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Abstract

Subsequence clustering of multivariate time series
is a useful tool for discovering repeated patterns in
temporal data. Once these patterns have been dis-
covered, seemingly complicated datasets can be in-
terpreted as a temporal sequence of only a small
number of states, or clusters. However, discov-
ering these patterns is challenging because it re-
quires simultaneous segmentation and clustering of
the time series. Here we propose a new method of
model-based clustering, which we call Toeplitz In-
verse Covariance-based Clustering (TICC). Each
cluster in the TICC method is defined by a correla-
tion network, or Markov random field (MRF), char-
acterizing the interdependencies between different
observations in a typical subsequence of that clus-
ter. Based on this graphical representation, TICC
simultaneously segments and clusters the time se-
ries data. We solve the TICC problem through a
scalable algorithm that is able to efficiently solve
for tens of millions of observations. We validate
our approach by comparing TICC to several state-
of-the-art baselines in a series of synthetic experi-
ments, and we then demonstrate on an automobile
dataset how TICC can be used to learn interpretable
clusters in real-world scenarios.

1 Introduction

Many applications, ranging from automobiles [Miyajima et
al., 2007] to financial markets [Namaki et al., 2011] and
wearable sensors [Mörchen et al., 2005], generate large
amounts of time series data. In most cases, this data is multi-
variate, where each timestamped observation consists of read-
ings from multiple entities, or sensors. These long time se-
ries can often be broken down into a sequence of states, each
defined by a simple “pattern”, where the states can reoccur
many times. For example, using automobile sensor data, a
single driving session can be expressed as a sequential time-
line of a few key states: turning, speeding up, slowing down,
going straight, stopping at a red light, etc. This represen-
tation can be used to discover repeated patterns, understand
trends, detect anomalies and more generally, better interpret
large and high-dimensional datasets.

Figure 1: TICC segments a time series into a sequence of states (i.e.,
A, B, or C). Each cluster is characterized by a correlation network, or
MRF, defined over a short window of size w. This MRF governs the
(time-invariant) partial correlation structure of any window inside a
segment belonging to that cluster. Here, TICC learns both the cluster
MRFs and the time series segmentation.

To achieve this representation, it is necessary to simul-
taneously segment and cluster the time series. This prob-
lem is more difficult than standard time series segmenta-
tion [Hallac et al., 2016; Himberg et al., 2001], since mul-
tiple segments can belong to the same cluster. However, it is
also harder than subsequence clustering [Begum et al., 2015;
Smyth, 1997] because each data point cannot be clustered in-
dependently (since neighboring points are encouraged to be-
long to the same cluster). Additionally, even if one is able
to simultaneously segment and cluster the data, the question
still arises as to how to interpret the different clusters. These
clusters are rarely known a priori, and thus are best learned
through data. However, without prior knowledge, it is diffi-
cult to understand what each of the clusters refers to. Tra-
ditional clustering methods are not particularly well-suited
to discover interpretable structure in the data. This is be-
cause they typically rely on distance-based metrics, such as
dynamic time warping [Berndt and Clifford, 1994]. These
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methods focus on matching the raw values, rather than look-
ing for more nuanced structural similarities in the data.

In this paper, we propose a new method for multivari-
ate time series clustering, which we call Toeplitz inverse
covariance-based clustering (TICC). In our method, we de-
fine each cluster as a dependency network showing the re-
lationships between the different sensors in a short (time-
invariant) subsequence (Figure 1). In these networks, known
as Markov random fields (MRFs), an edge represents a par-
tial correlation between two variables [Koller and Friedman,
2009; Rue and Held, 2005; Wytock and Kolter, 2013]. Partial
correlations are used to control for the effect of other con-
founding variables, so the existence of an edge in an MRF
implies that there is a direct dependency between two vari-
ables. Therefore, an MRF provides interpretable insights as
to precisely what the key factors and relationships are that
characterize each cluster. In TICC, we discover this struc-
ture by solving a constrained sparse inverse covariance esti-
mation problem [Friedman et al., 2008; Yuan and Lin, 2006],
which we call the Toeplitz graphical lasso, to learn the adja-
cency matrix of the MRF dependency network [Banerjee et
al., 2008; Wainwright and Jordan, 2006].

