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TOEPLITZ OPERATORS ON THE SEGAL-BARGMANN SPACE 

C. A. BERGER AND L. A. COBURN 

ABSTRACT. In this paper, we give a complete characterization of those func-
tions on 2n-dimensional Euclidean space for which the Berezin-Toeplitz quanti-
zations admit a symbol calculus modulo the compact operators. The functions 
in question are characterized by a condition of "small oscillation at infinity" . 

1. Introduction. We consider the Toeplitz operators on the Segal-Bargmann 
space H2 (Cn , dJ.l) of Gaussian square-integrable entire functions on C n . Such op-
erators have been studied by Berezin and others [4, 5, 10, 11] and arise naturally 
as "anti-Wick quantization operators". Via the SchrOdinger representation [7, 10], 
there is a natural equivalence between Topelitz operators on H2 (Cn , dJ.l) and a 
generalization of pseudodifferential operators on L 2 (Rn,dv), the so-called Weyl 
quantization [9, 10]. 

Let P be the orthogonal projection operator L2 (C n , dJ.l) onto H2 (C n , dJ.l) with 
dJ.l(z) = (21r)-ne- lz I2 /2dv(z) and dv(z) ordinary Lebesgue measure on cn. F0r f in 
LOO(Cn ), the multiplication operator Mf on L2(Cn , dJ.l) is defined by Mfh = fh. 
The Toeplitz operator Tf is defined, for h in H2 (C n , dJ.l), by 

In this paper, we complete the program, begun in [6], of determining the largest 
*-algebra Q in LOO(Cn ) for which TfTg -Tfg is a compact operator for all f, gin Q. 
Functions in Q are characterized by a condition of "small oscillation at infinity". 

It should be noted that the Weyl unitary operators [7] which generate the Segal-
Bargmann representation of the Heisenberg group on C n [1, 14, 15] take the form 
W), = Te.\(z)exp{I),12/4} for A in cn, where [6] e),(z) = exp{iImX· z} and X· z = 
- - - . n 1 12 1 12 1 12 A1Zl + A2Z2 + ... + AnZn for z = (Zl' Z2,"" zn) III C and A = Ai + A2 + 
... + IAnI2. Thus, the C*-algebra CCR(Cn) generated by the {W),} is just the 
closure, in the operator norm, of 

{Tf: f a trigonometric polynomial on Cn = R2n} 

[6]. Since CCR(Cn ) is known to be simple [7], nonconstant trigonometric polyno-
mials cannot be in Q. On the other hand, we shall see that Q contains all functions, 
such as eivlzl, which oscillate "less than linearly". We shall also show that Q is 
closely related to CC R( C n ) in a more direct way. 
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814 C. A. BERGER AND L. A. COBURN 

For a precise statement of the main results, we require several definitions 
r = {f E LOO(Cn): Hf == (I - P)MfP is compact}, 
B = {f E LOO(Cn): PMfP is compact}. 

We also have the function algebras: 

ESV = {f E LOO(Cn): Lim sup If(z) - f(w)1 = o}, 
R---+oo Iz-wl~1 

Izl2':R 
V = {f E LOO(Cn): Lim f(z) = o} 

Izl---+oo 
BC = Bounded continuous functions on Cn . 

We ignore sets of measure zero in the above definitions of ESV and V. We write 
BCESV = BC n ESV and Co = BC n V. 

For f in LOO(Cn), we make use of the convolution transform 

j(a) = (27r)-n / f(z)e-lz-aI2/2dv(z). 

This transform is the Berezin symbol of the operator Tf [3] and is also the solution 
of the heat equation on Cn = R2n at time t = ! with initial values f [4, 8, 10]. 

Let K denote the ideal of all compact operators on the relevant Hilbert space, 
H. Let 7r be the usual quotient map from B(H) onto B(H)/ K where B(H) is 
the algebra of all bounded operators on H. We denote by 7(Q) the C*-algebra 
generated by all Tf with f in Q. 

Our main results can now be summarized. 

PROPOSITION A. Q = {f E LOO(Cn): (I - P)MfP and (I - P)MfP are 
compact}. For f in Q, TgTf - Tgf and TfTg - Tgf are in K for all g in LOO(Cn). 
Q is the unique maximal *-subalgebra of LOO(Cn) with the property that TfTg - Tfg 
is compact for all f, g in Q. 

THEOREM B. (I - P)MfP is compact if and only if (I - P)MfP is compact. 
Moreover, Q = r = ESV + Q n B. 

THEOREM C. The ideal QnB is given by QnB = {f E Loo(cn): Ifl2 E Co}. 
THEOREM D. The com mutant of 7r{CCR(Cn)} in B[H2(Cn,d/-L)]jK is 

7r{7(Q)}. Equivalently, [A, W>..] is in K for all >. in cn if and only if A - Tf 
is in K for some f in ESV. 

THEOREM E. 7r{7(Q)} c:::: Q/Q nBc:::: ESV/V c:::: BCESV/Co. 
It should be pointed out that the algebra Q is the homolog of the algebra QC 

of quasi-continuous functions in the case of Toeplitz operators on the unit circle. 
Moreover, r is the homolog of the algebra Hoo + C. Of course, on the circle, 
QC =I- Hoo + C. The absence of nonconstant bounded entire functions on Cn 
seems to be reflected in the fact that Q = r. 

