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Abstract
Current hardware transactional memory sys-

tems seek to simplify parallel programming, but assume 
that large transactions are rare, so it is acceptable to 
penalize their performance or concurrency. However, 
future programmers may wish to use large transactions 
more often in order to integrate with higher-level pro-
gramming models (e.g., database transactions) or per-
form selected I/O operations.

To prevent the “small transactions are com-
mon” assumption from becoming self-fulfilling, this 
paper contributes TokenTM—an unbounded HTM that 
uses the abstraction of tokens to precisely track conflicts 
on an unbounded number of memory blocks. TokenTM 
implements tokens with new mechanisms, including 
metastate fission/fusion and fast token release. 
TokenTM executes small transactions fast, executes 
concurrent large transactions with no penalty to non-
conflicting transactions, and gracefully handles paging, 
context switching, and System-V-style shared memory.

1  Introduction

Transactional Memory (TM) [13] has emerged as a 
promising approach to ease parallel programming. 
Hardware transactional memory (HTM) systems seek to 
minimize performance overheads by pushing primitive 
operations into hardware. Early HTM systems [1,5,10, 
11,20] exploit the synergy between cache coherence and 
transactional conflict detection to maintain TM state in 
structures tightly coupled to the processor caches. These 
systems efficiently execute transactions small enough to 
fit in caches and/or write buffers, but fail or degrade per-
formance for larger transactions. More recent HTM sys-
tems [1,3,7,8,22,29] incorporate special virtualization 
actions to handle transactions that overflow their private 
fixed-size hardware structures. These actions have two 
important implications. First, they require significant 
modifications to existing cache coherence protocols 
and/or virtual memory systems, and thus represent a sig-
nificant barrier to widespread adoption. Second, the vir-
tualization actions impose significant performance 
overheads, sending strong feedback to programmers to 
avoid large transactions. For example, while running 
large transactions, VTM [22] adds overhead to all sub-
sequent cache misses, LogTM-SE [29] degrades to seri-

alizing all transactions, OneTM [3] serializes execution 
of multiple large transactions, and XTM [8] and 
PTM [7] employ heavy-weight page-based solutions. 

If our field is not careful, the current HTM assumption—
that transactions are small and short running—may 
become a self-fulfilling prophesy. Programmers that use 
large, long-running transactions receive clear feedback 
that they should not do so. We see reasons why pro-
grammers may want large/long-running transactions, 
especially ones that are unlikely to conflict. For exam-
ple, future workloads might wish to perform I/O and 
blocking system calls within atomic blocks of code.
Supporting such program usage could allow TM to be 
integrated with other transactional programming mod-
els, such as databases, file systems, or message queues.
While real TM workloads that exhibit these behaviors 
do not exist yet, we find promising cases where they 
could exist in future workloads.

An unbounded HTM must solve two sub-problems to 
efficiently support concurrent execution of large transac-
tions. First, as an executing transaction performs an 
unbounded number of tentative writes, the HTM must 
simultaneously store both pre-transaction and new val-
ues. Fortunately, this sub-problem is solved well by 
LogTM [20,29], which writes new values “in place” 
after saving the old values in a per-thread software-visi-
ble log in memory (that can be victimized from caches 
or even paged).

Second, the HTM must detect conflicts among an 
unbounded number of blocks accessed by concurrent 
transactions. The design should also aim to achieve the 
following goals:

•Minor or no changes to cache coherence protocols 
(i.e., better to add message payloads than change 
protocol transitions) and virtual memory systems.

•Minimal overhead for executing small (e.g., fit in 
cache) transactions. Efficient execution of large 
transactions should not slow down the execution of 
smaller transactions. In particular, we should be 
able to begin and end small transactions quickly 
with a little overhead on the normal execution path.

•Localized overhead for executing large transac-
tions. While some overhead is inevitable on large 
transactions, it should directly affect only the thread 
running the large transaction and not interfere with 
the concurrent execution of non-conflicting threads.
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To this end, we propose a fast unbounded HTM called 
TokenTM. TokenTM uses LogTM’s per-thread logs in 
conjunction with a novel conflict detection scheme.
TokenTM ensures transaction safety by maintaining the 
single-writer/multiple-readers invariant for each mem-
ory block B at all times: Block B is either transaction-
ally inactive, part of the read set of one or more 
transactions, or part of the write set of exactly one 
transaction.

TokenTM maintains this invariant directly using trans-
actional tokens, a concept adapted from token coherence
[15]. Conceptually, each memory block has T tokens, 
where T is some large constant. Before a transaction 
writes a block B for the first time, it must acquire all of 
B’s T tokens and write them to its private log. Subse-
quent writes to B within the same transaction proceed 
without additional token actions. Before a transaction 
reads a block B for the first time, it acquires one of B’s 
tokens and writes the token to its log. Subsequent reads 
to B by the same transaction may proceed without addi-
tional actions. A transaction that fails to obtain the 
needed tokens detects a conflict and invokes a software 
contention manager. When a transaction ends, in a com-
mit or an abort, it releases all the acquired tokens.

TokenTM introduces two key new mechanisms. First, 
metastate fission/fusion enables concurrent transactions 
to efficiently modify token state even for shared read-
only blocks. Second, fast token release enables small 
transactions to release their tokens in constant time. 
However, in the worst case, a transaction must walk its 
log to release the tokens, but this does not affect the 
speed or concurrency of non-conflicting transactions.

Table 1. Analysis of Long-running Critical Sections (LCS)
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AOLServer 0.1 ms 0.7 ms 0.1
Apache 49.6 ms 70.5 ms 1.4
BerkeleyDB 0.1 ms 0.2 ms 0.01
BIND 0.2 ms 1.8 ms 2.2

By developing the above mechanisms this paper con-
tributes a new HTM that (1) performs fast and precise 
conflict detection on an unbounded number of memory 
blocks, (2) executes small transactions fast, (3) executes 
concurrent large transactions with no penalty to non-
conflicting transactions, and (4) gracefully handles pag-
ing and context switching. Moreover, since conflict 
detection is per physical memory block, TokenTM can 
be extended to operate with both virtual machine moni-
tors and memory shared among processes.

