
1

Appears in the International Symposium on Computer Architecture (ISCA), June 2008

Abstract
Current hardware transactional memory sys-

tems seek to simplify parallel programming, but assume
that large transactions are rare, so it is acceptable to
penalize their performance or concurrency. However,
future programmers may wish to use large transactions
more often in order to integrate with higher-level pro-
gramming models (e.g., database transactions) or per-
form selected I/O operations.

To prevent the “small transactions are com-
mon” assumption from becoming self-fulfilling, this
paper contributes TokenTM—an unbounded HTM that
uses the abstraction of tokens to precisely track conflicts
on an unbounded number of memory blocks. TokenTM
implements tokens with new mechanisms, including
metastate fission/fusion and fast token release.
TokenTM executes small transactions fast, executes
concurrent large transactions with no penalty to non-
conflicting transactions, and gracefully handles paging,
context switching, and System-V-style shared memory.

1 Introduction

Transactional Memory (TM) [13] has emerged as a
promising approach to ease parallel programming.
Hardware transactional memory (HTM) systems seek to
minimize performance overheads by pushing primitive
operations into hardware. Early HTM systems [1,5,10,
11,20] exploit the synergy between cache coherence and
transactional conflict detection to maintain TM state in
structures tightly coupled to the processor caches. These
systems efficiently execute transactions small enough to
fit in caches and/or write buffers, but fail or degrade per-
formance for larger transactions. More recent HTM sys-
tems [1,3,7,8,22,29] incorporate special virtualization
actions to handle transactions that overflow their private
fixed-size hardware structures. These actions have two
important implications. First, they require significant
modifications to existing cache coherence protocols
and/or virtual memory systems, and thus represent a sig-
nificant barrier to widespread adoption. Second, the vir-
tualization actions impose significant performance
overheads, sending strong feedback to programmers to
avoid large transactions. For example, while running
large transactions, VTM [22] adds overhead to all sub-
sequent cache misses, LogTM-SE [29] degrades to seri-

alizing all transactions, OneTM [3] serializes execution
of multiple large transactions, and XTM [8] and
PTM [7] employ heavy-weight page-based solutions.

If our field is not careful, the current HTM assumption—
that transactions are small and short running—may
become a self-fulfilling prophesy. Programmers that use
large, long-running transactions receive clear feedback
that they should not do so. We see reasons why pro-
grammers may want large/long-running transactions,
especially ones that are unlikely to conflict. For exam-
ple, future workloads might wish to perform I/O and
blocking system calls within atomic blocks of code.
Supporting such program usage could allow TM to be
integrated with other transactional programming mod-
els, such as databases, file systems, or message queues.
While real TM workloads that exhibit these behaviors
do not exist yet, we find promising cases where they
could exist in future workloads.

An unbounded HTM must solve two sub-problems to
efficiently support concurrent execution of large transac-
tions. First, as an executing transaction performs an
unbounded number of tentative writes, the HTM must
simultaneously store both pre-transaction and new val-
ues. Fortunately, this sub-problem is solved well by
LogTM [20,29], which writes new values “in place”
after saving the old values in a per-thread software-visi-
ble log in memory (that can be victimized from caches
or even paged).

Second, the HTM must detect conflicts among an
unbounded number of blocks accessed by concurrent
transactions. The design should also aim to achieve the
following goals:

•Minor or no changes to cache coherence protocols
(i.e., better to add message payloads than change
protocol transitions) and virtual memory systems.

•Minimal overhead for executing small (e.g., fit in
cache) transactions. Efficient execution of large
transactions should not slow down the execution of
smaller transactions. In particular, we should be
able to begin and end small transactions quickly
with a little overhead on the normal execution path.

•Localized overhead for executing large transac-
tions. While some overhead is inevitable on large
transactions, it should directly affect only the thread
running the large transaction and not interfere with
the concurrent execution of non-conflicting threads.

TokenTM: Efficient Execution of Large Transactions
with Hardware Transactional Memory

Jayaram Bobba, Neelam Goyal, Mark D. Hill, Michael M. Swift and David A. Wood
{bobba, neelam, markhill, swift, david}@cs.wisc.edu

Dept. of Computer Sciences
University of Wisconsin-Madison

2

To this end, we propose a fast unbounded HTM called
TokenTM. TokenTM uses LogTM’s per-thread logs in
conjunction with a novel conflict detection scheme.
TokenTM ensures transaction safety by maintaining the
single-writer/multiple-readers invariant for each mem-
ory block B at all times: Block B is either transaction-
ally inactive, part of the read set of one or more
transactions, or part of the write set of exactly one
transaction.

TokenTM maintains this invariant directly using trans-
actional tokens, a concept adapted from token coherence
[15]. Conceptually, each memory block has T tokens,
where T is some large constant. Before a transaction
writes a block B for the first time, it must acquire all of
B’s T tokens and write them to its private log. Subse-
quent writes to B within the same transaction proceed
without additional token actions. Before a transaction
reads a block B for the first time, it acquires one of B’s
tokens and writes the token to its log. Subsequent reads
to B by the same transaction may proceed without addi-
tional actions. A transaction that fails to obtain the
needed tokens detects a conflict and invokes a software
contention manager. When a transaction ends, in a com-
mit or an abort, it releases all the acquired tokens.

TokenTM introduces two key new mechanisms. First,
metastate fission/fusion enables concurrent transactions
to efficiently modify token state even for shared read-
only blocks. Second, fast token release enables small
transactions to release their tokens in constant time.
However, in the worst case, a transaction must walk its
log to release the tokens, but this does not affect the
speed or concurrency of non-conflicting transactions.

Table 1. Analysis of Long-running Critical Sections (LCS)

Benchmark

A
vg

. L
C

S
D

ur
at

io
n

M
ax

. L
C

S
D

ur
at

io
n

%
 o

f T
ot

al

E
xe

cu
ti

on
T

im
e

AOLServer 0.1 ms 0.7 ms 0.1
Apache 49.6 ms 70.5 ms 1.4
BerkeleyDB 0.1 ms 0.2 ms 0.01
BIND 0.2 ms 1.8 ms 2.2

By developing the above mechanisms this paper con-
tributes a new HTM that (1) performs fast and precise
conflict detection on an unbounded number of memory
blocks, (2) executes small transactions fast, (3) executes
concurrent large transactions with no penalty to non-
conflicting transactions, and (4) gracefully handles pag-
ing and context switching. Moreover, since conflict
detection is per physical memory block, TokenTM can
be extended to operate with both virtual machine moni-
tors and memory shared among processes.

The following sections provide a motivating example
and related work (Section 2), a discussion of transac-

tional tokens and double-entry bookkeeping (Section 3)
and implementation via metabit fission/fusion and fast
token release (Section 4). The remaining sections dis-
cuss TokenTM operation (Section 5), methods and per-
formance analysis (Section 6) and conclude.

2 Motivation & Related Work

2.1 Where are the large transactions?
Large transactions are rare, in part, because current
HTMs bias against them. To gain an insight into the
potential uses of large transactions, we look elsewhere.