A critical ingredient in our analysis is an averaging operation over the Segal-
Bargmann representation of the Heisenberg group given, for A in B {H2 (d/-L) }, by 

A = / W;AW>.. d/-L(>')' 
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TOEPLITZ OPERATORS ON THE SEGAL-BARGMANN SPACE 815 

In Theorem 6 of §3, we discuss some useful properties of A and relate A to the 
Berezin symbol A [3]. 

We recall that H2(dl1) has the reproducing kernels eii ,z/2 so, for 9 in H2(dl1), 

g(a) = (g, eii .z/2) = (27r)-n ! g(z)ea.z/2e-lzI2 /2 dv(z). 

Normalizing, we have ka(z) = eii.z/2-laI2/4 with Ilkall = 1 in H2(dl1)' In terms of 
the ka, the Berezin symbol of any operator A on H2(dl1) is defined by [3] 

A(a) = (Aka, ka). 

It is known that A(a) is a smooth function which is uniquely determined by A. 
Moreover, it is not hard to check that A is in Co for A compact and, for all bounded 
A, A = T A where A is the average over the Heisenberg group defined above. 

Let jCm) denote the mth iterate of j. The main idea in the proofs of Theorems 
B, C, D, E is to note that ESV is characterized by f - j<m) E V for all m > 0 
and use the fact that jCm) is Lipschitz with modulus of continuity converging to 0 
as m ---+ 00. We also use the fact that J K(a)dl/(a) is compact whenever K(a) is a 
uniformly bounded weakly measurable compact operator valued function and 1/ is 
a positive measure of finite total mass. 

We remark that Tf is bounded for f ~a larger class than LOO. In particular, 
MfP is bounded if f is measurable and Ifl2 is bounded. 

In §2 of this paper, we discuss some analytic preliminaries. The function-
theoretic properties of j are discussed and the class ESV is described in terms 
of j. In §3, Theorems B, C, D are proved. In §4, the algebra r( Q) is analyzed using 
earlier results. The index theory of r( Q) is described. Finally, in §5, we discuss 
extensions and generalizations. 

We thank William Arveson, Rodger Howe, Richard Rochberg, Irving Segal and 
William Zame for useful advice and discussions. 

2. Preliminary results. We now discuss some analytic preliminaries. Beyond 
the definitions in §1, we will use the space 

A(c) = {f E BC: If(a) - f(b)1 :s; cia - bl, all a, b}. 

We note that r, B, Q, ESV, V, BC, Co are all closed. V is an ideal in Loo and 
Co is an ideal in BC. ESV and BC are conjugate-closed algebras. It is easy to 
check, as in [6], that r is an algebra and that B is a r module so that r n B is an 
ideal in r. 

We begin by sketching the proof of 

PROPOSITION A. Q = {f E Loo: (I -P)MfP and (I -P)MfP are compact}. 
For f in Q, TgTf - Tgf and TfTg - Tgf are in K for all 9 in Loo. Q is the unique 
maximal *-subalyebra of LOO (en) with the property that TfTg - Tfg is in K for all 
f,y inQ. 

PROOF. See [6]. For completeness, note that 

PMgfP = PMg{P + (I - P)}MfP 
= (PMgP)(PMfP) + PMg{(1 - P)MfP}. 
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It follows at once that TgTJ - TgJ is in K for J in r and g in LOO. On the other 
hand 

{(I - P)MgP}*{(I - P)MgP} = PM1gl 2P - (PMgP)(PMgP) 

so TgTg - TIgl2 is in K if and only if g is in r. The desired result follows at once. 
For df..L(z) = (27r)-ne-lzI2/2dv(z) on cn, we recall that the subspace H2(df..L) 

consists of all entire functions in L2 (df..L). For g in H2 (df..L), we have the reproducing 
kernels ea,z / 2 with 

g(a) = (g(z), ea.z/2) = (27r)-n / g(z)ea.z/2e-lzI2 /2 dv(z). 

If P is the orthogonal projection operator from L2(df..L) onto H2(df..L) it follows that, 
for b in L2(df..L) 

(Pb)(z) = (27r)-n / b(w)ez.w/2e-lwI2/2dv(w). 

Denoting by MJ the operator of "multiplication by f" on L2(df..L), we will need 
to estimate the norms of [MJ,P] = MJP - PMJ and PM1JI2P. Such estimates 
can be obtained by using the unitary map from L2(df..L) to L2((27r)-n dv) given by 

(Ug)(z) = e-lzI2/4g(z). 

PROPOSITION 1. For b in L2((27r)-n dv), 

where 

U[MJ,P]U*b(z) = (27r)-n / k(J,z,w)b(w)dv(w), 

UPM1JI2PU*b(z) = (27r)-n / h(IJI2,z,w)b(w)dv(w) 

k(J, z, w) = [J(z) - J(w)] exp{ -Iz - wl 2 /4 + iIm w· z/2}, 

h(IJI2, Z, w) = (27r)-ne- 1z-w I2 /8 

X / IJ(uWexp { -\u _ (z ~ w) \2 /2 + iIm (z ~ w . u) } dv(u). 

PROOF. Direct calculation. 
For J in LOO(Cn), we consider some properties of the convolution transform 

](a) = (27r)-n / J(z)e-lz-aI2/2dv(z). 

