for a wide
class of applications, but we can also prove superlinear convergence in its absence.

For this we modify the polynomial Pq as in [26]-[27]. It will annihilate N pairs
of extreme eigenvalues, by including N of the quadratic factors (23). The remaining
factor of degree q-2N will be the Chebyshev choice on the interval between A-N and
A+N, which contains the remaining eigenvalues. We know from Theorem 4 (which
applied to all f in the Wiener class) that for any fixed e, all but N(e) eigenvalues are
within e of 1. The N extreme eigenvalues are in the fixed interval

fmi____En_ <fmax +
fmax

e < A(C-1A)
fmin

8
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for large n, applying Theorem 1 to C -1 and the elementary bounds frnin A(A)fmax
to A. The quadratics p that annihilate those extreme pairs are bounded by a fixed
constant K on (1 e, 1 + e). The other (Chebyshev) factor of degree q-2N is of order
e q-2N on that interval. Therefore the polynomial Po satisfies a crude bound

(26) [Pq(h )l <- ceq-2NK N < C(e)eq

for all eigenvalues A of C-IA, when the order n is sufficiently large.
It follows from (22) that [[eql[-_< C(e)eqlleo[I. The number of iterations to achieve

a fixed accuracy remains bounded as the matrix order n is increased. Each iteration
requires O(n log n) operations using the FFT. Therefore the work to obtain the solution
x= A-b to given accuracy 6 is c(f, 6)n log n. The real question is the efficiency in
practice, and we will be glad to see this straightforward algorithm tried on genuine
applications.

13. Tentative experiments. One family of Toeplitz matrices is particularly con-
venient for testing, and we report here on the results. The entries down the kth diagonal
(with k 1 for the main diagonal) are ak k-p. For p 2 the entries 1, , , decrease
quickly away from the center. At p 1 the sum 1 + 1/2+3+" is divergent, and we leave
the Wiener class. At p 1/2 the eigenvalues are less clustered (and we had not known
that A and C were positive definite). But even at p=.01 the conjugate gradient
convergence is remarkable. Nine or ten steps reduce the residual by 10-8, independent
of the order n. That last statement is entirely experimental (this is MATLAB mathe-
matics), because the theory for the Wiener class has been left behind.

Table 1 shows the four largest eigenvalues of C-A when n 40. We see how the
largest grows as p decreases (and the smallest is related to it by A- -min + } 2).
However, there is still strong clustering around A 1.

Table 2 shows the norms of the residuals G b-Axo in the conjugate gradient
method. It is preconditioned by the circulant C, and the right-hand side b has randomly
chosen entries from a uniform distribution over (0, 1). N is the number of iterations
to reach a residual norm below 10-8. In these four cases, the smallest eigenvalues of
C were, respectively, .645, .385, .207, and .004. Alan Edelman convinced us that the
asymptotic behavior of this eigenvalue (small p and large n) is (log 7r/2)p. The positive
definiteness is significant; we give an indefinite example next.

TABLE

P A 2 3 4

1.360 1.029 1.003 1.002
2.072 1.079 1.018 1.013
3.100 1.111 1.049 1.035
5.596 1.190 1.136 1.102

TABLE 2

2 3.441 .094 .007 .000 6
4.131 .338 .031 .014 7

_l 4.136 .634 .290 .028 8

10 3.898 2.560 .219 .027 10

P Irlll IIr211 Ir3ll Irnll N
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Suppose that the Toeplitz entries are ak 1/k !. The underlying function is

f(z)=eZ+e/Z-1
and there will be extremely good approximation by rational functions, which implies
quick convergence of the Hankel eigenvalues ,-0, and strong clustering of the
Toeplitz-circulant eigenvalues h- 1. Analyticity is clear, but positive definiteness is
not. The functionf is negative at z -1, and Amin(C) -.264 with n 40. Nevertheless,
the eigenvalues of C-A cluster near 1 (amazingly so, since some are complex). What
may be of interest is the sequence of norms of residuals, which show fast convergence
after a kink to digest the indefiniteness of the problem:

[[r[[ =3.59 .51 1.38 2.29 .22 .01 .00.

By adding 1 to the main diagonal and changing f to eZ+ e l/z, the matrices A and
C become positive definite (though still not diagonally dominant). C-A has only
three eigenvalues that are further than 10-5 above h 1, and three more at that distance
below:

A(C-A) =2.02 1.06 1.0009 1.000007 1.00000003.

The result is convergence in six steps of the preconditioned conjugate gradient method.
In all these cases the operation count is O(n log n).
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