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Abstract12

Erosion is a major threat to soil resources in Europe, and may impair their ability to 13

deliver a range of ecosystem goods and services. This is reflected by the European 14

Commission’s Thematic Strategy for Soil Protection, which recommends an 15

indicator-based approach for monitoring soil erosion. Defined baseline and threshold16

values are essential for the evaluation of soil monitoring data. Therefore, accurate17

spatial data on both soil loss and soil genesis are required, especially in the light of 18

predicted changes in climate patterns, notably frequency, seasonal distribution and19

intensity of precipitation. Rates of soil loss are reported that have been measured,20

modelled or inferred for most types of soil erosion in a variety of landscapes, by 21

studies across the spectrum of the Earth sciences. Natural rates of soil formation can 22

be used as a basis for setting tolerable soil erosion rates, with soil formation consisting 23

of mineral weathering as well as dust deposition. This paper reviews the concept of 24
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tolerable soil erosion and summarizes current knowledge on rates of soil formation, 25

which are then compared to rates of soil erosion by known erosion types, for 26

assessment of soil erosion monitoring at the European scale.27

28

A modified definition of tolerable soil erosion is proposed as ‘any actual soil erosion 29

rate at which a deterioration or loss of one or more soil functions does not occur’,30

actual soil erosion being ‘the total amount of soil lost by all recognised erosion types’. 31

Even when including dust deposition in soil formation rates, the upper limit of 32

tolerable soil erosion, as equal to soil formation, is ca. 1.4 t ha-1 yr-1 while the lower 33

limit is ca. 0.3 t ha-1 yr-1, for conditions prevalent in Europe. Scope for spatio-34

temporal differentiation of tolerable soil erosion rates below this upper limit is 35

suggested by considering (components of) relevant soil functions. Reported rates of 36

actual soil erosion vary much more than those for soil formation. Actual soil erosion 37

rates for tilled, arable land in Europe are, on average, 3 to 40 times greater than the38

upper limit of tolerable soil erosion, accepting substantial spatio-temporal variation. 39

This paper comprehensively reviews tolerable and actual soil erosion in Europe and 40

highlights the scientific areas where more research is needed for successful 41

implementation of an effective European soil monitoring system.42

43

Key words: erosion tolerance; soil formation; climate change; soil protection; 44

monitoring; dust deposition45

46

47

1. Introduction48

1.1 General49
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Soil loss occurs mostly through physical pathways but can also occur as a result of50

biochemical processes, including weathering of mineral particles in soil, which is51

known as chemical denudation. Removal of particles or even small aggregates from 52

the in situ soil system then takes place in suspension or solution, as bed load or by 53

gaseous export. Organic soil material is lost mainly through decomposition processes, 54

except in the case of peat erosion where organic particles are removed and transported 55

by water or wind. Physical pathways of soil loss predominate and fall within the 56

domain of soil erosion, which is defined as “the wearing away of the land surface by 57

physical forces such as rainfall, flowing water, wind, ice, temperature change, gravity 58

or other natural or anthropogenic agents that abrade, detach and remove soil or 59

geological material from one point on the earth's surface to be deposited elsewhere” 60

(Soil Science Society of America, 2001; Jones et al., 2006, p.24-5). With respect to 61

soil degradation, most concerns about erosion are related to ‘accelerated soil erosion’, 62

where the natural (or ‘normal’, or ‘geological’) rate has been increased significantly 63

by human activity.64

65

The cause and extent of accelerated soil erosion are influenced by a number of factors 66

(Morgan, 2005) and the most significant are:67

 soil erodibility or susceptibility to erosive forces, as determined by soil 68

physical, chemical and biological properties (Chepil, 1950: Bryan, 1968;69

Wischmeier and Mannering, 1969; Aspiras et al., 1971; Wischmeier et al., 70

1971; Tisdall and Oades, 1982; Rauws and Govers, 1988; Forster, 1989; 71

Chenu, 1993; Oades, 1993; Marinissen, 1994; Edgerton et al., 1995; Le 72

Bissonnais, 1996; Degens, 1997; Ketterings et al., 1997 ; Kiem and Kandeler, 73

1997; Hallett and Young, 1999; Czarnes et al., 2000; Doerr et al., 2000; 74
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Scullion and Malik, 2000; Boix-Fayos et al., 2001; Ritz and Young, 2004; 75

Allton, 2006; Shakesby and Doerr, 2006)76

 erosivity or energy of the eroding agent, e.g. rainfall, overland flow or wind 77

(Wischmeier and Smith, 1958; Skidmore and Woodruff, 1968; Fournier, 1972; 78

Zachar, 1982; Morgan et al., 1986; Knighton, 1998)79

 slope characteristics, gradient, length and form (Zingg, 1940; Musgrave, 1947; 80

Kirkby, 1969; Horváth and Erödi, 1962; Chepil et al., 1964; Meyer et al., 81

1975; D’Souza and Morgan, 1976; Wischmeier and Smith, 1978)82

 land cover use and management (Wischmeier and Smith, 1978; Wiersum, 83

1979; De Ploey, 1981; Dissmeyer and Foster, 1981; Laflen and Colvin, 1981; 84

Foster, 1982; Temple, 1982; Lang and McCaffrey, 1984; Armstrong and85

Mitchell, 1987; Quinton et al., 1997; Lal, 2001; Gyssels et al., 2005; Zhang et 86

al., 2007)87

88

This paper reviews the dominant causes and rates of soil loss that occur in Europe via 89

the process of detachment (e.g. water, wind, tillage, crop harvesting and land 90

levelling), and subsequent transport and deposition of the detached soil material. 91

Whilst all pathways of soil loss need to be considered and monitored carefully, once 92

detachment of soil particles occurs, the functionality of the remaining soil is impaired 93

to a greater or lesser extent depending on the amount of soil lost. Thus prevention of 94

the detachment phase of the erosion process (Meyer and Wischmeier, 1969) is crucial 95

if the functionality of the soil system is to be safeguarded for future generations.96

97
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This review focuses on erosion of mineral soils in Europe, because this is the 98

dominant type of soil loss on the continent (Boardman and Poesen, 2006). Mineral 99

soils are here defined as those that consist predominantly of, and have properties 100

mainly determined by, mineral matter, and usually contain less than 20% organic 101

carbon (SSSA, 2001). Relatively recent research (Holden and Burt, 2002; McHugh et 102

al., 2002; Holden, 2005) has shown that erosion processes also account for substantial 103

losses from organic soils, for example by piping and gullying in peatlands. However, 104

organic soils are far less extensive than mineral soils in Europe (Montanarella et al., 105

2006) and constitute a different eco-system; thus consideration of their erosion is not 106

included in this paper.107

108

1.2 Scale109

Soil erosion research has considered various spatial and temporal scales at which the 110

different erosion processes operate. The experience and knowledge gained from these111

studies is generated by, and serves, a very wide audience, ranging from developers of 112

sub-process, physically based erosion models, such as EUROSEM (Morgan et al., 113

1998) and WEPP (Nearing et al., 1989), through to regional planners and policy 114

makers. Ciesiolka and Rose (1998) observe that smaller scale studies tend to focus on 115

‘on-site’ impacts of soil erosion, whilst larger spatial-scale studies concentrate on the 116

‘off-site’ impacts. 117

118

Table 1119

120

The temporal scale variation in erosion processes is implicit in Table 1, with small 121

spatial scale processes such as raindrop impact occurring in fractions of seconds, and 122
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catchment scale processes usually being monitored over much longer time scales (i.e. 123

seasons, years, decades or even geological timescales). Sediment delivery ratios are 124

also time-dependent, ranging from effectively no sediment delivered at the exact 125

moment of detachment to sediment delivery ratios at the catchment scale approaching 126

100% over geological timescales (van Rompaey et al., 2005).127

128

The comparison of, and connectivity between different spatial and temporal scales is a 129

major challenge in erosion research currently. This complex spatio-temporal process 130

and the lag times involved, make it intrinsically difficult to compare directly a series 131

of plot scale measurements with data generated for the whole catchment. The results 132

of soil loss and sediment delivery obtained at one spatial scale cannot and should not 133

be extrapolated to another (Walling, 1990; de Vente and Poesen, 2005).134

135

Simple ‘scaling up or down’ of erosion rates is not possible (Pierson et al., 1994). 136

According to van Noordwijk et al. (1998), there are no ‘scaling rules’ in erosion 137

research. It appears that the mean value of erosion per unit area will change at 138

different spatial scales, all other factors being equal. At small spatial scales (e.g. 139

individual aggregate), better control of variables, ease of replication and understanding of 140

erosion mechanisms can be gained, but such fragmenting or deconstructing of processes 141

may exclude many of the factors affecting the true rates of erosion (e.g. slope topography) as 142

observed at a larger spatial scale in the field. On small plots, the process of rainsplash 143

detachment (especially) and transport will dominate erosion rates, due to the limited 144

slope lengths over which erosive overland flow can generate. It follows that certain 145

erosion processes such as gully erosion or mass movements cannot be simulated at 146

small spatial scales, but they may dominate at larger scales. As spatial scale 147
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increases, overland flow becomes the dominant agent of erosion, but different 148

experimental conditions have shown rates of erosion per unit area to both increase 149

and decrease with increasing slope length (Zingg, 1940; Meyer et al., 1975; 150

Abrahams et al., 1991; Smith and Quinton, 2000). Morgan (2005) states “with such a 151

great range of possible conditions, a single relationship between soil loss and slope 152

length cannot exist”. Also, plot boundary / edge effects on erosion processes and 153

rates are proportionately more significant at smaller spatial scales. 154

155

To improve understanding of the effect of spatial scale on erosion processes, the links 156

or connectivity between different scales can be studied by applying experimental 157

methods which encompass a range of spatial scales simultaneously. There has been 158

some work on converting field-scale to catchment-scale erosion data, based on the 159

concept of sediment delivery ratios (Osterkamp and Toy, 1997; Walling, 1983, 1990). 160