We denote by pm) the mth iterate of this transform. The map J ~ j is a smoothing 
operator which is clearly related to the heat equation on Cn = R 2n. In fact, 

j(t,a) = (47rt)-n / J(z)e-lz-aI2/4tdv(z) 

is the unique solution of the heat equation with initial values (at t = 0) J(z) [8]. 
Thus, ]( a) = j( ~,a) is the solution of the initial value problem for J(z) at t = ~. 
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We will need one estimate 

LEMMA 2. For f in Loo, we have 

Ij(m)(a) - j(m)(b) I ~ 2(21r)-1/21Iflloom-1/2Ia - bl. 
PROOF. The first step is to note that 

j(a) - j(b) = (21r)-n J f (z + a; b) [e-1z-(a-b)/212 /2 _ e- 1z+(a-b)/21 2 /2] dv(z). 

It follows that 

Ij(a) - j(b)1 ~ (21T)-nllfII00 J le- 1z-(a-b)/2 12 /2 - e- 1z+(a-b)/2 12 /21 dV(z). 

Careful but routine analysis shows that the right-hand side of the last inequality is 
exactly equal to 

It is immediate that 

Using the semi group property of the heat kernel (or direct calculation) we see that 

j(m)(a) = j(m/2,a) = (21Tm)-n J f(z)e-lz-aI2/2mdv(z). 

It follows that j(m)(a) = g(a/yrn) with g(z) = f(zyrn). The desired result follows 
by applying the Lipschitz estimate above to g. 

In view of the central role played by the algebra ESV in our analysis, we next 
provide some useful examples. 

THEOREM 3. The algebra ESV includes (i) g(z) = g(z/Izl) for g continuous 
complex-valued on s2n-1 = {z : Izl = I}, (ii) fUzl) for f in BCrESV (see [6]), 
(iii) {V + .AI: .A E C}. 

PROOF. (i) can be checked directly, using the uniform continuity of g on s2n-1. 
We note that, for Iz - wi ~ 1, 

--- <-I z wi 1 
Izl Izl - Izl' I ~_~I < Iwlllwl-Izil < ~ 

Izl Iwl - Iwllzl - Izl' 
so that 

11:1 - 1:11 ~ I~I' 
(ii) follows directly from the corresponding definition of BCrESV [6] as the 

radial version of BCESV defined above. 
(iii) is immediate from the definition of ESV. 
REMARK. It follows from Theorem 3 and discussion in [6] that exp(iV!ZT) is in 

ESV. On the other hand, exp(iIm("X. z)) is not in ESV unless.A = O. 
The following lemma exhibits the strong interaction between ESV and the trans-

form 1. 
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LEMMA 4. For I in ESV, 1- j is in V. 
PROOF. We write 

I(a) - j(a) = (27r)-n j [/(a) - l(z)]e-lz-aI2/2 dv(z) 

= (27r)-n j[/(a) - I(a + z)]e-lzI2/2 dV(z). 

Thus, for c: > 0 and N = N (c:) large enough 

(27r)-n 1 I/(a) - I(a + z)le- 1zI2 /2 dv(z) 
Izl~N 

S (27r)-n211/1Ioo 1 e-lzI2/2 dv(z) < :. 
Izl~N 2 

and 
I/(a) - j(a)1 < ~ + (27r)-n 1 I/(a) - I(a + z)le- 1zI2 /2 dv(z). 

Izl<N 
Now, using the definition of ESV, there is an R(c:) > 0 so that I/(a)- l(a+z)1 < c:/2 
for Izl < N whenever lal > R(c:). The desired result follows at once. 

We can now establish 

THEOREM 5. The lollowing conditions are t;quivalent 
(i) IE ESV, 
(ii) 1- j E V, 
(iii) 1- j<m) E V lor all m 2: 1, 
(iv) IE nc>o(A(c:) + V). 

PROOF. ((i)-+(ii)) If I is in ESV then 1- j is in V by Lemma 4. 
((ii)-+(iii)) If I - j E V then, by Theorem 3 and Lemma 4, 1- j{2) E V. 

Iteration and addition show that 1- j<m) E V for all m 2: 1. 
((iii)-+(iv)) Suppose I - j(m) E V for all m 2: 1. By Lemma 2, I E 

n,,>o(A(c:) + V). 
((iv)-+(i)) Suppose I E n,,>o(A(c:)+V). Then for each c: > 0 we have 1= g"+h,, 

for g" in A(c:) and h" in V. Suppose that Ih,,(z)1 < c: whenever Izl > R(c:). Then 

I/(a) - l(b)1 S Ig"/3(a) - g,,/3(b)1 + Ih"/3(a)1 + Ih,,/3(b)1 
S (c:/3)la - bl + Ih"/3(a)1 + Ih,,/3(b)l· 

Thus, for la-bl S 1 and lal > R(c:/3) + 1, we have Ibl > R(c:/3) and Ih"/3(a)1 < c:/3, 
Ih,,/3(b)1 < c:/3 so I/(a) - l(b)1 < c:. Thus, I is in ESV. 

COROLLARY. The lollowing conditions are equivalent: 
(i) I is in BCESV, 
(ii) 1- j E Co, 
(iii) 1- j<m) E Co lor all m 2: 1, 
(iv) IE n,,>o(A(c:) + Co). 
PROOF. Clear. 
REMARK. Theorem 5 implies that the class ESV has some significance in the 

classical analysis of the initial value problem for the heat equation. 
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3. The symbol calculus for Toeplitz operators. We begin with a discussion 
of the Berezin symbol [3J and a related averaging operation over a representation of 
the Heisenberg group. This averaging operation appears to be of some independent 
interest and is extremely useful in our subsequent analysis. 