In particular, we examine four multi-threaded workloads
that use locks for mutual exclusion. Using DTrace [17],
a dynamic instrumentation tool from Sun Microsystems,
we recorded the critical section activity in these work-
loads. DTrace enables us to observe locking behavior of
both user and OS code. We track critical sections that
are long-running and could lead to large transactions if
they were implemented using TM. Specifically, we
record critical sections that either make blocking system
calls or context switch during their execution. Table 1
summarizes their execution behavior. Apache and BIND
spend significant execution time in long-running critical
sections. The longest critical section in Apache forks
processes while holding a lock. In BIND, the longest
critical sections wait for network messages while hold-
ing a lock associated with a network socket. AOLServer
and BerkeleyDB also have a significant number of long-
running critical sections, though they do not spend as
much time executing them. These large critical sections
call the memory allocator frequently leading to ‘sbrk’
system calls. They also perform log writes to the disk in
order to flush their log buffers while holding locks.

The presence of such long-running critical sections in
well-optimized multi-threaded code suggests the need to
permit system activity within atomic blocks of code.
While a good parallel programmer might not choose to
convert the critical sections in these four programs to
transactions, we believe that an HTM system should not
preclude allowing such behaviours in future TM work-
loads. More recently, Lu et. al. [14] have highlighted the
need for efficient support in HTMs for large transactions
in order to avoid an important set of concurrency bugs.

2.2 Drawbacks of Current TM Systems
Several proposed HTM systems allow unbounded trans-
actions, but do so at a cost of substantial hardware or
software complexity to virtualize the limited hardware
resources. UTM [1], the first unbounded HTM system
proposed, requires non-trivial hardware extensions,
including a virtual address pointer added to each block
in memory (also requiring address translation logically
at memory). VTM [22] uses a combination of software
and firmware to support large transactions. VTM virtu-
alizes caches by invoking special firmware on cache vic-

3

timization to move transactional data into software
tables. It also uses firmware to virtualize hardware
caches on a context switch. XTM [8] and PTM [7] lever-
age paging and address translation mechanisms to han-
dle transaction overflows, requiring significant
modifications to an operating system’s already-complex
virtual memory system.

LogTM-SE [29] is an unbounded HTM system that uses
signatures to represent the read- and write-sets of trans-
actions for conflict detection. Signatures are Bloom fil-
ters that compactly summarize a set of elements. Small
hardware signatures (e.g., 2Kbit) are easy to virtualize
since they can be moved around on context switch and
paging events. However, signatures allow false positives
that lead to unnecessary conflicts between transactions
[30]. Large transactions increase the probability of false
positives, which degrades performance by unnecessarily
serializing non-conflicting transactions.

To see the performance impact of false positives, con-
sider Figure 1. Using methods described in Section 6.1,
it presents the performance for four STAMP workloads
[18] on LogTM-SE variants with 2 or 4 H3 hash func-
tions (LogTM-SE_2xH3 and LogTM-SE_4xH3), nor-
malized to LogTM-SE_Perf that uses unimplementable,
perfect read- and write-set tracking. Results show that
false positives significantly degrade performance for
applications with larger and more frequent transactions.

Finally, OneTM [3] is an unbounded HTM that restricts
the TM system to concurrently execute only one over-
flowed transaction at a time. It uses per-block metadata
to track the read- and write-sets for transactions that
overflow hardware caches. To minimize serialization for
transactions that overflow, OneTM uses a special TM-
state victim cache on transactional data eviction. Blun-
dell et al. show that, with this optimization, serializing
execution of overflowed transactions does not impact
the performance of existing TM workloads. Neverthe-
less, Amdahl’s Law suggests that allowing only one
unbounded transaction will cause a bottleneck as system
sizes and transactions scale up.

Software TM (STM) systems also allow unbounded
transactions, but they impose high overheads compared
to HTMs for both small and large transactions. Hybrid
hardware/software TM systems [9,18,23,25] require
much less hardware complexity than unbounded HTM
systems while performing similarly on small transac-
tions. For large transactions, they revert to their underly-
ing STMs, incurring significant overheads compared to
HTM systems. For SigTM, some programs run 160%-
200% slower than an HTM system [18]. Similar results
have been estimated for STM systems that use imprecise
conflict detection state [30].

3 Transactional Tokens in TokenTM

0.0

0.5

1.0

N
o
rm

a
li

z
e
d

 P
e
rf

o
rm

a
n
c
e

LogTM-SE_2xH3
LogTM-SE_4xH3
LogTM-SE_Perf

Delaunay Genome Vacation-lowVacation-high

Figure 1. Effect of False Positives

This paper proposes TokenTM, a system that allows an
arbitrary number of unbounded transactions without
artificially affecting the speed or concurrency of small
transactions. TokenTM’s key innovation is enabling pre-
cise, unbounded transactional conflict detection by
counting per-block transactional tokens.

3.1 Transactional Tokens
HTMs that enforce eager conflict detection ensure that,
for each memory block B: Block B is either transaction-
ally inactive, part of the read set of one or more transac-
tions, or part of the write set of exactly one transaction.

TokenTM precisely maintains this invariant via the
abstraction of tokens. It associates T tokens with every
memory block. A transaction that reads block B must
acquire at least one of B’s tokens, while a transaction
that writes block B must acquire all of B’s T tokens.

Initially, the memory system holds all tokens. To read or
write a block B for the first time, a transaction seeks to
acquire one or T tokens, respectively, and saves them in
a per-thread log. If successful, the transaction can per-
form more accesses of the same type without acquiring
more tokens. If a transaction cannot acquire the required
token(s), it detects a conflict on block B and seeks reso-
lution (Section 5.2). When a transactions ends—com-
mits or aborts—it releases all of its acquired tokens.

3.2 Double-Entry Bookkeeping for Tokens
TokenTM manipulates tokens with a technique inspired
by the accounting method of double-entry bookkeeping
[27]. Every token transfer is recorded in two places: a
credit in one account and a debit in another account.
TokenTM records token movement using multiple
accounts:

•Per-block hardware metastates enable fast conflict
detection and often identify conflicting threads.

•Per-thread software-visible logs provide unbounded
storage for conflict detection (token) information
that, in the worst case, provides the complete truth
for a software conflict manager.

TokenTM enforces a bookkeeping invariant that, for
any block B at any time, the count of tokens debited

4

from the metastate equals the total count of tokens cred-
ited to the software-visible logs.

TokenTM’s bookkeeping operates as follows. Initially,
memory begins with a credit of T tokens per block, each
block’s metastate indicates that no tokens have been
debited, and the logs are empty. When a token is
acquired by a transactional thread, TokenTM debits the
block’s hardware metastate and credits the thread’s soft-
ware-visible log. Thus, memory’s token balance for a
block is the original T tokens less the tokens debited by
the transaction (and recorded in the logical metastate).
Similarly, a thread’s log has a balance that equals the
number of tokens that it has acquired for that block.
When a thread releases a previously acquired token,
TokenTM debits the thread’s log and credits the tokens
back to the logical metastate. Memory’s token balance
goes back to T when all the acquired tokens have been
released from all the logs.

D: T tokens

B: T tokens

Software State

A

C
D
E
F

B

Block
Hardware State

} All tokens acquired. Taken by X
} One token acquired. Taken by Z
} All tokens acquired. Taken by X
} All tokens acquired. Taken by Y
} No tokens acquired.

