
TokDoc: A Self-Healing Web Application Firewall

Tammo Krueger† Christian Gehl† Konrad Rieck‡ Pavel Laskov†?
†Fraunhofer Institute FIRST

Kekuléstraße 7
12489 Berlin, Germany

(+49) 30 6392 1870
krutam@first.fraunhofer.de
cgehl@first.fraunhofer.de

‡Berlin Institute of Technology
Franklinstraße 28/29

10587 Berlin, Germany
(+49) 30 314 78630

rieck@cs.tu-berlin.de

?University of Tübingen
Sand 13

72076 Tübingen, Germany
(+49) 7071 29 70574
pavel.laskov@uni-

tuebingen.de

ABSTRACT
The growing amount of web-based attacks poses a severe
threat to the security of web applications. Signature-based
detection techniques increasingly fail to cope with the vari-
ety and complexity of novel attack instances. As a remedy,
we introduce a protocol-aware reverse HTTP proxy TokDoc
(the token doctor), which intercepts requests and decides
on a per-token basis whether a token requires automatic
“healing”. In particular, we propose an intelligent mangling
technique, which, based on the decision of previously trained
anomaly detectors, replaces suspicious parts in requests by
benign data the system has seen in the past. Evaluation of
our system in terms of accuracy is performed on two real-
world data sets and a large variety of recent attacks. In com-
parison to state-of-the-art anomaly detectors, TokDoc is not
only capable of detecting most attacks, but also significantly
outperforms the other methods in terms of false positives.
Runtime measurements show that our implementation can
be deployed as an inline intrusion prevention system.

General Terms
Security

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection; I.5.1 [Pattern Recognition]: Mod-
els—Statistical

Keywords
Intrusion prevention, Anomaly detection, Web application
firewall

1. INTRODUCTION
Attacks against web applications pose one of the most se-
rious security threats to modern computer systems. Infor-
mation portals, social network sites, blogs, content manage-
ment systems, e-commerce, web email, groupware – these

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

and many other kinds of web applications are accessed by
millions of Internet users on a daily basis. Not surpris-
ingly, an explosive growth in the amount of security inci-
dents involving web applications has been observed in re-
cent years [21, 12]. Furthermore, a successful compromise of
a web service may be used as a stepping stone for attacking
its user community by planting malicious content. Due to a
tremendous user exposure, such attacks can be devastating
if they are coupled with suitable client-side exploits.
A number of factors contribute to the difficulty of securing
web applications. On a non-technical part, the high pressure
for rapid time-to-market leads to a dangerous ignorance of
security mechanisms, which leaves web applications ridden
with security vulnerabilities. The main technical reasons for
insecurity in web applications are their inherent openness to
arbitrary input, the complexity and heterogeneity of code
base as well as the constant extension of their functionality.
All these challenges motivate the demand for novel protec-
tion mechanisms for web applications.
One of potential mechanisms for improving the security of
web applications is a web application firewall (WAF), an
appliance for inline monitoring of HTTP communication.
Products currently available on the market, such as the Bar-
racuda and ModSecurity WAF, are based on rule-matching.
They are capable of filtering entire HTTP requests as well as
of selective modification, the so-called mangling of certain
request fields, according to pre-defined patterns.
Approaches based on pattern matching are, however, prone
to two major drawbacks. First, they require extensive appli-
cation and attack knowledge to maintain a reliable rule base.
Furthermore, they are only capable of detecting known at-
tacks and leave a system wide open to the so-called“zero-day
attacks” for which no patterns are available. It suffices for a
rule base simply to be not up-to-date in order for an attack
to slip in.
In this work, we present a method that attains the same level
of response flexibility as a WAF – namely, the ability not
only to drop but also to heal malicious requests – without re-
liance on known patterns. Our approach is based on anomaly
detection carried out at the granularity of HTTP request
tokens. In contrast to previous applications of anomaly de-
tection to web attack detection, e.g. [8, 22, 7, 2, 3, 20], our
method not only detects, but reacts to such attacks.
We have developed a prototype of a reverse proxy called
TokDoc which implements the idea of mangling coupled with
anomaly detection. In our prototype, an HTTP request is
parsed into token-value pairs and then compared to learned
profiles of normal content of specific tokens. Should some

HTTP Parser Mangle

Action

GET /index.php?cat=%2527+UNION+SELECT+user_pass+FROM+wp_users/* HTTP/1.1
Host: www.foobar.com
User-Agent: Mozilla/4.0
Accept: */*

GET /index.php?cat=27 HTTP/1.1
Host: www.foobar.com
User-Agent: Mozilla/4.0
Accept: */*

Reverse Proxy

path: /index.php
cat: %27 UNION SEL...
host: www.foobar.com
user-agent: Mozilla/4.0
accept: */*

Detector

Figure 1: Architecture of TokDoc: The system acts as a reverse proxy, which intercepts each client request.
After examination and potential alteration the request is delivered to the production system.

token deviate from a typical profile, it is replaced with an
appropriate benign value using token-specific heuristics.
The proposed request healing technique is simple and effec-
tive, hence it can be efficiently implemented for deployment
in high-speed networks. Its main advantage over simple
dropping of requests is that decisions are made in a pre-
cise context of specific tokens instead of full requests. This
greatly improves detection accuracy, as verified by our ex-
perimental comparison with detection at a request level, and
makes decisions more fault-tolerant, since the replacement
of content with a suitable alternative in certain cases does
not harm even if it has been wrongly classified as malicious.
In summary, the contributions of this paper are:

• We propose a web application firewall, which decides
based on local, anomaly-based models, which parts of
a request are anomalous and need to be replaced by
benign parts observed in the past.