On H 2(dJ.L), we have the unitary operator-valued map 
a --4 W - eiTlm(aoz) - T. a - - exp{laI 2 /4+ilrn(a o z)} 

for a in en (see [6]). The map a --4 Wa extends to a map from en to unitary 
operators acting on L2(dJ.L) by the formula [1, 6J Wa = ka(z)ta where ka(z) = 
exp{a· z/2 - laI 2 /4} and (taf)(z) = f(z - a) for f in L2(dJ.L). For ea(z) = 
exp{iIm(a· z)}, we also consider the unitary operator-valued map a --4 Mea on 
L2(dJ.L). 

It is not hard to check that both a --4 Wa and a --4 Mea are weakly continuous 
on L2(dJ.L). Using the identities 

WaWb = ea(b/2)Wa+b, MeaMeb = Mea+b' 
it follows that a --4 Wa , a --4 W;, a --4 Mea' a --4 M:a are all strongly continuous 
maps. 

For 0:, (3 complex numbers of modulus one, we now have representations of the 
Heisenberg group on L2 (dJ.L) and H2 (dJ.L) via (0:, a) --4 o:Wa and the foregoing 
identities. Note that the multiplication law for the Heisenberg group is just 

(0:, a) . ({3, b) = (0:{3ea(b/2), a + b). 

Of course, as is well known [7], the representation on L2 (dJ.L) is reducible while the 
representation on H2 (dJ.L) is irreducible. 

For A a bounded operator on L2(dJ.L) or H 2(dJ.L), we can now define an averaging 
operation by 

A = J W;AWa dJ.L(a). 

Note that the integrand is strongly continuous in a and uniformly bounded for each 
fixed A. For a discussion of such integrals, see [7J. We note that A is determined 
by 

Recall that we defined 

1(>\) = (27r)-n J f(z)e-lz-AI2/2dv(z). 

On H2(dJ.L) we have the Berezin symbol [3J 

A(A) = (AkA, k>.) 

for any bounded operator A. It was shown in [3J that A(A) is always a bounded 
smooth function which A determines uniquely (for any polynomials p, q, (Ap, q) 
is obtained by evaluating appropriate derivatives of A(A) at A = 0). Since {kA} 
converges weakly to 0 as IAI --4 00, it is easy to see that for A in J( (a compact 
operator) A(A) is in Co. It is easy to check [3J that 1'f = 1. 

The relation between A and A can now be determined. 
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THEOREM 6 . We have A = T A for all bounded operators A on H2 (df1). The 
map A -+ A is a 1-1 norm-decreasing positive linear map from all bounded operators 
to Toeplitz operators with symbols in BC. We have 'if = Tj on H2(df1) while, on 
L2(df1), £If = Mj and AP = AP, FA = PA. 

PROOF. By direct calculation Wak>. = ea(..\j2)k>.+a so A = TA and A = Tk 
That A -+ A is 1-1 follows from the unicity of 1 and the fact that the symbol of 
a Toeplitz operator uniquely determines the operator (Tf = 0 if and only if f = 0 
[6]). The remaining observations are checked easily. 

REMARK. Theorem 6 shows that A -+ A is almost a conditional expectation 
from all bounded operators to Toeplitz operators with BC symbols. Using 'if = T j , 
it is clear that repeated application of ' increasingly smooths the symbol by Lemma 
2. This property of ' will be used in what follows and should have other applications. 
The well-known irreducibility of the {Wa: a E en} on H2(df1) follows easily from 
Theorem 6 since [A, Wa ] = 0 for all a implies A = A = TA so 1 = 1(2) and, by 
iteration, 1 = 1(m). Lemma 2 then implies that 1(.A.) is a constant function so 
that A is a scalar multiple of f. 

Using the Berezin symbol, it is easy to show 

THEOREM 7. For fin B, j is in Co. 

PROOF. Recall that (Tfk>., k>.) = Tf (> .. ) =' j()..). Now k>. ~ 0 (weakly) as 
1>"1 -+ 00 so compactness of Tf implies that Tfk>. -+ 0 (strongly) and so j E Co. 

We also have 

THEOREM 8. ESV n B = V. 

PROOF. It is a direct calculation in [6] that for f in LOO with compact support, 
fEB. It follows from the fact that B is closed that V c B and, hence, V c 
ESVnB. 

For the converse, suppose f E ESVnB. By Lemma 4, f - f E V while Theorem 
7 implies j E Co. It follows immediately that f E V. 

We also have 

LEMMA 9. V c Q n B. 

PROOF. By a direct operator-theoretic argument 

r n B = {f: Ifl2 E B} = Q n B. 

Moreover, f E V if and only if Ifl2 E V. By Theorem 8, V c B so, for f in V, Ifl2 
is in Band f is in Q n B. 

We will need 

LEMMA 10. f E Q if and only if [Mf' P] is compact. 

PROOF. If [Mf,P] is compact then (I - P)MfP and (I - P)MfP are also 
compact so f is in r n r = Q. 

For the converse, note that for f in Q we have (I - P)MfP and (I - P)MfP 
compact. Hence, PMf(I - P) is compact so 

(I - P)MfP - PMf(I - P) = [Mf' P] 
is compact. 
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Recall that U is the unitary transformation from L2(dJ.l) onto L2((21f)-ndv) 
given by 

As customary, K denotes the ideal of compact operators. 

THEOREM 11. ESV c Q. 

