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Abstract The problem of linear dynamic thermoe-

lasticity in Kirchhoff–Love-type circular cylindrical

shells having properties periodically varying in cir-

cumferential direction (uniperiodic shells) is consid-

ered. In order to describe thermoelastic behaviour of

such shells, two mathematical averaged models are

proposed—the non-asymptotic tolerance and the

consistent asymptotic models. Considerations are

based on the known Kirchhoff–Love theory of elas-

ticity combined with Duhamel-Neumann thermoelas-

tic constitutive relations and on Fourier’s theory of

heat conduction. The non-asymptotic tolerance model

equations depending on a cell size are derived

applying the tolerance averaging technique and a

certain extension of the known stationary action

principle. The consistent asymptotic model equations

being independent on a microstructure size are

obtained by means of the consistent asymptotic

approach. Governing equations of both the models

have constant coefficients, contrary to starting shell

equations with periodic, non-continuous and oscillat-

ing coefficients. As examples, two special length-scale

problems will be analysed in the framework of the

proposed models. The first of them deals with

investigation of the effect of a cell size on the shape

of initial distributions of temperature micro-fluctua-

tions. The second one deals with study of the effect of

a microstructure size on the distribution of total

temperature field approximated by sum of an averaged

temperature and temperature fluctuations.

Keywords Microheterogeneous cylindrical shells �
Dynamic thermoelasticity problems � Tolerance and

asymptotic modelling � Length-scale effect

1 Introduction

Thin linearly elastic Kirchhoff–Love-type circular

cylindrical shells with a periodically micro-inhomo-

geneous structure in circumferential direction are

objects of consideration. Shells of this kind are termed

uniperiodic. At the same time, the shells have constant

structure in axial direction. By periodic inhomogene-

ity we shall mean periodically varying thickness and/

or periodically varying inertial, elastic and thermal

properties of the shell material. We restrict our

consideration to those uniperiodic cylindrical shells,

which are composed of a large number of identical

B. Tomczyk

Department of Civil Engineering, Warsaw University of

Life Sciences, Nowoursynowska Str. 166,

02-787 Warsaw, Poland

e-mail: barbara_tomczyk@sggw.pl
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elements. Moreover, every such element, called a

periodicity cell, can be treated as a thin shell. Typical

examples of such shells are presented in Fig. 1

(stiffened shell) and Fig. 2 (a shell composed of two

kinds of periodically distributed materials).

Thermoelastic problems of periodic structures

(shells, plates, beams) are described by partial differ-

ential equations with periodic, highly oscillating and

discontinuous coefficients. Thus, these equations are

too complicated to constitute the basis for investiga-

tions of most of the engineering problems. To obtain

averaged equations with constant coefficients, many

different approximate modelling methods for struc-

tures of this kind have been formulated. Periodic

cylindrical shells (plates) are usually described using

homogenized models derived by applying asymptotic

methods. These asymptotic models represent certain

equivalent structures with constant or slowly varying

rigidities and averaged mass densities. Unfortunately,

the asymptotic procedures are usually restricted to the

first approximation, which leads to homogenized

models neglecting the effect of a periodicity cell size

(called the length-scale effect) on the overall shell

behaviour. The mathematical foundations of this

modelling technique can be found in Bensoussan

et al. [1], Jikov et al. [2]. Applications of the

asymptotic homogenization procedure to modelling

of stationary and non-stationary phenomena for

microheterogeneous shells (plates) are presented in a

large number of contributions. From the extensive list

on this subject we canmention paper by Lutoborski [3]

and monograph by Lewiński and Telega [4].

The length-scale effect can be taken into account

using the non-asymptotic tolerance averaging tech-

nique. This technique is based on the concept of the

tolerance and in-discernibility relations related to the

accuracy of the performed measurements and calcu-

lations. The mathematical foundations of this mod-

elling technique can be found in Woźniak and

Wierzbicki [5], Woźniak et al. [6, 7], Ostrowski [8].

For periodic structures, governing equations of the

tolerance models have constant coefficients dependent

also on a cell size. Some applications of this averaging

method to the modelling of mechanical and thermo-

mechanical problems for various periodic structures

are shown in many works. We can mention here

monograph by Tomczyk [9] and papers by Baron [10],

Marczak and Jędrysiak [11], Marczak [12], Tomczyk

and Litawska [13, 14], were dynamic problems are

investigated and papers by Łaciński and Woźniak

[15], Rychlewska et al. [16], where problems of heat

conduction are analysed. The extended list of refer-

ences on this subject can be found in [5–8].

The tolerance averaging technique was also

adopted to formulate mathematical models for anal-

ysis of various mechanical and thermomechanical

problems for functionally graded solids, e.g. for heat

conduction in longitudinally graded hollow cylinder

by Ostrowski and Michalak [17, 18], for thermoelas-

ticity of transversally graded laminates by Pazera and

Jędrysiak [19], Pazera et al. [20], for dynamics of

transversally and longitudinally graded thin cylindri-

cal shells by Tomczyk and Szczerba [21–23].

The main aim of this contribution is to formulate

and discuss a new mathematical averaged tolerance

model for the analysis of selected dynamic thermoe-

lasticity problems for the uniperiodic cylindrical

shells under consideration. Contrary to the starting

exact equations of the shell thermoelasticity with

periodic, highly oscillating and discontinuous coeffi-

cients, governing equations of the proposed averaged

model have constant coefficients depending also on a

cell length dimension k. Hence, this model allows to

describe the influence of a length scale on the

thermoelastic shell behaviour. In order to derive this

model we shall apply a certain new approach to the

tolerance modelling of microheterogeneous media

given by Woźniak [7]. This approach is based on the

tolerance averaging of integral functionals describing

behaviour of the micro-inhomogeneous structures.

Then, by using a certain extension of the known

stationary action principle to the resulting averaged

functionals we arrive at the governing equations of

tolerance model.

The second aim is to derive a new averaged

consistent asymptotic model for the analysis of

selected dynamic thermoelasticity problems for the

uniperiodic cylindrical shells under consideration.