} 2 tokens acquired.<1, 1, 0>
<T, 0, 0>
<0, 0, 1>
<T, 0, 0>
<0, T, 0>
<0, 0, 0>

Metastate
Logical

Thread X Thread Y Thread Z

A: 1 token
A: 1 token
E: T tokens C: 1 Token Token

Logs

Figure 2. Double-Entry Bookkeeping

Each TokenTM transaction explicitly stores its tokens in
a per-thread software-visible log, illustrated in the top
half of Figure 2. Threads X, Y and Z are executing
transactions. In the example, X’s log has three entries.
The first entry indicates that X has acquired one token
for block A. The second and third entries indicates that
the thread has all T tokens for blocks B and D.

Each TokenTM memory block B stores the number of
tokens debited by each of the transactional threads. With
every memory block B, TokenTM logically associates a
vector of token debits by each thread <c0, c1,..., ci,...>
where 0 ≤ ci ≤ T and Σ ci ≤ T.

The bottom half of Figure 2 displays the logical met-
astate after transactional threads X, Y and Z have
acquired tokens. The metastate for block A indicates
that X and Y have debited one token each. Similarly,
block B’s metastate indicates that thread X has all T
tokens to enable writes. Block F has not been accessed
by any transactions and is thus in state <0, 0, 0>.

3.3 Discussion
Aren’t TokenTM’s transactional tokens the same as
token coherence’s tokens [15]? No, but they do apply
similar concepts at different levels. Transactional tokens
enforce an invariant on transactional read and write sets,
while token coherence’s tokens pertain to coherence of
cached blocks, e.g., MSI states. TokenTM decouples a
block’s transactional memory state from its cache coher-
ence state. In TokenTM, a processor is allowed to cache
a block in coherence state M (i.e., all tokens in a Token
Coherence protocol) even if another processor’s transac-
tion has acquired all of TokenTM’s transaction tokens.
To avoid any confusion, we describe TokenTM imple-
mented on top of a directory coherence protocol.

Aren’t TokenTM’s logical metastates expensive to
maintain in hardware? No. For efficiency reasons, we
will not represent the complete vector of token debits in
hardware. Instead, TokenTM implementations will only
track and maintain a conservative summary of the vec-
tor. The summary contains the sum of tokens acquired
by all the transactional threads and, in certain cases, an
identifier (TID) of a thread that has acquired one or all
of the tokens. Section 4 shows that this information is
sufficient to efficiently detect conflicts. If necessary, the
full vector of token debits can be re-constructed on-
demand from software-visible logs.

4 Implementing TokenTM’s Metastate

Table 2. Common Metastate Transitions
Actions by thread X Before After
Transaction Load (0, -) (1, X)
Transaction Store (0, -) (T, X)
Release one Token (1, X)

(v, -), v > 0
(0, -)
(v-1, -)

Release T tokens (T, X) (0, -)
Conflicting Load (T, Y), (T, Y),
Conflicting Store (v, -),

(T, Y),

(v, -),

(T, Y),

Y X≠ Y X≠
v 0≠
Y X≠

v 0≠
Y X≠

TokenTM implements per-block logical metastate by
extending a conventional cache coherent shared-mem-
ory system. We present the design in the context of a
multi-core system with private and shared write-back
caches and a directory-based write-invalidate coherence
protocol with non-silent evictions. Figure 3 illustrates
the TokenTM system, where the dark boxes show the
hardware state added to the base system. Compared to
log-based HTMs like LogTM-SE, TokenTM requires
two additional registers ‘TID’ and ‘fast-release’ on each
processor and extra bits for implementing metastates.

4.1 Metastate Summary
Our TokenTM implementation summarizes the logical
metastate’s full vector of token debits with a 2-tuple
(Sum, TID), representing the sum of all token debits and

5

the TID of a token owner respectively. The TID field
identifies the owner transaction only when the sum of
token debits is either 1 or T. Table 2 depicts common
transactional operations affecting the metastate.
Section 4.3 shows how TokenTM represents the tuple in
a single packed field. For the rest of the paper, metastate
refers to the 2-tuple, not the full vector.

4.2 Metastate Coherence, Fission and Fusion
TokenTM’s abstract model associates metastate with
each memory block. If TokenTM only stored metastate
at memory, every metastate access would have to access
memory even for locally cached data. On the other hand,
we also do not want to modify the coherence protocol
(e.g., with negative acknowledgements or sticky states
[20]) as coherence protocol designers do not like to
change their hard-to-verify protocols.

Instead, TokenTM enables fast access to metastate by
piggy-backing additional payload on existing coherence
messages, but makes no changes to existing coherence
states, protocol transitions, or semantics. TokenTM has
two cases—one easy, and one hard—for piggybacking
metastate on coherence messages.

The easy case is when a block exists as a single coherent
copy either at memory or in one cache. If a transactional
thread wishes to write to a block B, it uses the cache
coherence protocol to get the exclusive copy of B. If the
metastate indicates the absence of transactional con-
flicts, the processor updates the metastate, and writes the
data. If the processor subsequently wishes to replace B,
before or after the transaction is done, it writes B and the
attached metastate back to memory. If another thread
seeks to write B, its processor will obtain B and its met-
astate via the coherence protocol, detecting a transac-
tional conflict when it examines the metastate. As long
as there is only one copy of block B, metastate coher-
ence follows from the data coherence.

The hard case for metastate coherence occurs when the
coherence protocol creates two or more shared copies of

a block B, which occurs when multiple threads seek to
read B. What happens if one of those threads seeks to
read B in a transaction, requiring TokenTM to access
and modify block B’s metastate? Naively, we could coa-
lesce all copies of B into a single copy, return to the easy
case above, and modify the metastate. However, this
would severely impact performance by rendering the
MSI shared state S useless for transactional readers.

Instead, TokenTM allows multiple transactional readers
to read and update metastate in their local copy of a
shared block (whose data can’t be modified) by support-
ing metastate fission and fusion:

MemoryController MemoryController

MemoryController MemoryController

Memory Bank

Tag Data State AttrShared L2
Cache Bank State

Coherence

Private L1

XactLevel
TrapTypeLogPtr

LogBase

TID
Fast−Release

Registers

TokenTM new}
R W R’ W’ R

+
AttrTag

State
Coherence Data

TokenTM
State

Data State AttrECC

CPU
Checkpoint

User
Registers

Register

Figure 3. Token TM Hardware

•TokenTM performs metastate fission when it cre-
ates an additional shared copy of a block (e.g., for a
read request) and initializes that copy’s metastate.
Table 3 (a) gives metastate fission rules for splitting
the initial metastate labeled “Before” into two cop-
ies “After” and “New Copy.” X and Y refer to TIDs,
while u and v refer to counts.

•TokenTM performs metastate fusion when it
merges two shared copies (e.g., on an exclusive
request or writeback). Table 3 (b) gives rules for
fusing metastate from two copies of block B into a
single copy, using the same notation as the previous
table. Several cases among the cross product of
prior states should not occur and are errors, e.g., a
transaction writer (T, X) should never encounter
multiple transactional readers (u, -) for the same
block B.

Metastate fission/fusion works because transactional
readers must accurately know whether there is a writer,
but they don’t need to know the count—or even the exist-
ence—of other transactional readers. Hence, the rules
specified for fission/fusion ensure that all the metastate
copies are coherent when there is a writer transaction
(i.e., metastate of block is (T, X)). Otherwise, copies of
metastate are allowed to be temporarily incoherent and
can be accessed and modified locally by transactional

6

readers. To this end, when a transaction with TID X
attempts to read a cache block, TokenTM examines the
block’s metastate and (a) completes the read (e.g., if
metastate is (1, X) or (T, X)) or (b) detects a conflict with
another transactional writer (if metastate is (T, Y),Y X≠)
or (c) acquires an additional token by modifying the
local metastate (e.g., (0, -) to (1, X)) and then completes
the read.