The following sections provide a motivating example 
and related work (Section 2), a discussion of transac-

tional tokens and double-entry bookkeeping (Section 3) 
and implementation via metabit fission/fusion and fast 
token release (Section 4). The remaining sections dis-
cuss TokenTM operation (Section 5), methods and per-
formance analysis (Section 6) and conclude.

2  Motivation & Related Work

2.1  Where are the large transactions? 
Large transactions are rare, in part, because current 
HTMs bias against them. To gain an insight into the 
potential uses of large transactions, we look elsewhere.

In particular, we examine four multi-threaded workloads 
that use locks for mutual exclusion. Using DTrace [17], 
a dynamic instrumentation tool from Sun Microsystems, 
we recorded the critical section activity in these work-
loads. DTrace enables us to observe locking behavior of 
both user and OS code. We track critical sections that 
are long-running and could lead to large transactions if 
they were implemented using TM. Specifically, we
record critical sections that either make blocking system 
calls or context switch during their execution. Table 1
summarizes their execution behavior. Apache and BIND 
spend significant execution time in long-running critical 
sections. The longest critical section in Apache forks 
processes while holding a lock. In BIND, the longest 
critical sections wait for network messages while hold-
ing a lock associated with a network socket. AOLServer 
and BerkeleyDB also have a significant number of long-
running critical sections, though they do not spend as 
much time executing them. These large critical sections 
call the memory allocator frequently leading to ‘sbrk’ 
system calls. They also perform log writes to the disk in 
order to flush their log buffers while holding locks. 

The presence of such long-running critical sections in 
well-optimized multi-threaded code suggests the need to 
permit system activity within atomic blocks of code. 
While a good parallel programmer might not choose to 
convert the critical sections in these four programs to 
transactions, we believe that an HTM system should not 
preclude allowing such behaviours in future TM work-
loads. More recently, Lu et. al. [14] have highlighted the 
need for efficient support in HTMs for large transactions 
in order to avoid an important set of concurrency bugs.

2.2  Drawbacks of Current TM Systems
Several proposed HTM systems allow unbounded trans-
actions, but do so at a cost of substantial hardware or 
software complexity to virtualize the limited hardware 
resources. UTM [1], the first unbounded HTM system 
proposed, requires non-trivial hardware extensions, 
including a virtual address pointer added to each block 
in memory (also requiring address translation logically 
at memory). VTM [22] uses a combination of software 
and firmware to support large transactions. VTM virtu-
alizes caches by invoking special firmware on cache vic-
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timization to move transactional data into software 
tables. It also uses firmware to virtualize hardware 
caches on a context switch. XTM [8] and PTM [7] lever-
age paging and address translation mechanisms to han-
dle transaction overflows, requiring significant 
modifications to an operating system’s already-complex 
virtual memory system.

LogTM-SE [29] is an unbounded HTM system that uses 
signatures to represent the read- and write-sets of trans-
actions for conflict detection. Signatures are Bloom fil-
ters that compactly summarize a set of elements. Small 
hardware signatures (e.g., 2Kbit) are easy to virtualize 
since they can be moved around on context switch and 
paging events. However, signatures allow false positives 
that lead to unnecessary conflicts between transactions 
[30]. Large transactions increase the probability of false 
positives, which degrades performance by unnecessarily 
serializing non-conflicting transactions.

To see the performance impact of false positives, con-
sider Figure 1. Using methods described in Section 6.1, 
it presents the performance for four STAMP workloads 
[18] on LogTM-SE variants with 2 or 4 H3 hash func-
tions (LogTM-SE_2xH3 and LogTM-SE_4xH3), nor-
malized to LogTM-SE_Perf that uses unimplementable, 
perfect read- and write-set tracking. Results show that 
false positives significantly degrade performance for 
applications with larger and more frequent transactions.

Finally, OneTM [3] is an unbounded HTM that restricts 
the TM system to concurrently execute only one over-
flowed transaction at a time. It uses per-block metadata 
to track the read- and write-sets for transactions that 
overflow hardware caches. To minimize serialization for 
transactions that overflow, OneTM uses a special TM-
state victim cache on transactional data eviction. Blun-
dell et al. show that, with this optimization, serializing 
execution of overflowed transactions does not impact 
the performance of existing TM workloads. Neverthe-
less, Amdahl’s Law suggests that allowing only one 
unbounded transaction will cause a bottleneck as system 
sizes and transactions scale up.

Software TM (STM) systems also allow unbounded 
transactions, but they impose high overheads compared 
to HTMs for both small and large transactions. Hybrid 
hardware/software TM systems [9,18,23,25] require 
much less hardware complexity than unbounded HTM 
systems while performing similarly on small transac-
tions. For large transactions, they revert to their underly-
ing STMs, incurring significant overheads compared to 
HTM systems. For SigTM, some programs run 160%-
200% slower than an HTM system [18]. Similar results 
have been estimated for STM systems that use imprecise 
conflict detection state [30].

3  Transactional Tokens in TokenTM
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Figure 1.  Effect of False Positives

This paper proposes TokenTM, a system that allows an 
arbitrary number of unbounded transactions without 
artificially affecting the speed or concurrency of small 
transactions. TokenTM’s key innovation is enabling pre-
cise, unbounded transactional conflict detection by 
counting per-block transactional tokens. 

3.1  Transactional Tokens 
HTMs that enforce eager conflict detection ensure that,
for each memory block B: Block B is either transaction-
ally inactive, part of the read set of one or more transac-
tions, or part of the write set of exactly one transaction.