Hudson (1993) reports on the ‘nested catchments’ approach in soil erosion research, 161

which was developed from biological research methods, investigating biodiversity 162

and species richness at different scales. Turkelboom and Trebuil (1998) developed a 163

methodology for erosion process analysis at the field, farm and catchment scales, and 164

ways of linking these different scales. Their multiscale approach involves the 165

physical, economic and social aspects affecting erosion. Kirkby (2001) describes the 166

hierarchical MEDRUSH model, which simulates erosion and runoff processes 167

operating at a scale of 1 m2 in the first instance. These results are then ‘nested’ or 168

‘embedded’ within representative ‘flow strips’ of up to 100 m wide, oriented up/down 169

the slope. Water and sediment generated at this scale are then ‘routed’ via computed 170

linear transfer functions into the sub-catchment scale (1–10 km2). Output from this 171

scale then feeds the main catchment-scale channel network, which may be up to 172
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2500 km2 in area. Kirkby (2001) argues that MEDRUSH demonstrates that ‘coarse 173

and fine scaled models can be linked together consistently with a sound physical 174

basis’. 175

176

Until we understand the connections between the different spatial scales, soil erosion 177

research should encompass as wide a range of scales as possible. This has the multiple 178

benefits of linking soil erosion rates generated at varying spatial scales, supplying 179

knowledge which will be of interest to many parties (from physically based erosion 180

modellers through to policy makers) and identifying if there are any rules to be 181

applied when upscaling or downscaling the results of soil erosion research. 182

183

This discussion on the effect of scale on erosion is intended for completeness, but the184

focus of this paper is on the plot-to-field scale, because this is the position in the 185

landscape at which removal of the in situ soil takes place. As a result, it is here that 186

soil functioning will be most adversely affected by soil erosion.187

188

1.3 Consequences, mitigation, costs and monitoring189

Soil erosion rates are known to increase significantly following anthropogenic 190

activities such as stripping of natural vegetation, especially clearing of forests for 191

cultivation; other changes in land cover through cultivation or urbanisation and 192

infrastructural development; over-grazing; wildfires or controlled burning; re-193

sculpturing of the land surface for example terrace construction; inappropriate 194

intensification of land use and management, for example cultivation of steep slopes 195

beyond their inherent ‘capability’ (Klingebiel and Montgomery, 1961) or collapse of 196

terrace structures through poor maintenance (Temple and Rapp, 1972). The 197



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

9

consequences of soil erosion for society can be severe, for example annual costs have 198

been estimated to be £205 million in England and Wales alone (see Table 2) and $44 199

billion in the U.S.A. (Pimentel et al., 1995).200

201

Table 2202

203

As Table 2 demonstrates, the costs associated with soil erosion are often categorised 204

into ‘on-site’, i.e. where the soil loss takes place, and ‘off-site’ impacts, the temporary 205

or permanent destination of the eroded sediment. Over time, attitudes have changed 206

with regard to the most damaging effects of soil erosion. Where crop productivity has 207

been a significant driver of soil erosion, the on-site impacts of erosion are paramount 208

through the. loss of rooting medium, nutrients, seeds, seedlings, agro-chemicals, 209

organic matter, microbial communities, trace elements and water holding capacity.210

The production function of soil is likely to become even more important, in view of211

the projected increase in global human population and consequent demands for food. 212

More than 99% of food supplies (calories) for human consumption come from the 213

land, whereas less than 1% comes from oceans and other aquatic ecosystems (FAO, 214

2003).215

216

However, where food security is not an issue, or any declines in crop yield can be 217

masked by applications of agro-chemicals, the focus has often been on off-site 218

impacts. These include flooding, often due to deposition of eroded sediments 219

restricting the capacity of water channels to carry peak flows, and reductions in water 220

quality, due to turbidity and preferential transport of contaminants on eroded sediment 221

surfaces, which, in turn, have impacts on aquatic biota (Lloyd, 1987; Lloyd et al., 222
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1987; Newcombe and Macdonald, 1991; Cooper, 1993). The value of soil in situ (i.e. 223

not eroded) is once again acknowledged (Vandekerckhove et al., 2004), as the concept 224

of soil resources being able to deliver ecosystem goods and services gains acceptance225

as advocated in the EU draft Soil Framework Directive (European Commission, 226

2006a,b).227

228

To evaluate the impact of agricultural and other land use policies in Europe, Gobin et 229

al. (2002, 2004) proposed selecting a set of soil erosion indicators that can be 230

calculated objectively, validated against measurements or observations and evaluated 231

by experts. This advice has been heeded in the design of a European soil monitoring 232

system by the ENVASSO project - Environmental Assessment of Soil for Monitoring 233

– funded under the European Commission’s 6th Framework Programme (Morvan et 234

al., 2008). Indicators for soil erosion proposed for implementation at the first tier235

(Eckelmann et al., 2006), are: i) estimated soil loss by water via rill, inter-rill and 236

sheet erosion, ii) estimated soil loss by wind erosion, and iii) estimated soil loss by 237

tillage erosion. Each of these indicators can be modelled and is accompanied by a 238

measured indicator of soil loss for calibration and validation of modelled estimates. At 239

the present time, there is no reliable model for estimating or predicting gully erosion 240

in the same way as models for rill and inter-rill erosion (Poesen et al. 2006, p528-30). 241

However, it is likely that advances in remote sensing and data processing technology 242

will allow more reliable and accurate estimation of soil loss as a result of gully 243

erosion in future (Jones et al., 2004).244

245

The clear impact of erosion on society and individuals, combined with the political 246

drive for developing a harmonised European system for monitoring erosion as a threat 247
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to soil, has identified the need for scientifically sound and robust threshold values 248

against which to appraise the monitoring data. This paper sets out to review tolerable 249

soil erosion, as a concept and in rates, for European conditions, and assesses actual 250

soil erosion rates by discussing all (known) types of erosion.251

252

253

2 Tolerable soil erosion rates254

255

256

2.1 Concept257

Since soil loss includes the removal of soil material by both physical processes 258

(erosion), and biochemical processes (solute/gaseous export of mineral matter and 259

decomposition of organic matter), the term ‘tolerable soil erosion’ is preferable when 260

referring to soil lost by erosion in the context of soil protection. A number of (near) 261

synonymous terms are used in the literature: ‘soil loss tolerance’, ‘permissible soil 262

loss’, ‘acceptable rates of erosion’, ‘allowable soil loss’, etc. (see Table 3). It is 263

important to note the difference between concept and unit. ‘Tolerable soil erosion’ is a 264

conceptual term, with judgements of affected soil functions etc., that can be quantified 265

in ‘tolerable rates of soil erosion’ with units conventionally in t ha-1 yr-1.266

Table 3267

268

Reviewing the different definitions for tolerable soil erosion in the literature (Table 3), 269

two themes emerge. The first interpretation is to view tolerable soil erosion as 270

maintaining the dynamic equilibrium of soil quantity (mass/volume) in any location271

under any circumstances. The second interpretation takes a functional approach by 272
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relating soil erosion tolerance to the biomass production function of soil. Roose 273

(1996) highlighted difficulties with both interpretations. The first interpretation 274

ignores soil quality by focusing only on soil quantity. The second approach ignores 275

many soil functions by focusing only on the biomass (particularly crop) production 276

function of soil (see also Table 4). In addition, it creates temporal ambiguity:. ‘a long 277

time’, ‘indefinitely’, ‘an extended period of time’, and ’20-25 years’. Interestingly, the 278

Soil Quality Vocabulary of the SSSA (2001) lists both interpretations, without279

indicating the conditions under which these should apply.280

281

Both interpretations incorporate value judgements of how much soil erosion human 282

societies should tolerate. The first interpretation judges that it is tolerable to ensure 283

that the rate of soil formation exceeds the rate of soil loss by erosion, but that it is not 284

tolerable for the soil erosion rate to exceed the soil formation rate. The value 285

judgement in the functional approach links the soil erosion tolerated to the 286

performance of one particular soil function, for example the crop production function.287

288

At the end of the Second World War much of Europe was in ruins and crop289

production systems were destroyed or at best seriously malfunctioning in many areas.290

International aid, through the Marshall Plan in the ‘western’ world, focused on food 291

supplies, which were scarce and insecure. It was during this period that the concept of 292

tolerable soil erosion was developed most actively, which may explain the focus on 293

the crop production function of soil. The agricultural surpluses of the 1980s lead in 294

the 1990s to a more comprehensive/holistic concept of soil functions (e.g. Blum, 295