Table 3(b) Metastate (Sum, TID) Fusion
Copy

1
Copy 2

(u, -) (1, Y) (T, Y)

(v, -) (u+v, -) (1, Y) if v=0

(v+1, -) if v>0

(T, Y) if v=0

else error

(1, X) (1, X) if u=0

(u+1,-) if u>0

(2, -) error

(T, X) (T, X) if u=0

else error

error (T, X) if X=Y
else error

Table 3(a) Metastate (Sum, TID) Fission
Before After New Copy
(u, -) (u, -) (0, -)
(1, X) (1, X) (0, -)
(T, X) (T, X) (T, X)

TokenTM metastate fission/fusion generalizes OneTM’s
lazy coherence [3]. Lazy coherence relies on the restric-
tion that at most one overflowed transaction can modify
metastate at a time. Metastate fission/fusion allows
many transactional readers to simultaneously modify a
block’s metastate.

4.3 Metastate at Memory
TokenTM represents the per-block metastate in physical
memory using known techniques. TokenTM encodes the
metastate (sum, TID) in 16 “metabits” (as shown in
Table 4(a)):

• State: This 2-bit field represents the sum of token
debits. The four encoded values represent either 1,
0≤ u< T, T token debits, or an overflow state.

•Attr: This 14-bit attribute field encodes a TID (if
State represents 1 or T token debits) or the sum of
token debits (if State represents 0≤ u< T debits).

TokenTM handles the rare case of more concurrent
readers than the 14-bit count can represent using known
“limitless” techniques [6], which use the overflow state
to indicate that software maintains part of the count.

To minimize changes to the memory system, TokenTM
stores 16 metabits per 64-byte memory block using re-
coded error-correction codes, as pioneered by S3.mp
[21]. Standard DRAM modules uses 72-bit codewords
to protect 64 data bits with single error correction and
double error detection (SECDED). With somewhat
more logic and negligible loss in error coverage, one can
group four words together to protect 256 data bits with

SECDED using 10 check bits. This frees an independent
22-bit codeword (72*4 - 256 - 10) that can in turn repre-
sent 16 metabits protected with SECDED using 6 check
bits. Alternatively, the memory controller could explic-
itly reserve part of the physical memory for metabits [3],
incurring about 3% overhead (16 bits for 64 bytes).

4.4 Fast Token Release

Table 4(b) In-Cache Metastate
Metastate Metabits (in L1 with X on L1’s core)
(Sum,TID) R W R’ W’ R+ Attr
(0, -) 0 0 0 0 0 -
(u, -) 1 0 0 0 1 u-1
(u, -) 0 0 0 0 1 u
(1, X) 1 0 0 0 0 X
(1, Y) 0 0 1 0 0 Y
(T, X) 0 1 0 0 0 X
(T, Y) 0 0 0 1 0 Y

Table 4(a) In-Memory Metastate

Metastate Metabits (in Memory)

(Sum, TID) State Attr
(u, -) 00 u
(1, X) 01 X
(T, X) 10 X

TokenTM explicitly logs tokens into a thread’s soft-
ware-visible log and must return them to the blocks’
metastate on transaction commit or abort. While walk-
ing the log is already necessary on abort (to restore the
blocks’ data values to their pre-transaction versions),
this could be a significant overhead in the more common
case of commiting a small transaction.

To address this, TokenTM (optionally) supports a fast
token release that, in the best case, releases all of a
transaction’s tokens with a fast, constant-time operation
that still maintains TokenTM’s bookkeeping invariant.
TokenTM applies fast release only when all the transac-
tion’s blocks remain in its processor’s L1 cache. With
fast token release, TokenTM:

•Removes all tokens from its log by resetting its log
pointer to the log base, and

•Restores all per-block metastate by flash clearing
metabits in the L1 cache.

To enable fast token release, TokenTM enhances the L1
cache’s metabit representation to distinguish tokens
acquired by the current and other transactions. It
encodes the state (State) field in L1 caches using five
(instead of two) bits: R, W, R’, W’ and R+. The R and W
bits are explicitly associated with the processor’s current
thread X. The R bit indicates that the thread executing on
the processor has acquired one token for the block, i.e.,
metastate (1, X). Similarly, the W bit indicates that the
current thread has acquired all the block’s tokens, i.e.,
metastate (T, X). R’ and W’ bits indicate the (1, Y) and
(T, Y) states respectively, when the acquired tokens

7

belong to any thread Y (including the currently running
thread X). R+ indicates the (u, -) state, where the u
tokens have been acquired by any set of transactions.
Table 4(b) gives the complete list of metastates and their
in-cache representations for an L1 cache that has thread
X executing on its core.

In the absence of sharing, a transactional thread initially
obtains a copy of block B, finds its metastate in (0, -),
initializes the R, W, R’, W’ and R+ bits to zero, and then
sets R or W for reads and writes, respectively, and stores
its TID into the Attr field. Subsequent reads/writes to B
by the same transaction proceed without further action
(like many bounded HTMs). In the best case, a transac-
tion restores the metastate to (0, -) at commit by flash-
clearing the R and W bits in the L1 cache.

Figure 4 illustrates an example of fast token release,
with the changes in hardware state highlighted with
dashed circles. In part (a), a thread with TID 42 begins a
transaction. Initially, blocks A and B both are in met-
astate (0, -) and are cached in the processor’s L1 cache
in the shared and modified coherence states, respec-
tively. In part (b), the thread adds block A to its read set
by setting R to 1 and Attr to 42, logically changing its
local metabit state to (1, 42). In part (c), the thread adds
B to its write set by setting W to 1 and Attr to 42, logi-
cally changing its local metabit state to (T, 42). In part
(d), the thread successfully performs a fast token release
by flash clearing R and W bits and resetting its log, tran-
sitioning both A and B back to metastate (0, -).

(b) Transactional Load

BEGIN_XACT

LOG

42TID

1

42TID

1

PROGRAM PROGRAM

BEGIN_XACT

LD A

LOG

A 1 Token

COMMIT_XACT

PROGRAM

BEGIN_XACT

LD A

ST B

LOG

42TID

0

fast−release

CPUCPU

fast−release

42TID

1

PROGRAM

BEGIN_XACT

LD A

ST B

LOG

B T Tokens

A 1 Token

B old ...00...

CPU

fast−release

CPU

fast−release

A

R W

Shared

B

420 0 0 0

00000 −

1
AttrR’ W’ R+

Modified

...0a...

...00...

Coherence
State

A 1

R W

B 1

Shared

...01...

....0a... 42

42

0000

0 0 0 0

AttrR’ W’ R+

Modified

Coherence

(c) Transactional Store

L1

A

R W

B

Shared0a...

...01...

0

0 0

0 42

42

AttrR’ W’ R+

Modified

State
Coherence

(d) Fast Token Release on Commit

L1

L1

A

R W

Shared

B Modified

(a) Transaction Begin

0 0 0 0 0

0 0 0 0 0

−

−

AttrR’ W’ R+

...0a...

...00...