TokenTM precisely maintains this invariant via the 
abstraction of tokens. It associates T tokens with every 
memory block. A transaction that reads block B must 
acquire at least one of B’s tokens, while a transaction 
that writes block B must acquire all of B’s T tokens. 

Initially, the memory system holds all tokens. To read or 
write a block B for the first time, a transaction seeks to 
acquire one or T tokens, respectively, and saves them in 
a per-thread log. If successful, the transaction can per-
form more accesses of the same type without acquiring 
more tokens. If a transaction cannot acquire the required 
token(s), it detects a conflict on block B and seeks reso-
lution (Section 5.2). When a transactions ends—com-
mits or aborts—it releases all of its acquired tokens.

3.2  Double-Entry Bookkeeping for Tokens
TokenTM manipulates tokens with a technique inspired 
by the accounting method of double-entry bookkeeping
[27]. Every token transfer is recorded in two places: a 
credit in one account and a debit in another account. 
TokenTM records token movement using multiple 
accounts: 

•Per-block hardware metastates enable fast conflict 
detection and often identify conflicting threads.

•Per-thread software-visible logs provide unbounded 
storage for conflict detection (token) information 
that, in the worst case, provides the complete truth 
for a software conflict manager.

TokenTM enforces a bookkeeping invariant that, for 
any block B at any time, the count of tokens debited 
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from the metastate equals the total count of tokens cred-
ited to the software-visible logs. 

TokenTM’s bookkeeping operates as follows. Initially, 
memory begins with a credit of T tokens per block, each 
block’s metastate indicates that no tokens have been 
debited, and the logs are empty. When a token is 
acquired by a transactional thread, TokenTM debits the 
block’s hardware metastate and credits the thread’s soft-
ware-visible log. Thus, memory’s token balance for a 
block is the original T tokens less the tokens debited by 
the transaction (and recorded in the logical metastate). 
Similarly, a thread’s log has a balance that equals the 
number of tokens that it has acquired for that block. 
When a thread releases a previously acquired token, 
TokenTM debits the thread’s log and credits the tokens 
back to the logical metastate. Memory’s token balance 
goes back to T when all the acquired tokens have been 
released from all the logs. 

D: T tokens

B: T tokens

Software State

A

C
D
E
F

B

Block
Hardware State

} All tokens acquired. Taken by X
} One token acquired. Taken by Z
} All tokens acquired. Taken by X
} All tokens acquired. Taken by Y
} No tokens acquired.

} 2 tokens acquired.<1, 1, 0>
<T, 0, 0>
<0, 0, 1>
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<0, T, 0>
<0, 0, 0>

Metastate
Logical

Thread X Thread Y Thread Z

A: 1 token
A: 1 token
E: T tokens C: 1 Token Token
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Figure 2. Double-Entry Bookkeeping

Each TokenTM transaction explicitly stores its tokens in 
a per-thread software-visible log, illustrated in the top 
half of Figure 2. Threads X, Y and Z are executing 
transactions. In the example, X’s log has three entries. 
The first entry indicates that X has acquired one token 
for block A. The second and third entries indicates that 
the thread has all T tokens for blocks B and D. 

Each TokenTM memory block B stores the number of 
tokens debited by each of the transactional threads. With 
every memory block B, TokenTM logically associates a 
vector of token debits by each thread <c0, c1,..., ci,...> 
where 0 ≤ ci ≤ T and Σ ci ≤ T.

The bottom half of Figure 2 displays the logical met-
astate after transactional threads X, Y and Z have 
acquired tokens. The metastate for block A indicates 
that X and Y have debited one token each. Similarly, 
block B’s metastate indicates that thread X has all T 
tokens to enable writes. Block F has not been accessed 
by any transactions and is thus in state <0, 0, 0>. 

3.3  Discussion 
Aren’t TokenTM’s transactional tokens the same as 
token coherence’s tokens [15]? No, but they do apply 
similar concepts at different levels. Transactional tokens 
enforce an invariant on transactional read and write sets, 
while token coherence’s tokens pertain to coherence of 
cached blocks, e.g., MSI states. TokenTM decouples a 
block’s transactional memory state from its cache coher-
ence state. In TokenTM, a processor is allowed to cache 
a block in coherence state M (i.e., all tokens in a Token 
Coherence protocol) even if another processor’s transac-
tion has acquired all of TokenTM’s transaction tokens.
To avoid any confusion, we describe TokenTM imple-
mented on top of a directory coherence protocol.

Aren’t TokenTM’s logical metastates expensive to 
maintain in hardware? No. For efficiency reasons, we 
will not represent the complete vector of token debits in 
hardware. Instead, TokenTM implementations will only 
track and maintain a conservative summary of the vec-
tor. The summary contains the sum of tokens acquired 
by all the transactional threads and, in certain cases, an 
identifier (TID) of a thread that has acquired one or all 
of the tokens. Section 4 shows that this information is 
sufficient to efficiently detect conflicts. If necessary, the 
full vector of token debits can be re-constructed on-
demand from software-visible logs.

4  Implementing TokenTM’s Metastate 

Table 2. Common Metastate Transitions
Actions by thread X Before After
Transaction Load (0, -) (1, X)
Transaction Store (0, -) (T, X)
Release one Token (1, X) 

(v, -), v > 0
(0, -) 
(v-1, -)

Release T tokens (T, X) (0, -)
Conflicting Load (T, Y), (T, Y), 
Conflicting Store (v, -), 

(T, Y), 

(v, -), 

(T, Y), 

Y X≠ Y X≠
v 0≠
Y X≠

v 0≠
Y X≠

TokenTM implements per-block logical metastate by 
extending a conventional cache coherent shared-mem-
ory system. We present the design in the context of a
multi-core system with private and shared write-back 
caches and a directory-based write-invalidate coherence 
protocol with non-silent evictions. Figure 3 illustrates 
the TokenTM system, where the dark boxes show the 
hardware state added to the base system. Compared to 
log-based HTMs like LogTM-SE, TokenTM requires 
two additional registers ‘TID’ and ‘fast-release’ on each 
processor and extra bits for implementing metastates.