1993; Sombroek and Sims, 1995; Brady and Weil, 2002; De Groot, 2002; Blum,296
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2005; Nikitin, 2005; and the European Commission, 2006a,b). These are generally 297

based on five primary soil functions (see Table 4).298

299

Table 4300

301

The need to include the regulation function in establishing tolerable rates of soil 302

erosion was realised by Mannering (1981) and Skidmore (1982), who included it in a303

function of ‘soil loss tolerance’ (modified from Stamey and Smith, 1964), although 304

only as secondary to the production function. Roose (1996) stated that tolerable soil 305

erosion should consider “respect for the environment in terms of water quality, 306

especially runoff sediments”. Despite these appeals, definitions for tolerable soil 307

erosion that were published later only incorporated the crop production function (see 308

Table 3).309

The remaining three soil functions (i.e. information, engineering and habitat) do not310

appear to have been considered in ‘tolerable soil erosion’ definitions in the literature. 311

This can probably be explained by the relatively recent development of the holistic 312

soil function concept, compared to the development of the tolerable soil erosion313

concept. Sparovek and De Maria (2003) point out that tolerable soil erosion is the 314

most multidisciplinary field of soil erosion research and that only contemplation of 315

this multi-perspective nature may be successful. It appears, therefore, that the time has 316

come to integrate both concepts. Tolerable soil erosion may then be defined as ‘any 317

mean annual cumulative (all erosion types combined) soil erosion rate at which a 318

deterioration or loss of one or more soil functions (Table 4) does not occur’.319

320
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Clearly, this definition still leaves the problem of value judgement and scale: at what 321

stage is a soil function considered to have deteriorated, and at what scale is this 322

assessed? Also, it is a rather negative approach, where action is only required when a 323

tolerable rate of soil erosion in a specific location is reached. This approach also 324

assumes that no technological advances may occur over time, such as the invention of 325

‘super-fertilisers’, which could (albeit unsustainably) mask declines in crop yield due 326

to loss of soil though erosion processes. It may be a more effective policy to provide 327

incentives to land owners and managers to ensure that actual soil erosion rates remain 328

much closer to, or preferably equal to or below, the soil formation rate. This would be 329

an exemplary application of the precautionary principle (i.e. to preferably err on the 330

side of caution), and ensure that soil functions were maintained for the benefit of 331

current and future generations.332

333

Rates of soil formation provide an invaluable benchmark to use as a ‘basis’ for 334

determining tolerable rates of soil erosion, that is soil functions can generally be335

judged not to deteriorate as long as soil erosion does not exceed ‘natural’ or 336

‘geological’ (or ‘normal’) erosion rates. At present, this assumption remains largely 337

untested, but applying the precautionary principle appears to be a reasonable starting 338

point. A second assumption is that ‘natural’ soil erosion rates equate to soil formation 339

rates. This implies a meta-stabile situation where all soils are in dynamic equilibrium340

in terms of quantity (mass/volume). Clearly, young soils or any soil that could 341

accumulate under current conditions, and thereby improve the soil regulation, 342

production, and habitat functions, would not be in dynamic equilibrium. Nevertheless, 343

soil formation rates form the best basis upon which to establish tolerable rates of soil 344

erosion.345



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

15

346

2.2 Current evidence for soil formation rates347

The natural process of soil accumulation at any location has been described as soil 348

production, soil formation, soil genesis, pedogenesis, or soil renewal (Brady and Weil, 349

2002). The term ‘soil formation’ is used here for reasons of general acceptance, noting350

that this includes both dust deposition and parent material weathering.351

352

Ideally, soil formation models (e.g. Hoosbeek and Bryan, 1992; Minasny and 353

McBratney, 2001) would have been developed and validated to such an extent that for 354

any soil type, under any land use, soil management practice, in any region, accurate 355

estimates of soil formation rates could be derived. Better still would be a degree of 356

model development that could also estimate soil formation rates for future climate 357

change scenarios. It is generally acknowledged that ‘natural’ erosion rates have varied 358

significantly throughout geological history as the climate changed (Wilkinson and 359

McElroy, 2007). However, fundamental scientific knowledge on soil formation 360

processes is still insufficient at present to support the use of mechanistic soil 361

formation models for establishing tolerable rates of soil erosion in the context of362

environmental protection. Therefore, the most useful contribution that science can363

make to the policy process would be to arrive at a consensus on mean rates of soil 364

formation and soil erosion.365

366

2.2.1 Soil formation rates by weathering367

Very few direct measurements of soil formation rates are available. This is due in part 368

to the extremely slow rate of soil formation in relation to the human life span, and 369

consequent difficulties in accurate field measurement. However, from studies using 370
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different methodologies over different scales, an overall picture of the range of soil 371

formation rates can be built up (Table 5), although differentiation of these rates by 372

dominant factors remains elusive. Mass balance measurement studies have been 373

performed to investigate soil formation rates. Alexander (1988a) determined soil 374

formation rates for 18 small, non-agricultural, non-carbonate substrate watersheds 375

(located in North America, Europe, Australia (Victoria) and Zimbabwe) with shallow 376

to moderately deep soils, by measuring values of silica inputs and outputs and relating 377

these to soil formation. The range for non-peaty soils was from 0.02 to 1.27378

(mean=0.49) t ha-1 yr-1. If, and to what extent, these soil formation rates would 379

increase under agricultural land use is not known. Wakatsuki and Rasyidin (1992) 380

used similar geochemical mass balance methodologies on seven elements (Al, Fe, Ca, 381

K, Mg, Na and Si) to calculate soil formation at a global scale as ranging from 0.37 to 382

1.29 (mean=0.7) t ha-1 yr-1. Much greater rates were calculated for well draining, high 383

precipitation watersheds in southwestern Japan, but environmental conditions there 384

are not typical for the rest of the world. Soil formation rates by weathering in 385

limestone-dominated catchments, or those with a mainly igneous lithology, have been 386

estimated at < 0.1 t ha-1 yr-1 (Alexander, 1985). Soil chronosequence studies can be 387

used as an alternative method for deriving soil formation rates, although most appear 388

to focus on processes that are responsible for specific soil parameters rather than 389

overall soil formation rates. See Huggett (1998) and Yoo and Mudd (2008) for390

discussions of methodological issues of classic soil chronosequence work. 391

392

Table 5393

394
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Landscape scale ‘soil formation functions’ (i.e. the relationship between soil 395

formation and soil depth) have been derived from studies in the disciplines of geology 396

and geomorphology. Humphreys and Wilkinson (2007) describe a useful overview of 397

this theme and recommend that the basic idea of soil formation may be used for the 398

determination of tolerable soil erosion rates. Heimsath et al. (1997) used399

measurements of in situ produced cosmogenic 10Be and 26Al concentrations with 400

measured soil depths to show an inverse relationship between soil formation rates and 401

soil depth in northern California. Soil formation rates ranged from ca. 0.39 t ha-1 yr-1402

for deeper soils (ca. 50 cm) to ca. 0.91 t ha-1 yr-1 for shallower soil (ca. 5 cm), 403

assuming a bulk density of 1.3 t m-3. Shakesby and Doerr (2006) reviewed evidence in 404

the literature of fire weathering, that is where wildfire ‘weathers’ rocks by spalling 405

(detachment of lensoid-shaped rock flakes) and other fracturing effects, and showed 406

that where fires are relatively frequent this may be an important additional weathering 407

process, although erosion rates are likely to increase concomitantly.408

409

Natural soil erosion rates, assumed to be equivalent to soil formation rates (see section 410

1) when studied over geological time scales, have been estimated by studying 411

continental erosion and sedimentation. Wilkinson and McElroy (2007) gave an 412

exhaustive analysis of rates of subaerial denudation in the Phanerozoic, a period of 413

542 million years spanning the Lower Cambrian to the Tertiary Pliocene. They 414

estimate that erosion averaged 5 Gt yr-1 during this period.. The global land area 415

fluctuated throughout the Phanerozoic, but using a continental area of 118 million 416

km2, 5 Gt yr-1 equates to an average natural erosion rate of 0.4 t ha-1yr-1 (over 542 417

million years. Schaller et al. (2001) measured in situ produced radionuclides (10Be) in 418

the bedload of middle European rivers to infer average soil erosion rates, over the last 419
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10,000-40,000 yr, at 0.26-1.3 t ha-1yr-1 (assuming a bulk density of 1.3 t m-3). Mabit et 420

al. (2008) discusses the advantages and limitations of fallout radionuclides for 421

assessing soil erosion. Bennett (1939) reported that soil formation rates in the USA 422

range from 0.3-1.1 t ha-1yr-1 (assuming a bulk density of 1.3 t m-3), although he did 423

not specify the methodology used. However, in areas where aeolian deposition occurs, 424

the picture of soil formation is more complex.425

426

2.2.2 Soil formation rates by dust deposition427

Simonson (1995) reviewed the significance of air-borne dust to soils and discussed 428

that when dust is deposited onto a soil from a desert source area, it may be regarded as 429

‘more valuable’ for soil functions in its new location, in a similar way that Sahelian 430

dust boosts biomass production in Amazonian forests (e.g. Swap et al., 1992). 431

Although this is a contentious view, wind erosion of fine particles in the Sahel may 432

contribute to not allowing local vegetation cover development. In the present paper 433

Simonson’s suggestion is accepted as long as the amount deposited is of an order of 434

magnitude that enables the soil to incorporate it (i.e. not being buried by it).435