To solve the TICC problem, we use an expectation maxi-
mization (EM)-like approach, based on alternating minimiza-
tion, where we iteratively cluster the data and then update
the cluster parameters. Even though TICC involves solving a
highly non-convex maximum likelihood problem, our method
is able to find a (locally) optimal solution very efficiently in
practice. We then implement our TICC method and apply it
to both real and synthetic datasets. We start by evaluating
performance on several synthetic examples, where there are
known ground truth clusters. We compare TICC with several
state-of-the-art time series clustering methods, outperforming
them all by at least 41% in terms of cluster assignment accu-
racy. We also quantify the amount of data needed for accu-
rate cluster recovery for each method, and we see that TICC
requires 3x fewer observations than the next best method to
achieve similar performance. We then analyze an automobile
sensor dataset to see an example of how TICC can be used
to learn interpretable insights from real-world data. Apply-
ing our method, we discover that the automobile dataset has
five true clusters, each corresponding to a “state” that cars are
frequently in. We then validate our results by examining the
latitude/longitude locations of the driving session, along with
the resulting clustering assignments, to show how TICC can
be a useful tool for unsupervised learning from multivariate
time series.

2 Problem Setup

Consider a time series of T sequential observations, where
xi ∈ Rn is the i-th multivariate observation. Our goal is
to cluster these T observations into K clusters. However,
instead of clustering each observation in isolation, we treat
each point in the context of its predecessors in the time se-
ries. Thus, rather than just looking at xt, we instead cluster a
short subsequence of size w ≪ T that ends at t. This consists
of observations xt−w+1, . . . , xt, which we concatenate into
an nw-dimensional vector Xt. Rather than clustering the ob-

servations directly, our approach consists of clustering these
subsequences X1, . . . , XT . We do so in such a way that en-
courages adjacent subsequences to belong to the same cluster,
a goal called temporal consistency.

Toeplitz Inverse Covariance-Based Clustering. We define

each cluster by a Gaussian inverse covariance Θi ∈ Rnw×nw.
Recall that inverse covariances show the conditional indepen-
dency structure between the variables [Koller and Friedman,
2009], so Θi defines a Markov random field encoding the
structural representation of cluster i. In addition to provid-
ing interpretable results, sparse graphical representations are
a useful way to prevent overfitting [Lauritzen, 1996]. Our
objective is to solve for these K inverse covariances Θ =
{Θ1, . . . ,ΘK}, one per cluster, and the resulting assignment
sets P = {P1, . . . , PK}, where Pi ⊂ {1, 2, . . . , T}, and each
point is assigned to exactly one cluster. Our overall optimiza-
tion problem is

argmin
Θ∈T ,P

K∑

i=1

[
sparsity

︷ ︸︸ ︷

‖λ ◦ Θi‖1 +
∑

Xt∈Pi







log likelihood
︷ ︸︸ ︷

−ℓℓ(Xt,Θi) +

temporal consistency
︷ ︸︸ ︷

β1{Xt−1 6∈ Pi}







]

. (1)

We call this the Toeplitz inverse covariance-based cluster-
ing (TICC) problem. Here, T is the set of symmetric block
Toeplitz matrices and ‖λ ◦Θi‖1 is an ℓ1-norm penalty of the
Hadamard (element-wise) product to incentivize a sparse in-
verse covariance (where λ is a regularization parameter). Ad-
ditionally, ℓℓ(Xt,Θi) is the log likelihood that Xt came from
cluster i,

ℓℓ(Xt,Θi) = −
1

2
(Xt − µi)

TΘi(Xt − µi)

+
1

2
log detΘi −

n

2
log(2π), (2)

where µi is the empirical mean of cluster i. In Problem
(1), β is a parameter that enforces temporal consistency, and
1{Xt−1 6∈ Pi} is an indicator function checking whether
neighboring points are assigned to the same cluster. We con-
strain the Θi’s to be block Toeplitz, to ensure time-invariance
within each cluster.