4.1  Metastate Summary
Our TokenTM implementation summarizes the logical 
metastate’s full vector of token debits with a 2-tuple 
(Sum, TID), representing the sum of all token debits and 
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the TID of a token owner respectively. The TID field 
identifies the owner transaction only when the sum of 
token debits is either 1 or T. Table 2 depicts common 
transactional operations affecting the metastate.
Section 4.3 shows how TokenTM represents the tuple in 
a single packed field. For the rest of the paper, metastate 
refers to the 2-tuple, not the full vector. 

4.2  Metastate Coherence, Fission and Fusion 
TokenTM’s abstract model associates metastate with 
each memory block. If TokenTM only stored metastate 
at memory, every metastate access would have to access 
memory even for locally cached data. On the other hand, 
we also do not want to modify the coherence protocol 
(e.g., with negative acknowledgements or sticky states 
[20]) as coherence protocol designers do not like to 
change their hard-to-verify protocols. 

Instead, TokenTM enables fast access to metastate by 
piggy-backing additional payload on existing coherence 
messages, but makes no changes to existing coherence 
states, protocol transitions, or semantics. TokenTM has 
two cases—one easy, and one hard—for piggybacking 
metastate on coherence messages.

The easy case is when a block exists as a single coherent 
copy either at memory or in one cache. If a transactional 
thread wishes to write to a block B, it uses the cache 
coherence protocol to get the exclusive copy of B. If the 
metastate indicates the absence of transactional con-
flicts, the processor updates the metastate, and writes the 
data. If the processor subsequently wishes to replace B, 
before or after the transaction is done, it writes B and the 
attached metastate back to memory. If another thread 
seeks to write B, its processor will obtain B and its met-
astate via the coherence protocol, detecting a transac-
tional conflict when it examines the metastate. As long 
as there is only one copy of block B, metastate coher-
ence follows from the data coherence.

The hard case for metastate coherence occurs when the 
coherence protocol creates two or more shared copies of 

a block B, which occurs when multiple threads seek to 
read B. What happens if one of those threads seeks to 
read B in a transaction, requiring TokenTM to access 
and modify block B’s metastate? Naively, we could coa-
lesce all copies of B into a single copy, return to the easy 
case above, and modify the metastate. However, this 
would severely impact performance by rendering the 
MSI shared state S useless for transactional readers.

Instead, TokenTM allows multiple transactional readers 
to read and update metastate in their local copy of a 
shared block (whose data can’t be modified) by support-
ing metastate fission and fusion: 

MemoryController MemoryController

MemoryController MemoryController

Memory Bank

Tag Data State AttrShared L2
Cache Bank State

Coherence

Private L1

XactLevel
TrapTypeLogPtr

LogBase

TID
Fast−Release

Registers

TokenTM new}
R W R’ W’ R

+
AttrTag

State
Coherence Data

TokenTM
State

Data State AttrECC

CPU
Checkpoint

User
Registers

Register

Figure 3. Token TM Hardware

•TokenTM performs metastate fission when it cre-
ates an additional shared copy of a block (e.g., for a 
read request) and initializes that copy’s metastate.
Table 3 (a) gives metastate fission rules for splitting 
the initial metastate labeled “Before” into two cop-
ies “After” and “New Copy.” X and Y refer to TIDs, 
while u and v refer to counts.

•TokenTM performs metastate fusion when it 
merges two shared copies (e.g., on an exclusive 
request or writeback). Table 3 (b) gives rules for 
fusing metastate from two copies of block B into a 
single copy, using the same notation as the previous 
table. Several cases among the cross product of 
prior states should not occur and are errors, e.g., a 
transaction writer (T, X) should never encounter 
multiple transactional readers (u, -) for the same 
block B. 

Metastate fission/fusion works because transactional 
readers must accurately know whether there is a writer, 
but they don’t need to know the count—or even the exist-
ence—of other transactional readers. Hence, the rules 
specified for fission/fusion ensure that all the metastate 
copies are coherent when there is a writer transaction 
(i.e., metastate of block is (T, X)). Otherwise, copies of 
metastate are allowed to be temporarily incoherent and 
can be accessed and modified locally by transactional 
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readers. To this end, when a transaction with TID X 
attempts to read a cache block, TokenTM examines the 
block’s metastate and (a) completes the read (e.g., if 
metastate is (1, X) or (T, X)) or (b) detects a conflict with 
another transactional writer (if metastate is (T, Y),Y X≠ )
or (c) acquires an additional token by modifying the 
local metastate (e.g., (0, -) to (1, X)) and then completes 
the read. 

Table 3(b) Metastate (Sum, TID) Fusion
Copy 

1
Copy 2

(u, -) (1, Y) (T, Y)

(v, -) (u+v, -) (1, Y) if v=0

(v+1, -) if v>0

(T, Y) if v=0

else error

(1, X) (1, X) if u=0

(u+1,-) if u>0

(2, -) error

(T, X) (T, X) if u=0

else error

error (T, X) if X=Y 
else error

Table 3(a) Metastate (Sum, TID) Fission
Before After New Copy
(u, - ) (u, -) (0, -)
(1, X) (1, X) (0, -)
(T, X) (T, X) (T, X)

TokenTM metastate fission/fusion generalizes OneTM’s 
lazy coherence [3]. Lazy coherence relies on the restric-
tion that at most one overflowed transaction can modify 
metastate at a time. Metastate fission/fusion allows 
many transactional readers to simultaneously modify a 
block’s metastate. 

4.3  Metastate at Memory 
TokenTM represents the per-block metastate in physical 
memory using known techniques. TokenTM encodes the 
metastate (sum, TID) in 16 “metabits” (as shown in 
Table 4(a)): 

• State: This 2-bit field represents the sum of token 
debits. The four encoded values represent either 1, 
0≤ u< T, T token debits, or an overflow state.