• In addition we employ a data-driven setup procedure,
which automatically assigns data types to extracted
tokens both by structural and statistical features.

• No “clean”, attack-free dataset is needed, since both
the learning models as well as the tests are robust
against “contaminated” data. No additional attack
dataset is needed for the learning and setup procedure.

The paper is organized as follows: In Section 2 we intro-
duce a methodology for a self-healing web application fire-
wall and present our prototype TokDoc. We evaluate its
detection performance and runtime using real HTTP traffic
in Section 3. Related work is discussed in Section 4 and
conclusions are given in Section 5.

2. TOKDOC – THE TOKEN DOCTOR
The automatic healing of malicious web requests entails the
following two essential tasks: the identification of malicious
content and the construction of the replacement content.
Unlike regular intrusion detection in which the problem is
to decide whether a request is malicious or not, the identi-
fication problem is more complex, since one needs to deter-
mine not only the presence of malicious content but also its
location which is a prerequisite for replacement.
The identification problem can be addressed by making deci-
sions in a refined context of specific parameters of an HTTP
request. Such context-dependent detection has been pre-
viously used in [8] for URI parameters of GET requests
and in [3] for full HTTP request contents. TokDoc follows

roughly the same idea: the requests are parsed into token-
value pairs1, but, instead of combining the scores of token-
based models to make decisions at a request level, decisions
are made at a token level. Once the content for a token is
deemed anomalous, an appropriate replacement is sought.
The diversity of web application traffic content essentially
rules out the possibility that a “one-size-fits-all” model of
traffic can be learned. Hence we attempt to provide the right
anomaly detection algorithm and the appropriate healing ac-
tion for particular tokens. As a result, the design of TokDoc
comprises the following three orthogonal components:

1. Token Types. Based on the analysis of real HTTP traf-
fic, we postulate four token types that describe char-
acteristic distributions of token contents.

2. Anomaly Detectors. Since malicious content can man-
ifest itself in various features, e.g., unusual length or
previously unseen attributes, different anomaly detec-
tion algorithms can be used to capture attacks. Tok-
Doc employs a set of anomaly detectors which are au-
tomatically coupled with particular tokens in the setup
procedure presented in Section 2.4.

3. Healing Actions. The particular transformation of a
token content is denoted as a “healing action”. We
propose a set of four healing actions that, similar to
detectors, depend on the particular token type and are
also configurable during the setup procedure.

From the operational point of view, TokDoc can be char-
acterized as a reverse proxy similar in function as a traffic
normalizer [6]. It intercepts HTTP client requests and, af-
ter parsing according to the HTTP protocol specification
and potentially modifying the request content, relays traf-
fic to actual production systems. In contrast to the system
proposed by Valeur et al. [22], TokDoc does not require the
target production servers to run at different security levels.
The security-related decisions are encapsulated in the proxy
itself, which significantly simplifies the design of the network
environment to be protected.
The architecture of TokDoc is shown in Figure 1. In the
example decision presented in this figure, all but the token
cat of the URI parameter are deemed normal and remain
unaltered, whereas the anomalous value of cat is flagged for
healing. In this example, the value is automatically replaced
by previously seen benign data with highest similarity; i.e.,
the string corresponding to an SQL injection attack is re-
placed with the benign string 27 due to the occurrence of
this string in the attack.
1Invalid requests are discarded at this point.

In the following sections we provide a detailed description
of the three orthogonal components of TokDoc followed by
the presentation of a setup procedure that ties these three
components together.

2.1 Token Types
Every request received by TokDoc is parsed into syntacti-
cal parts according to the HTTP specification and stored as
token-value pairs. We treat the URI path, all parameters of
GET and POST requests and all header fields as separate
tokens followed by respective values. For example, the re-
quest in Figure 1 is parsed into five tokens corresponding to
parameters and headers as denoted inside the reverse proxy.
Note, that all request parameters with different names will
be presented by different tokens.
The distribution of token content is highly diverse. Some
tokens, e.g., host, contain only a small number of possible
values, sometimes even a constant value. Other tokens such
as query and range parameters, contain a wide variety of val-
ues, which may even be generated automatically. In order to
systematically handle such diversity we classify tokens into
four token types according to typical properties of informa-
tion transmitted in HTTP requests:

• Constants. In the simplest case the values of a token
take the same value, for example the header field host
when monitoring a particular web host.

• Enumerations. A second type of tokens carries data
that takes on only a small set of values dependent ei-
ther on the HTTP protocol itself or on the web applica-
tion. An example of such token is the accept-language
header.

• Machine input. The third type of tokens comprises
machine-generated data, such as session numbers, iden-
tifiers and cookies.

• Human input. The most complex token type is in-
duced by human input, such as free-text fields, query
strings, comments and names. The entered data does
not exhibit any semantical structure except for being
generated by a natural language.

The characteristic features of different token types have to
be taken into account in the choice of anomaly detection
algorithms and healing actions.