436

Research into dust transport and deposition has increased substantially over the last 437

decade (Engelstaedter et al., 2006). Satellite imagery and isotopic composition 438

analyses have revealed that the Sahara is the main source of dust deposited in Europe439

(Middleton and Goudie, 2001), although dust originating from China has also been 440

recorded in the French Alps (Grousset et al., 2003). Remote sensing analysis, 441

employing the Total Ozone Mapping Spectrometer absorbing Aerosol Index (TOMS 442

AI), has identified dust pathways from North Africa to the Mediterranean Basin 443

(Middleton and Goudie, 2001; Israelevich et al., 2002).444
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445

North Africa is considered to be the largest source of dust on Earth with estimates of 446

the strength of the Saharan source to be 130 to 760 million t yr-1, compared to 1000 to 447

3000 million t yr-1 globally (Engelstaedter et al., 2006). The greater part of Saharan448

and peri-Saharan or Sahelian dust is delivered to the North Atlantic, but substantial 449

amounts are estimated to be deposited on the European continent. D’Almeida (1986) 450

used sun-photometer readings taken in the early 1980s to estimate Saharan dust 451

delivery to Europe at 80-120 million t yr-1. Löye-Pilot et al. (1986) extrapolated their 452

field data from Corsica to estimate dust delivery to the western Mediterranean at 3.9 453

million t yr-1.454

455

Field measurements of dust deposition are summarised in Table 6. As Middleton and 456

Goudie (2001) and Engelstaedter et al. (2006) observed, both the frequency of dust 457

deposition and the mean annual quantity of deposited dust are greater for southern 458

than for northern Europe. For Mediterranean Europe, up to the Pyrenean, Alpine, and 459

Carpathian mountain ranges, dust deposition rates range from 0.05 to 0.39 t ha-1 yr-1. 460

North of this mountain divide, dust deposition rates are below 0.01 t ha-1 yr-1. For the 461

purpose of setting soil formation rates as thresholds for soil erosion (i.e. tolerable 462

rates), it seems a reasonable generalisation to set dust deposition rates at ca. 0.2 t ha-1463

yr-1 south of the trans-European mountain divide, and to regard dust deposition rates 464

as negligible relative to soil erosion rates north of the divide, accepting potentially 465

substantial but presently unquantifiable local variation to this.466

467

Table 6468

469



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

20

The value of 0.2 t ha-1 yr-1 for southern Europe is of the same order of dust deposition 470

rates found in California, where Reheis and Kihl (1995) measured dust deposition 471

rates to range from 0.04-0.16 t ha-1 yr-1 in southern Nevada and south-eastern 472

California, and determined an average value of 0.30 t ha-1 yr-1 in south-western 473

California. Simonson (1995) reviewed the significance of dust deposition to soils and 474

quoted estimates of approximately 3.0 t ha-1 yr-1 of dust deposition on average for 475

soils between the Rocky Mountains and the Mississippi River. This is a much greater 476

value than those reported for Europe or California, and may be explained by the 477

source area in the semi-arid south west U.S.A. delivering most of its dust eastward.478

479

2.2.3 Overall soil formation rates480

For the purpose of deriving overall soil formation rates in the evaluation and 481

monitoring of soil erosion and its impacts, it appears to be reasonable to estimate dust 482

deposition at no more than 0.2 t ha-1 yr-1 in southern Europe and at 0.0 t ha-1 yr-1 in 483

northern Europe. By contrast, estimated soil formation rates (by weathering) for 484

current conditions in Europe range on average from ca. 0.3 t ha-1 yr-1 to ca. 1.2 t ha-1485

yr-1. Much lower rates (e.g. 0.004 t ha-1 yr-1 for basaltic parent material in semi-arid 486

Australia – Pillans, 1997) and greater rates (e.g. 5.7 t ha-1 yr-1 for a very well draining 487

high precipitation watershed in southwestern Japan – Wakatsuki and Rasyidin, 1992) 488

have been reported for environmental conditions generally not found in Europe.489

Therefore, considering soil formation rates by both weathering and dust deposition, it490

is estimated that for the majority of soil forming factors in most European situations,491

soil formation rates probably range from ca. 0.3 – 1.4 t ha-1 yr-1. Although the current 492

agreement on these values seems relatively strong, how the variation within the range 493

is spatially distributed across Europe and how this may be affected by climate, land 494
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use and land management change in the future remains largely unexplored. It may be 495

expected that dust deposition rates in the Mediterranean will increase in a climate 496

change scenario that brings increasing droughts to the Sahel region, but if this will 497

also mean that more dust will be deposited further northwards in Europe is more 498

uncertain, as is the regional/local scale variation in dust deposition rates. Chemical 499

weathering can be expected to increase where precipitation increases, particularly 500

where the parent material is well draining, although soil erosion rates may 501

concomitantly increase at the same or a greater rate (particularly when the rainfall 502

intensity increases). Soils formed in limestone or granitic lithology are reported to 503

have formation rates towards the smaller part of the range, although the body of 504

evidence is relatively small and more experimental research is urgently needed into 505

soil formation rates for these lithologies, since they cover a substantial area in Europe.506

Soil formation by sedimentation in water is only significant in the floodplains of large 507

river systems, and is, therefore, omitted from this paper.508

509

2.2.4 Tolerable rates of soil erosion in Europe510

Although reported rates of soil formation suggest an upper limit of approximately 1.4511

t ha-1 yr-1 for mineral soils (see also Alexander, 1988b), it would be advisable to apply 512

the ‘precautionary principle’ to any policy response to counteract soil erosion,513

otherwise soils with particularly slow rates of formation will steadily disappear, even 514

when subjected to low erosion rates. Therefore, future differentiation of soil formation 515

rates for soil–landuse–climate combinations is needed, and quantitative pedogenesis 516

modelling (e.g. Hoosbeek and Bryan, 1992; Minasny and McBratney, 2001) may 517

provide an appropriate methodology.518

519
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In some cases, rates of soil erosion greater than those of soil formation have been 520

regarded as tolerable only from the wider perspective of society as a whole, for 521

example because of a perception that certain crops (such as some vines) favour eroded 522

soil profiles. In Switzerland, the threshold tolerated for soil erosion is generally 1 t ha-523

1 yr-1, though this threshold is increased to 2 t ha-1 yr-1 for some soil types (Schaub and 524

Prasuhn, 1998). In Norway, 2 t ha-1 yr-1 is adopted as the threshold for tolerable soil 525

loss (A. Arnoldussen, personal communication.). However, the data reviewed here526

confirm that a precautionary approach to environmental protection should regard soil 527

erosion losses of more than 1 t ha-1 yr-1 in Europe as unsustainable in the long term 528

(Jones et al., 2004). In the USA, soils have been assigned tolerable rates (so-called ‘T 529

values’) by using a range of methodologies, mainly the USLE model and expert 530

judgement, and differentiated mainly by soil depth and crop productivity. Approaches 531

and assumptions for deriving T values have been revised (e.g. Mannering, 1981; 532

Pierce et al., 1984) and continue to be discussed (Johnson, 1987; Mirtskhulava, 2001; 533

Johnson, 2005; Montgomery, 2007). Another way of expressing tolerable soil erosion 534

is to calculate the ‘life span’ of soil. This is the number of years it will take, at current 535

soil formation/erosion rates, for a soil to reach its finite point (i.e. the minimum soil 536

depth required before it becomes economically unsustainable to maintain the current 537

land use - Stocking and Pain, 1983). For commercial farming the finite point has been 538

defined at which yields fall to 75% below the maximum possible (Morgan, 1987). 539

However, this value is highly dependent on socio-economic conditions and available 540

technology and these factors are notoriously difficult to predict accurately in the 541

future. For other soil functions this approach has not been applied, possibly in part 542

because of some (components of) soil functions do not allow for straightforward 543

economic sustainability assessments (e.g. soil biodiversity).544
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545

Setting a limit of 1 t ha-1 yr-1 is also supported when considering the impact of soil 546

erosion / sediment production rates on water quality. Eroded soil, delivered to water 547

bodies can be a physical and chemical pollutant in terms of water turbidity and as a 548

carrier of contaminants which may have detrimental effects on aquatic ecosystems.549

Qualitative limits for eroded sediment in water bodies are advocated in policy drivers 550

such as the EU Water Framework Directive, which states that surface waters should 551

be kept in ‘good ecological status’. EU Member States are currently deciding on the 552

level of sediment, which will give such a status, but it is unlikely that absolute 553

standards for biological quality will be set across the whole community, because of 554

ecological variability. It is expected that the specified controls will allow “only a 555

slight departure from the biological community which would be expected in 556

conditions of minimal anthropogenic impact”. Quantitative targets have also been set 557

to control pollution from sediment (e.g. the United States Department of Agriculture558

uses a target of 1 t ha-1 yr-1 to maintain water quality). 559

560

561

3. Actual soil erosion rates562

Section 3.1 introduces the main types of soil erosion while section 3.2 reviews the 563

erosion rates reported in the literature.564

565

3.1 Soil erosion types566

Soil loss by coastal and riparian erosion is not reviewed in this study, because this 567

constitutes the loss of land, which is not directly linked to human activities although it 568

constitutes a ‘permanent’ loss of soil. Furthermore, it is not clear that human influence 569
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through land management and land use practices has any significant effect on 570

increasing or decreasing coastal erosion, although a number of studies have shown 571

that attempts to mitigate by erecting engineering structures (e.g. impervious sea walls 572

and breakwaters) can actually aggravate the problem elsewhere along the coastline 573