The model will be derived applying a certain new

approach to the asymptotic modelling of micro-

heterogeneous media proposed by Woźniak [7]. This

approach is based on the consistent asymptotic

averaging of integral functionals describing behaviour

of the micro-heterogeneous structures and on using the

extended stationary action principle. The governing

equations of asymptotic model have constant coeffi-

cients being independent of a period length. The main

advantage of this asymptotic approach is that the
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effective elastic and thermal moduli of the structure

can be obtained without specification of the periodic

cell problem.

As examples, two special length-scale problems

will be analysed in the framework of the proposed

models. The first of them deals with investigation of

the effect of a cell size on the shape of initial

distributions of temperature micro-fluctuations. This

problem can be studied in the framework of neither the

asymptotic model proposed here nor the known

asymptotic models commonly used for investigations

of vibrations and heat conduction in the micro-

periodic shells under consideration. The second one

deals with study of the effect of a microstructure size

on the distribution of total temperature field approx-

imated by the sum of an averaged temperature and

temperature fluctuations.

2 Formulation of the problem: starting equations

We assume that x1 and x2 are coordinates parametriz-

ing the shell midsurfaceM in circumferential and axial

directions, respectively. We denote x � x1 2 X �

ð0; L1Þ and n � x2 2 N � ð0; L2Þ, where L1; L2 are

length dimensions of M, cf. Figures 1 and 2. Let

O �x1 �x2 �x3 stand for a Cartesian orthogonal coordinate

system in the physical space R3 and denote

�x � ð�x1; �x2; �x3Þ. Let us introduce the orthonormal

parametric representation of the underformed cylin-

drical shell midsurface M by means of

M � �x 2 R3 : �x ¼ �r x1 ; x2ð Þ; x1; x2ð Þ 2 X� N
� �

,

where �rð�Þ is the smooth invertible function such that

o �r=ox1 � o �r=ox2 ¼ 0, o �r=ox1 � o �r=ox1 ¼ 1,

o �r=ox2 � o �r=ox2 ¼ 1. Note, that derivative o �r=oxi,

i ¼ 1; 2, should be understood as differentiation of

each component of �r, i.e. o �r=oxa ¼

½o�r1=oxa; o�r2=oxa; o�r3=oxa� for �r ¼ ½�r1; �r2; �r3�,
a ¼ 1; 2.

Throughout the paper, indices a; b; . . . run over 1,2

and are related to midsurface parameters x1; x2,
summation convention holds. Partial differentiation

related to xa is represented by oa, oa ¼ o=oxa.

Moreover, it is denoted oa...d � oa. . .od. Let aab and

aab stand for the covariant and contravariant midsur-

face first metric tensors, respectively. Denote by bab

the covariant midsurface second metric tensor. Under

orthonormal parametrization introduced on M, aab ¼

aab are unit tensors and components of tensor bab are:

b22 ¼ b12 ¼ b21 ¼ 0, b11 ¼ �r�1. We denote t 2 I ¼

½t0; t1� as the time coordinate.

Let dðxÞ, r stand for the shell thickness and the

midsurface curvature radius, respectively.

The basic cell D and an arbitrary cell DðxÞ with the

centre at point x 2 XD are defined by means of:

D � ½�k=2; k=2�, DðxÞ � xþ D ; x 2 XD,

XD � fx 2 X : DðxÞ � Xg, where k � k1 is a cell

length dimension in x � x1-direction. The period k,

called the microstructure length parameter, satisfies

conditions: k=dmax[ [ 1; k=r\\1 and k=L1\\1.

It is assumed that the cell D has a symmetry axis for

z ¼ 0, where z � z1 2 ½�k=2; k=2�. It is also assumed

that inside the cell the geometrical, elastic, inertial and

thermal properties of the shell are described by even

functions of argument z.

Denote by ua ¼ uaðx; n; tÞ, w ¼ wðx; n; tÞ,
ðx; n; tÞ 2 X� N� I, the shell displacements in direc-

tions tangent and normal toM, respectively. The shell

stiffness tensors describing elastic properties of the

shell are defined by DabcdðxÞ, BabcdðxÞ. Let lðxÞ stand

for a shell mass density per midsurface unit area. Let

f aðx; n; tÞ, f ðx; n; tÞ be external forces per midsurface

unit area, respectively tangent and normal to M.

Denote by hðx; n; tÞ the temperature field treated as the

temperature increment from a certain constant refer-

ence temperature T0 (by reference temperature we

shall mean the zero stress temperature). It is assumed

that h=T0\\1. Let �dabðxÞ stand for the membrane

thermal stiffness tensor (tensor of thermo-elastic

moduli: �dab ¼ Dabcdacd, where acd are coefficients of

thermal expansion). Denote by KabðxÞ and cðxÞ the

tensors of heat conductivity and the specific heat,

respectively. The heat sources will be neglected. For

uniperiodic shells, DabcdðxÞ, BabcdðxÞ, lðxÞ, �dabðxÞ,

KabðxÞ, cðxÞ are periodic, highly oscillating and non-

continuous functions with respect to argument x.

It is assumed that the temperature along the shell

thickness is constant. From this restriction it follows

that only the coupling between temperature field h and

membrane stresses occurs (describing by tensor

�dabðxÞ) while the coupling of temperature and bending

stresses is absent.

The starting equations are the well known govern-

ing equations of linear Kirchhoff–Love theory of thin
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elastic cylindrical shells combined with Duhamel-

Neumann thermo-elastic constitutive relations and

coupled with the known linearized Fourier heat

conduction equation in which the heat sources are

neglected [24–28]. Thus, the starting equations consist

of

(a) the Duhamel-Neumann stress–strain–tempera-

ture relations

nabðx; n; tÞ ¼ Dabcdecdðx; n; tÞ � �dabhðx; n; tÞ;

mabðx; n; tÞ ¼ Babcdjcdðx; n; tÞ; ðx; n; tÞ 2 X� N� I

ð1Þ

where

eab ¼
1

2
ðobua þ oaubÞ � babw; jab ¼ �oabw; ð2Þ

(b) the dynamic equilibrium equations

obn
ab � laab €ub þ f a ¼ 0;

oabm
ab þ babn

ab � l €wþ f ¼ 0;
ð3Þ

which after combining with (1) and (2) are expressed

in displacement fields ua; w and temperature field h

obðD
abcd

oducÞ þ r�1
obðD

ab11wÞ � obð �d
abhÞ

� laab €ub þ f a ¼ 0; r�1Dab11
obua þ oabðB

abcd
ocdwÞ

� r�1 �d11hþ r�2D1111wþ l €w� f ¼ 0;

ð4Þ

(c) the linearized heat conduction equation based

on the Fourier law coupled with (4)

oaðK
ab
obhÞ � c _h ¼ T0ð �d

ab
oa _ub þ r�1 �d11 _wÞ :

ð5Þ

Equations (4) and (5) describe the dynamic ther-

moelastic problems for the shells under consideration.