2.2 Anomaly Detectors
Anomaly detection methods have been widely studied for
protection of web services [8, 22, 7, 2, 3, 20]. However,
all previous approaches flag anomalies for full HTTP re-
quests and hence cannot be directly applied for triggering
fine-grained actions on individual tokens. In TokDoc we de-
ploy per-token anomaly detection algorithms as proposed by
Kruegel and Vigna [8], however, decision-making remains at
the token level.
The choice of an anomaly detection method depends on
the token type. For constant and enumeration tokens, a
straightforward occurrence check referred to as the LIST
detector is a natural choice: if a given value has not been
seen in the training data it is deemed anomalous. For the
remaining two token types we deploy three different detec-
tors as described below. The decision what detector should
be applied to a specific token is automatically made during
the setup process presented in Section 2.4.

2.2.1 N-gram Centroid Anomaly Detector (NCAD).
N-gram models have been widely used in security applica-
tions [5, 15, 24]. In TokDoc, we deploy the embedding tech-
nique proposed by Rieck and Laskov [15], which provides an
efficient way for n-gram analysis.
Given the set of all possible n-grams over byte sequences
S = {0, . . . , 255}n, we define the embedding function φ for
a token value x as follows

φ(x) = (φs(x))s∈S ∈ R|S| with φs(x) = bs(x)

where bs(x) returns 1 if the n-gram s is contained in x and 0
otherwise. The resulting vector φ(x) is normalized to one to
eliminate length-dependence. The vector space induced by
the embedding of n-grams grows exponentially with n, how-
ever, its sparseness is linear in the length of sequences. This
allows one to efficiently construct and compare embedding
vectors φ(x) for byte sequences as detailed in [16].
With the embedding function at hand, the Euclidean dis-
tance between embedding vectors can be defined as follows:

d(x, z) = ‖φ(x)− φ(z)‖2 =

sX
s∈S

|φs(x)− φs(z)|2.

Using this distance, the detection can be performed by com-
puting the distance from a previously learned model µ of
normal data:

scoreNCAD(x) =

(
normal, if d(µ, x) ≤ ta
anomaly, otherwise.

The vector µ is constructed from the training data X =
{x1, . . . , xn} as an arithmetic mean of the respective em-
bedding vectors µ = 1

n

Pn
i=1 φ(xi). The threshold ta is de-

termined on an independent validation set as described in
Section 2.4.

2.2.2 Markov Chain Anomaly Detector (MCAD)
Markov chains have previously been used in several secu-
rity applications [8, 22, 4, 20]. We use the 256 possible
byte values as states of a Markov chain with 256 possible
state transitions each. State transition probabilities can be
learned by recording transition frequencies between bytes bi
and bj in the training data (including an extra start state).
The overall size of the transition table is 2562 +256, which is
not prohibitively large. Having learned the transition prob-
abilities, we can estimate the probability of a token value x
of length n based on the learned Markov chain C:

P (x | C) = P (X1 = x[1])

nY
i=1

P (Xi+1 = x[i+ 1] | Xi = x[i])

where x[i] corresponds to the i-th byte in the token value x.
We do not use length normalization, for instance by applying
the geometric mean, because we want a detector which takes
both content and length into account. Equipped with the
token-specific Markov chain C and a threshold pa the MCAD
for a new value x is defined as follows:

scoreMCAD(x) =

(
normal, if P (x | C) ≥ pa
anomaly, otherwise.

2.2.3 Length Anomaly Detector (LAD).
Often it is the length of a token value that is characteristic
for an attack. For example, the majority of buffer over-
flow attacks exhibits long token values. This property is

addressed by LAD. This detector is a fallback position for
tokens, where an insufficient amount of data renders the
learning task involved in training the NCAD and MCAD
impossible. Therefore we have to find a solution that can
cope with a scarce data situation. Modern robust statistics
provides us with powerful tools, which are specialized to deal
with noisy data and even small sample sizes. Especially for
small sample sizes estimates of the mean and standard de-
viation as used in the Chebyshev’s inequality for instance in
[8] can be extremely outlier dependent and a test statistic
based on these biased estimates can be too loose.
Hence, instead of using a test based on Chebyshev’s inequal-
ity, we decide to employ a robust statistic as described in
[25]. Given a predefined significance level αLAD we estimate
the 1−αLAD quantile of the length distribution of the train
and validation data L, namely L̂1−αLAD . Now we construct a
confidence interval for L1−αLAD by first calculating the boot-

strap estimate of the standard error of L̂1−αLAD , namely σ̂,
and determining the parameter c, so that the interval

(L̂1−αLAD − cσ̂, L̂1−αLAD + cσ̂)

has probability coverage of 1−αLAD. Finally we choose the
upper bound of the confidence interval as a threshold for the
LAD detector to allow for future variability. This results in
the following decision rule:

scoreLAD(x) =

(
normal, if len(x) ≤ L̂1−αLAD + cσ̂

anomaly, otherwise.

2.3 Healing Actions
The fine-grained detection at the token level allows us to
devise similarly fine-grained healing actions. Hence our au-
tomatic response mechanisms can be less intrusive and more
accurate than actions taken at the request level. In particu-
lar, TokDoc is equipped with the following healing actions:

• Dropping of tokens (Drop). The most conservative re-
sponse to the spotting of an anomalous token value is
to remove the token from a request. Notice that this
is still a much more benign action than dropping the
request itself. We use this action for each token, which
has a LAD detector.