•Attr: This 14-bit attribute field encodes a TID (if 
State represents 1 or T token debits) or the sum of 
token debits (if State represents 0≤ u< T debits). 

TokenTM handles the rare case of more concurrent 
readers than the 14-bit count can represent using known 
“limitless” techniques [6], which use the overflow state 
to indicate that software maintains part of the count. 

To minimize changes to the memory system, TokenTM 
stores 16 metabits per 64-byte memory block using re-
coded error-correction codes, as pioneered by S3.mp 
[21]. Standard DRAM modules uses 72-bit codewords 
to protect 64 data bits with single error correction and 
double error detection (SECDED). With somewhat 
more logic and negligible loss in error coverage, one can 
group four words together to protect 256 data bits with 

SECDED using 10 check bits. This frees an independent 
22-bit codeword (72*4 - 256 - 10) that can in turn repre-
sent 16 metabits protected with SECDED using 6 check 
bits. Alternatively, the memory controller could explic-
itly reserve part of the physical memory for metabits [3], 
incurring about 3% overhead (16 bits for 64 bytes).

4.4  Fast Token Release 

Table 4(b) In-Cache Metastate
Metastate Metabits (in L1 with X on L1’s core)
(Sum,TID) R W R’ W’ R+ Attr
(0, -) 0 0 0 0 0 -
(u, -) 1 0 0 0 1 u-1
(u, -) 0 0 0 0 1 u
(1, X) 1 0 0 0 0 X
(1, Y) 0 0 1 0 0 Y
(T, X) 0 1 0 0 0 X
(T, Y) 0 0 0 1 0 Y

Table 4(a) In-Memory Metastate

Metastate Metabits (in Memory)

(Sum, TID) State Attr
(u, -) 00 u
(1, X) 01 X
(T, X) 10 X

TokenTM explicitly logs tokens into a thread’s soft-
ware-visible log and must return them to the blocks’ 
metastate on transaction commit or abort. While walk-
ing the log is already necessary on abort (to restore the 
blocks’ data values to their pre-transaction versions), 
this could be a significant overhead in the more common 
case of commiting a small transaction. 

To address this, TokenTM (optionally) supports a fast 
token release that, in the best case, releases all of a 
transaction’s tokens with a fast, constant-time operation 
that still maintains TokenTM’s bookkeeping invariant. 
TokenTM applies fast release only when all the transac-
tion’s blocks remain in its processor’s L1 cache. With 
fast token release, TokenTM:

•Removes all tokens from its log by resetting its log 
pointer to the log base, and

•Restores all per-block metastate by flash clearing 
metabits in the L1 cache.

To enable fast token release, TokenTM enhances the L1 
cache’s metabit representation to distinguish tokens 
acquired by the current and other transactions. It 
encodes the state (State) field in L1 caches using five 
(instead of two) bits: R, W, R’, W’ and R+. The R and W
bits are explicitly associated with the processor’s current 
thread X. The R bit indicates that the thread executing on 
the processor has acquired one token for the block, i.e., 
metastate (1, X). Similarly, the W bit indicates that the 
current thread has acquired all the block’s tokens, i.e., 
metastate (T, X). R’ and W’ bits indicate the (1, Y) and 
(T, Y) states respectively, when the acquired tokens 
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belong to any thread Y (including the currently running 
thread X). R+ indicates the (u, -) state, where the u 
tokens have been acquired by any set of transactions.
Table 4(b) gives the complete list of metastates and their 
in-cache representations for an L1 cache that has thread 
X executing on its core.

In the absence of sharing, a transactional thread initially 
obtains a copy of block B, finds its metastate in (0, -), 
initializes the R, W, R’, W’ and R+ bits to zero, and then 
sets R or W for reads and writes, respectively, and stores 
its TID into the Attr field. Subsequent reads/writes to B 
by the same transaction proceed without further action 
(like many bounded HTMs). In the best case, a transac-
tion restores the metastate to (0, -) at commit by flash-
clearing the R and W bits in the L1 cache.

Figure 4 illustrates an example of fast token release, 
with the changes in hardware state highlighted with 
dashed circles. In part (a), a thread with TID 42 begins a 
transaction. Initially, blocks A and B both are in met-
astate (0, -) and are cached in the processor’s L1 cache 
in the shared and modified coherence states, respec-
tively. In part (b), the thread adds block A to its read set 
by setting R to 1 and Attr to 42, logically changing its 
local metabit state to (1, 42). In part (c), the thread adds 
B to its write set by setting W to 1 and Attr to 42, logi-
cally changing its local metabit state to (T, 42). In part 
(d), the thread successfully performs a fast token release 
by flash clearing R and W bits and resetting its log, tran-
sitioning both A and B back to metastate (0, -).

(b) Transactional Load
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Figure 4. TokenTM’s Fast Token Release in Action

TokenTM employs fast token release only when it is 
safe. Fast token release is not safe if any block with R or 

W bits set has been evicted from the L1 (including those 
due to page out). In this case, TokenTM cannot deter-
mine which tokens could be implicitly returned via flash 
clear and which must be released explicitly. Hence, 
TokenTM walks the log on commit to return all tokens. 

TokenTM enables OS context switching in constant 
time at the cost of two flash-OR circuits per cache block. 
However, this operation precludes the previously-active 
thread from later using fast token release. On a context 
switch, for all L1 blocks in parallel, it performs: R’ = R’
| R; clear R; W’ = W’ | W; clear W. This activity logically 
transfers any set R bits to the corresponding R’ bits and 
any set W bits to the W’ bits. The new thread can now 
use R and W bits for its transactions. Note that, as shown 
in Table 4(b), W’ and W cannot both be set, and R’ and R 
cannot both be set at the same time. Attempting to set 
the R bit when R’ is already set causes TokenTM to 
either: (i) if Attr equals the current TID, set R and clear 
R’, or else (ii) clear R’, set R+ and Attr = 1, and set R. 
Note that a context switch can result in both R’ and R+

being set temporarily, but these can be fused the next 
time the block is accessed.