Coefficients of these equations are periodic, highly

oscillating and non-continuous functions in x.

Now, we are to show that Eqs. (4) and (5) can be

also derived from the extended principle of stationary

action proposed in [7]. These equations cannot be

obtained from the principle of stationary action in its

classical form because heat conduction Eq. (5)

involves the odd derivatives of unknown functions

hðx; n; tÞ, uaðx; n; tÞ, wðx; n; tÞ, ðx; n; tÞ 2 X� N� I,

with respect to argument t.

We assume that the thermoelastic problems of thin

shells considered here are described by the following

action functional

Aðua;w; p
ab; r

_
Þ

¼

Z

L1

0

Z

L2

0

Z

t1

t0

Lðx; n; t; obua; ua; _ua; oabw;w; _w; pab; r
_
Þdtdndx;

ð6Þ

where Lagrangian L, being a highly oscillating

function with respect to x, is determined by

L ¼ �
1

2
ðDabcd

obuaoduc þ
2

r
Dab11wobua þ

1

r2
D1111ww

þ Babcd
oabwocdw� Kab

oahobh� laab _ua _ub � l _w2Þ þ f aua þ fw

þ pabobua þ
1

r
p11wþ r

_
h;

ð7Þ

and where functions pabðx; n; tÞ, r
_
ðx; n; tÞ are highly

oscillating with respect to x and determined by

independent equations

pab ¼ �dabh;

r
_
¼ c _hþ T0ð �d

ab
oa _ub þ r�1 �d11 _wÞ:

ð8Þ

Equations (8) are called the constitutive equations

for functions pabðx; n; tÞ, r
_
ðx; n; tÞ. It has to be

emphasized that functions pab, r
_
are not arguments

of Lagrangian (7); they play the role of non-variational

parameters.

Fig. 1 Fragment of the shell reinforced by two families of

uniperiodically spaced ribbs
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Under assumption that oL=oðobuaÞ, oL=oðoabwÞ

and oL=oðobhÞ are continuous, from the extended

principle of stationary action applied to

Aðua;w; p
ab; r

_
Þ, we obtain the following system of

Euler–Lagrange equations

ob
oL

oðobuaÞ
�

oL

oua
þ

o

ot

oL

o _ua
¼ 0;

� oab
oL

oðoabwÞ
�

oL

ow
þ

o

ot

oL

o _w
¼ 0;

ob
oL

oðobhÞ
�
oL

oh
¼ 0:

ð9Þ

Combining (9) with (7) and (8) we arrive finally at

the explicit form of the fundamental equations of the

thermoelasticity shell theory under consideration.

These equations coincide with the well-known

Eqs. (4), (5).

The passage from action functional (6) to Euler–

Lagrange equations (9) in which pab, r
_
are given by

constitutive Eq. (8) represents the extended principle

of stationary action or the principle of stationary

action extended by constitutive equations.

Applying the tolerance averaging technique [7] to

Lagrange function (7) and independently to constitu-

tive Eq. (8) and then using the extended stationary

action principle we obtain the tolerance model equa-

tions describing thermoelastic phenomena in the

periodic shells being object of considerations in this

paper. All coefficients in the governing equations of

the tolerance model are constant in contrast to those

from the direct description (4), (5), and some of them

depend on a microstructure size.

Moreover, applying the consistent asymptotic pro-

cedure [7] to Lagrange function (7) and independently

to constitutive Eq. (8) and then using the extended

stationary action principle we derive the asymptotic

model equations describing thermoelastic behaviour

of the periodic shells under consideration. The gov-

erning equations of the asymptotic model have

constant coefficients but independent on a period

length.

Tomake this paper self-consisted, in the subsequent

section we shall outline the main concepts and the

fundamental assumptions of the tolerance modelling

procedure and of the consistent asymptotic approach,

which in the general form are given in the monograph

by Woźniak [7].

3 Concepts and assumptions of tolerance

and asymptotic modelling techniques

3.1 Main concepts of the tolerance modelling

procedure

The fundamental concepts of the tolerance modelling

procedure under consideration are those of two

tolerance relations between points and real numbers

determined by tolerance parameters, slowly-varying

functions, tolerance-periodic functions, fluctuation

shape functions and the averaging operation.

Below, the mentioned above concepts and assump-

tions will be specified with respect to one-dimensional

region X ¼ ð0; L1Þ defined in this paper.

3.1.1 Tolerance between points

Let k be a positive real number. Points x; y belonging

to X ¼ ð0; L1Þ are said to be in tolerance determined

by k, if and only if the distance between points x; y
does not exceed k, i.e. x� yk k� k.

Fig. 2 Fragment of the shell composed of two different

materials periodically and densely distributed in circumferential

direction
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3.1.2 Tolerance between real numbers

Let ~d be a positive real number. Real numbers l; m are

said to be in tolerance determined by ~d, if and only if

l� mj j � ~d.

The above relations are denoted by: x 	 y
k

, l	
~d
m.

Positive parameters k; ~d are called tolerance

parameters.

3.1.3 Slowly-varying functions

Let FðxÞ be a function defined in �X ¼ ½0; L1�, which is

continuous, bounded and differentiable in �X together

with their derivatives up to the R-th order. Note, that

function F can also depend on n 2 �N ¼ ½0; L2� and

time coordinate t as parameters. Let d �
ðk; d0; d1; . . .; dRÞ be the set of tolerance parameters.