L1 Coherence
State

State

Tag Data

Tag DataTag Data

Tag Data

Figure 4. TokenTM’s Fast Token Release in Action

TokenTM employs fast token release only when it is
safe. Fast token release is not safe if any block with R or

W bits set has been evicted from the L1 (including those
due to page out). In this case, TokenTM cannot deter-
mine which tokens could be implicitly returned via flash
clear and which must be released explicitly. Hence,
TokenTM walks the log on commit to return all tokens.

TokenTM enables OS context switching in constant
time at the cost of two flash-OR circuits per cache block.
However, this operation precludes the previously-active
thread from later using fast token release. On a context
switch, for all L1 blocks in parallel, it performs: R’ = R’
| R; clear R; W’ = W’ | W; clear W. This activity logically
transfers any set R bits to the corresponding R’ bits and
any set W bits to the W’ bits. The new thread can now
use R and W bits for its transactions. Note that, as shown
in Table 4(b), W’ and W cannot both be set, and R’ and R
cannot both be set at the same time. Attempting to set
the R bit when R’ is already set causes TokenTM to
either: (i) if Attr equals the current TID, set R and clear
R’, or else (ii) clear R’, set R+ and Attr = 1, and set R.
Note that a context switch can result in both R’ and R+

being set temporarily, but these can be fused the next
time the block is accessed.

Fast token release allows most transactions to commit in
constant time, yet preserves the metastate needed to sup-
port large transactions.

5 TokenTM Operation and Discussion

5.1 Operation
TokenTM performs eager conflict detection by ensuring
that it has acquired sufficient tokens before each load or
store. Performing these checks on all accesses, includ-

8

ing those outside transactions, ensures strong atomicity
[4]. Accesses that cannot acquire sufficient tokens
invoke a conflict resolution policy. An initial load access
to block B stores an acquired token in the thread’s log
by writing a one-word record with block B’s virtual
address. Loads to blocks with the R bit already set need
not write additional log entries. An initial store access to
a block B acquires all (remaining) tokens and records
them in a log record with block B’s virtual address and
token count. Loads and stores with the W bit set do not
write log entries. TokenTM must also log the block’s
data prior to the first store; our implementation writes
data and tokens to the same log.

5.2 Conflict Resolution
Conflicting requests may be retried in hardware, but if
the conflict persists, TokenTM traps to a software con-
tention manager. Figuring out which transactions are
involved in a conflict is an important first step for many
conflict resolution policies. TokenTM makes this easy in
some cases and harder in others.

A transaction could fail because another transaction has
written the block, and thus has acquired all the tokens.
This is an easy case, as the block’s metastate carries the
TID of the writer transaction, which can be passed to the
software contention manager for conflict resolution

Similarly, a transaction attempting to write a block
could fail because one or more reader transactions have
already acquired tokens. If there is only one acquired
token, the block’s metastate often holds the reader trans-
action’s TID resulting in another easy case.

A writer conflicting with multiple reader transactions
represents a harder case. Nonetheless, hardware may
still help identify many reader transactions using infor-
mation already conveyed by the coherence protocol to
support metastate fusion. Recall that a directory coher-
ence protocol sends invalidation messages to all shared
copies in response to a request for exclusive access. The
caches invalidate their copies and send acknowledge-
ment messages to the requesting processor. TokenTM
piggybacks the invalidated blocks’ metastate on the
acknowledgement messages, and relies on the request-
ing processor to perform metastate fusion. Those copies
that are in the (1, X) state include the TID of the reader
transaction. TokenTM records these TIDs and makes
them available to the contention manager through mem-
ory-mapped control registers. The contention manager
uses this (partial) list as a hint to identify conflicting
transactions. Similar to token coherence, TokenTM’s
use of tokens ensures that the many potential races
between the contention manager and active transactions
cannot result in a semantic error.

In the hardest case, when the contention manager
decides to abort all conflicting transactions and does not

get a complete list of owners from hardware, it must
look through the logs of active transactions to identify
all conflicting transactions. In our workloads, this is
required for only two of the benchmarks and only rarely.

5.3 Systems Issues
TokenTM interacts well with conventional operating
systems (OSs) and virtual machine monitors (VMMs).
TokenTM virtualizes transactional storage by using vir-
tual memory for both new values and old-value logs. For
context switches, TokenTM provides an instruction to
free R and W bits before scheduling a new thread. Pag-
ing requires the VM system to clear metastates on ini-
tialization, save them on page out, and restore them on
page in, borrowing mechanisms from existing systems
such as the IBM AS/400 [26].

TokenTM also operates cleanly with VMMs. TokenTM
does not require that the OS manipulate physical
addresses, and hence is not affected by an additional
layer of address translation. In addition, thread identifi-
ers (TIDs), the only new resource introduced by
TokenTM, can be managed by the OS without VMM
involvement. Similar to the OS, the VMM need only
free R and W bits when it preempts or migrates a virtual
processor and save and restore metastates when paging.

Moreover, TokenTM may be the first HTM to generally
support System-V-style shared memory among threads
in different processes. Metastates are associated with
physical pages and can be accessed from each process
along with the data. However, TIDs must be unique
across all processes accessing the shared memory and
the contention managers for each process must coordi-
nate to resolve conflicts. OneTM can also support this
sharing, given a mechanism for ensuring at most one
large transaction at a time among processes with over-
lapping memory. TokenTM can also support shared
copy-on-write pages between processes but must either
ensure that the page has no active transactions or per-
form metastate fission in software to separate tokens
acquired by different processes.

5.4 Discussion
TokenTM has several positive properties compared to
other unbounded HTM systems.

(1) TokenTM provides fast and precise conflict detec-
tion for an unbounded number of memory blocks, by
using metastate that follow a block’s data into caches,
back to memory, and even onto disk. For example,
TokenTM suffers no false conflicts due to signature
aliasing (as do Bulk [5] and LogTM-SE).

(2) TokenTM’s fast token release allows transactions
that stay in the L1 cache to commit at full hardware
speed. Except for conflicts, transaction speed is unaf-
fected by large transactions in other threads. TokenTM
suffers no serialization due to signature saturation (like

9

LogTM-SE) nor is it limited to a single large transaction
(like the original TCC [10] and OneTM). When a trans-
actional block leaves a processor’s L1 cache, TokenTM
may no longer perform fast release, but it does not have
to slow transactions on every cache miss like VTM.

(3) TokenTM’s design allows standard cache coherence
protocols, since the metastates decouple transaction
state from coherence state. TokenTM avoids coherence
protocol changes, such as LogTM’s negative acknowl-
edgements and sticky states, but piggybacks metastate
on existing coherence messages. The changes are simi-
lar, but more extensive, to those required to implement
non-silent replacements of shared copies using replace-
ment-way “hints” [2,12]. More significantly, TokenTM
prohibits silent evictions of clean data, an important
optimization for some directory protocols.

(4) TokenTM handles paging and context switches
cleanly. With TokenTM, paging requires only small
modifications to the virtual memory system to initialize,
save, and restore metastates. On context switches,
TokenTM frees resources for the next thread in constant
time via flash-clear and flash-OR circuits in the L1
cache. TokenTM does not require broadcast (e.g., for
LogTM-SE’s summary signatures) nor the substantial
VM system modifications of XTM and PTM.

TokenTM’s benefits, however, come with some costs.
Memory, coherence messages, and caches require addi-
tional metabits to represent each block’s metastate. For
fast token release, the L1 cache requires a sparse metabit
representation and flash-clear and flash-OR circuits.
Finally, large transactions pay the performance overhead
of walking their log to release tokens. While this cost is
limited to a single thread, it is linear in log size. Never-
theless, our performance evaluation shows that this cost
is acceptable for the workloads studied.