• Preventive encoding (Encode). An alternative but still
conservative strategy is to encode the anomalous value
using HTML entities. This approach makes common
web attacks based on cross-site scripting and SQL in-
jection fail, as control and punctuation characters are
escaped. This action provides almost no damage to
benign requests, as many web applications can resolve
additional encoding of content.

• Replacement with most frequent value (Freq). For con-
stant and enumeration token types, a natural healing
action is to replace the value with the most frequent
normal value of the token. This is the natural action
assigned to a token having the LIST detector.

• Replacement with nearest value (Near). The most in-
volved healing action is to replace an anomalous value
with its nearest-neighbor from the training set. Such
replacement is possible due to the embedding of values
in a metric space introduced in Section 2.2. This is the
default action for both the MCAD and NCAD. Note
that as a side-effect, this action can also correct typos
in user-input fields.

Struct. |X| ≤ 50 ∧
Stat. — LAD

Struct. |bins(X)| ≤ 10 ∧
Stat. argmax

pfalse

(χ2(C, pfalse) > αLIST) ≤ α LIST

Struct. median([len(x) | x ∈ X]) ≥ 5 ∧
Stat. P (||X − μ|| ≥ dmax) = 0 NCAD

MCAD

no

no

yes

yes

yes

no

Figure 2: Automatic testing procedure for the setup
of TokDoc. After a service-specific split of the train-
ing data the testing procedure decides for each to-
ken, which detector should be used. By exploit-
ing both structural and statistical features this au-
tomatic process is totally data-driven. X denotes
the training data for a specific token under test.

Clearly, the four healing actions above are tightly coupled
with the particular data types of the considered tokens. The
precise assignment of healing actions to token types is pre-
sented in Section 2.4, which also allows the administrator
to tighten the proposed default actions for special tokens in
need of extra protection like password files and cookies.

2.4 Setup of TokDoc
Since the main components of TokDoc are based on learn-
ing methods, its setup is dependent on the availability of an
initial corpus of normal data for training and validation. Ini-
tially this sufficiently large pool of client requests should be
separated according to services (e.g., by virtual hosts and/or
different web services) to allow for service-specific learning
of models. This data is parsed and used to generate token-
specific data pools used in the following phases. The amount
of data should be chosen according to traffic volume so that
the widest possible range of normal behavior is covered.
The testing framework depicted in Figure 2 determines for
each token an automatic and data-driven detector assign-
ment by exploiting both structural and statistical features.
Using robust, outlier-resistant statistics, this procedure en-
sures meaningful decisions even for “dirty”, attack-tainted
datasets. The collected data is split into two equally sized
parts: The training pool is used to learn a model for each
token, for which a threshold is estimated using the validation
dataset. After the semi-automatic assignment of actions and
outlier adjustment of thresholds for each token, the TokDoc
system is ready for deployment. While the model learning
has already been discussed in Section 2.2 we now describe
in detail the other parts of the setup process.
The data-driven detector assignment is depicted in Figure 2.
Each step consists of a structural and a statistical test which
is carried out for each token in the original dataset. Start-
ing with a size test, the procedure assigns the simple LAD
detector, if the training data of the currently tested to-
ken contains 50 or less samples. The rationale here is that
all other detectors need a reasonable amount of data for

the estimation of their models. If more than 50 samples
are available, the procedure checks, whether the current to-
ken is an enumeration. If we observe less than 10 unique
values in a token, the procedure tests for statistical evi-
dence by exploiting the well known χ2-test. First we define
the list C = [d ∈ train | d ∈ validate], which describes,
whether each sample of the validation dataset has been ob-
served in the training dataset. Then we can define the func-
tion χ2(C, pfalse), which returns the p-value of the χ2-test,
whether C could be generated by a binomial variable, which
generates“false”with probability pfalse and“true”with prob-
ability 1− pfalse. Now we can determine the maximal pfalse,
that barely supports the acceptance of the hypothesis, that
C is generated by pfalsewith a given significance level αLIST:

pworst-case = argmax
pfalse

(χ2(C, pfalse) > αLIST)

The value of pworst-case gives an impression of the possible
non-matching occurrences for this tokens, that might occur
in the future or similarly can be interpreted as the upper
bound of the confidence interval of the empirical observed
pfalse. Thus we can use this value for thresholding the ex-
pected false-positives per token for the LIST data type.
When deciding between NCAD and MCAD, the test pro-
cedure first looks at a structural feature, namely the me-
dian length of the token. Since the NCAD detector is based
on 2-grams, the detector needs at least two characters for
calculating a meaningful mean and distances. If the token
passes the structural test, the test procedure focuses on a
statistical property: Observe that, given the centroid µ, the
largest distance from it is bounded by dmax =

