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Abstract. In this paper it is shown that two analytic Toeplitz operators es-
sentially doubly commute if and only if they doubly commute on the Bergman
space of the polydisk.

Let D be the open unit disk in C. Its boundary is the circle T . The polydisk
Dn and the torus Tn are the subsets of Cn which are cartesian products of n
copies D and T , respectively. Let dA(z) be the normalized volume measure on
Dn. The Bergman space L2

a(Dn) is the subspace of L2(Dn, dA) whose functions
are holomorphic in Dn. There is an orthogonal projection P from L2(Dn, dA) onto
L2
a(D

n). The Toeplitz operator with symbol f in L∞(Dn) is defined by Tf (h) =
P (fh), for all h ∈ L2

a(Dn). Two analytic Toeplitz operators Tf and Tg are said to
be essentially doubly commuting if T ∗f Tg − TgT ∗f is compact. They are said to be
doubly commuting if T ∗f Tg − TgT ∗f = 0.

The function theory on the polydiskDn is quite different from the function theory
on the unit disk [R]. One may expect that there should exist some differences in
operator theory on the Bergman spaces between on the polydisk and on the disk.
In this paper we will show that two analytic Toeplitz operators essentially doubly
commute if and only if they doubly commute on the polydisk. But this is false on
the disk [AG], [Z].

Observe that Tn is only a small part of the boundary of Dn if n > 1. But it
is an important part and is called the distinguished boundary of Dn. Tn is also
a compact group (with componentwise multiplication as group operation) and as
such carries a Haar measure. Its dual group is Zn where Z is the integer group.
As in [SW] we consider multiple Fourier series on the n-torus Tn. The multiple
Fourier series on the n-torus Tn can be viewed as the Fourier transformation on
L1(Tn). For f in L1(Tn) the Fourier transformation is given by

f̃(~m) =

∫
Tn
f(x1, . . . , xn)ei(~m,~x) dσ(x1) · · · dσ(xn)

where ~m = (m1, . . . ,mn) ∈ Zn and (~m, ~x) =
∑n
i=1mixi and σi(xi) is the normal-

ized Haar measure on T for i = 1, . . . , n. By Theorem 1.7 in [SW], the Fourier

transformation is injective, i.e. if f ∈ L1(Tn) and f̃(m) = 0 for all m ∈ Zn, then
f ≡ 0. The main result in this paper is the following theorem.
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Theorem. Let f and g be two bounded analytic functions on the polydisk Dn for
n > 1. Then the following are equivalent :

(A) Tf essentially doubly commutes with Tg.
(B) Tf doubly commutes with Tg.

(C) Either ∂f
∂zi

or ∂g
∂zi

is zero for all i.

Before beginning the proof of the Theorem, we need some notations and defini-
tions. Since for any z in Dn, the pointwise evaluation of functions in L2

a(Dn) at z
is a bounded functional, there is a function Kz in L2

a(Bn) such that

f(z) = (f,Kz)

for all f in L2
a(Dn). Kz is called the Bergman reproducing kernel and sometimes

we use K(z, w) to denote Kz(w).
Let Kz1 denote the Bergman producing kernel 1

(1−z1w1)2 of the Bergman space

L2
a(D) of the unit disk at the point z1 in D, and kz1 the normalized Bergman

reproducing kernel of the Bergman space L2
a(D) at the point z1 ∈ D. We use z

to denote the vector (z1, . . . , zn) in Cn of an n-dimensional complex plane. It is
easy to check that the reproducing kernel Kz of the Bergman space L2

a(Dn) of the
polydisk is the multiple product

∏n
i=1 kzi(wi) of the Bergman kernel of the unit disk

D. So the normalized producing kernel kz of L2
a(Dn) is also the multiple product∏n

i=1 kzi of the normalized kernel of the unit disk. Then kz weakly converges to
zero in L2

a(Dn) as z tends to the boundary of Dn.
In addition, the producing kernel Kz has the following nice property:

TfKz = f(z)Kz(1)

for z in Dn if f is in L2
a(Dn).

Let Zn+ denote the subset {~m ∈ Zn : mi ≥ 0 ∀i = 1, . . . , n} of Zn. For a function
f in the Hardy space H2(Tn), we write the power series of f as follows:

f(z) =
∑
~m∈Zn+

a~mz
~m

where a~m is a sequence of numbers such that∑
~m∈Zn+

|a~m|2 <∞,

and z ~m means the product
∏n
i=1 z

mi
i [R].