The first of them represents the distances between

points in �X. The second one and the k-th one,

k ¼ 1; . . .;R, are related to the differences between

the values of function Fð�Þ and its derivative ok1FðxÞ in

points x; y belonging to �X such that x� yk k� k. A

function Fð�Þ is said to be slowly-varying of the R-th

kind with respect to cell D and tolerance parameters d,

F 2 SVR
d ðX;DÞ, if and only if the following two

conditions are fulfilled

ð8ðx; yÞ 2 X2Þ½ðx	
k
yÞ

) FðxÞ	
d0
FðyÞ and o

k
1FðxÞ	

dk
o
k
1FðyÞ; k

¼ 1; 2; . . .;R� ;

ð10Þ

ð8x 2 XÞ½k o
k
1FðxÞ

�

�

�

�	
dk
0; k ¼ 1; 2; . . .;R � : ð11Þ

It is worth to known that tolerance parameter k in

every problem under consideration is known a priori

as a characteristic cell length dimension, whereas

values of tolerance parameters d0; d1; . . .; dR can be

determined only a posteriori, i.e. after obtaining

unique solution to the considered initial-boundary

value problem.

3.1.4 Tolerance-periodic functions

An integrable and essentially bounded function f ðxÞ

defined in �X ¼ ½0; L1�, which can also depend on n 2
�N and time coordinate t as parameters, is called

tolerance-periodic in reference to cell D and tolerance

parameters d � ðk; d0Þ, if for every x 2 XD there exist

D-periodic function ~f ð�Þ such that f DðxÞ \ Dom fj and

~f DðxÞ \ Dom ~f
�

� are indiscernible in tolerance deter-

mined by d � ðk; d0Þ. Function ~f is a D-periodic

approximation of f in DðxÞ. For function f ð�Þ being

tolerance-periodic together with its derivatives up to

the R-th order, we shall write f 2 TPR
d ðX;DÞ,

d � ðk; d0; d1; . . .; dRÞ. It should be noted that for

periodic structures being objects of considerations in

Fig. 3 Basic cell D � ½�k=2; k=2� � X of the uniperiodic shell

123

2396 Meccanica (2020) 55:2391–2411



this work, function ~f ðx; zÞ has the same analytical form

in every cellDðxÞwith a centre at x 2 �X. Hence, ~f ðx; zÞ

is independent of x and we have ~f ¼ ~f ðzÞ; z 2 D

ðxÞ; x 2 XD. In the general case, i.e. for tolerance

periodic structures (i.e. structures which in small

neighbourhoods of DðxÞ can be approximately

regarded as periodic), ~f ðx; zÞ depends on x and hence

we have ~f ¼ ~f ðx; zÞ; z 2 DðxÞ; x 2 XD.

3.1.5 Fluctuation shape functions

Let hðxÞ be a continuous, highly oscillating, k-periodic

function defined in �X ¼ ½0; L1�, which has continuous

derivatives ok1h; k ¼ 1; . . .;R� 1; and either continu-

ous or piecewise continuous bounded derivative o
R
1h.

Function hð�Þ will be called the fluctuation shape

function of the R-th kind, hð�Þ 2 FSRðX;DÞ, if it

satisfies conditions

h 2 OðkRÞ; o
k
1h 2 OðkR�kÞ; k ¼ 1; 2; . . .;R;

Z

DðxÞ

lðzÞ hðzÞdz ¼ 0; z 2 DðxÞ; x 2 XD;

ð12Þ

where lð�Þ is a certain positive valued k-periodic

function defined in �X. Nonnegative integer R is

specified in every discussed problem.

Moreover, for every FðxÞ 2 SVR
d ðX;DÞ and hðxÞ 2

FSRðX;DÞ function #ðxÞ � hðxÞFðxÞ 2 TPR
d ðX;DÞ

satisfies condition
Z

DðxÞ

o
k#ðzÞdz ¼ FðxÞ

Z

DðxÞ

o
k hðzÞdz ; z 2 DðxÞ; x 2 XD;

k ¼ 0; 1; 2; . . .;R; o
0# � #; o

0h � h :

ð13Þ

3.1.6 Averaging operation

Let f ðxÞ be a function defined in �X � ½0; L1�, which is

integrable and bounded in every cell DðxÞ, x 2 XD.

The averaging operation of f ð�Þ is defined by

\f [ ðxÞ �
1

Dj j

Z

DðxÞ

f ðzÞdz; z 2 DðxÞ; x 2 XD :

ð14Þ

It can be observed that if f ð�Þ is D-periodic then

\f [ is constant.

Fig. 4 Diagrams of dimensionless initial temperature micro-

fluctuations H
ð�nÞ being a exponentially or linearly decaying

solutions (46), (47) to Eq. (44) versus dimensionless coordinate

�n 2 ½0; 1�, b exponentially decaying solutions (46) to Eq. (44)

versus �n 2 ½0; 02�; k=L1 ¼ 0:1, K2=K1 ¼ 0:5
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3.2 Basic assumptions of the tolerance modelling

procedure

The tolerance modelling is based on two assumptions.

The first of them is termed the tolerance averaging

approximation. The second one is called the micro-

macro decomposition.

3.2.1 Tolerance averaging approximation

For an integrable periodic function uðxÞ defined in
�X ¼ ½0; L1� and for HðxÞ 2 SV1

d ðX;DÞ, SðxÞ 2 SV2
d

ðX;DÞ, hðxÞ 2 FS1ðX;DÞ, sðxÞ 2 FS2ðX;DÞ, x 2 �X,

the following tolerance relations, called the tolerance

averaging approximation, hold for every x 2 XD

\u o
R
1H[ ðxÞ ¼\u[ o

R
1HðxÞ þ OðdÞ; R ¼ 0; 1 ; o

0
1H � H;

\u o
R
1S[ ðxÞ ¼\u[ o

R
1SðxÞ þ OðdÞ; R ¼ 0; 1; 2 ; o

0
1S � S;

ð15Þ

and

\u o1ðhHÞ[ ðxÞ ¼\u o1h[HðxÞ þ OðdÞ;

\u o1ðs SÞ[ ðxÞ ¼\u o1s[ SðxÞ þ OðdÞ;

\u o
2
1ðs SÞ[ ðxÞ ¼\u o

2
1s[ SðxÞ þ OðdÞ :

ð16Þ

In the course of modelling, terms OðdÞ in (15) and

(16) are neglected. Approximations (15), (16) follow

directly from conditions (10), (11) which hold for the

slowly-varying functions and from condition (13)

satisfied by the fluctuation shape functions.