Fast token release allows most transactions to commit in 
constant time, yet preserves the metastate needed to sup-
port large transactions. 

5  TokenTM Operation and Discussion 

5.1  Operation
TokenTM performs eager conflict detection by ensuring 
that it has acquired sufficient tokens before each load or 
store. Performing these checks on all accesses, includ-
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ing those outside transactions, ensures strong atomicity 
[4]. Accesses that cannot acquire sufficient tokens 
invoke a conflict resolution policy. An initial load access 
to block B stores an acquired token in the thread’s log 
by writing a one-word record with block B’s virtual 
address. Loads to blocks with the R bit already set need 
not write additional log entries. An initial store access to 
a block B acquires all (remaining) tokens and records 
them in a log record with block B’s virtual address and 
token count. Loads and stores with the W bit set do not 
write log entries. TokenTM must also log the block’s 
data prior to the first store; our implementation writes 
data and tokens to the same log.

5.2  Conflict Resolution 
Conflicting requests may be retried in hardware, but if 
the conflict persists, TokenTM traps to a software con-
tention manager. Figuring out which transactions are 
involved in a conflict is an important first step for many 
conflict resolution policies. TokenTM makes this easy in 
some cases and harder in others.

A transaction could fail because another transaction has 
written the block, and thus has acquired all the tokens. 
This is an easy case, as the block’s metastate carries the 
TID of the writer transaction, which can be passed to the 
software contention manager for conflict resolution

Similarly, a transaction attempting to write a block 
could fail because one or more reader transactions have 
already acquired tokens. If there is only one acquired 
token, the block’s metastate often holds the reader trans-
action’s TID resulting in another easy case.

A writer conflicting with multiple reader transactions 
represents a harder case. Nonetheless, hardware may 
still help identify many reader transactions using infor-
mation already conveyed by the coherence protocol to 
support metastate fusion. Recall that a directory coher-
ence protocol sends invalidation messages to all shared 
copies in response to a request for exclusive access. The 
caches invalidate their copies and send acknowledge-
ment messages to the requesting processor. TokenTM 
piggybacks the invalidated blocks’ metastate on the 
acknowledgement messages, and relies on the request-
ing processor to perform metastate fusion. Those copies 
that are in the (1, X) state include the TID of the reader 
transaction. TokenTM records these TIDs and makes 
them available to the contention manager through mem-
ory-mapped control registers. The contention manager 
uses this (partial) list as a hint to identify conflicting 
transactions. Similar to token coherence, TokenTM’s 
use of tokens ensures that the many potential races 
between the contention manager and active transactions 
cannot result in a semantic error. 

In the hardest case, when the contention manager 
decides to abort all conflicting transactions and does not 

get a complete list of owners from hardware, it must 
look through the logs of active transactions to identify 
all conflicting transactions. In our workloads, this is 
required for only two of the benchmarks and only rarely.

5.3  Systems Issues 
TokenTM interacts well with conventional operating 
systems (OSs) and virtual machine monitors (VMMs). 
TokenTM virtualizes transactional storage by using vir-
tual memory for both new values and old-value logs. For 
context switches, TokenTM provides an instruction to 
free R and W bits before scheduling a new thread. Pag-
ing requires the VM system to clear metastates on ini-
tialization, save them on page out, and restore them on 
page in, borrowing mechanisms from existing systems 
such as the IBM AS/400 [26].

TokenTM also operates cleanly with VMMs. TokenTM 
does not require that the OS manipulate physical 
addresses, and hence is not affected by an additional 
layer of address translation. In addition, thread identifi-
ers (TIDs), the only new resource introduced by 
TokenTM, can be managed by the OS without VMM 
involvement. Similar to the OS, the VMM need only 
free R and W bits when it preempts or migrates a virtual 
processor and save and restore metastates when paging. 

Moreover, TokenTM may be the first HTM to generally 
support System-V-style shared memory among threads 
in different processes. Metastates are associated with 
physical pages and can be accessed from each process 
along with the data. However, TIDs must be unique 
across all processes accessing the shared memory and 
the contention managers for each process must coordi-
nate to resolve conflicts. OneTM can also support this 
sharing, given a mechanism for ensuring at most one 
large transaction at a time among processes with over-
lapping memory. TokenTM can also support shared 
copy-on-write pages between processes but must either 
ensure that the page has no active transactions or per-
form metastate fission in software to separate tokens 
acquired by different processes. 

5.4  Discussion 
TokenTM has several positive properties compared to 
other unbounded HTM systems.

(1) TokenTM provides fast and precise conflict detec-
tion for an unbounded number of memory blocks, by 
using metastate that follow a block’s data into caches, 
back to memory, and even onto disk. For example, 
TokenTM suffers no false conflicts due to signature 
aliasing (as do Bulk [5] and LogTM-SE).

(2) TokenTM’s fast token release allows transactions 
that stay in the L1 cache to commit at full hardware 
speed. Except for conflicts, transaction speed is unaf-
fected by large transactions in other threads. TokenTM 
suffers no serialization due to signature saturation (like 
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LogTM-SE) nor is it limited to a single large transaction 
(like the original TCC [10] and OneTM). When a trans-
actional block leaves a processor’s L1 cache, TokenTM 
may no longer perform fast release, but it does not have 
to slow transactions on every cache miss like VTM.

(3) TokenTM’s design allows standard cache coherence 
protocols, since the metastates decouple transaction 
state from coherence state. TokenTM avoids coherence 
protocol changes, such as LogTM’s negative acknowl-
edgements and sticky states, but piggybacks metastate 
on existing coherence messages. The changes are simi-
lar, but more extensive, to those required to implement 
non-silent replacements of shared copies using replace-
ment-way “hints” [2,12]. More significantly, TokenTM 
prohibits silent evictions of clean data, an important 
optimization for some directory protocols. 