6 Performance Evaluation

Table 5. Workload Parameters

Benchmark Input Unit of Work

U
ni

ts

M
ea

su
re

d

N
um

X
ac

ts

A
vg

.
R

ea
d-

Se
t

A
vg

W
ri

te
-S

et

M
ax

R
ea

d-
Se

t

M
ax

W
ri

te
-S

et

Barnes 512 bodies whole parallel phase 1 2,553 6.1 4.2 42 39
Cholesky tk14.O Factorization 1 60,203 2.4 1.7 6 4
Radiosity batch 1 task 1024 21,786 1.8 1.5 25 24
Raytrace teapot whole parallel phase 1 47,783 5.1 2.0 594 4
Delaunay gen2.2-m30 whole parallel phase 1 16,384 51.4 38.8 507 345
Genome g1024-s32-n65536 whole parallel phase 1 100,115 14.5 2.1 768 18
Vacation-Low low contention whole parallel phase 1 16,399 70.7 18.1 162 75
Vacation-High high contention whole parallel phase 1 16,399 99.1 18.6 331 80

This section shows that TokenTM performs comparably
to previous HTM systems for programs with small
transactions and can perform significantly better for pro-
grams with larger transactions.

6.1 Methods and Workloads
Base System. We model a 32-core CMP system with in-
order, single-issue SPARC cores each having 4-way 32
KB private writeback L1 I&D caches. All cores share an
8-way 8 MB L2 cache consisting of 32 banks inter-
leaved by block address. A packet-switched intercon-
nect connects the cores and cache banks in a tiled
topology consisting of 8 clusters, each made up of 4
cores. The interconnect uses 64-byte links and adaptive
routing. Four on-chip memory controllers connect to
standard DRAM banks. On-chip cache coherence is
maintained via an on-chip directory (at L2 cache banks)
which maintains a bit vector of sharers and implements
an MESI protocol.

HTM Variants. We model five alternative HTM sys-
tems. LogTM-SE_2xH3 and LogTM-SE_4xH3 are
LogTM-SE variants that use 2Kbit signatures with 2 or
4 parallel H3 hash functions and were shown to be the
best performing signature designs by Sanchez et. al.
[24]. LogTM-SE-Perf uses unimplementable perfect
signatures. TokenTM and TokenTM_NoFast are the
newly-proposed TokenTM system with and without fast
token release (Section 4.4). All variants use timestamp-
based conflict resolution, because it performs well on
these workloads and facilitates fair comparisons.

Simulation Methods. We build all HTM variants with
the Wisconsin GEMS [16] toolset. We modified the per-
formance models of GEMS, but left the Simics full-sys-
tem infrastructure unchanged. Software actions on
TokenTM’s logs are modeled with user-level traps that
jump to a software handler which walks through logs for
unrolling data and/or releasing tokens. The cache effects
of releasing tokens are modeled via loads and stores.
Multiple pseudo-randomly perturbed simulations were
run to produce error bars indicating 95% confidence
intervals on performance results.

TM Workloads: We evaluate the performance of
TokenTM using a selection of multi-threaded workloads
from two different benchmark suites—STAMP [18] and
SPLASH [28]—running on unmodified Solaris 9.
Delaunay, Genome and Vacation were chosen from ver-

10

sion 0.9.2 of STAMP, because they spend most of their
execution time in large transactions. Vacation is inspired
by the SpecJBB2000 benchmark. We use the two work-
load scenarios presented by Cao Minh et al. [18]—Vaca-
tion-high and Vacation-low. Vacation-low exhibits lower
contention as it has mostly read-only tasks. These work-
loads approximate multi-threaded workloads that a
naive TM programmer would develop. Barnes,
Cholesky, Radiosity and Raytrace are scientific multi-
threaded workloads that exhibit significant critical-sec-
tion synchronization. The originally-lock-based critical
sections are replaced with transactions. We modify
Cholesky and Raytrace to reduce false sharing between
transactions. These workloads represent more carefully
optimized multi-threaded workloads that spend less
time in transactions and mostly execute small transac-
tions. In order to reduce simulation times, we do not
measure the entire parallel segment of the program for
Cholesky and Radiosity. Instead, we take representative
sections of the program and measure performance in
terms of well-defined units of work. Table 5 presents the
input sets and the measurement intervals for the various
workloads, as well as the dynamic transaction character-
istics. Read- and write-set sizes are specified in terms of
number of 64-byte cache blocks. No paging, context
switching, or system calls occur within the transactions
for these workloads.

6.2 Results

0.0

0.5

1.0
N

o
rm

al
iz

ed
 P

er
fo

rm
an

ce

LogTM-SE_2xH3

LogTM-SE_4xH3

LogTM-SE_Perf

TokenTM

TokenTM_NoFast

Barnes Cholesky Radiosity Raytrace Delaunay Genome Vacation-low Vacation-high

Figure 5. TokenTM Performance

TokenTM’s two performance goals target small and
large transactions, respectively.

Do no harm on small transactions (e.g. SPLASH):
While TokenTM is designed to handle large transactions
efficiently, the overheads imposed must not significantly
slow down the execution of smaller transactions.
Figure 5 shows the performance of the TokenTM system
with respect to the three LogTM-SE variants. The exe-
cution time is presented as speedup normalized to
LogTM-SE_Perf. We observe that TokenTM performs
similar to all the LogTM-SE systems on the (small-
transaction) SPLASH workloads. This indicates that

TokenTM’s overheads are low enough to run small
transactions as efficiently as existing HTM systems.

Do some good on larger transactions (e.g. STAMP):
As compared to the best implementable LogTM-SE
variant (LogTM-SE_4xH3), TokenTM performs compa-
rably for Genome and Vacation-low/high, but 5.7 times
better for Delaunay. Thus, TokenTM is most valuable if
either the large read/write sets of Delaunay transactions
become common or designers prize robust performance
that is insensitive to signature design.

Nevertheless, TokenTM sometimes falls short (upto 8%)
of the performance of the unimplementable LogTM-
SE_Perf, in large part due to the overhead from token
bookkeeping—writing acquired tokens to the log and
releasing them on transaction end—which is more sig-
nificant in the STAMP workloads because the transac-
tions are both larger and represent a larger fraction of
execution time.

Is fast token release effective? In order to estimate the
effectiveness of fast release, Table 6 presents the frac-
tion of all transactions that benefit from this mechanism
(column 2). Except for Delaunay and Vacation, over
90% of transactions commit using fast token release.
This follows from the average read- and write-set infor-
mation in Table 5 that shows that Delaunay and Vaca-
tion have significantly larger transactions. Table 6 also
summarizes the characteristics of transactions that use
fast release: average read- and write-set size (columns 3
and 4, respectively) and average execution time (column
5). Most transactions that benefit from fast release are
short and access few blocks. However, Vacation has
some larger transactions that retain all data in L1 caches
until commit.