PROOF. If I is in ESV then, by Theorem 5, 1= ge + he with ge in A(c) and he 
in V. By Proposition 1, 

U[Mge,P]U*b(z) = (21f)-n / k(ge,z,w)b(w)dv(w) 

and 

so 

Let 

Then B is a bounded convolution operator. In fact, 

It follows that 

Recall that, by Lemma 9, MheP and PMhe are compact operators. It follows 
that 

and, since c > 0 is arbitrary, that [MI' P] is compact. An application of Lemma 
10 completes the proof. 

REMARK. It should be pointed out that Theorem 11 can also be obtained as an 
application of results in [11]. 

Suppose that X is a Borel space with v a positive measure on X and v(X) 
finite. Suppose further that A(x) is a weakly measurable function on X with range 
contained in the bounded operators on a separable Hilbert space H. Recall that 
J A(x) dv(x) = A is a bounded operator on H defined, for I, gin H, by 

(AI, g) == / (A(x)I, g) dv(x). 

The next lemma is essential for our analysis. We thank William Zame for this 
simplified variant of our original version. 
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LEMMA 12. IIIIA(x)ll:S M andA(x) is a compact operator lor all x inX then 
J A(x) dv(x) is also compact. 

PROOF. For (ek: k = 1,2,3, ... ) an orthonormal basis for H, write Pk for 
the orthogonal projection operator with range spanned by (el' e2,"" ek). Clearly, 
PkA(x)Pk - A(x) is weakly measurable. Given e > 0, 

Ek = {x E X: IIPkA(X)Pk - A(x)11 < c} 

is a measurable set since 

IIPkA(X)Pk - A(x)11 = sup ([PkA(X)Pk - A(x)]!, g) 
f,gED 

for D a dense countable subset of the unit ball of H. 
Note that Uk;::: 1 Ek = X since A(x) is compact for all x in X. We define 

\
k-l 

E~ = Ek jVl Ej, 

so that the E~ are measurable and disjoint with 

U Ek = U E~ =x. 
k;:::l k;:::l 

Since v(X) is finite, there is an m so that Lk>m v(Ek) < elM. We now have 

Ix A(x) dv(x) = ~ l~ PkA(x)Pk dv(x) 

+ ~ l~ [A(x) - PkA(x)Pkl dv(x) 

+ 1 A(x) dv(x). 
Uk>",E~ 

The last two terms on the right have norms less than w(X) and e respectively while 
the first term has range contained in the range of Pm. Since e > 0 was arbitrary, 
the desired result follows immediately. 

THEOREM 13. We have r c ESV + Q n B. 

PROOF. Note that 

Q n B = {f: 1/12 E B} = r n B. 

We will show, for I in r, that 1- j is in Q n B and that j is in ESV. 
Since Tf = 1'f by Theorem 6, it follows that 

Tf-f = I[Tf' W:1WaPdJL(a) 

on H2(dJL). Writing Hf = (I - P)MfP and letting 

dji,(a) = elaI2/4dJL(a), 
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direct calculation shows that 

Tf - f = J PMCa HfWaP djl(a) 

- Hi J MCaPWaPdjl(a). 

The fact that djl has finite total mass and Lemma 12 together with the fact that 
H f is compact for f in f allow us to conclude that the first integral is a compact 
operator. 

Next, we compute 

J = J McaPWa djl(a) 

= J MCaPka(z)taPdjl(a) 

= J e_aea.z/2taP dJ.L( a) 

= J ea,z/2taPdJ.L(a) = P. 

The last step uses Fubini's theorem and the fact that the dJ.L(a) integral of an 
analytic function of a is just the constant term in the McLaurin expansion. It 
follows that 

Hi J Me_aPWaPdjl(a) = HiJ = PMf(I - P)P = 0 

so the second integral in the expression for Tf _ f is zero and Tf _ f is compact. 
Hence f - j is in B. 

Next, using the fact that [Wa, Pj = 0 on L2(dJ.L) and Theorem 6, it is not hard 
to see for Hf = (1 - P)MfP that iIf = Hf. It follows from Lemma 12, that for f 
in f, since Hf is compact, iIf must be compact and so j is in f. Thus, f - j is in 
fnB = QnB. 

Since f - j is in B, j - j(2) is in Co by Theorem 7. It follows immediately from 
Theorem 5 that j is in E SV . 

Finally, we have the characterization 

THEOREM B. f = ESV +QnB = Q. 

PROOF. Combining Theorems 11 and 13 we see that f C ESV + Q nBc Q. 
But Q = f nrc f so the inclusions above must be equalities. 

Next, we establish a useful relation between If(z)1 2 and IfI2(a) where, as earlier 

}(a) = (27r)-n J f(z)e-lz-aI2/2dv(z). 

We have 

PROOF. Note first that for k>.(z) = eX,z/2-1>'12/4 we have 

(PMlfI2Pk>., k>.) = IfI2(A). 
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Since Ilk>'112 = 1, it follows that 

IIPMlfl2P II 211w11 00 ' 

The remaining estimate is more subtle. Using Proposition 1, we find that for b 
in L2((27r)-n dv) 

where 

UPM1fI2PU*b(z) = (27r)-n J h(1/12,z,w)b(w)dv(w) 

Ih(1/1 2,z,w)1 S; (27r)-ne- 1z-w I2 /8 J I/(uWe-lu-Cz+w)/212/2dv(u) 

S; e-,z-w,2/8111/121100' 

It follows that 

iUPMlfI2PU*b(z)i S; Ilwlloo (27r)-n J e-lz-wI2/8Ib(w)ldv(w) 

where 

Thus we have 

and so 

S; 111/121100 (Albl)(z) 

(Ab)(z) = (27r)-n J e-lz-wI2 /8b(w) dv(w). 

iiUPMlfl2PU*bii2 S; IIAllllwll oo IIbl1 2 

IIPM1fl2PII S; IIA11111/121100' 

An easy computation shows that the convolution operator A has IIAII = 4n and the 
desired estimate follows. 