3.2.2 Micro-macro decomposition assumption

The second fundamental assumption, called the micro-

macro decomposition, states that the displacement and

temperature fields occurring in the Lagrangian under

consideration can be decomposed into macroscopic

and microscopic parts. The macroscopic part is

represented by unknown averaged displacements and

temperature being slowly-varying functions in peri-

odicity direction. The microscopic part is described by

the known highly oscillating periodic fluctuation

shape functions multiplied by unknown temperature

fluctuation amplitudes and displacement fluctuation

amplitudes being slowly-varying in x.

Micro-macro decomposition introduced in the

thermoelastic problem discussed in this paper is

presented in Sect. 4.1.

3.3 Basic concepts and assumptions

of the asymptotic modelling procedure

The basic notions of the consistent asymptotic proce-

dure [7] are those of the fluctuation shape functions

and the averaging operation. These concepts have

been explained in Sect. 3.1. The consistent asymptotic

modelling does not require notions of tolerance-

periodic and slowly-varying functions.

The consistent asymptotic decomposition is the

basic assumption imposed on the starting Lagrangian

under consideration. It states that the displacement and

temperature fields occurring in the Lagrangian must be

replaced by families of fields depending on parameter

0\e\\1 and defined in an arbitrary cell. These

families of displacements and temperature are decom-

posed into averaged part independent of e and highly-

oscillating part depending on e.

Consistent asymptotic decomposition introduced in

the thermoelastic problem discussed in this paper is

presented in Sect. 5.1.

Fig. 5 Diagrams of dimensionless initial temperature micro-

fluctuations H
ð�nÞ being oscillating solutions (48) to Eq. (44)

versus dimensionless coordinate �n 2 ½0; 1�made for c=c
 ¼ 1:1
and c=c
 ¼ 1:3; k=L1 ¼ 0:1, K2=K1 ¼ 0:5
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4 Tolerance modelling

4.1 Governing equations of the tolerance model

The tolerance modelling procedure for Euler–La-

grange equations (9) is realized in two steps.

The first step is based on the tolerance averaging of

Lagrangian (7) under micro-macro decomposition of

displacements uaðx; n; tÞ 2 TP1
dðX;DÞ, wðx; n; tÞ 2

TP2
dðX;DÞ and temperature field hðx; n; tÞ 2

TP1
dðX;DÞ x 2 X, ðn; tÞ 2 N� I, which in the problem

discussed here is assumed in the form

uaðx; n; tÞ ¼ u0aðx; n; tÞ þ hðxÞUaðx; n; tÞ;

wðx; n; tÞ ¼ w0ðx; n; tÞ þ gðxÞWðx; n; tÞ;

hðx; n; tÞ ¼ h0ðx; n; tÞ þ bðxÞHðx; n; tÞ;

ð17Þ

where

u0aðx; n; tÞ; Uaðx; n; tÞ; h
0ðx; n; tÞ; Hðx; n; tÞ 2 SV1

d ðX;DÞ;

d � ðk; d0; d1Þ ;w
0ðx; n; tÞ ; Wðx; n; tÞ 2 SV2

d ðX;DÞ ;

d � ðk; d0; d1; d2Þ :

ð18Þ

Macrodisplacements u0a;w
0 and macrotemperature

h0 as well as displacement fluctuation amplitudes

Ua;W and temperature fluctuation amplitude H are

the new unknowns.

Fluctuation shape functions for displacements

hðxÞ 2 FS1ðX;DÞ, gðxÞ 2 FS2ðX;DÞ and fluctuation

shape function for temperature bðxÞ 2 FS1ðX;DÞ are

the known, k-periodic, continuous and highly-oscil-

lating functions. Agree with (12) they have to satisfy

conditions: h 2 OðkÞ, ko1h 2 OðkÞ, g 2 Oðk2Þ, ko1g

2 Oðk2Þ; k2o11g 2 Oðk2Þ, b 2 OðkÞ, ko1b 2 OðkÞ,

\l h[ ¼\l g[ ¼\cb[ 0.

We substitute the right-hand sides of (17) into

starting Lagrangian (7) and then we average the result

over the cell applying formula (14) and tolerance

averaging approximation (15), (16). As a result we

obtain function \Lhg[ being the averaged form of

Lagrangian (7) in DðxÞ. Under the additional approx-

imation 1þ k=r 	 1 (i.e. after neglecting terms of an

order of k=r) the final result has the form

\Lhg[ ðobu
0
a; u

0
a; o2Ua;Ua; _u

0
a; _Ua; oabw

0;w0; o22W ;

o2W ;W ; _w0; _W ; oah
0; h0; o2H;H; pab; r

_
Þ

¼ �
1

2
½\Dabcd

[ obu
0
aodu

0
c þ 2\Dabc1

o1h[ obu
0
aUcþ

þ \Da11cðo1hÞ
2
[UcUa þ\Da22dðhÞ2[ o2Uco2Uaþ

þ 2r�1ð\Dab11
[ obu

0
aw

0 þ\Da111
o1h[w0UaÞþ

þ r�2
\D1111

[w0w0 þ\Babcd
[ oabw

0
ocdw

0þ

þ 2ð\Bab11
o11g[ oabw

0W þ\Bab22g[ oabw
0
o22Wþ

þ\B1122go11g[ o22WWÞ þ 4\B1212ðo1gÞ
2
[ ðo2WÞ2þ

þ\B1111ðo11gÞ
2
[W2 þ\B2222ðgÞ2[ ðo22WÞ2þ

�\Kab
[ oah

0
obh

0 � 2\K1b
o1b[ obh

0Hþ

� 2\K2bb[ obh
0
o2H�\K11ðo1bÞ

2
[H2

þ\K22ðbÞ2[ ðo2HÞ2 þ�\l[ aab _u0a _u
0
b �\l[ ð _w0Þ2

�\lðhÞ2[ aab _Ua
_Ub �\lðgÞ2[ ð _WÞ2�

þ\f a[ u0a þ\f ah[ Ua þ\f [w0 þ\fg[ W þ

þ\pab[ obu
0
a þ\pa1o1h[Ua þ\pa2h[ o2Ua

þ r�1
\p11[w0 þ\r

_
[ h0 þ\r

_
b[H;