In contrast, most transactions that release tokens in soft-
ware have much larger read- and write-set sizes (column
6 and 7, respectively) and much longer execution times
(column 8). The ‘Software Release’ column shows the
time spent releasing tokens in software, which increases
the average transaction duration by 5%-10% for the

11

workloads where software release occurs frequently.
Barnes, Cholesky and Radiosity have some small trans-
actions that are unable to commit with fast token
release. These small transactions experience conflicting
load and store requests that move or copy transactional
data from their local caches. Nonetheless, fast token
release does significantly improve the performance of
Cholesky and especially Raytrace compared to
TokenTM_NoFast. Using only software release
increases the transactions’ duty cycles, leading to many
more conflicts and transaction aborts. The above two
observations lead us to conclude that, for our workloads,
software token release incurs acceptable overheads for
large transactions but that fast release helps minimize
the duty cycle, and hence conflicts and aborts, of highly-
contended small transactions.

These results show that the utility of fast release
depends upon the workload, providing significant bene-
fit for some and little or no benefit for others. Because
no real TM workloads exist yet, we suspect that early
implementations of TokenTM may forgo the complexity
and potential performance benefits of fast release.

Is logging expensive? TokenTM logs the acquired
tokens in software-visible logs. Like LogTM-SE,
TokenTM also logs old values on a first transactional
store. Before writing a log record, TokenTM must
obtain exclusive coherence permission to the appropri-
ate cache block, which could lead to processor stalls if
the block is not locally cached. These stalls are the most
significant overhead of logging [19]. The final column
in Table 6 presents the log stall cycles as a percentage of
total execution time. Thus, for all workloads, these stalls
are insignificant and logging imposes negligible over-
head on transaction performance.

Is conflict resolution expensive? In the worst case,
TokenTM must walk other transactions’ logs to resolve
a conflict between a writer transaction and multiple
reader transactions when the hardware hint fails to iden-
tify all the readers. This happens in the three workloads
with the largest transactions—Delaunay, Vacation-high,

and Vacation-low—and even then occurs in less than
0.1% of all transactions. If this case arises more fre-
quently in the future, the software contention manager
can use a variety of techniques, such as dynamically
constructed indices, to reduce the overhead.

In summary, TokenTM performs comparably to
LogTM-SE for workloads with small transactions using
fast token release, incurs low overhead while executing
workloads with larger transactions, and has only small
performance degradations compared to the idealized
LogTM-SE_Perf system.

7 Conclusions

Table 6. TokenTM Specific Overheads

Benchmark

Fast Release Transactions Software Release Transactions

L
og

 S
ta

lls
(%

 T
ot

al
E

xe
cu

ti
on

 T
im

e)

%
 X

ac
ts

Xact Characteristics Xact Characteristics

A
vg

R

ea
d

Se
t

A
vg

W

ri
te

 S
et

A
vg

D
ur

at
io

n
(i

n
cy

cl
es

)

A
vg

R

ea
d

Se
t

A
vg

W

ri
te

 S
et

A
vg

(i
n

cy
cl

es
)

So
ft

w
ar

e
R

el
ea

se
(i

n
cy

cl
es

)

Barnes 94.4 4.4 3.0 506 18.5 19.2 7,961 1,388 0.1
Cholesky 95.7 2.3 1.7 147 2.3 1.9 431 414 <0.1
Radiosity 93.0 1.4 1.4 202 3.8 2.9 5,451 493 <0.1
Raytrace 98.2 2.8 2.0 241 125.1 2.0 8,272 2,303 0.1
Delaunay 72.4 2.2 1.1 4,523 105.4 136.2 108,580 10,815 0.2
Genome 99.4 17.2 3.1 2,624 130.6 5.8 10,937 3,656 0.1
Vacation-low 53.4 51.6 14.0 14,788 78.2 22.9 22,520 1,991 0.3
Vacation-High 38.6 63.7 12.4 15,458 109.2 21.4 22,530 2,488 0.4

This paper contributes TokenTM to prevent the “small
transactions are common” assumption from becoming
self-fulling. TokenTM uses the abstraction of tokens to
precisely track conflicts on an unbounded number of
memory blocks and implements them with new mecha-
nisms, including metastate fission/fusion and fast token
release. As a result, TokenTM executes small transac-
tions fast, executes concurrent large transactions with no
penalty to non-conflicting transactions, and gracefully
handles paging, context switching, and System-V-style
shared memory. Long-running transactions enable TM
to be integrated with other transactional programming
models, such as databases, file systems, or message
queues, which frequently require I/O or other higher-
level operations. Future work will seek richer workloads
and specify expanded semantics (e.g. open nesting).

8 Acknowledgements

This work is supported in part by the National Science
Foundation (NSF), with grants EIA/CNS-0205286,
CCR-0324878, CNS-0551401, CNS-0720565, as well
as donations from Intel and Sun Microsystems. The
views expressed herein are not necessarily those of the
NSF, Intel, or Sun Microsystems. Bobba is partially sup-
ported by an Intel Ph.D. Fellowship. Hill and Wood
have significant financial interests in Sun Microsystems.

12

We thank Colin Blundell, Daniel Gibson, Milo Martin,
Haris Volos, Luke Yen and Haakan Zeffer for their com-
ments on the paper.

9 References

[1] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul,
Charles E. Leiserson, and Sean Lie. Unbounded Transac-
tional Memory. In Proc. of the 11th IEEE Symp. on High-
Performance Computer Architecture, February 2005.

[2] Luiz Andre Barroso, Kourosh Gharachorloo, Robert Mc-
Namara, Andreas Nowatzyk, Shaz Qadeer, Barton Sano,
Scott Smith, Robert Stets, and Ben Verghese. Piranha: A
Scalable Architecture Based on Single-Chip Multipro-
cessing. In Proc. of the 27th Annual Intnl. Symp. on Com-
puter Architecture, pages 282–293, June 2000.

[3] Colin Blundell, Joe Devietti, E Christopher Lewis, and
Milo M.K. Martin. Making the fast case common and the
uncommon case simple in unbounded transactional mem-
ory. In Proc. of the 34th Annual Intnl. Symp. on Computer
Architecture, June 2007.

[4] Colin Blundell, E Christopher Lewis, and Milo M. K.
Martin. Subtleties of Transactional Memory Atomicity
Semantics. IEEE Computer Architecture Letters, 5(2),
November 2006.

[5] Luis Ceze, James Tuck, Calin Cascaval, and Josep Torrel-
las. Bulk Disambiguation of Speculative Threads in Mul-
tiprocessors. In Proc. of the 33nd Annual Intnl. Symp. on
Computer Architecture, June 2006.

[6] David Chaiken, John Kubiatowicz, and Anant Agarwal.
LimitLESS directories: A scalable cache coherence
scheme. In ASPLOS-IV: Proceedings of the fourth inter-
national conference on Architectural support for pro-
gramming languages and operating systems, pages 224–
234, New York, NY, USA, 1991. ACM.

[7] Weihaw Chuang, Satish Narayanasmy, Ganesh Ven-
katesh, Jack Sampson, Michael Van Biesbrouck, Gilles
Pokam, Osvaldo Colavin, and Brad Calder. Unbounded
Page-Based Transactional Memory. In Proc. of the 12th
Intnl. Conf. on Architectural Support for Programming
Languages and Operating Systems, October 2006.

[8] JaeWoong Chung, Chi Cao Minh, Austen McDonald,
Hassan Chafi, Brian D. Carlstrom, Travis Skare, Christos
Kozyrakis, and Kunle Olukotun. Tradeoffs in Transac-
tional Memory Virtualization. In Proc. of the 12th Intnl.
Conf. on Architectural Support for Programming Lan-
guages and Operating Systems, October 2006.