p‖µ‖2 + 1
since the data is normalized to a length of one. By using a
kernel density estimator on the validation data (see for in-
stance [19] for details) we can measure and bound the prob-
ability, that the maximal distance is ever attained, formally
P (||X − µ|| ≥ dmax) = 0.
Both the NCAD and the MCAD need a threshold for op-
eration. Since the models are focused on a specific token,
we can choose a relatively relaxed thresholding policy. We
propose to use the maximal distance for NCAD and mini-
mal probability for MCAD, after a semi-automatic outlier
adjustment: All values of the validation data set are or-
dered by the according output of the detector (descending
distances to the mean for NCAD and ascending probabili-
ties for MCAD) and the administrator decides, whether the
extremal value is a real, user-generated sample or a mali-
cious token value. During this procedure the administrator
additionally can check the quality of the assigned detector
and see, whether the chosen model fits the actual data.
In addition he can address privacy and security issues by re-
fining the assigned actions. The administrator can manually
adjust, whether a token should be healed or dropped com-
pletely. For instance privacy related data such as cookies
or passwords must not be replaced by its nearest counterpart
(Near action) but instead dropped completely to prevent po-
tential abuse like session or password hijacking.
If the system produces false positives after deployment, these
can be tracked down to the token, which caused the false
alarm. Thus, the administrator can focus on a specific to-
ken and can reconfigure the system according to the incident.
In case the website is restructured or new services are de-
ployed, the data model may have to be adjusted accordingly,
potentially leading to a retraining of some token models.

3. EVALUATION
Evaluation of an intrusion prevention system is a multi-
faceted task. Since the effectiveness of response actions in-
herently depend on the accuracy of malicious content identi-
fication, we first evaluate the accuracy of TokDoc detectors
and compare its overall performance to other state-of-the-
art methods. To check for real-time readiness the runtime
of TokDoc is assessed and compared to other proxies.

3.1 Detection Performance
For the evaluation of detection performance we have col-
lected network traces at two different Internet domains. The
first data set (FIRST08) comprises 60 days of traffic with
1,452,122 HTTP requests recorded at the web server of a
research institute in 2008. The server provides static con-
tent as well as dynamic pages using the content management
system OpenWorx. The second data set (BLOG09) covers
33 days of traffic with 1,181,941 requests which have been
obtained from a domain running various weblogs in 2009.
All blogs run on the popular publishing platform WordPress.
For the evaluation, both data sets are split into three equally
sized parts for training, validation and testing. Due to the
different web applications, the amount of monitored tokens
as well as the assignment of anomaly detectors differs be-
tween the data sets. The TokDoc configuration used for
both data sets is presented in Table 1.
In addition to regular network traffic, we have collected net-
work attacks based on 35 exploits obtained from the Meta-
sploit framework as well as from common security archives,
such as milw0rm, Packet Storm or Bugtraq. Each attack
has been executed in a virtual environment and thoroughly
adapted to the characteristics of the two data sets. A de-
tailed listing of the considered attacks and exploits is given
in the Appendix. As a result of variations during recording,
e.g., usage of different shellcode encoders or SQL statements,
the attack pool contains 89 attack instances for FIRST08
and 97 attacks for BLOG09.

3.1.1 Ensemble of Learners and Request Semantics
First of all we want to check, whether all the different de-
tector models are really necessary. For this, we construct
special TokDoc instances, which have just the LAD detec-
tor instead of both the MCAD and NCAD (referred to as
TDLAD), or just the NCAD (i.e. all MCADs are replaced by
NCADs, referred to as TDNCAD) or MCAD (i.e. all NCADs
are replaced by MCADs, referred to as TDMCAD). We eval-
uate each of these TokDoc instances on both the FIRST08
and BLOG09 dataset. Each rejected request is manually
checked and labeled as false or true positive. In case of
doubt a request is replayed against the original server as fol-
lows: First we use the unmodified request and save the reply
of the server. This is compared to the reply of the server
when we send the request modified by TokDoc. If there is a
difference, we count this request as a false positive. In the
complete replaying process we could not observe any severe
or drastic replies from the servers indicating malformed or
even malicious requests. This proves, that the inherent re-
quest semantic is not harmed by the actions of TokDoc. The
results are summarized in Table 2. The first thing to notice
is the overall low false-positive rate, which is a direct result of
the additional parsing and local decision making of TokDoc.
A closer look reveals, that both the TDLAD and TDNCAD

suffer from high false-negative rates, while the TDMCAD per-

Detectors FIRST08 Detectors BLOG09
Category LIST LAD MCAD NCAD Σ LIST LAD MCAD NCAD Σ

Header 14 14 5 10 43 22 77 15 17 131
Parameter 9 3 4 — 16 14 166 28 7 215

Path — — 1 — 1 — — 1 — 1
Σ 23 17 10 10 60 36 243 44 24 347

Table 1: TokDoc configurations used in the experiments. The column category summarizes the tokens into
tokens originating from headers, parameters from queries and the path token as introduced in Section 2.1.

Dataset Detector FP TP FN

FIRST08

TokDoc 0.00002 0 0.00000
TDLAD 0.00000 0 0.02247
TDMCAD 0.00001 0 0.00000
TDNCAD 0.00002 0 0.22472

BLOG09

TokDoc 0.00003 212 0.04124
TDLAD 0.00001 68 0.15464
TDMCAD 0.00009 186 0.04124
TDNCAD 0.00003 0 0.22680

Table 2: Detection performance of several instances
of TokDoc. FP = false-positive rate. TP = attacks
found in normal traffic. FN = false-negative rate.

forms equally good on the FIRST08 dataset but falls behind
TokDoc on the more involved BLOG09 data. The plain Tok-
Doc with its diversity of models is the only method, which
performs nearly identical on both datasets and is also ca-
pable of detecting the most true positives in the tainted
BLOG09 data. This trend is further confirmed by Table 5
in the Appendix: All presented detectors are necessary to
disarm the used attacks. Note, that the malicious parts of
the attacks are spread throughout different tokens rendering
the TokDoc approach even more valuable. Additionally, the
healing actions employed in TokDoc save roughly 0.0001 of
the data from being discarded as false positives on both the
BLOG09 and the FIRST08 dataset. In summary the results
show, that just the full variety of models embodied in Tok-
Doc leads to an overall good performance while keeping the
general request semantic intact.