3 TICC Algorithm

Problem (1) is a mixed combinatorial and continuous opti-
mization problem with two sets of variables, the cluster as-
signments P and inverse covariances Θ, coupled together to
make the problem highly non-convex. As such, there is no
tractable way to solve for the globally optimal solution. In-
stead, we use a variation of expectation maximization (EM)
to alternate between assigning points to clusters and updating
the cluster parameters.

Cluster Assignment. Given the model parameters (i.e., in-
verse covariances) for each of the K clusters, we assign each
of the T subsequences, X1, . . . , XT , to these K clusters in
such a way that maximizes the likelihood of the data while
also minimizing the number of times that the cluster assign-
ment changes across the time series. This combinatorial op-
timization problem has KT possible assignments of points to
clusters. However, we are able to solve for the globally op-
timal solution in only O(KT ) operations. We do so through
dynamic programming, since this is equivalent to finding the
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Algorithm 1 EM Algorithm to Solve TICC

1: initialize Cluster MRFs Θ; point assignments P.
2: repeat
3: E-step: Assign points to clusters → P.
4: M-step: Update cluster parameters → Θ.
5: until Stationarity.

return (Θ,P).

minimum cost Viterbi path [Viterbi, 1967] for the length-T
sequence.

Solving the Toeplitz Graphical Lasso. Once we have the
clustering assignments, we then update the inverse covari-
ances, given the points assignments. Here, we solve for each
Θi in parallel, as

minimize − log detΘi + tr(SiΘi) +
1

|Pi|
‖λ ◦Θi‖1

subject to Θi ∈ T . (3)

where |Pi| is the number of points assigned to cluster i and Si

is the empirical covariance of these points. We call this prob-
lem the Toeplitz graphical lasso, since it is a variation on the
well-known graphical lasso problem [Friedman et al., 2008]

where we add a block Toeplitz constraint on the inverse co-
variance. To solve it, we develop a scalable algorithm based
on a distributed convex optimization approach know as the
alternating direction method of multipliers (ADMM) [Boyd
et al., 2011; Parikh and Boyd, 2014].

TICC. Our overall TICC algorithm iterates between assign-
ing points to different clusters (E-step, dynamic program-
ming) and updating the cluster parameters (M-step, ADMM),
as outlined in Algorithm (1).

4 Experiments

We built a custom Python solver to run the TICC algorithm1.
Our solver takes as inputs the original multivariate time series
and the problem parameters. It then returns the clustering
assignments of each point in the time series, along with the
structural MRF representation of each cluster. We test TICC
on several synthetic examples. We do so because there are
known “ground truth” clusters to evaluate the accuracy of our
method.

Generating the Datasets. We randomly generate synthetic
multivariate data in R5. The overall time series is generated
by constructing a temporal sequence of cluster segments (for
example, the sequence “1, 2, 1” with 200 samples in each of
the three segments, coming from two inverse covariances Θ1

and Θ2). The data is then drawn one sample at a time, condi-
tioned on the values of the previous w−1 samples. We run our
experiments on four different temporal sequences. Each seg-
ment in each of the examples has 100K observations in R5,
where K is the number of clusters in that experiment. These
examples were selected to convey various types of temporal
sequences over various lengths of time.

1Available at http://snap.stanford.edu/ticc/.

Temporal Sequence

Clustering Method 1,2,1 1,2,3,2,1 1,2,3,4,1,2,3,4 1,2,2,1,3,3,3,1

TICC 0.92 0.90 0.98 0.98

Model-
TICC, β = 0 0.88 0.89 0.86 0.89

Based
GMM [Banfield and Raftery, 1993] 0.68 0.55 0.83 0.62

EEV [Fraley and Raftery, 2006] 0.59 0.66 0.37 0.88

Distance-

DTW, GAK [Cuturi, 2011; Sarda, 2016] 0.64 0.33 0.26 0.27

Based

DTW, Euclidean [Sarda, 2016] 0.50 0.24 0.17 0.25
Neural Gass [Dimtriadou, 2009] 0.52 0.35 0.27 0.34

K-means 0.59 0.34 0.24 0.34

Table 1: F1 score of clustering accuracy for four different tempo-
ral sequences, comparing TICC with several alternative model and
distance-based methods.
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Figure 2: F1 score vs. number of samples for TICC and several
baselines. TICC needs significantly fewer samples than the other
model-based methods to achieve similar performance, while the
distance-based measures are unable to capture the true structure.