ð19Þ

with averaged constitutive equations given by

Fig. 6 Diagrams of dimensionless initial temperature micro-

fluctuations H
ð�nÞ being exponentially decaying solutions (46)

to Eq. (44) versus ratio K2=K1; k=L1 ¼ 0:1, �n ¼ 0:05
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\pab[ ¼\ �dab[ h0 þ\ �dabb[ H;

\pa1o1h[ ¼\ �da1o1h[ h0 þ\ �da1b[ H;

\pa2h[ ¼\ �da2h[ h0 þ\ �da2h b[ H;

\p11h[ ¼\ �d11g[ h0 þ\ �d11g b[ H;

\r
_
[ ¼\c[ _h0 þ T0½\ �dab[ oa _u

0
b þ\

�d1bo1h[ _Ub

þ\ �d2bh[ o2
_Ub þ r�1

\
�d11[ _w0�;

\r
_
b[ ¼\c b2[ _h0 þ T0½\b �dab[ oa _u

0
b

þ\b �d1bo1h[ _Ub

þ\b �d2bh[ o2
_Ub� :

ð20Þ

The underlined terms in (19), (20) depend on a

period length k.

Action functional

Ahgðu
0
a;Ua;w

0;W ; pab; r
_
Þ ¼

Z

L1

0

Z

L2

0

Z

t1

t0

\Lhg[ dtdndx;

ð21Þ

with \Lhg[ given by (19) and with averaged

constitutive equations for functions pab; r
_
expressed

by (20), is called the tolerance averaging of starting

action functional Aðua;w; p
ab; r

_
Þ, cf. formula (6),

under decomposition (17).

In the second step, we apply the extended principle

of stationary action to averaged Lagrange function

(19). In this step, expressions (20) are treated as non-

variational parameters.

Under assumption that o\Lhg[ =oðobu
0
aÞ, o\Lhg

[ =oðoabw
0Þ, o\Lhg[ =oðo2UaÞ, o\Lhg[ =oðo2

WÞ, o\Lhg[ =oðo22WÞ, o\Lhg[ =oðobh
0Þ, o\Lhg

[ =oðo2HÞ are continuous, from the extended prin-

ciple of stationary action applied to (21) we obtain the

following system of Euler–Lagrange equations for

u0a;w
0;Ua;W ; h0;H as the basic unknowns

ob
o\Lhg[

oðobu0aÞ
�
o\Lhg[

ou0a
þ

o

ot

o\Lhg[

o _u0a
¼ 0;

� oab
o\Lhg[

oðoabw0Þ
�
o\Lhg[

ow0
þ

o

ot

o\Lhg[

o _w0
¼ 0;

o

ot

o\Lhg[

o _Ua

�
o\Lhg[

oUa

þ o2
o\Lhg[

oðo2UaÞ
¼ 0;

o

ot

o\Lhg[

o _W
�
o\Lhg[

oW

þ o2
o\Lhg[

oðo2WÞ
� o22

o\Lhg[

oðo22WÞ
¼ 0;

ob
o\Lhg[

oðobh
0Þ

�
o\Lhg[

oh0
¼ 0;

�
o\Lhg[

oH
� o2

o\Lhg[

oðo2HÞ
¼ 0 :

ð22Þ

Combining (22) with (19) and (20) we obtain finally

the explicit form of the tolerance model equations.

These equations can be written in the form of

• the stress–strain–temperature relations

Nab ¼\Dabcd
[ odu

0
c þ r�1

\Dab11
[w0 þ\Dabc1

o1h[Uc

þ\Dabc2h[ o2Uc �\ �dab[ h0 �\ �dabb[ H;

Mab ¼\Babcd
[ ocdw

0 þ\Bab11
o11g[Wþ

þ 2\Bab12
o1g[ o2W þ\Bab22g[ o22W ;

ð23Þ

Hb ¼\o1hD
b1cd
[ odu

0
c �\hDb2cd

[ o2du
0
cþ

þ\Db11cðo1hÞ
2
[Uc �\Db22cðhÞ2[ o22Ucþ

þ r�1
\o1hD

b111
[w0 �\o1h �db1[ h0 þ\ �db2h[ o2h

0þ

�\ �db1o1h b[ Hþ\ �db2bh[ o2H;

G ¼\o11gB
11ab
[ oabw

0 � 2\o1gB
ab12
[ oab2w

0þ

þ\gBab22
[ oab22w

0 þ\ðo11gÞ
2
B1111

[W þ ð2\o11gB
1122g[þ

� 4\ðo1gÞ
2
B1212

[ Þ o22W þ\ðgÞ2B2222
[ o2222W ;

ð24Þ

Fig. 7 Diagrams of dimensionless initial temperature micro-

fluctuations H
ð�nÞ being exponentially decaying solutions (46)

to Eq. (44) versus dimensionless microstructure length param-

eter e � k=L1; K2=K1 ¼ 0:5, �n ¼ 0:05
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• the dynamic equilibrium equations

oaN
ab �\l[ aab €u0a þ\f b[ ¼ 0;

oabM
ab þ r�1N11 þ\l[ €w0 �\f [ ¼ 0;

\l ðhÞ2[ aab €Ua þ Hb �\f bh[ ¼ 0;

\l ðgÞ2 [ €W þ G�\fg[ ¼ 0;

ð25Þ

• the heat conduction equations

\Kab
[ oabh

0 þ\K1b
o1b[ obHþ\K2bb[ o2bH�\c[ _h0 ¼

¼ T0½\ �dab[ oa _u
0
b þ\

�d1bo1h[ _Ub þ\ �d2bh[ o2
_Ub þ r�1

\
�d11[ _w0�;

\K2bb[ o2bh
0 �\K1b

o1b[ obh
0 þ\K22ðbÞ2[ o22H�\K11ðo1bÞ

2
[Hþ

�\cðbÞ2[ _H ¼ T0½\ b �dab[ oa _u
0
b þ\

�d1bb o1h[ _Ub þ\ �d2bb h[ o2
_Ub� :

ð26Þ

Equations (23)–(26) together with the micro-macro

decomposition (17) and physical reliability conditions

(18) constitute the tolerance model for the analysis of

selected dynamic thermoelasicity problems for

uniperiodic shells under consideration. Coefficients

of the derived model equations are constant and some

of them involve microstructure length parameter k

(underlined terms).