Proof of the Theorem. Obviously (B)⇒(A). First we prove that (C)⇒(B). Without
loss of generality we assume that f(z) = F (z1, . . . , zr) and g(z) = G(zr+1, . . . , zn).
Since the Bergman kernel of Dn is the multiple product

∏n
i=1 Kzi(wi) of the

Bergman kernel of D, by (1), we have(
TfT

∗
g

n∏
i=1

Kzi

)
(w) = F (w1, . . . , wr)G(zr+1, . . . , zn)

n∏
i=1

Kzi(wi)
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and

(
T ∗g Tf

n∏
i=1

Kzi

)
(w) = F (w1, . . . , wr)

r∏
i=1

Kzi(wi)

(
T ∗g

n∏
i=r+1

Kzi

)
(wr+1, . . . , wn)

= F (w1, . . . , wr)G(zr+1, . . . , zn)
n∏
i=1

Kzi(wi).

Thus

TfT
∗
g

(
n∏
i=1

Kzi

)
= T ∗g Tf

(
n∏
i=1

Kzi

)
.

This implies that TfT
∗
g = T ∗g Tf since the values of an operator on the Bergman

kernels completely determine the operator on the Bergman space.
(A)⇒(C) Since Dn is symmetric with respect to all zi, it is sufficient to prove

that either ∂f
∂z1

or ∂g
∂z1

is zero. By (1), the elementary computation gives

((TfT
∗
g − T ∗g Tf )kz, kz)

=

∫
Dn

f(w)g(w)

∣∣∣∣∣
n∏
i=1

kzi(wi)

∣∣∣∣∣
2

dA(w) − f(z)g(z)
(2)

for any z in Dn. Let ~θ = (θ1, . . . , θn) and U~θ = diag{eiθ1 , . . . , eiθn}. Replacing z
by U~θz in (2) yields

((TfT
∗
g − T ∗g Tf )kU~θz, kU~θz)

=

∫
Dn

f(w)g(w)

∣∣∣∣∣∣
n∏
j=1

keiθj zj (wj)

∣∣∣∣∣∣
2

dA(w) − f(U~θz)g(U~θz).
(3)

Multiplying (3) by ei(~m,
~θ ) and then integrating with respect to ~θ imply∫

Tn
((TfT

∗
g − T ∗g Tf)kU~θz, kU~θz)e

i(~m,~θ ) dθ

=

∫
Dn

∫
Tn
f(U~θ w)g(U~θ w)

∣∣∣∣∣∣
n∏
j=1

kzj (wj)

∣∣∣∣∣∣
2

ei(~m,
~θ ) dA(w) dθ

−
∫
Tn
f(U~θz)g(U~θz)ei(~m,

~θ ) dθ.

(4)

Let H~m(z) =
∫
Tn f(U~θz)g(U~θz)ei(~m,

~θ ) dθ. Since both f and g are in H∞(Tn), we
write

f =
∑
~l∈Zn+

a~lz
~l and g =

∑
~j∈Zn+

b~jz
~j

where a~l and b~j are two sequences of numbers such that∑
~l∈Zn+

|a~l |
2 <∞ and

∑
~j∈Zn+

|b~j |
2 <∞.
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To show that H~m(z) is continuous on the closure D
n

of the polydisk, for the sake
of convenience, we consider the special case that ~m ∈ Zn+. Then

H~m(z) =
∑
~l∈Zn+

a~lb(~l+~m)z
~lz(~l+~m).

Since

∑
~l∈Zn+

|a~l b(~l+~m)| ≤

∑
~l∈Zn+

|a~l |
2


1/2∑

~l∈Zn+

|b~l |
2


1/2

<∞,

H~m(z) is continuous on the closure D
n

of Dn for any ~m ∈ Zn. It follows from (4)
that ∫

Tn
((TfT

∗
g − T ∗g Tf )kU~θz, kU~θz)e

i(~m,~θ ) dθ

=

∫
Dn

H~m(w)|kz(w)|2 dA(w) −H~m(z).

(5)

Let φzi(wi) be the Möbius map zi−wi
1−ziwi . Changing variables wi = φzi(λi) for i =

2, . . . , n in (5), we have∫
Tn

((TfT
∗
g − T ∗g Tf )kU~θz, kU~θz)e

i(~m,~θ ) dθ

=

∫
Dn

H~m(w1, φz2(λ2), . . . , φzn(λn))|kz1 |2dA(w1)dA(λ2) · · ·dA(λn)

−H~m(z1, . . . , zn).

Let (µ2, . . . , µn) be a point in Tn−1. Since n > 1, we can choose a sequence
{(z2, . . . , zn)α} ⊂ Dn−1 converging to {µ2, . . . , µn}. For a fixed z1 ∈ D, let zα =
(z1, . . . , zn)α. Since kz weakly converges to zero as z goes to the boundary of Dn

and TfT
∗
g − T ∗g Tf is compact,

lim
(z)α

∫
Tn

((TfT
∗
g − T ∗g Tf )kU~θzα , kU~θzα)ei(~m,

~θ ) dθ = 0.