(McInnes et al., 2000; Lee and Clark, 2004; Lee and Jones, 2004; Bromhead and 574

Ibsen, 2006).575

576

3.1.1 Soil loss by water erosion577

Water erosion takes place through rill and/or inter-rill (sheet) erosion, and gullies, as a 578

result of excess surface runoff, notably when flow shear stresses exceed the shear 579

strength of the soil (Kirkby et al., 2000; Jones et al., 2004; Kirkby et al., 2004). This 580

form of erosion is generally estimated to be the most extensive form of erosion 581

occurring in Europe. De Ploey (1989) identified different domains where these 582

processes take place, as a function of soil, slope and land cover characteristics in any 583

location. Sheet and rill erosion will cause surface soil to be removed from the in situ584

soil mass. Assuming this surface soil has not been disturbed previously (e.g. by 585

inversion tillage or preceding erosion events), it will contain considerable amounts of 586

organic matter and plant nutrients that are crucial to perform effective soil functions587

(Fullen and Brandsma, 1995). This eroded soil material may not necessarily travel 588

very far and may remain in the same field from where it was eroded. Indeed, the area 589

of deposition may benefit from the accumulation of highly fertile, eroded surface soil, 590

in the same way that river flood plains receive substantial depositions of highly fertile591

sediment. However, this accumulation of eroded soil may only be temporary, until the 592

next erosion event, especially as the recently deposited sediments often lack 593

aggregation and remain highly erodible.594
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595

Where there is little vegetative cover or root network below the surface, and slopes 596

are steep, the eroded soil from these surface processes can move into the stream 597

network and thus cause further detrimental off-site impacts (Cerdan et al., 2006). The 598

transport of eroded material will be enhanced further by erosion features such as 599

gullies which provide a conduit for the eroded surface soil (Blong et al., 1982), as 600

well as being a source of sediments in their own right. Long term field plots are often 601

used for direct measurement of soil loss by rill and inter-rill erosion; as demonstrated 602

by Boix-Fayos (2005). Models of rill erosion have been shown by some researchers to 603

be in disagreement with current experimental evidence (Govers et al., 2007; De Vente 604

et al., 2008), but direct measurements of soil erosion are both scarce and do not fully 605

represent the soil-climatic landscapes that experience rill erosion in Europe.606

607

Gully erosion is common in Mediterranean Europe, in particular, Spain, Italy and 608

Greece (Vandekerckhove et al., 2000). These areas are characterised by long-term609

gullies (i.e. that cannot be obliterated by ploughing), which have been described as610

relatively deep, recently formed, eroding channels that form on valley sides and on 611

valley floors where no well-defined channel previously existed (Schumm et al., 1984). 612

Ephemeral gullies (i.e. that can be obliterated by ploughing) commonly occur in the613

arable loess soil, as seen in the loess belt of Belgium and the sandy soils of the South 614

and West Midlands of England. These gullies develop rapidly, are ploughed in and 615

often reappear the following year. The occurrence of gullies, and variations in the type 616

of gully erosion, are related to particular soil properties, climate and topography of 617

these areas (Nachtergaele and Poesen, 1999; Nachtergaele et al., 2001). It is 618

notoriously difficult to predict where and when gully erosion will occur in the 619
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landscape by the extension of an existing gully or a new gully forming, as well as 620

associated rates of sediment production (Poesen et al., 2003).621

622

3.1.2 Soil loss by wind erosion623

Wind erosion occurs predominantly on the North European Plain (northern Germany, 624

eastern Netherlands and eastern England) and in parts of Mediterranean Europe (De 625

Ploey, 1989; Evans, 1990, 1996; Chappell, 1999; Chappell and Thomas, 2002;626

Warren, 2002; Barring et al., 2003; Breshears et al., 2003; Riksen et al., 2003; Jones 627

et al., 2004; Quine et al., 2006). Wind erosion is caused by the simultaneous 628

occurrence of three conditions: high wind velocity; susceptible surface of loose 629

particles; and insufficient surface protection. The transport of soil material (between 630

erosion and sedimentation) can occur in three main modes: saltation, creep and 631

suspension. Factors that exacerbate wind erosion are similar to those for erosion by 632

water: namely soil erodibility, as determined by physical, chemical and biological 633

properties including texture, organic matter content, moisture content, land use and 634

cover, and energy of the force causing the erosion (wind erosivity). Riksen et al. 635

(2003) point out that wind erosion is not as significant or as widespread a problem in 636

Europe as in drier parts of the world, which might explain the relatively limited 637

research on wind erosion to date compared to water erosion studies. The present 638

review concludes that there are few accurate data on the extent and magnitude of the 639

problem, or the costs of the remediation (Owens et al., 2006a,b,c). Goossens et al. 640

(2001) studied the dynamics of Aeolian dust emitted from agriculture in northwest 641

Germany, over a 15 month period. The dust emission was caused by wind erosion 642

combined with tillage activities and the dust emitted consisted of mineral as well as 643

organic particles.644
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645

3.1.3 Soil loss by tillage erosion646

This erosion type has been recognised for several decades, but the magnitude of soil 647

lost by this process in Europe has only been appreciated and documented during the 648

last 10-15 years (Lindstrom et al., 1992; Govers et al., 1993; Lobb et al., 1995; Govers 649

et al., 1996; Lobb et al., 1999; Van Muysen et al., 1999; Lindstrom et al, 2000; Van 650

Oost et al., 2000a,b; Quine and Zhang, 2004a,b; Van Oost et al., 2005a,b; Owens et 651

al., 2006a,b; Quine et al., 2006; Van Muysen et al., 2006; Van Oost et al., 2006; Van 652

Oost et al., in press). Mech and Free (1942) concluded that soil movement by tillage 653

was far from insignificant and that its intensity was related to slope gradient. Soil 654

translocation by tillage results in soil loss from convex slope positions, such as crests 655

and shoulder slopes, because of an increase in-slope gradient and a consequent 656

increase in soil translocation. Spatial patterns of tillage erosion differ from those of 657

water erosion, because the principal agent is different. Soil loss by tillage can be 658

greatest from landscape positions where water erosion is minimal (i.e. in concavities 659

and near upslope field boundaries), whereas soil deposition by tillage can occur in 660

areas where water erosion is often maximal (i.e. on slope convexities). Measurements 661

on the magnitude of tillage erosion are few, but studies in Europe highlight the 662

importance of the magnitude of tillage erosion relative to water erosion (Govers et al., 663

1993; Quine et al., 1994; Owens et al., 2006a). Van Oost et al. (2005a) have compared 664

rates of soil erosion by tillage with those by water. By comparing two time periods,665

they found that there has been a shift from water-dominated to tillage-dominated 666

erosion processes in agricultural areas during the past few decades. This reflects the 667

increase in mechanized agriculture and the authors concluded that where soil is 668

cultivated, tillage erosion may lead to larger losses than overland flow.669
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670

3.1.4 Soil loss by crop harvesting671

This erosion type refers to soil removed during crop harvesting, for example of root 672

crops, mainly in northern Europe. Soil can be removed from a location or field by 673

adhering to farm machinery (e.g. wheels, tines, ploughs and discs). Much larger 674

amounts of soil can be removed by soil co-extraction with a root crop, particularly . 675

sugar beet, potatoes, carrots and chicory) (Jaggard et al., 1997; Ruysschaert et al., 676

2005). This mechanism of soil loss is known as ‘soil loss due to crop harvest (SLCH)’677

in the scientific literature (Ruysschaert et al., 2004, 2005), and as ‘soil/dirt tare’ in the 678

agricultural industry. SLCH is a particular problem in areas growing early potatoes in 679

northern Europe because harvesting normally takes place when the topsoil is moist or 680

very moist and soil particles readily adhere to the surface of the potatoes. However, 681

preparation of the crop for marketing usually involves cleaning (washing) and 682

removing the soil but returning it to the fields from whence it came is not always 683

advised by the agricultural extension services, because of the possibility of spreading 684

disease.685

686

3.1.5 Soil loss by slope engineering687

Slope engineering is the mechanical translocation of soil by bulldozers and other earth 688

moving equipment to adapt slope surfaces to mechanised agriculture. Some authors 689

refer to this practice as ‘land levelling’, which implies a reduction of slope gradient,690

which in turn would actually reduce erosion risk. However, as is seen in the 691

construction of bench terraces for example, whilst the bench of the terrace is levelled, 692

the ‘riser’ or back wall component of the terrace has to compensate for this, and is 693

constructed at an angle which is steeper than the original land slope. This back slope 694
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is thus highly susceptible to surface erosion and mass movement. During terrace 695

construction, soil loss can be aggravated as natural vegetation is mechanically 696

removed from the land to enable soil to be cultivated, often in the form of modern 697

specialised orchards, vineyards and olive groves. Often, marginal land with poor 698

quality soils is used, so deep ploughing to about 1 m depth is required to ensure a 699

sufficient depth of rootable soil (Jones et al., 2004). Such soil disturbance can destroy 700

any soil structure, and increase soil erodibility and exacerbate soil losses. This form of 701

erosion is common in many parts of Europe, especially in Italy, where it is widespread 702

in the Apennines and hilly pre-alpine regions. Such techniques are also practised in 703

southern Spain, where intensive horticulture under polythene canopies has spread onto 704

the foothills of Andalusia. The climate there is arid to semi-arid. Thus, when heavy 705

rain falls soil losses are exacerbated by steep slopes, lack of natural vegetation cover 706

and the unstable disturbed soil (Kibblewhite et al., 2007).707

708

709

3.2 Current evidence for actual soil erosion rates710

There have been attempts to map soil erosion rates and risk in a number of EU 711