4.2 Discussion of results

The important features of the tolerance model pro-

posed here are listed below.

• In contrast to exact thermoelastic shell Eqs. (4), (5)

with periodic, discontinuous and highly oscillating

coefficients, the tolerance model Eqs. (23)–(26)

proposed here have constant coefficients. More-

over, some of them depend on a period length k

(underlined terms). Hence, the tolerance model

makes it possible to describe the effect of a

microstructure size on the global thermoelastic

shell behaviour. Moreover, we can analyse the

length-scale effect not only in non-stationary but

also in stationary problems for the uniperiodic

shells considered here.

• The number and form of boundary conditions for

macrodisplacements u0a;w
0 and macrotemperature

h0 are the same as in the classical shell theory

governed by thermoelasticity Eqs. (4), (5). The

boundary conditions for kinematic fluctuation

amplitudes Ua; W and for thermal fluctuation

amplitudes H should be defined only on bound-

aries n ¼ 0; n ¼ L2.

• Decomposition (17) and hence also governing

Eqs. (23)–(26) of the tolerance model are uniquely

determined by the given a priori highly oscillating

periodic fluctuations shape functions for displace-

ments hðxÞ 2 FS1ðX;DÞ, h 2 OðkÞ,

gðxÞ 2 FS2ðX;DÞ, g 2 Oðk2Þ, and fluctuations

shape function for temperature bðxÞ 2 FS1ðX;DÞ,

b 2 OðkÞ, which represent oscillations of displace-
ment and temperature fields inside a cell. These

functions can be derived as solutions to periodic

eigenvalue cell problems. For the most cases of

those problems an approximate forms of these

solutions are taken into account. The choice of

these functions can be also based on the experience

or intuition of the researcher.

• It has to be emphasized that solutions to selected

initial/boundary value problems formulated in the

framework of the tolerance model have a physical

sense only if conditions (18) hold for the pertinent

tolerance parameters d, i.e. if unknowns u0a;w
0; h0,

Ua;W ; H of the tolerance model equations are

slowly-varying functions in periodicity direction.

These conditions can be also used for the a

posteriori evaluation of tolerance parameters d

and hence, for the verification of the physical

reliability of the obtained solutions.

• For a homogeneous shell with a constant thickness

DabcdðxÞ, BabcdðxÞ, lðxÞ, �dabðxÞ, KabðxÞ, cðxÞ are

constant and because \lh[ ¼\lg[ ¼

\cb[ ¼ 0, we obtain \h[ ¼\g[ ¼

\b[ ¼ 0, and hence\o1h
a
[ ¼\o1g

A
[ ¼

\o11g
A
[ ¼\o1b[ ¼ 0. In this case equations

ð25Þ1;2 and ð26Þ1 reduced to the well known shell

equations of motion for averaged displacements

u0aðx; n; tÞ; w
0ðx; n; tÞ and to the heat conduction

equation for averaged temperature h0ðx; n; tÞ.

Independently, for fluctuation amplitudes

Uaðx; n; tÞ; Wðx; n; tÞ; Hðx; n; tÞ we arrive at the

system of equations, which under condition

\f bh[ ¼\fg[ ¼ 0 and under homogeneous

initial conditions for Ua, W and H has only trivial

solution Ua ¼ W ¼ H ¼ 0. Hence, from
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decomposition (17) it follows that ua ¼ u0a; w ¼

w0 ; h ¼ h0. It means that Eqs. (23)–(26) gener-

ated by tolerance averaged Lagrange function (19)

reduce to the starting Eqs. (4), (5) generated by

Lagrange function (7).

5 Consistent asymptotic modelling

The asymptotic model equations can be obtained

directly from the tolerance model Eqs. (23)–(26) by

the formal limit passage k ! 0. However, the same

results can be obtained independently of the tolerance

model by applying the consistent asymptotic proce-

dure (variational approach) proposed in [7]. In this

approach the concepts of tolerance-periodic and

slowly-varying functions are not introduced. On

passing from the tolerance to asymptotic modelling,

we retain only the concepts of fluctuation shape

function and averaged operation. Below, asymptotic

model equations will be derived by applying the

consistent asymptotic modelling.

5.1 Asymptotic model equations

Asymptotic modelling procedure for Euler–Lagrange

equations (9) is realized in two steps.

The first step is based on the consistent asymptotic

averaging of Lagrangian (7) and independently on the

consistent asymptotic averaging of constitutive

Eq. (8) for functions pabðx; n; tÞ, r
_
ðx; n; tÞ being the

non-variational parameters of Lagrange function (7).

In order to do it, we shall restrict considerations to

displacement fields ua ¼ uaðz; n; tÞ, w ¼ wðz; n; tÞ and

temperature field hðz; n; tÞ defined in DðxÞ � N� I,

z � z1 2 DðxÞ, x 2 XD, ðn; tÞ 2 N� I. Then, we

replace uaðz; n; tÞ, wðz; n; tÞ and hðz; n; tÞ by families

of displacements ueaðz; n; tÞ � uaðz=e; n; tÞ, weðz; n;
tÞ � wðz=e; n; tÞ and family of temperature field

heðz; n; tÞ � hðz=e; n; tÞ where 0\e\\1, z 2 DeðxÞ;,

De � ð�ek=2; ek=2Þ (scaled cell), DeðxÞ � xþ
De ; x 2 XDe

(scaled cell with a centre at x 2 XDe
).