3.1.2 Comparison to other Detectors
As a baseline for detection performance, we consider two
state-of-the-art anomaly detection techniques using the raw
HTTP request payload as input: The Markov Chain detec-
tor uses a Markov chain as described in Section 2.2.2 over
the full content of the requests for anomaly detection. It is
learned on the same training data as TokDoc and similarly
calibrated using the validation partition. As second baseline,
we have implemented a variant of Anagram [24]. The de-
tector stores n-grams of benign HTTP requests in a Bloom
filter and uses the ratio of unknown n-grams in incoming
requests as anomaly score. The detector is calibrated on the
validation data, and n is fixed to 2.
The results of our evaluation are summarized in Table 3.
For both the FIRST08 and BLOG09 dataset we report the
FPTD, which equals the false-positive rate of a detector cali-
brated to the true-positive rate of TokDoc, and FNTD, which
is the rate of missed regular attacks, where each detector is
calibrated to the false-positive rate of TokDoc. Focusing on
the FIRST08 dataset we see, that both TokDoc and Ana-
gram yield an acceptable false-positive rate, however Ana-
gram is much more porous: nearly 17% of the attacks are

Dataset Detector FPTD FNTD

FIRST08
TokDoc 0.00002 0.00000
Markov Chain 0.02005 0.80899
Anagram 0.00004 0.16854

BLOG09
TokDoc 0.00003 0.04124
Markov Chain 0.16698 0.18557
Anagram 1.00000 0.39175

Table 3: Detection performance of TokDoc and
payload-based anomaly detectors. FPTD = false-
positive rate of detector when calibrated to the true-
positive rate of TokDoc. FNTD = rate of missed reg-
ular attacks when detector is calibrated to the false-
positive rate of TokDoc.

not detected. On the contrary TokDoc is capable of detect-
ing all attacks while attaining even a lower false-positive rate
than Anagram. The Markov chain is simply overburdened
with the FIRST08 and even more with the BLOG09 dataset,
where its false-positive rate rises to unacceptable 17%. Sur-
prisingly Anagram breaks down on the BLOG09 dataset:
when calibrated to the true-positive of TokDoc, Anagram
flags all legitimate requests as anomalous. This is due to
the fact that 23% of the attacks have an anomaly score of
0, which is the smallest possible score attainable, therefore
tagging all incoming requests as anomalous. But even if we
calibrate Anagram to the 23% false-negative rate (roughly 8
times higher than TokDoc in this setup), it yields still a false-
positive rate of 0.00038, which is a magnitude higher than
TokDoc. These numbers clearly demonstrate the outstand-
ing performance of TokDoc both in terms of false positives
and negatives even for hard datasets like the BLOG09 data.

3.2 Runtime Performance
To deliver inline intrusion prevention, a system itself has to
be reasonably fast, since every client request has to pass the
reverse proxy without an intolerable delay. In this part, we
subject the TokDoc prototype to a stress test to see whether
it can be used in a real-time scenario.
Our prototype is implemented in Python using the twisted
framework. This framework provides a mature interface to a
number of network protocols. By re-using its proxy module
and integrating an optimized n-gram C library into Python,
we were able to produce a full-fledged prototype of the Tok-
Doc system. We replay the complete testing slice of both
the FIRST08 and BLOG09 (approximately 500k requests
each) to get a stable estimate of the processing time. As
a baseline, we measure the processing time with Squid as a
proxy. Secondly, we consider the ModSecurity web applica-
tion firewall with a minimal setup of rules to assess, how the
additional parsing affects the processing time of a request.
Furthermore we use a very simple forwarding proxy appli-
cation implemented in the twisted framework to see, how

Proxy
Dataset Squid ModSec. twisted TokDoc
FIRST08 1.387 1.536 2.552 2.768
BLOG09 1.500 1.694 2.430 2.902

Table 4: Median runtime in miliseconds of different
proxies for both FIRST08 and BLOG09 data.

much the twisted framework itself impose on the processing
runtime. Finally, we test TokDoc in the same environment.
The median runtime of each setup is presented in Table 4.
First we can observe, that the two datasets exhibit different
baselines: Generally the FIRST08 dataset seems to have
a simpler structure compared to the BLOG09 data. Fur-
thermore the highly optimized Squid and ModSecurity are
roughly 1 ms per request faster compared to their Python
equivalents. When looking at the inter-application differ-
ences, we can observe an increase of 0.1 ms and 0.2 ms from
Squid to ModSecurity and 0.2 ms and 0.5 ms from the twisted
proxy to TokDoc respectively. This implies, that the addi-
tional anomaly detection methods employed in TokDoc just
add up to roughly 0.1 ms to 0.3 ms per request. These ex-
periments clearly demonstrate that, while there is still room
for improvement in terms of runtime, the anomaly detection
methods used in TokDoc are suitable for running in an inline
system and that TokDoc even in the current, unoptimized
state already can be used as an intrusion prevention system.