(4) TokenTM handles paging and context switches 
cleanly. With TokenTM, paging requires only small 
modifications to the virtual memory system to initialize, 
save, and restore metastates. On context switches, 
TokenTM frees resources for the next thread in constant 
time via flash-clear and flash-OR circuits in the L1 
cache. TokenTM does not require broadcast (e.g., for 
LogTM-SE’s summary signatures) nor the substantial 
VM system modifications of XTM and PTM.

TokenTM’s benefits, however, come with some costs. 
Memory, coherence messages, and caches require addi-
tional metabits to represent each block’s metastate. For 
fast token release, the L1 cache requires a sparse metabit 
representation and flash-clear and flash-OR circuits. 
Finally, large transactions pay the performance overhead 
of walking their log to release tokens. While this cost is 
limited to a single thread, it is linear in log size. Never-
theless, our performance evaluation shows that this cost 
is acceptable for the workloads studied.

6  Performance Evaluation 

Table 5. Workload Parameters
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Barnes 512 bodies whole parallel phase 1 2,553 6.1 4.2 42 39
Cholesky tk14.O Factorization 1 60,203 2.4 1.7 6 4
Radiosity batch 1 task 1024 21,786 1.8 1.5 25 24
Raytrace teapot whole parallel phase 1 47,783 5.1 2.0 594 4
Delaunay gen2.2-m30 whole parallel phase 1 16,384 51.4 38.8 507 345
Genome g1024-s32-n65536 whole parallel phase 1 100,115 14.5 2.1 768 18
Vacation-Low low contention whole parallel phase 1 16,399 70.7 18.1 162 75
Vacation-High high contention whole parallel phase 1 16,399 99.1 18.6 331 80

This section shows that TokenTM performs comparably 
to previous HTM systems for programs with small 
transactions and can perform significantly better for pro-
grams with larger transactions. 

6.1  Methods and Workloads 
Base System. We model a 32-core CMP system with in-
order, single-issue SPARC cores each having 4-way 32 
KB private writeback L1 I&D caches. All cores share an 
8-way 8 MB L2 cache consisting of 32 banks inter-
leaved by block address. A packet-switched intercon-
nect connects the cores and cache banks in a tiled 
topology consisting of 8 clusters, each made up of 4 
cores. The interconnect uses 64-byte links and adaptive 
routing. Four on-chip memory controllers connect to 
standard DRAM banks. On-chip cache coherence is 
maintained via an on-chip directory (at L2 cache banks) 
which maintains a bit vector of sharers and implements 
an MESI protocol.

HTM Variants. We model five alternative HTM sys-
tems. LogTM-SE_2xH3 and LogTM-SE_4xH3 are 
LogTM-SE variants that use 2Kbit signatures with 2 or 
4 parallel H3 hash functions and were shown to be the 
best performing signature designs by Sanchez et. al. 
[24]. LogTM-SE-Perf uses unimplementable perfect 
signatures. TokenTM and TokenTM_NoFast are the 
newly-proposed TokenTM system with and without fast 
token release (Section 4.4). All variants use timestamp-
based conflict resolution, because it performs well on 
these workloads and facilitates fair comparisons.

Simulation Methods. We build all HTM variants with 
the Wisconsin GEMS [16] toolset. We modified the per-
formance models of GEMS, but left the Simics full-sys-
tem infrastructure unchanged. Software actions on 
TokenTM’s logs are modeled with user-level traps that 
jump to a software handler which walks through logs for 
unrolling data and/or releasing tokens. The cache effects 
of releasing tokens are modeled via loads and stores. 
Multiple pseudo-randomly perturbed simulations were 
run to produce error bars indicating 95% confidence 
intervals on performance results. 

TM Workloads: We evaluate the performance of 
TokenTM using a selection of multi-threaded workloads 
from two different benchmark suites—STAMP [18] and 
SPLASH [28]—running on unmodified Solaris 9. 
Delaunay, Genome and Vacation were chosen from ver-
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sion 0.9.2 of STAMP, because they spend most of their 
execution time in large transactions. Vacation is inspired 
by the SpecJBB2000 benchmark. We use the two work-
load scenarios presented by Cao Minh et al. [18]—Vaca-
tion-high and Vacation-low. Vacation-low exhibits lower 
contention as it has mostly read-only tasks. These work-
loads approximate multi-threaded workloads that a 
naive TM programmer would develop. Barnes, 
Cholesky, Radiosity and Raytrace are scientific multi-
threaded workloads that exhibit significant critical-sec-
tion synchronization. The originally-lock-based critical 
sections are replaced with transactions. We modify 
Cholesky and Raytrace to reduce false sharing between 
transactions. These workloads represent more carefully 
optimized multi-threaded workloads that spend less 
time in transactions and mostly execute small transac-
tions. In order to reduce simulation times, we do not 
measure the entire parallel segment of the program for 
Cholesky and Radiosity. Instead, we take representative 
sections of the program and measure performance in 
terms of well-defined units of work. Table 5 presents the 
input sets and the measurement intervals for the various 
workloads, as well as the dynamic transaction character-
istics. Read- and write-set sizes are specified in terms of 
number of 64-byte cache blocks. No paging, context 
switching, or system calls occur within the transactions 
for these workloads.

6.2  Results 
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Figure 5. TokenTM Performance

TokenTM’s two performance goals target small and 
large transactions, respectively.

Do no harm on small transactions (e.g. SPLASH):
While TokenTM is designed to handle large transactions 
efficiently, the overheads imposed must not significantly 
slow down the execution of smaller transactions. 
Figure 5 shows the performance of the TokenTM system 
with respect to the three LogTM-SE variants. The exe-
cution time is presented as speedup normalized to 
LogTM-SE_Perf. We observe that TokenTM performs 
similar to all the LogTM-SE systems on the (small-
transaction) SPLASH workloads. This indicates that 

TokenTM’s overheads are low enough to run small 
transactions as efficiently as existing HTM systems.