Member States (De Ploey, 1989; Schaub and Prasuhn, 1998; Sanchez et al., 2001; 712

Ministry of Environment of the Slovak Republic and Slovak Environmental Agency, 713

2002; Van der Knijff et al., 2002; Hennings, 2003; Øygarden, 2003; Kirkby et al., 714

2004; Dostal et al., 2004; Boardman and Poesen, 2006; Kertéz and Centeri, 2006), but 715

to establish an accepted overall baseline for erosion in Europe remains a challenging 716

task. Rates of soil erosion have been determined using several approaches: i) plot and 717

field measurements, ii) soil erosion modelling, iii) mass/energy balance modelling, iv) 718

radionuclide measurement, v) suspended sediment load in rivers and streams, vi) 719
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chronosequence studies, and vii) geological (sedimentological) studies. Trimble and 720

Crosson (2000a,b) reviewed soil erosion rates in the U.S. and concluded that models 721

should only be used with caution, taking account of all the assumptions and potential 722

inaccuracies of the model chosen. These authors recommended that it would be better 723

if resources were directed more towards measurements of soil erosion.724

725

In this review, the focus is placed on measured soil erosion rates where available, and 726

validated modelled rates for important but relatively unexplored soil erosion types. 727

Publications on mean soil erosion rates refer mostly to water erosion, yet baseline728

values for other forms of erosion, for example by wind and tillage, are also needed.729

730

3.2.1 Rates of soil loss by water (sheet, rill and gully) erosion731

Pimentel et al. (1995) have reviewed erosion rates around the world and suggested an 732

average of 17 t ha-1 yr-1 for arable soils in Europe. This is a crude approximation since 733

it is based on plot data, which only exist for very small areas where measuring 734

equipment has been installed and monitored. Furthermore, data from plot experiments 735

are known to be a poor basis for regional generalisation (Boardman, 1998). This is 736

because to obtain long-term estimates of soil erosion, plot estimates must be scaled up 737

by integrating over time and surface runoff generated locally may not reach the base 738

of a slope to deliver sediment to a channel (Kirkby et al., 2008). Thus, some soil 739

removed from an experimental plot may be deposited downslope but not lost 740

completely from the regional parcel or catchment. In addition, the location of soil 741

erosion plots across Europe may not be representative, because erosion plots tend to 742

be selected in places where erosion is known to occur and where resources are 743

available to measure it. Yang et al. (2003) applied the RUSLE model on a 0.5° global 744
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grid using a 1 km resolution DEM to estimate rates of soil erosion by water, and 745

found an average value of 11.1 t ha-1 yr-1 for Europe compared to 10.2 t ha-1 yr-1746

globally. In addition Yang et al. (2003) evaluated the human induced proportion of the 747

soil erosion by modelling the difference between current land cover and potential land 748

cover without human activity. Human-induced erosion was estimated to be ca. 60% 749

globally, but ca. 88% for Europe.750

751

The occurrence and rate of water erosion processes are influenced by regional climate, 752

local soil properties, and past and present land use. A number of localised erosion 753

rates are given for various plots around Europe, some containing only one or two 754

forms of erosion, depending on the spatial scale of the plots (Morgan, 2005). Cerdan 755

et al. (2006) extensively reviewed the experimental data for soil loss by sheet and rill 756

erosion in Europe, and compiled a database of 208 plots on 57 experimental sites in 757

13 countries. The mean erosion rate was 8.8 t ha-1 yr-1, although aggregation of the 758

data by land use showed large variations. Geographical comparisons, (i.e. 759

Mediterranean versus the rest of Europe) showed no significant overall difference and 760

no large differences between most land uses, except for bare soil (ca. 32 t ha-1 yr-1 for 761

the Mediterranean zone and ca. 17 t ha-1 yr-1 for the rest of Europe).762

763

Poesen et al. (2006) present a comprehensive list of published rates for gully erosion, 764

including both ephemeral and permanent gullies. Ephemeral gully rates derived from 765

studies conducted in the loess belt of Belgium while the majority of permanent gully 766

erosion rate estimates are from the Mediterranean region of Europe. These rates vary 767

from 1.1 to 455 t ha-1 yr-1 (Poesen et al., 2006). This wide range gives an indication of 768

the complexities of quantifying soil loss by gully erosion owing to the episodic and 769
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highly variable nature of soil loss within these eroded channels; variable regional 770

climatic effects; the haphazard nature of gully distribution in the landscape; 771

propensity of vertically variable soil properties to exacerbate gully erosion; the stage 772

at which the gully is in its erosion cycle (active or stable); current or previous773

topographic position in the landscape; and the historical and present land use 774

influencing the gully (Valentin et al., 2005).775

776

Martinez-Casasnovas et al. (2003) highlighted the complexities of measuring gully 777

erosion rates in a study of one gully system located in north eastern Spain. Using 778

aerial photographs and a detailed digital elevation model (DEM), they estimated the 779

annual average sediment production rate of the gully from 1975 to 1995 to be 846 (± 780

40) t ha-1 yr-1. The net erosion, taking account of some eroded material being 781

deposited, was 576 (± 58) t ha-1 yr-1, averaged over the 20-year period. During the 782

study the authors measured and analysed a 1 in 100 year rainfall event when 205 mm 783

fell over the study area in 2h 15 min leading to a net soil loss of 207 (± 21) t ha-1 with 784

a sediment production rate of 487 (± 13) t ha-1 by ephemeral gully, rill and inter-rill 785

erosion (Martinez-Casasnovas et al., 2003). The authors see this comparison as good 786

evidence that gully erosion accounts for 1.7 times more soil loss than the other forms 787

of erosion in this study area. However, averaging gully erosion on an annual basis 788

probably gives an unrealistic rate, owing to the episodic nature of the gully forming789

process (Betts and De Rose, 1999)790

Few studies have considered erosion from gullies at a regional or catchment scale. 791

However, Nachtergaele and Poesen (1999) considered ephemeral gullies at four sites 792

in Belgium (ranging from 216 to 1095 ha), using sequential aerial photographs from 793

1952 to 1996.  Each site contained 18 to 38 gullies on average and it was estimated 794
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that the reasonably long-term (44 yr) average for soil loss was between 3.2 and 8.9 t 795

ha-1 yr-1. These figures are considerably different to those given by Martinez-796

Casasnovas et al. (2003), even though the measurement methods were similar 797

(interpretation of sequential aerial photographs), and reveal the importance of 798

differentiating between type of gully erosion and regional influences (Mediterranean 799

versus western Europe) when assessing gully erosion rates. 800

Jones et al. (2004) report a number of other soil erosion studies which provide a 801

European overview, but these are based mostly on models or expert judgement 802

(including observation). These approaches more commonly produce assessments of 803

erosion risk rather than estimates of actual soil loss, without reference to baseline 804

and/or threshold values.805

806

3.2.2 Rates of soil loss by wind erosion807

Recent work in Eastern England reported mean wind erosion rates of 0.1-2.0 t ha-1 yr-1808

(Chappell and Thomas, 2002), although severe events can move much larger 809

quantities (>10 t ha-1 yr-1) of soil. Böhner et al. (2003) estimated average soil loss at 810

1.6 t ha-1 yr-1, and a mean maximum of 15.5 t ha-1 yr-1 from simulation modelling. 811

Despite research studies in these areas, Chappell and Warren (2003) report that little 812

is known about the true extent and magnitude of wind erosion in Europe.813

814

815

3.2.3 Rates of soil loss by tillage erosion816

Mean gross rates of tillage erosion have been reported to be in the order of 3 t ha-1 yr-1817

for Belgium, the north of France, and the east of England (Govers et al., 1996; Owens 818

et al., 2006a). Boardman and Poesen (2006) reviewed measurement data for tillage 819
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erosion rates in Europe and concluded that it often exceeds 10 t ha-1 yr-1, particularly 820

on fields with complex topography. Van Oost et al. (2005a) estimated that the average 821

erosion and soil redistribution rate, over the last ca. 35-40 years due to tillage, is ca. 9 822

t ha-1 yr-1. Long-term erosion rates based on soil profile truncation data demonstrated823

that, over the longer term, erosion has been dominantly by water by overland flow.824

825

Hinz (2004) reported rates of soil loss between 18.6 and 29.5 kg ha-1 for harvesting 826

operations, and between 0.8 and 1.4 kg ha-1 for normal tillage operations. The latter 827

data are for the production of cereals but they may give a good idea of the order of 828

magnitude for other adjacent crops. Funk and Reuter (2004) investigated emissions 829

for various tillage operations and arrived at values of between 3 and 6 kg ha-1, that is830

about 3 times greater than those of Hinz (2004).831

832

At Dalicott Farm in Shropshire (UK), 137Cs data and a numerical erosion model were 833

used to estimate erosion on a hillslope (Govers et al., 1993; Quine et al., 1994). The 834

proportions of overall erosion that was caused by water or tillage erosion were 835

estimated to be similar for the last ca. 6 centuries (57% and 43%, respectively), and 836

greater for water erosion over the last 40 years (76% and 24%, respectively), based on 837