4. RELATED WORK
The automatic protection of web applications is gaining an
increasing attention among security researchers. Conven-
tional IDS such as Snort [18] and Bro [13], which rely on
specific attack signatures or predefined attack characteris-
tics, cannot provide adequate and timely protection against
dynamically changing web attacks. Anomaly detection tech-
niques based on payload analysis, for example [15, 24, 10,
14], provide the only possibility for detecting previously un-
known attacks. These approaches enable protection of differ-
ent network services and attain sufficient throughput rates,
yet the lack of protocol context in their analysis restricts
their use in intrusion prevention to simple dropping or redi-
rection of packets.
First protocol-aware methods for detection of attacks in
web traffic using anomaly detection have been proposed by
Kruegel and Vigna [8] and extended in ensuing work [9, 22,
17]. The main idea of these methods is the combination of
multiple anomaly detectors, such as length checks, byte dis-
tributions and Hidden Markov Models, applied to individ-
ual URI parameters. Similarly, finite state automata [7] and
multiple Markov chains [20] have been recently proposed
for detection of anomalous HTTP requests. Our approach
differs from all these methods in that it detects anomalous
content in individual tokens instead of combining token-level
anomaly estimates to judge the anomaly of complete re-
quests. Such fine-grain detection enables us to devise novel
token healing actions which are much less disruptive than
request dropping.
Another line of research combines network anomaly detec-
tion with host monitoring. Anagnostakis et al. [1] pro-
posed a system in which anomalous requests are executed
in a specially instrumented “shadow honeypot” system. The
feedback, whether the request actually harms a system, can
then be used to update an anomaly detector, similarly to

the work in [11]. In line with this idea, Vigna et al. [23]
combine SQL attack detection and a reverse proxy to for-
ward requests to web servers, which manage different levels
of sensitive information, depending on the anomaly value of
the web request. An SQL query anomaly detector on the
host decides whether or not the models for the web request
anomaly detector should be updated, if the request results
in a malicious database query. TokDoc does not require any
additional host instrumentation and serves as a transparent
proxy, which greatly simplifies its practical deployment.

5. CONCLUSION AND FUTURE WORK
We have introduced a protocol-aware reverse proxy TokDoc
which is capable of deciding – at a token level – which parts
of a request are deemed normal and which anomalous. Sev-
eral intelligent mangling strategies for anomalous tokens,
apart from just dropping them, have been described. Exper-
iments on real-world data sets demonstrate the usefulness of
the approach and runtime measurements show its readiness
for inline intrusion prevention.
While the prototype showed good performance, especially
in terms of false negatives, we are aware of several exten-
sions that can improve and extend the system. Practical
considerations include the integration of TokDoc into Squid
or the ModSecurity platform, which would be a valuable step
towards runtime improvement. The coupling of the system
with a shadow system as proposed in [1] and incorporation
of a feedback loop [11] in combination with learning tech-
niques is another promising extension. Finally, integration
of session-awareness and “long term memory” into TokDoc
would be an interesting extension, which could be used for
flagging user sessions in which a lot of anomalous tokens
have been seen as dangerous. This could be used to reli-
ably close down suspicious connections and even track down
attacks distributed over several requests.
Overall, the TokDoc system has proven to be a promising,
full-fledged web application firewall in the present state,
which is capable of effectively preventing and “healing” a
wide range of recent web-based attacks. Its runtime perfor-
mance makes it readily applicable for protection of modern
web applications.

Acknowledgements This work was supported by the Ger-
man Bundesministerium für Bildung und Forschung (BMBF)
under the project ReMIND (FKZ 01-IS07007A).

6. REFERENCES
[1] K. G. Anagnostakis, S. Sidiroglou, P. Akritidis,

K. Xinidis, E. Markatos, and A. D. Keromytis.
Detecting targeted attacks using shadow honeypots.
In Proc. of USENIX Security Symposium, pages
129–144, 2005.

[2] M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna.
Swaddler: An Approach for the Anomaly-based
Detection of State Violations in Web Applications. In
Recent Adances in Intrusion Detection (RAID), pages
63–86, September 2007.

[3] P. Düssel, C. Gehl, P. Laskov, and K. Rieck.
Incorporation of application layer protocol syntax into
anomaly detection. In Proc. of International
Conference on Information Systems Security (ICISS),
pages 188–202, 2008.

[4] J. M. Estévez-Tapiador, P. Garćıa-Teodoro, and J. E.
Dı́az-Verdejo. Measuring normality in http traffic for
anomaly-based intrusion detection. Computer
Networks, 45(2):175–193, 2004.

[5] S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff.
A sense of self for unix processes. In Proc. of IEEE
Symposium on Security and Privacy, pages 120–128,
Oakland, CA, USA, 1996.

[6] M. Handley, V. Paxson, and C. Kreibich. Network
intrusion detection: Evasion, traffic normalization and
end-to-end protocol semantics. In Proc. of USENIX
Security Symposium, 2001.

[7] K. L. Ingham, A. Somayaji, J. Burge, and S. Forrest.
Learning DFA representations of HTTP for protecting
web applications. Computer Networks,
51(5):1239–1255, 2007.