[9] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor
Luchango, Mark Moir, and Daniel Nussbaum. Hybrid
Transactional Memory. In Proc. of the 12th Intnl. Conf. on
Architectural Support for Programming Languages and
Operating Systems, October 2006.

[10] Lance Hammond, Vicky Wong, Mike Chen, Brian D.
Carlstrom, John D. Davis, Ben Hertzberg, Manohar K.
Prabhu, Honggo Wijaya, Christos Kozyrakis, and Kunle
Olukotun. Transactional Memory Coherence and Consis-
tency. In Proc. of the 31st Annual Intnl. Symp. on Comput-
er Architecture, June 2004.

[11] Maurice Herlihy and J. Eliot B. Moss. Transactional
Memory: Architectural Support for Lock-Free Data Struc-
tures. In Proc. of the 20th Annual Intnl. Symp. on Comput-
er Architecture, pages 289–300, May 1993.

[12] Poonacha Kongetira, Kathirgamar Aingaran, and Kunle
Olukotun. Niagara: A 32-Way Multithreaded Sparc Pro-
cessor. IEEE Micro, 25(2):21–29, Mar/Apr 2005.

[13] James R. Larus and Ravi Rajwar. Transactional Memory.
Morgan & Claypool Publishers, 2007.

[14] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou.
Learning from Mistakes: A Comprehensive Study on Real
World Concurrency Bug Characteristics. In Proc. of the
13th Intnl. Conf. on Architectural Support for Program-
ming Languages and Operating Systems, March 2008.

[15] Milo M. K. Martin, Mark D. Hill, and David A. Wood.
Token Coherence: Decoupling Performance and Correct-
ness. In Proc. of the 30th Annual Intnl. Symp. on Comput-
er Architecture, pages 182–193, June 2003.

[16] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beck-
mann, Michael R. Marty, Min Xu, Alaa R. Alameldeen,
Kevin E. Moore, Mark D. Hill, and David A. Wood. Mul-
tifacet’s General Execution-driven Multiprocessor Simu-
lator (GEMS) Toolset. Computer Architecture News, pag-
es 92–99, September 2005.

[17] Richard McDougall, Jim Mauro, and Brendan Gregg. So-
laris(TM) Performance and Tools: DTrace and MDB
Techniques for Solaris 10 and OpenSolaris. Pearson Pro-
fessional, 2006.

[18] Chi Cao Minh, Martin Trautmann, JaeWoong Chung,
Austen Mcdonald, Nathan Bronson, Jared Casper, Chris-
tos Kozyrakis, and Kunle Olukotun. An Effective Hybrid
Transactional Memory System with Strong Isolation
Guarantees. In Proc. of the 34th Annual Intnl. Symp. on
Computer Architecture, June 2007.

[19] Kevin E. Moore. Log-Based Transactional Memory. PhD
thesis, University of Wisconsin-Madison, 2007.

[20] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan,
Mark D. Hill, and David A. Wood. LogTM: Log-Based
Transactional Memory. In Proc. of the 12th IEEE Symp.
on High-Performance Computer Architecture, pages
258–269, February 2006.

[21] Andreas Nowatzyk, Gunes Aybay, Michael Browne, Ed-
mund Kelly, and Michael Parkin. The S3.mp Scalable
Shared Memory Multiprocessor. In Proceedings of the In-
ternational Conference on Parallel Processing, volume I,
pages 1–10, August 1995.

[22] Ravi Rajwar, Maurice Herlihy, and Konrad Lai. Virtualiz-
ing Transactional Memory. In Proc. of the 32nd Annual
Intnl. Symp. on Computer Architecture, June 2005.

[23] Bratin Saha, Ali-Reza Adl-Tabatabai, and Quinn Jacob-
son. Architectural Support for Software Transactional
Memory. In Proc. of the 39th Annual IEEE/ACM Interna-
tional Symp. on Microarchitecture, December 2006.

[24] Daniel Sanchez, Luke Yen, Mark D. Hill, and Karthikey-
an Sankaralingam. Implementing Signatures for Transac-
tional Memory. In Proc. of the 40th Annual IEEE/ACM
International Symp. on Microarchitecture, December
2007.

[25] Arrvindh Shriraman, Virendra J. Marathe, Sandhya
Dwarkadas, Michael L. Scott, David Eisenstat, Christo-
pher Heriot, William N. Scherer III, and Michael F.
Spear. Hardware Acceleration of Software Transactional
Memory. In Proc. of the 1st ACM SIGPLAN Workshop on
Languages, Compilers, and Hardware Support for Trans-
actional Computing, June 2006.

[26] F. G. Soltis. Inside the AS/400. Duke Press, second edi-
tion, 1997.

[27] Wikipedia: The Free Encyclopedia. Luca Pacioli.
http: //en.wikipedia.org/wiki/Luca_Pacioli.

[28] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie,
Jaswinder Pal Singh, and Anoop Gupta. The SPLASH-2
Programs: Characterization and Methodological Consid-
erations. In Proc. of the 22nd Annual Intnl. Symp. on Com-
puter Architecture, pages 24–37, June 1995.

[29] Luke Yen, Jayaram Bobba, Michael R. Marty, Kevin E.
Moore, Haris Volos, Mark D. Hill, Michael M. Swift, and
David A. Wood. LogTM-SE: Decoupling Hardware
Transactional Memory from Caches. In Proc. of the 13th
IEEE Symp. on High-Performance Computer Architec-
ture, pages 261–272, February 2007.

[30] Craig Zilles and Ravi Rajwar. Brief Announcement:
Transactional Memory and the Birthday Paradox. In 19th
ACM Symposium on Parallelism in Algorithms and Archi-
tectures, June 2007.

	Abstract
	1 Introduction
	Table 1. Analysis of Long-running Critical Sections (LCS)

	2 Motivation & Related Work
	2.1 Where are the large transactions?
	2.2 Drawbacks of Current TM Systems

	3 Transactional Tokens in TokenTM
	Figure 1. Effect of False Positives
	3.1 Transactional Tokens
	3.2 Double-Entry Bookkeeping for Tokens
	Figure 2. Double-Entry Bookkeeping

	3.3 Discussion

	4 Implementing TokenTM’s Metastate
	Table 2. Common Metastate Transitions
	4.1 Metastate Summary
	4.2 Metastate Coherence, Fission and Fusion
	Figure 3. Token TM Hardware
	Table 3 (b) Metastate (Sum, TID) Fusion

	4.3 Metastate at Memory
	4.4 Fast Token Release
	Table 4 (b) In-Cache Metastate
	Figure 4. TokenTM’s Fast Token Release in Action

	5 TokenTM Operation and Discussion
	5.1 Operation
	5.2 Conflict Resolution
	5.3 Systems Issues
	5.4 Discussion

	6 Performance Evaluation
	Table 5. Workload Parameters
	6.1 Methods and Workloads
	Base System
	HTM Variants
	Simulation Methods

	6.2 Results
	Figure 5. TokenTM Performance

	7 Conclusions
	Table 6. TokenTM Specific Overheads

	8 Acknowledgements
	9 References

	TokenTM: Efficient Execution of Large Transactions with Hardware Transactional Memory
	Jayaram Bobba, Neelam Goyal, Mark D. Hill, Michael M. Swift and David A. Wood
	{bobba, neelam, markhill, swift, david}@cs.wisc.edu
	Dept. of Computer Sciences
	University of Wisconsin-Madison