REMARK. ~ng the lemma above, it is not hard to check that IIMfPl1 is finite 
if and only if 1/12 is bounded even il 1 is not in Loo. We will return to this point 
in the last section of this paper. 

We can now give a complete characterization of Q n B. 

THEOREM C. Q n B = {I E LOO : 1/12 E Co}. 

PROOF. If 1 is in QnB then MfP is compact so (MfP)*(MfP) = PMlfl2P is 
compact and (PM1fI 2Pk>.,k>.) = 1/12(>.) is in Co. 

For the converse, suppose 1/12 is in Co. By Lemma 9, V c Q n B. Let Xp be the 
characteristic function of {z : Izl > pl. Then 

MfP = MfxpP + MfCI-Xp)P 

and 1(1 - Xp) is in V so MfCI-Xp)P is compact. Hence, for MfP to be compact 
(and 1 to be in QnB) it suffices to show that Limp-+oo II Mfxp PII = O. Using Lemma 

~ 

14, it is enough to check for gp(A) ~xpI/12(>') that Limp-+oo Ilgplloo = O. Note that 
the functions gp are in Co since 1/12 is in Co. Moreover, the gp are nonnegative 
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with gpl(a) :::; gp(a) whenever pI > p and Limp--+= gp(a) = 0 for each a in en. An 
elementary variant of Dini's Theorem completes the prooL 

We have seen that V is in QnB while, for I in QnB, 1/12 E Co. This raises the 
question of whether Q n B is larger than V. The anser is "yes" by a construction 
which exhibits a somewhat surprising property of the heat equation. 

EXAMPLE. On e, let D j be the open unit disc of radius j-1 centered at j 
for j = 1,2,3, ... along the real axis. Let N = Uj D j and let I be a continuous 
nonnegative real-valued function on e with 0:::; I(z) :::; 1, l(j) = 1 (j = 1,2,3, ... ) 
and support (J) contained in N. Then I is clearly not in V but j and p are in 
Co by straightforward estimates. 

Finally, we have 

THEOREM D. For A a bounded operator on H2(dJL), [A, Wal is compact lor all 
a in en il and only il A - Tf is compact lor some I in ESV. 

PROOF. If A - Tf is compact for I in ESV then Proposition A, Theorem 11, 
and the fact that Wa is a Toeplitz operator (discussed earlier) imply that [A, Wal 
is compact for all a. 

For the converse, note by Theorem 6, A = Tf with I = A(>,). Thus, we have 

A - Tf = A - A = J (A - W; AWa) dJL(a) = J [A, W;lWa dJL(a). 

By Lemma 12 and the fact that W; = W -a, we see that the last integral is a 
compact operator. It follows that A - Tf = 1- j is in V. It follows from Theorem 
5 that I is in ESV. 

4. The algebra r( Q). We now use the analysis of §3 to determine the structure 
of r( Q). We first identify some function algebra relations which are implicit in §3. 

THEOREM 15. There are C* -algebra isomorphisms 

Q/Q n B ~ ESV/V ~ BCESV/Co. 

PROOF. Direct consequence of Theorem B (Q = ESV + Q n B) and Theorem 
8 (ESV n B = V). We also use the fact that 1- j is in V for I in ESV so that 
ESV = BCESV + V. 

We use the standard notation of r(X) for the C* -algebra generated by {Tf : I E 
X}. We now have 

THEOREM 16. r(Q) contains K and the map 'ljJ(J) = 7r(Tf) induces a 
*-isomorphism between BCESV/Co and r(Q)/K. 

PROOF. Note that for XP the characteristic function of {z: Izl > p} we have, 
as p --+ 00, Tf(1-xp) ~ Tf weakly for all I in L=. Since 1(1 - Xp) is in V it 
follows that r(L=) is contained in the weak closure of r(V). But r(L=) contains 
{Wa : a in en} (see §1) and this set is irreducible by an earlier remark. It follows 
that r(L=), r(Q), and r(V) are also irreducible. Since r(V) c K, it follows from 
standard C* -algebra results that K = r(V). 

Next, using Proposition A and Theorems 13 and 15, we see that r( Q) is the 
closure of 

S = {Tf +K: IE BCESV, K E K}. 
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For f in BCESV, let 'lj;(f) = rr(Tf ). Then'lj; is a *-homomorphism from BCESV 
onto 7(Q)1 K since the image of any *-homomorphism is closed. It follows that 
7(Q) = S and that 

BCESVlker'lj; ~ 7(Q)IK. 
Finally, we note that, by Theorem 8, 

ker'lj; = {f E BCESV: Tf E K} = BCESV n B 
= BC n ESV n B = BC n V = Co. 

Combining Theorems 15 and 16, we have 

THEOREM E. rr{7(Q)} ~ QIQ n B ~ ESVIV ~ BCESVICo. 
In the rest of this section, we consider the Fredholm theory and index problem 

for 7(Q). The following lemma and Theorem 18 appear in [12]. 

LEMMA 17. For f in BCESV, the following conditions are equivalent: (i) 
there is a 9 in BCESV with gf - 1 in Co, and (ii) for some R > 0 there is an 
m > 0 with If(z)1 ?: m for all z with Izl ?: R. 