Clustering Accuracy. Since both TICC and the baseline ap-
proaches use very similar methods for selecting the appro-
priate number of clusters, we fix K to be the “true” num-
ber of clusters, for both TICC and for all the baselines. We
measure the macro-F1 score for the four different temporal
sequences in Table 1. Here, all eight methods are using the
exact same synthetic data, to isolate each approach’s effect
on performance. As shown, TICC significantly outperforms
the baselines. Our method achieves a F1 score between 0.90
and 0.98, averaging 0.95 across the four examples. This is
41% higher than the second best method (not counting TICC,
β = 0).

Effect of the Total Number of Samples. We next focus on
how many samples are required for each method to accurately
cluster the time series. We take the “1,2,3,4,1,2,3,4” example
from Table 1 and vary the number of samples. We plot the
F1 score vs. number of samples per segment in Figure 2. As
shown, when there are 100 samples, none of the methods are
able to accurately cluster the data. However, as we observe
more samples, both TICC and TICC, β = 0 improve rapidly.
By the time there are 200 samples, TICC already has an F1

score above 0.9. Even when there is a limited amount of data,
TICC is still able to accurately cluster the data. As the number
of samples increases, TICC’s F1 score goes to 1.0, but no
other method (including TICC, β = 0) tops 0.9. We note that
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Figure 3: Per-iteration runtime of the TICC algorithm (both the
ADMM and dynamic programming steps).

even with 500 samples, the distance-based methods struggle
to identify the clusters.

Scalability of TICC. One iteration of the TICC algorithm
consists of running the dynamic programming algorithm and
then solving the Toeplitz graphical lasso problem for each
cluster. These steps are repeated until convergence. The total
number of iterations depends on the data, but typically is no
more than a few tens of iterations. To evaluate the scalabil-
ity of our algorithm, we vary the number of timestamps and
compute the runtime of the algorithm over one iteration. We
observe samples in R50, estimate 5 clusters with a window
size of 3, and vary T over several orders of magnitude. We
plot the results in Figure 3. Note that our ADMM solver is in-
dependent of T , so this contributes to the constant offset in the
plot. However, for large values of T , our algorithm scales lin-
early with the number of points. Our TICC solver can cluster
10 millions points, each in R50, with a per-iteration runtime
of approximately 25 minutes.

5 Case Study

Here, we apply our TICC method to a real-world example to
demonstrate how this approach can be used to find meaning-
ful insights from time series data in an unsupervised way. We
analyze a dataset, provided by a large automobile company,
containing sensor data from a real driving session. This ses-
sion lasts for exactly 1 hour and occurs on real roads in the
suburbs of a large European city. We observe 7 sensors every
0.1 seconds:

• Brake Pedal Position
• Forward (X-)Acceleration
• Lateral (Y-)Acceleration
• Steering Wheel Angle

• Vehicle Velocity
• Engine RPM
• Gas Pedal Position

We run TICC and segment the time series into 5 clusters.
We then analyze the clusters to understand and interpret what
“driving state” they each refer to. Each cluster has a mul-
tilayer MRF network defining its structure. To analyze the
result, we use network analytics to determine the relative “im-
portance” of each node in the cluster’s network. We plot the
betweenness centrality score [Brandes, 2001] of each node in
Table 2. We see that each of the 5 clusters has a unique “sig-
nature”, and that different sensors have different betweenness
scores in each cluster. For example, the Y-Acceleration sen-
sor has a non-zero score in only two of the five clusters: #2
and #5. Therefore, we expect these two clusters to refer to

Interpretation Brake X-Acc Y-Acc SW Angle Vel RPM Gas

#1 Slowing Down 25.64 0 0 0 27.16 0 0

#2 Turning 0 4.24 66.01 17.56 0 5.13 135.1

#3 Speeding Up 0 0 0 0 16.00 0 4.50

#4 Driving Straight 0 0 0 0 32.2 0 26.8

#5 Curvy Road 4.52 0 4.81 0 0 0 94.8

Table 2: Betweenness centrality for each sensor in each of the five
clusters. This score can be used as a proxy to show how “important”
each sensor is, and more specifically how much it directly affects the
other sensor values.