Do some good on larger transactions (e.g. STAMP): 
As compared to the best implementable LogTM-SE 
variant (LogTM-SE_4xH3), TokenTM performs compa-
rably for Genome and Vacation-low/high, but 5.7 times 
better for Delaunay. Thus, TokenTM is most valuable if 
either the large read/write sets of Delaunay transactions 
become common or designers prize robust performance 
that is insensitive to signature design.

Nevertheless, TokenTM sometimes falls short (upto 8%) 
of the performance of the unimplementable LogTM-
SE_Perf, in large part due to the overhead from token 
bookkeeping—writing acquired tokens to the log and 
releasing them on transaction end—which is more sig-
nificant in the STAMP workloads because the transac-
tions are both larger and represent a larger fraction of 
execution time. 

Is fast token release effective? In order to estimate the 
effectiveness of fast release, Table 6 presents the frac-
tion of all transactions that benefit from this mechanism 
(column 2). Except for Delaunay and Vacation, over 
90% of transactions commit using fast token release. 
This follows from the average read- and write-set infor-
mation in Table 5 that shows that Delaunay and Vaca-
tion have significantly larger transactions. Table 6 also 
summarizes the characteristics of transactions that use 
fast release: average read- and write-set size (columns 3 
and 4, respectively) and average execution time (column 
5). Most transactions that benefit from fast release are 
short and access few blocks. However, Vacation has 
some larger transactions that retain all data in L1 caches 
until commit. 

In contrast, most transactions that release tokens in soft-
ware have much larger read- and write-set sizes (column 
6 and 7, respectively) and much longer execution times 
(column 8). The ‘Software Release’ column shows the 
time spent releasing tokens in software, which increases 
the average transaction duration by 5%-10% for the 
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workloads where software release occurs frequently.
Barnes, Cholesky and Radiosity have some small trans-
actions that are unable to commit with fast token 
release. These small transactions experience conflicting 
load and store requests that move or copy transactional 
data from their local caches. Nonetheless, fast token 
release does significantly improve the performance of 
Cholesky and especially Raytrace compared to 
TokenTM_NoFast. Using only software release 
increases the transactions’ duty cycles, leading to many 
more conflicts and transaction aborts. The above two 
observations lead us to conclude that, for our workloads, 
software token release incurs acceptable overheads for 
large transactions but that fast release helps minimize 
the duty cycle, and hence conflicts and aborts, of highly-
contended small transactions.

These results show that the utility of fast release 
depends upon the workload, providing significant bene-
fit for some and little or no benefit for others. Because 
no real TM workloads exist yet, we suspect that early 
implementations of TokenTM may forgo the complexity 
and potential performance benefits of fast release.

Is logging expensive? TokenTM logs the acquired 
tokens in software-visible logs. Like LogTM-SE, 
TokenTM also logs old values on a first transactional 
store. Before writing a log record, TokenTM must 
obtain exclusive coherence permission to the appropri-
ate cache block, which could lead to processor stalls if 
the block is not locally cached. These stalls are the most 
significant overhead of logging [19]. The final column 
in Table 6 presents the log stall cycles as a percentage of 
total execution time. Thus, for all workloads, these stalls 
are insignificant and logging imposes negligible over-
head on transaction performance.

Is conflict resolution expensive? In the worst case, 
TokenTM must walk other transactions’ logs to resolve 
a conflict between a writer transaction and multiple 
reader transactions when the hardware hint fails to iden-
tify all the readers. This happens in the three workloads 
with the largest transactions—Delaunay, Vacation-high, 

and Vacation-low—and even then occurs in less than 
0.1% of all transactions. If this case arises more fre-
quently in the future, the software contention manager 
can use a variety of techniques, such as dynamically 
constructed indices, to reduce the overhead.

In summary, TokenTM performs comparably to 
LogTM-SE for workloads with small transactions using 
fast token release, incurs low overhead while executing 
workloads with larger transactions, and has only small 
performance degradations compared to the idealized 
LogTM-SE_Perf system.

7  Conclusions 

Table 6. TokenTM Specific Overheads
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Barnes 94.4 4.4 3.0 506 18.5 19.2 7,961 1,388 0.1
Cholesky 95.7 2.3 1.7 147 2.3 1.9 431 414 <0.1
Radiosity 93.0 1.4 1.4 202 3.8 2.9 5,451 493 <0.1
Raytrace 98.2 2.8 2.0 241 125.1 2.0 8,272 2,303 0.1
Delaunay 72.4 2.2 1.1 4,523 105.4 136.2 108,580 10,815 0.2
Genome 99.4 17.2 3.1 2,624 130.6 5.8 10,937 3,656 0.1
Vacation-low 53.4 51.6 14.0 14,788 78.2 22.9 22,520 1,991 0.3
Vacation-High 38.6 63.7 12.4 15,458 109.2 21.4 22,530 2,488 0.4

This paper contributes TokenTM to prevent the “small 
transactions are common” assumption from becoming 
self-fulling. TokenTM uses the abstraction of tokens to 
precisely track conflicts on an unbounded number of 
memory blocks and implements them with new mecha-
nisms, including metastate fission/fusion and fast token 
release. As a result, TokenTM executes small transac-
tions fast, executes concurrent large transactions with no 
penalty to non-conflicting transactions, and gracefully 
handles paging, context switching, and System-V-style 
shared memory. Long-running transactions enable TM 
to be integrated with other transactional programming 
models, such as databases, file systems, or message 
queues, which frequently require I/O or other higher-
level operations. Future work will seek richer workloads 
and specify expanded semantics (e.g. open nesting). 
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