Then we conclude that

lim
zα

∫
Dn

H~m(w1, φ(z2)α(λ2), . . . , φ(zn)α(λn))|kz1 |2 dA(w1)dA(λ2) · · ·dA(λn)

= H~m(z1, µ2, . . . , µn).

Because H~m(w1, . . . , wn) is continuous on D
n

and φ(zi)α(λi) converges to µi point-
wise for i = 2, . . . , n, by the dominated convergence theorem, we thus have∫

D

H~m(w1, µ2, . . . , µn)|kz1 |2 dA(w1) = H~m(z1, µ2, . . . , µn).

So H~m(z1, µ2, . . . , µn) is continuous on D and satisfies the invariant volume mean
value property, i.e.∫

D

H~m(φz1(w1), µ2, . . . , µn) dA(w1) = H~m(z1, . . . , µ2, . . . , µn)
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for all z1 ∈ D. By [AFR], it is harmonic. Thus ∆z1H~m(z1, µ2, . . . , µn) = 0. On the
other hand, if we write

f(z1, z2, . . . , zn) =
∞∑
k=0

∂kf

∂zk1
(0, z2, . . . , zn)zk1

and

g(z1, z2, . . . , zn) =
∞∑
k=0

∂kg

∂zk1
(0, z2, . . . , zn)zk1 ,

and let ~m = (0,m2, . . . ,mn), then

H~m(z1, µ2, . . . , µn) =
∞∑
k=0

∫
Tn−1

∂kf

∂zk1
(0, µ2e

iθ2 , . . . , µne
iθn)

× ∂kg

∂zk1
(0, µ2eiθ2 , . . . , µneiθn)ei(~m,

~θ ) dθ2 · · · dθn|z1|2k,

and

‖f‖22 =
∞∑
k=0

∫
Tn−1

∣∣∣∣∂kf∂zk1
(0, eiθ2 , . . . , eiθn)

∣∣∣∣2 dθ2 · · ·dθn.

Hence we obtain∫
Tn−1

∂f

∂z1
(0, µ2e

iθ2 , . . . , µne
iθn)

∂g

∂z1
(0, µ2eiθ2 , . . . , µneiθn)ei(~m,

~θ ) dθ2 · · ·dθn = 0

for all ~m ∈ Zn−1, and both ∂f
∂z1

(0, z2, . . . , zn) and ∂g
∂z1

(0, z2, . . . , zn) are inH2(Tn−1).

So ∂f
∂z1

(0, z2, . . . , zn) ∂g∂z1
(0, z2, . . . , zn) is in L1(Tn−1) and the Fourier transforma-

tion of ∂f
∂z1

(0, z2, . . . , zn) ∂g∂z1
(0, z2, . . . , zn) on Zn−1 is zero. The injection of the

Fourier transformation implies that ∂f
∂z1

(0, z2, . . . , zn) ∂g∂z1
(0, z2, . . . , zn) is zero on

Tn−1. Thus

∂f

∂z1
(0, z2, . . . , zn)

∂g

∂z1
(0, z2, . . . , zn)

is zero on Tn−1.
Let φz(w) denote the Möbius transform (φz1(w1), . . . , φzn(wn)) in the polydisk

Dn for each point z = (z1, . . . , zn) ∈ Dn. For a fixed point z ∈ Dn, we define a
unitary operator Uz on L2(Dn) by

Uzh(w) = h ◦ φz(w)kz(w)

for all h ∈ L2(Dn). Thus U∗z TfUz = Tf◦φz . If Tf essentially commutes with Tg,
then Tf◦(z1,0,...,0) essentially commutes with Tg◦φ(z1,0,...,0)

.
Replacing f and g respectively by f ◦ φ(z1,0,...,0) and g ◦ φ(z1,0,...,0) in the above

argument, we can get that for all z1 in D,

∂(f ◦ φ(z1,0,...,0))

∂z1
(0, z2, . . . , zn)

∂(g ◦ φ(z1,0,...,0))

∂z1
(0, z2, . . . , zn) = 0

on Tn−1. But

∂(f ◦ φ(z1,0,...,0))

∂z1
(0, z2, . . . , zn) = (|z1|2 − 1)

∂f

∂z1
(z1, z2, . . . , zn).
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This implies

∂f

∂z1
(z1, z2, . . . , zn)

∂g

∂z1
(z1, z2, . . . , zn) = 0

for (z2, . . . , zn) ∈ Tn−1 and z1 ∈ D. Thus either

∂f

∂z1
(z1, z2, . . . , zn) or

∂g

∂z1
(z1, z2, . . . , zn)

is zero on Dn. This completes the proof of the Theorem.
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