137Cs data.838

839

3.2.4 Rates of soil loss by crop harvesting840

Ruysschaert et al. (2004) provided an excellent review of the research on soil loss due 841

to crop harvesting (SLCH) in Europe. They reported mean losses ranging from 1.3 to 842

19 t ha-1yr-1 for a variety of crops. SLCH was greatest for chicory, sugar beet and 843

potatoes. Boardman and Poesen (2006) also reviewed soil loss by crop harvesting,844
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confirming the variation in Europe, according to crop types and climate, concluding 845

that average values of 2 t ha-1 yr-1 for a potato crop and 9 t ha-1 yr-1 for a sugar beet 846

crop can be expected. Soil moisture content at harvest is the driving factor. 847

848

849

850

3.2.5 Rates of soil loss by slope engineering851

Recently, P. Bazzoffi (pers.com.) estimated that in Italy the area highly prone to risk 852

of land levelling is about 10% of the area under permanent crops. After levelling, land 853

is in a vulnerable condition and a few storms can easily cause severe soil losses. 854

Bazzoffi et al. (1989) measured 454 t ha-1 yr-1 of water erosion with the formation of a 855

gully after six rainfall events of medium intensity in central Italy.856

857

In Norway during the late 1970s, extensive land levelling was stimulated by subsidies. 858

This led to a two- to three-fold increase in soil erosion. The increase was especially 859

large when former ravine landscapes used for pasture were levelled and turned into 860

arable land that was ploughed in autumn. The clearly visible erosion and increasing 861

negative offsite effects on water quality, together with overproduction, put an end to 862

the subsidies for land levelling, but not before 13% of the agricultural area had been 863

levelled with the support of these subsidies. The most visible effect was erosion 864

caused by concentrated flow, including severe ‘gullying’ resulting from reduced 865

infiltration, longer slopes and inadequate measures to handle concentrated flow (Jones 866

et al., 2004). Now, land levelling is only allowed in Norway with special permission.867

868

3.2.6 Overall soil erosion rates869
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Breshears et al. (2003) researched the relative importance of soil erosion by wind and 870

by water in a Mediterranean ecosystem and found wind erosion to exceed water 871

erosion from shrubland and forest sites, but not from a grassland site. Wind-driven 872

transport of soil material from horizontal flux measurements were projected to annual 873

timescales for shrubland (ca. 55 t ha-1 yr-1), grassland (ca. 5.5 t ha-1 yr-1) and forest (ca. 874

0.6 t ha-1 yr-1). In a similar study, Goossens et al. (2001) found lower values (ca. 9.5 t 875

ha-1 yr-1) for arable fields in lower Saxony, Germany.876

877

Owens et al. (2006a) proposed a tentative comparison between the various forms of 878

soil loss, including water erosion processes in England and Wales. The rates quoted 879

suggest that the likely range of annual soil loss rates may be similar for all forms of 880

erosion. There will be temporal and spatial variations in the relative magnitude and 881

extent of the different processes, with arable land being susceptible to all forms of 882

erosion, and uncultivated land only at risk of water and, to some extent (i.e. exposed 883

sandy and peaty soils), wind erosion.884

885

3.2.7 Soil erosion rates for Europe886

In the context of soil erosion, the true baseline is the amount of soil that is lost from a 887

defined spatial unit under current environmental conditions. However, to determine a 888

universal baseline it is not practicable to measure the actual loss of soil caused by 889

erosion processes over the whole of Europe. It is more realistic to estimate baseline 890

data for Europe by modelling the factors known to cause erosion, validating estimated 891

baseline soil losses using actual measurements from the few experimental sites that 892

currently exist, and augmenting by measurements from additional ‘benchmark’ sites. 893

This leaves the spatial unit over which any baseline would apply undefined.894
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895

For soils under arable land use, several researchers quote soil erosion rates in Europe 896

of between 10 and 20 t ha-1yr-1 (Richter, 1983; Lal et al., 1998; Yang et al., 2003), 897

whereas Arden-Clarke and Evans (1993) report that water erosion rates in Britain vary 898

from 1-20 t ha-1 yr-1 but that the higher rates are rare events and localised. Boardman 899

(1998) challenged the usefulness of an average rate of soil erosion for Europe, 900

concluding that the rates vary too much in time and space to specify precise amounts.901

This variation is evident in Table 7 which shows ranges of the mean rates of soil lost 902

by the recognised erosion types for agricultural land, and the actual soil erosion rates 903

in tilled, arable agriculture by different combinations of erosion types (ca. 3-40 t ha-904

1yr-1). Although soil type, slope and climate are important factors, the greater part of 905

the actual soil erosion rates relate to soil cover, soil management, and crop 906

management. These factors can all be influenced by policy measures.907

908

Table 7909

910

911

912

4.   Summary and conclusions913

914

Figure 1915

916

Tolerable soil erosion is a concept that has been developed over the last 60 years. Its 917

definition has been related to the production function of soil by numerous authors. 918

Inclusion of the regulation function of soil was realised, but not implemented in these 919

definitions. Over the last 15 to 20 years a more holistic concept of soil functions has 920
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been developed, which this paper suggests should be applied to defining tolerable soil 921

erosion: ‘any actual soil erosion rate at which a deterioration or loss of one or more 922

soil functions (Table 4) does not occur’, with actual soil erosion meaning ‘the 923

cumulative amount of soil lost by all recognised erosion types’.924

925

Soil formation rates are proposed as a basis for establishing tolerable soil erosion. For 926

Europe, the current state of scientific knowledge indicates that tolerable soil erosion 927

rates range from ca. 0.3 – 1.4 t ha-1 yr-1 depending on the driving factors of weathering 928

(e.g. parent material, climate, land use) and dust deposition (e.g. geographic position; 929

distance to source). Relevant local components of soil functions that are impacted by 930

soil erosion (e.g. surface water turbidity effects on aquatic wildlife or siltation of 931

reservoirs) can be used to set tolerable soil erosion rates below the upper limit 932

determined by soil formation rates. 933

934

Soil erosion research has focused traditionally on erosion by water (rill, gully etc.) 935

and, to a lesser extent, by wind. However, over the last 10 - 15 years, the focus has 936

broadened to include other important types of erosion, namely tillage erosion, crop 937

harvesting and slope engineering or land levelling. Estimates of soil erosion rates for 938

evaluation in a soil monitoring system need to consider all types of erosion, although939

mitigation should focus on the dominant type in any particular location. For all types 940

of soil erosion, and particularly wind erosion and land levelling, there is a need for 941

more spatially differentiated evidence of current rates.942

943

The range of reported erosion rates for tilled arable soils is many times greater than 944

the range of reported soil formation rates. This can be because soil formation is 945
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affected little by human activities, whereas today most soil erosion is 946

anthropogenically induced. It should also be noted that soil erosion only appears to 947

exceed tolerable rates when the soil is under cultivation or affected by other human 948

disturbance. Furthermore, Boardman and Poesen (2006) estimated that arable 949

agriculture accounts for ca. 70% of soil erosion in Europe, while Yang et al. (2003) 950

developed a coarse-scaled global model from which they estimated that ca. 88% of 951

soil erosion in Europe to be human-induced. Figure 1 gives an overview of the 952

concept and rates of tolerable soil erosion and actual soil erosion (i.e. ‘the total953

amount of soil lost by all recognised erosion types’), and suggests directions for 954

developing more detailed tolerable rates by applying the soil function concept and 955

numerical soil formation modelling. The right side describes the components of soil 956

erosion and the reported variation in their rates (mean and maximum). Tolerable soil 957

erosion rates and approaches for deriving them are described on the left. At present, 958

best estimates for mean rates in Europe are ca. 0.3-1.4 t ha-1yr-1 for soil formation and 959

ca. 3-40 t ha-1yr-1 for actual soil erosion. These results are comparable with the 10-40 960

times greater than tolerable global estimate reported by Pimentel (2006). The figure 961

also highlights areas for more research. Apart from the need for more detailed and 962

differentiated values for soil erosion and formation rates (experimentally), it is also 963

needed to identify yet unknown erosion types and further develop concepts such as 964

the soil function system and numerical soil formation models, to implement soil 965

erosion mitigation policies at appropriate spatial scales (differentiated by dominant 966

factors). In addition, soil erosion work and policies should include a wide range of 967

spatial and temporal scales until the connections between scales are better understood. 968

Clearly, the spatial and temporal variation of tolerance-exceeding soil erosion is 969

substantial and is likely to change, or possibly intensify, when climate and land use 970
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change. Therefore, the recommendation from Trimble and Crosson (2000a,b) and 971

Brazier (2004), that resources should focus more on monitoring soil erosion by field 972

measurements than on modelling, is supported by this review. Ideally, the approaches 973

to field measurement (e.g. considering scale and spatial heterogeneity) would be 974

developed in conjunction with process-based models.975

976

However, if these measured and estimated ranges for soil formation and erosion are 977

correct, and current conditions and management persist (a ‘business as usual’ 978

scenario), then topsoils of tilled arable land on hill slopes (i.e. not flood plains) in 979