PROOF. (i)--+(ii). Suppose gf - 1 = h E Co. If there is a sequence {zd with 
IZkl --+ 00 and If(Zk)1 < c for each c > 0, then 

11 + h(zk)1 = Ig(Zk)llf(Zk)1 :::; cllglloo 

and, for c small and k large, we have a contradiction. 
(ii)--+(i). There are two cases depending on the dimension of en. 
CASE 1. n = 1. If f(z) has winding number r on Izl = R then the function 

f(z)(z/lzIY on Izl ?: R extends to F(z) on e 1 with IF(z)1 ?: m' > 0 and F in 
BCESV by a standard homotopy argument. It follows that II F is in BCESV 
and (1/ F)f = (z/lzlY for Izl ?: R. Let 

G(z) = { (z/lzlY, 
(zIRY, 

Izl ?: R, 
Izl < R. 

Then (GIF)f -1 = 0 for Izl ?: R and 9 = GIF will do. 
CASE 2. n > 1. Here, f(z) on Izl ?: R extends to a continuous F(z) on en 

with IF(z)1 ?: m' > 0 and F(z) in BCESV by a standard homotopy argument. It 
follows that IIF is in BCESV and, for 9 = IIF, gf -1 = 0 on Izl ?: R. 

Now let O"(x) denote the spectrum of x for x in any Banach algebra with identity. 
We will be concerned with the abelian C*-algebra BCESVICo. 

THEOREM 18. For f in BCESV and [f] the class of f in BCESVICo, we 
have 

O"([f]) = n closure[j(z: Izl ?: R)]. 
R>O 

PROOF. Recall that), is in O"([j]) if and only if there is no [g] in BCESVICo 
with [g][f - Al] = [1], or, equivalently, if and only if there is no 9 in BCESV with 
9 (f - ), 1) - 1 E Co. The desired result follows immediately from Lemma 17. 

COROLLARY 1. O"([f]) is connected for all [f] in BCESV ICo. 
PROOF. By Theorem 18, O"([j]) is the intersection of a nested family of compact 

connected sets and is, therefore, connected. 
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Let M be the maximal ideal space of BCESV /Co. We now have 

COROLLARY 2. M is connected. 

PROOF. If not, by standard facts, BCESV /Co would have a nontrivial idem-
potent element with spectrum {O, 1}. This is impossible by Corollary 1. 

Recall that o"e{A) == a[7r(A)J for 7r the quotient map from B(H) onto B(H)/ K. 

COROLLARY 3. For f in Q, a e (Tf) is connected. 
PROOF. Easy from Corollary 1 and Theorem 16. 
REMARK. Since CCR(Cn ) contains nontrivial projections [13], ae(Tf) must be 

disconnected for some trigonometric polynomials f. 
Finally, we can establish an index theorem for r(Q) along familiar lines. Using 

the characterization of S = r( Q) in the proof of Theorem 16, it suffices to consider 
Tf for f in BCESV. 

THEOREM 19. For fin BCESV, Tf is Fredholm if and only iflf(z)1 ::::: m > 0 
for all z with Izl ::::: R for some R. For such f, index (Tf) = - winding number 
(Jllzl=R) when n = 1 and index (Tf) = 0 for n > 1. 

PROOF. It is easy to check that Tf is Fredholm if and only if [TfJ is invertible in 
r(Q)/K. By Lemma 17 and Theorem 16 this is true if and only if If(z)1 ::::: m > 0 
for all z with Izl ::::: R for some R. 

Suppose f in BCESV satisfies If(z)1 ::::: m > 0 for all Z with Izl ::::: R. For n ::::: 2, 
as noted before f - 9 is in Co for some 9 in BCESV with Ig(z)1 ::::: m' > 0 for all z. 
For n = 1, there is an integer r and there is a 9 in BCESV with Ig(z)1 ::::: m' > 0 
for all z so that (z/lzW f(z) - g(z) is in V. Moreover, 9 has winding number zero 
around any circle in C. An easy calculation in [6J shows that index T(z/Izll' = r, 
which is the winding number of f around Izl = R. The previous discussion of r(Q) 
and standard Fredholm theory show that r + index Tf = index Tg for n = 1 while 
index Tf = index Tg for n ::::: 2. Thus, it will suffice to check that index Tg = O. 

Since Igl is bounded below and 9 is in BCESV, 1/lgl is also in BCESV and, 
for G = g/Igl 

index Tc = index Tg + index T1/ 1g1 . 

Since t(1/lgl)+(1-t)1 is an arc of invertible elements in BCESV, index T1/ 1g1 = 0 
and we need only check that index Tc = 0 for G in BCESV with IGI = 1. 

By monodromy, G has a continuous argument F on C n (of course, F need not be 
bounded) so G(z) = exp{iF(z)}. We can check that F(z) is an ESV-like function 
in the sense that 

Lim sup IF(z) - F(w)1 = o. 
p __ oo Izl2p 

Iw-zl:::;l 
Choose 8(e) so that !cia - 11 < 8(e) and lal S; 1 implies lal < e. For e > 0 
given, consider a fixed z with Izl large enough that IG(z) - G(w)1 < 8(e) for 
Iw - zl S; 1. It follows that for all such w, there is an integer-valued function 
k(w) with IF(z) - F(w) - 27rk(w) I < e. By continuity of F, k(z) = 0 and k(-) 
must be constant so IF(z) - F(w)1 < e. It follows that, for any integer m > 0, 
Hm = exp{iF/m} is in BCESV with (Hm)m = G. Hence, 

index Tc = index TJ{", = m index TH ", 

and so index Tc = O. 
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EXAMPLE. Consider the function on C 

{ z, 
f(z) = z/Izl, 

Izl < 1, 
Izl 2: 1. 