[8] C. Kruegel and G. Vigna. Anomaly detection of
web-based attacks. In Proc. of 10th ACM Conf. on
Computer and Communications Security, pages
251–261, 2003.

[9] C. Kruegel, G. Vigna, and W. Robertson. A
multi-model approach to the detection of web-based
attacks. Computer Networks, 48(5), 2005.

[10] T. Krueger, C. Gehl, K. Rieck, and P. Laskov. An
architecture for inline anomaly detection. In Proc. of
European Conference on Computer Network Defense
(EC2ND), pages 11–18, 2008.

[11] M. E. Locasto, K. Wang, A. D. Keromytis, and S. J.
Stolfo. Flips: Hybrid adaptive intrusion prevention. In
Recent Adances in Intrusion Detection (RAID), pages
82–101, 2005.

[12] Microsoft. Microsoft security intelligence report:
January to June 2008. Microsoft Corporation, 2008.

[13] V. Paxson. Bro: A system for detecting network
intruders in real-time. Computer Networks,
31(23–24):2435–2466, Dec. 1999.

[14] R. Perdisci, D. Ariu, P. Fogla, G. Giacinto, and
W. Lee. McPAD: A multiple classifier system for
accurate payload-based anomaly detection. Computer
Networks, In Press, Corrected Proof:–, 2008.

[15] K. Rieck and P. Laskov. Detecting unknown network
attacks using language models. In Detection of
Intrusions and Malware, and Vulnerability
Assessment, Proc. of 3rd DIMVA Conference, LNCS,
pages 74–90, July 2006.

[16] K. Rieck and P. Laskov. Linear-time computation of
similarity measures for sequential data. Journal of
Machine Learning Research, 9(Jan):23–48, 2008.

[17] W. Robertson, G. Vigna, C. Kruegel, and R. A.
Kemmerer. Using generalization and characterization
techniques in the anomaly-based detection of web
attacks. In Proc. of Network and Distributed System
Security Symposium (NDSS), 2006.

[18] M. Roesch. Snort: Lightweight intrusion detection for
networks. In Proc. of USENIX Large Installation
System Administration Conference LISA, pages
229–238, 1999.

[19] B. W. Silverman. Density Estimation for Statistics
and Data Analysis. Chapman & Hall/CRC, 1986.

[20] Y. Song, A. D. Keromytis, and S. J. Stolfo. Spectro-
gram: A mixture-of-markov-chains model for anomaly

detection in web traffic. In Proc. of Network and
Distributed System Security Symposium (NDSS), 2009.

[21] Symantec. Symantec global internet security report:
Trends for July-December 07. Volume XIII, Symantec
Corporation, Apr. 2008.

[22] F. Valeur, G. Vigna, C. Kruegel, and E. Kirda. An
anomaly-driven reverse proxy for web applications. In
Proc. of the 2006 ACM symposium on Applied
computing, pages 361–368, 2006.

[23] G. Vigna, F. Valeur, D. Balzarotti, W. Robertson,
C. Kruegel, and E. Kirda. Reducing errors in the
anomaly-based detection of web-based attacks through
the combined analysis of web requests and SQL
queries. J. Comput. Secur., 17(3):305–329, 2009.

[24] K. Wang, J. Parekh, and S. Stolfo. Anagram: A
content anomaly detector resistant to mimicry attack.
In Recent Adances in Intrusion Detection (RAID),
pages 226–248, 2006.

[25] R. R. Wilcox. Introduction to Robust Estimation and
Hypothesis Testing. Academic Press, 1997.

APPENDIX
CVE / milworm Token Detector
Buffer overflow attacks
1999-0874 Path MCAD
2001-0241 Path MCAD
2001-0500 ∅ (Protocol viol.) Parser
2002-0392 ∅ (Protocol viol.) Parser
2003-0471 Param. User Normalizer
2003-1192 ∅ (Protocol viol.) Parser
2004-1561 ∅ (Protocol viol.) Parser
2004-1134 ∅ (Protocol viol.) Parser
2005-4734 Param. url Normalizer
2006-1148 ∅ (Protocol viol.) Parser
2006-0992 Accept-Language MCAD
2006-5216 Path MCAD
2006-5478first Host LIST
2006-5478blog Host NCAD
Code injection attacks
2005-0116 Param. configdir Normalizer
2005-0511 Param. template Normalizer
2005-1921 Body MCAD
2005-2847 Param. f Normalizer
2006-1551 Body MCAD
2007-0774 Path MCAD
php inject Param. z Normalizer
WordPress attacks
2004-1584 Body MCAD
2005-1810 Param. cat MCAD
2005-2612 Cookie MCAD
2007-1599 Param. redirect MCAD
7738milwOrm Param. thread Normalizer
2008-1982 Param. ss id Normalizer
6842milwOrm Param. id LAD
2008-5752 Param. book id Normalizer
2009-0968 Param. id LAD
2009-1030 Host NCAD
Miscellaneous attacks
httptunnel ∅ (Protocol viol.) Parser
2004-1373 ∅ (Protocol viol.) Parser
2007-1286 ∅ (Protocol viol.) Parser
xss/sql injection Param. s MCAD

Table 5: Table of HTTP exploits. Each attack is ex-
ecuted in different variants. We have listed the to-
kens, in which the attack is located and its detector.
In case a token has never been seen before, TokDoc
normalizes the request by dropping this token.