Europe could be ca. 2 to 30 cm thinner in 100 years time (assuming a blanket 980

tolerable rate of 1 t ha-1 yr-1 and a bulk density of 1.3 t m-3) than today. Where in the 981

range an area will be, depends on physical factors (e.g. climate, drainage, soil texture 982

and structure) and on land management factors (see Table 7). For many topsoils in 983

Europe this would mean a substantial deterioration in their production, regulation, 984

habitat, and information functions (Table 4), if not a cessation of some of them. For 985

areas where slope engineering and/or gully erosion occurs, even more soil could be 986

lost. Thus, the status quo is not compliant with the intergenerational equity argument, 987

i.e. that future generations should have the same rights to natural resources as those 988

enjoyed by the current generation. A substantial effort is required to reduce soil 989

erosion losses closer to tolerable levels, particularly in tilled, arable agriculture. In the 990

future, climate change looks likely to increase rainfall intensity, if not annual totals, 991

thereby increasing soil erosion by water, although there is much uncertainty about the 992

spatio-temporal structure of this change as well as the socio-economic and agronomic 993

changes that may accompany them (e.g. Boardman and Favis-Mortlock, 1993; 994

Phillips et al., 1993; Nearing et al., 2004). Similarly, as a response to climate change, 995
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soil formation rates may change and the development of ‘moving tolerable rates’ with 996

climate change scenarios may be required to support the policy sector with sound 997

scientific guidelines.998

999

This review of rates of soil loss by erosion, in the mineral soils of Europe, has 1000

clarified the tolerable rate of soil erosion to which modern land use systems should 1001

aspire. Furthermore, the evidence of well-founded tolerable rates of soil erosion,1002

evaluated against actual soil erosion rates, is vital for developing policies to ensure 1003

that soil receives a level of protection comparable to that accorded to water and air in 1004

Europe.1005

1006
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Range of spatial scales of soil erosion research (Rickson, 2006; after Wickenkamp et al., 
2000).
Erosion research 
technique

Area Dimension 
descriptors 
(Wickenkamp et al., 
2000)

Dominant processes 
operating

Selected 
References

Splash cup mm2 Nanoscale Subtope Rain splash dominant; 
overland 
flow/deposition 
limited. No gullies, 
stream bank erosion 
or mass movements.

Ellison 
(1944); 
Kinnell 
(1974); 
Morgan et 
al. (1988); 
Salles, C. 
and Poesen, 
J. (2000)

Laboratory tray cm2 Nanoscale Subtope Rain splash 
dominant?; overland 
flow/deposition 
limited. No gullies, 
stream bank erosion 
or mass movements.

Idowu 
(1996)

Runoff rig m2 Microscale Tope Rain splash and 
overland flow; some 
deposition possible. 
No gullies, stream 
bank erosion or mass 
movements.

Kamalu 
(1993); 
Govers 
(1989)

Field plot m2 Microscale Tope Rain splash and 
overland flow; some 
deposition. Some 
gullying and mass 
movements possible; 
no stream bank 
erosion.

Wischmeier 
and Smith 
(1978); 
Ciesiolka 
and Rose 
(1998); 
Pierson et 
al. (1994)

Field ha Mesoscale Chore Rain splash, overland 
flow and deposition. 
Gullying and mass 
movements possible. 
No stream bank 
erosion.

Evans and 
Boardman 
(1994); 
Walling 
and Quine 
(1991) 

Sub-catchment ha –
km2

Mesoscale Chore Rain splash, overland 
flow and deposition. 
Gullying possible. 
Some stream bank 
erosion.

Hudson 
(1981); 
Rapp et al. 
(1972)

Catchment/landscape km2 Macroscale Region Rain splash, overland 
flow and deposition. 
Some gullying and 
mass movement 
possible. Stream bank 
erosion.

Dickinson 
and Collins 
(1998)

Table 1

http://ees.elsevier.com/earth/download.aspx?id=28807&guid=b4c026da-be97-4ea6-a19b-d1b876d08099&scheme=1
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Estimated annual costs of soil erosion to UK economy in £million (2000 prices)
£ million % contribution 

from agriculture

Soil organic matter loss, leading to increased emissions of 
carbon dioxide

74 95%

On-farm costs (additional fertilisers, etc.) 8 100%

Accidents/stream channels (i.e. off-site costs mainly related to 
clean-up operations)

8.2 95%

Effects of flooding 115 14%

TOTAL ANNUAL COST (£ million) 205

Source: Environment Agency (2002).

Table 2

http://ees.elsevier.com/earth/download.aspx?id=28808&guid=adbaa8a5-7d45-482d-a8c2-a279972bd02f&scheme=1
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Interpretations and definitions for ‘tolerable soil erosion’
Tolerable soil erosion - definition Reference

The maximum volume of erosion-removed topsoil that provides high, 
or economically feasible, fertility for a long time

Patsukevich et al., 1997.

Soil loss balanced by soil formation through weathering of rocks in Roose (1996)

Erosion that does not lead to any appreciable reduction in soil 
productivity

in Roose (1996)

The maximum rate of soil erosion that permits an optimum level of 
crop productivity to be sustained economically and indefinitely

ISSS (1996)

The average annual soil loss a given soil type may experience and still 
maintain its productivity over an extended period of time (permissible 
soil loss)

Kok et al. (1995)

The maximum permissible rate of erosion at which soil fertility can be 
maintained over 20-25 years

Morgan (2005)

(i) The maximum average annual soil loss that will allow continuous 
cropping and maintain soil productivity without requiring additional 
management inputs. (ii) The maximum soil erosion loss that is offset 
by the theoretical maximum rate of soil development which will 
maintain an equilibrium between soil losses and gains

SSSA (2001)

Rate of soil erosion is not larger than the rate of soil production 
(acceptable rates of soil erosion)

Boardman and Poesen (2006)

Table 3

http://ees.elsevier.com/earth/download.aspx?id=28809&guid=fc9f9dd1-8c57-4e63-b4e3-83e3447eb8ff&scheme=1
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Harmonised primary soil functions scheme. 
Primary soil 
functions

Components

Habitat Refugium function; nursery function; medicinal 
resources; gene pool; seed bank

Information Cultural information (archaeological and
palaeontological); science and education; spiritual and 
historic; recreation; aesthetic information

Production Food; fodder; fibre; raw materials; renewable energy 

Engineering Technical, industrial and socio-economic structures

Regulation Gas regulation; climate regulation; disturbance 
resistance; disturbance resilience; water supply; water 
filtering; pH buffering; biotransformation of organic 
carbon; soil retention; soil formation; nutrient regulation; 
biological control; waste and pollution control

Table 4

http://ees.elsevier.com/earth/download.aspx?id=28810&guid=93578a19-1846-4712-8f1b-bcd554658492&scheme=1
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Reported soil formation rates by weathering (large scale); na=not available.
Methodology Spatial scale Temporal 

scale
Lower limit Upper 

limit
Reference

Mass balance (Si)

Non-carbonate; 
non-arable; North 
America, Europe, 
Australia 
(Victoria), 
Zimbabwe

na 0.02 1.27
Alexander 
(1988a)

Mass balance (Al, Fe, 
Ca, K, Mg, Na, Si)

Global 0.37 1.29

Wakatsuki 
and 
Rasyidin 
(1992)

In situ cosmogenic 
10Be and 26Al

Northern California na 0.39 0.91
Heimsath et 
al. (1997)

In situ cosmogenic 
10Be

Middle European 
rivers

10-40 Kyr 0.26 1.3
(Schaller et 
al. (2001)

Continental scale 
erosion/sedimentation

Global 542 Myr 0.4 1.4

Wilkinson 
and 
McElroy 
(2007)

Na USA na 0.3 1.1
Bennett 
(1939)

Table 5
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Soil formation rates by dust deposition 

(adapted from Goudie and Middleton, 

2001)
Location Dust deposition

(t ha-1 yr-1)
Aegean Sea 0.112 -  0.365
Southern Sardinia 0.06 – 0.13
Swiss Alps 0.004
French Alps 0.002
NE Spain 0.051
Corsica 0.12
Corsica 0.125
Central France 0.01
Crete 0.1 – 1.0
Crete 0.195
Pyrenees 0.30 – 0.39

Table 6
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Actual soil erosion rates in Europe (tolerable rate < 1.0 t ha-1 yr-1). For references, please see 
relevant sections in this paper.
Erosion type Mean rates

(t ha-1 yr-1)
Maximum rates 
(t ha-1 yr-1)

comment Main factors

Rill, sheet 
erosion

0.1 - 8.8 23.4 Land use, soil cover, 
slope

Gullies na 455 Climate, land use
Wind erosion 0.1 - 2.0 15 Soil type, soil cover, 

climate
Tillage erosion 3.0 - 9.0 na Soil management
Slope 
engineering

na 454 Soil management

Crop harvesting 1.3 – 19.0 na For a variety 
of crops

Crop type (Table 6); 
soil moisture content 
at time of harvesting

Cumulative 
mean soil erosion 
rates in tilled 
agriculture

3.0 - 10.0
3.2 - 19.8
4.5 – 38.8

na Tillage only
Water + wind + tillage
Water + wind + tillage + crop 
harvesting

    na = not available

Table 7
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