It is easy to check that f is in BCESV and T f is Fredholm with index (Tf) = -1. 

5. Extensions and generalizations. In this section, we discuss some exten-
sions and possible generalizations of our results. 

We note, first, that Theorems Band C hold when Loo is replaced by the function 
space 

L = {J measurable: Ifl2 E BC} 
in the definition of r, B, Q. For f in L, Lemma 14 shows that Tf is a bounded 
operator. As for f in Loo, f = j +(/ - j) gives a decomposition of Q as ESV +QnB. 
Note that ESV can be defined as before: the unbounded part of f is absorbed in 
QnB. 

Analogs of our results are likely to hold for the classical domains. In particular, 
the Bergman space of the unit disc D, in C\ has been profitably studied. The 
group SL(2,R) acts on H2(D, dA) by linear fractional transformations and this 
group plays a role like that of the Heisenberg group on H2(cn, d/L). K. H. Zhu 
has recently obtained a characterization of the algebra Q on H2(D, dA) in terms 
of oscillation near the boundary [16]. The following result is useful in the analysis 
of Q on general classical domains. 

THEOREM 20. Let ° be a bounded Cartan domain in cn with dv the usual 
volume measure. Suppose P is the usual orthogonal projection from L2 (0, dv) onto 
the Bergman subspace of holomorphic functions, H2(0, dv). Then PI£'",(o) is a 
compact operator from the Banach space Loo(O) to H2(O, dv). 

PROOF. Let E be the injection of Loo(O) into L2(0, dv). Then PILOO(O) = PE 
and, for Mxu the operator of multiplication by the characteristic function of the 
compact set u, u C 0, we have 

PE = PMxu E + PMXO\uE. 

Note that P Mxu is a compact operator since P is an integral operator with smooth 
kernel away from the boundary a~. Choose u so that v(O \ u) < 6. Then, for 
IlfII00<1, we have 

IlpMxo\u E fl1 2 = Il pMfXO\<T112 ~ Ilxo\<T112 < vie 
so that IlpMxo\uEII < J€. Hence, PE is a norm limit of compact operators. 

From the viewpoint of quantum mechanics, it may be of interest to extend our 
results to "infinitely many complex variables" (see [2, 15]). This extension appears 
to work and the results remain approximately the same. We expect to treat this 
problem in a subsequent note. 

REFERENCES 

1. V. Bargmann, On a Hilbert space of analytic junctimuJ and an IUJsociated integral tmnsform, Comm. 
Pure Appl. Math. 14 (1961), 187-214. 

2. _, Remarks on a Hilbert space of analytic junctimuJ, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 
199--204. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TOEPLITZ OPERATORS ON THE SEGAL-BARGMANN SPACE 829 

3. F. A. Berezin, Covariant and contmvariant symbols of operators, Math. USSR Izv. 6 (1972), 
1117-1151. 

4. _, Quantization, Math. USSR Izv. 8 (1974),1109-1163. 
5. __ , Quanti.roti.on in cumplex symmetric spaces, Math. USSR Izv. 9 (1975), 341-379. 
6. C. A. Berger and L. A. Coburn, Toeplitz operators and quonJ;um mechanics, J. Funct. Anal. 68 

(1986), 273-299. 
7. O. Bratteli and D. Robinson, Opemtor algelnrJ3 and quamum statistical mechanics I, II, Springer, 

1979, 1981. 
8. A. Friedman, Partial. diilerentioJ equa:t:ions of pa:roholic type, Prentice-Hall, Englewood Cliffs, 

N. J., 1964. 
9. A. Grossmann, G. Loupias, and E. M. Stein, An algebra of pse'l.ldo-diilerentioJ operators and 

qu.a'I1iJum mechanics in phase space, Ann. Inst. Fourier (Grenoble) 18 (1968), 343-368. 
10. V. Guillemin, Toeplitz operators in n-dirn.e1l8ions, Integral Equations Operator Theory 7 (1984), 

145-205. 
11. R. Howe, Quantum mechanics and partial. diilerentioJ equa:t:ions, J. Funct. Anal. 38 (1980), 188-

254. 
12. S. C. Power, Commutator ideals and pse'l.ldo-diilerentioJ C* -algelnrJ3, Quart. J. Math. Oxford Ser. 

(2) 31 (1980), 467-489. 
13. M. Rieffel, C*-algelnrJ3 associated with imltianal rotations, Pacific J. Math. 93 (1981), 415-429. 
14. I. E. Segal, Lectures at the Summer Seminar on Applied Math., Boulder, Col., 1960. 
15. __ , The cumplex wave representation of the free boson field, Adv. in Math. Supp!. Studies 3 

(1978), 321-343. 
16. K. H. Zhu, VMO, ESVand Toeplitz operators on the Bergrrum space, Trans. Amer. Math. Soc. (to 

appear). 

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, HERBERT H. LEHMAN 
COLLEGE, CITY UNIVERSITY OF NEW YORK, BRONX, NEW YORK 10468 

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK AT BUFFALO, 
BUFFALO, NEW YORK 14214 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


	0110385
	0110386
	0110387
	0110388
	0110389
	0110390
	0110391
	0110392
	0110393
	0110394
	0110395
	0110396
	0110397
	0110398
	0110399
	0110400
	0110401