(a) (b)

Figure 4: Two real-world turns in the driving session. The pin color
represents cluster assignment from our TICC algorithm (Green =
Going Straight, White = Slowing Down, Red = Turning, Blue =
Speeding up).

states in which the car is turning, and the other three to re-
fer to intervals where the car is going straight. As such, we
can use these betweenness scores to interpret these clusters in
a meaningful way. For example, from Table 2, a reasonable
hypothesis might be that the clusters refer to 1) slowing down,
2) turning, 3) speeding up, 4) cruising straight, 5) driving on
a curvy road segment.

Plotting the Resulting Clusters. To validate our hypothe-
ses, we can plot the latitude/longitude locations of the drive,
along with the resulting cluster assignments. Analyzing this
data, we empirically discover that each of the five clusters
has a clear real-world interpretation that aligns very closely
with our estimates based on the betweenness scores in Ta-
ble 2. Furthermore, we notice that many consistent and re-
peated patterns emerge in this one hour session. For example,
whenever the driver is approaching a turn, he or she follows
the same sequence of clusters: going straight, slowing down,
turning, speeding up, then going straight again. We plot two
typical turns in the dataset, coloring the timestamps according
to their cluster assignments, in Figure 4.

6 Conclusion and Future Work

In this paper, we have defined a method of clustering mul-
tivariate time series subsequences. Our method, Toeplitz
Inverse Covariance-based Clustering (TICC), simultane-
ously segments and clusters the data, breaking down high-
dimensional time series into a clear sequential timeline.
TICC’s promising results on both synthetic and real-world
data lead to many potential directions for future research. For
example, our method could be extended to learn dependen-
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cies parameterized by any heterogeneous exponential family
MRF. This would allow for a much broader class of datasets
(such as boolean or categorical readings) to be incorporated
into TICC.

Note

This is an abridged version of the full paper, originally pub-
lished in ACM SIGKDD, 2017.
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Olaf Hoos. Extracting interpretable muscle activation pat-
terns with time series knowledge mining. International
Journal of Knowledge-based and Intelligent Engineering
Systems, 2005.

[Namaki et al., 2011] A Namaki, AH Shirazi, R Raei, and
GR Jafari. Network analysis of a financial market based
on genuine correlation and threshold method. Physica A:
Stat. Mech. Apps., 2011.

[Parikh and Boyd, 2014] Neal Parikh and Stephen Boyd.
Proximal algorithms. Foundations and Trends in Opti-
mization, 2014.

[Rue and Held, 2005] Havard Rue and Leonhard Held.
Gaussian Markov Random Fields: Theory and Applica-
tions. CRC Press, 2005.

[Sarda, 2016] Alexis Sarda. Dtwclust. https://cran.r-
project.org/web/packages/dtwclust/index.html, 2016.

[Smyth, 1997] Padhraic Smyth. Clustering sequences with
hidden Markov models. NIPS, 1997.

[Viterbi, 1967] Andrew Viterbi. Error bounds for convolu-
tional codes and an asymptotically optimum decoding al-
gorithm. IEEE Transactions on Information Theory, 1967.

[Wainwright and Jordan, 2006] Martin J Wainwright and
Michael I Jordan. Log-determinant relaxation for approxi-
mate inference in discrete Markov random fields. IEEE Tr.
on Signal Processing, 2006.

[Wytock and Kolter, 2013] Matt Wytock and J Zico Kolter.
Sparse Gaussian conditional random fields: Algorithms,
theory, and application to energy forecasting. ICML, 2013.

[Yuan and Lin, 2006] Ming Yuan and Yi Lin. Model selec-
tion and estimation in regression with grouped variables.
Journal of the Royal Statistical Society: Series B, 68:49–
67, 2006.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

5258