We introduce the consistent asymptotic decompo-

sition of displacement and temperature families

ueaðz; n; tÞ, weðz; n; tÞ, heðz; n; tÞ, ðz; n; tÞ 2 De � N� I

in the area of every e-scaled cell

ueaðz; n; tÞ � uaðz=e; n; tÞ ¼ u0aðz; n; tÞ þ eheðzÞUaðz; n; tÞ;

weðz; n; tÞ � wðz=e; n; tÞ ¼ w0ðz; n; tÞ þ e2geðzÞWðz; n; tÞ;

heðz; n; tÞ � hðz=e; n; tÞ ¼ h0ðz; n; tÞ þ ebeðzÞHðz; n; tÞ :

ð27Þ

Functions u0a;w
0 and Ua;W are termed macrodis-

placements and displacement fluctuation amplitudes,

respectively. Functions h0; H are called macrotem-

perature and temperature fluctuation amplitudes. All

unknowns mentioned above are assumed to be

continuous and bounded in �X. It has to be emphasized

that these unknown functions are independent of e.

Fluctuation shape functions for displacements

heðzÞ � hðz=eÞ 2 FS1ðX;DÞ, geðzÞ � gðz=eÞ 2 FS2

ðX;DÞ and fluctuation shape function for temperature

beðzÞ � bðz=eÞ 2 FS1ðX;DÞ in (27) are highly oscil-

lating and D-periodic. They have to be known in every

problem under consideration. They depend on k as a

parameter and have to satisfy conditions: he 2 OðekÞ,

ko1he 2 OðekÞ, ge 2 OððekÞ2Þ, ko1ge 2 OððekÞ2Þ;

k2o11ge 2 OððekÞ2Þ, be 2 OðekÞ, ko1be 2 OðekÞ,

\l he[ ¼\l ge[ ¼\cbe[ 0. Bearing in mind

that heðzÞ � hðz=eÞ, geðzÞ � gðz=eÞ, beðzÞ � bðz=eÞ

and setting o1heðzÞ �
1
e
o1hðz=eÞ; o1geðzÞ �

1
e
o1g

ðz=eÞ; o11geðzÞ �
1
e2
o11gðz=eÞ, o1beðzÞ �

1
e
o1b ðz=eÞ;

from (27) we obtain

o1ueaðz; n; tÞ ¼ o1u
0
aðz; n; tÞ þ o1hðz=eÞUaðz; n; tÞ þ OðeÞ;

o2ueaðz; n; tÞ ¼ o2u
0
aðz; n; tÞ þ OðeÞ;

_ueaðz; n; tÞ ¼ _u0aðz; n; tÞ þ OðeÞ;

o1 _ueaðz; n; tÞ ¼ o1 _u
0
aðz; n; tÞ þ o1hðz=eÞ _Uaðz; n; tÞ þ OðeÞ;

o2 _ueaðz; n; tÞ ¼ o2 _u
0
aðz; n; tÞ þ OðeÞ

o1weðz; n; tÞ ¼ o1w
0ðz; n; tÞ þ OðeÞ;

o11weðz; n; tÞ ¼ o11w
0ðz; n; tÞ þ o11gWðz; n; tÞ þ OðeÞ;

o12weðz; n; tÞ ¼ o12w
0ðz; n; tÞ þ OðeÞ ¼ o21weðz; n; tÞ;

o2weðz; n; tÞ ¼ o2w
0ðz; n; tÞ þ OðeÞ;

o22weðz; n; tÞ ¼ o22w
0ðz; n; tÞ þ OðeÞ;

_weðz; n; tÞ ¼ _w0ðz; n; tÞ þ OðeÞ;

ð28Þ

and

o1heðz; n; tÞ ¼ o1h
0ðz; n; tÞ þ o1bðz=eÞHðz; n; tÞ þ OðeÞ;

o2heðz; n; tÞ ¼ o2h
0ðz; n; tÞ þ OðeÞ;

_heðz; n; tÞ ¼ _h0ðz; n; tÞ þ OðeÞ;

ð29Þ

123

2402 Meccanica (2020) 55:2391–2411



where z 2 DeðxÞ;x 2 XDe
.

Because of Lagrangian L defined by (7) is highly

oscillating with respect to x and essentially bounded in

its domain, then there exists Lagrangian ~Lðz; n; t; obua;

ua; _ua; oabw;w; _w; pab; r
_
Þ being the periodic approxi-

mation of Lagrangian L in DðxÞ, z 2 DðxÞ, x 2 XD. Let

~L e be a family of functions given by

~L e ¼ ~Lðz=e; n; t; obuea; uea; _uea; oabwe;we; _we; obhe; he; p
ab
e ; r

_

eÞ ¼

¼ �
1

2
½Dabcd

obueaoduec þ 2r�1Dab11weobueaþ

þ r�2D1111wewe þ Babcd
oabweocdweþ

� Kab
oaheobhe � laab _uea _ueb � lð _weÞ

2� þ

þ f auea þ f we þ pabe obu
a
e þ r�1p11e we þ r

_

ehe;

ð30Þ

where pabe ; r
_

e play the role of parameters and are given

by independent equations

pabe ¼ �dabhe;

r
_

e ¼ c _he þ T0ð �d
ab
oa _ueb þ r�1 �d11 _weÞ :

ð31Þ

Wesubstitute the right-hand sides of (27)–(29) into (30)

and independently to (31). Then, we take into account that

under limit passage e ! 0, terms OðeÞ, Oðe2Þ can be

neglected and every continuous and bounded function

f ðz; tÞ of argument z 2 DeðxÞ tends to function f ðx; tÞ

of argument x 2 �X. Moreover, if e ! 0 then, by means

of a property of the mean value, cf. Jikov et al. [2], the

obtained result tends weakly to function L0 being the

averaged form of starting Lagrangian (7) under

consistent asymptotic decomposition (27)

L0ðobu
0
a; u

0
a;Ua; _u

0
a; oabw

0;w0;W ; _w0; obh
0; h0;H; pab; r

_
Þ

¼ �
1

2
½\DabcdðzÞ[ obu

0
aodu

0
c þ 2\Dabc1ðzÞo1hðzÞ[ obu

0
aUcþ

þ\Da1c1ðzÞðo1hðzÞÞ
2
[Uc Ua þ 2r�1ð\Dab11ðzÞ[ obu

0
aw

0þ

þ\Da111ðzÞo1hðzÞ[w0UaÞ þ r�2
\D1111ðzÞ[ ðw0Þ2þ

þ\BabcdðzÞ[ oabw
0
ocdw

0 þ 2\Bab11ðzÞo11gðzÞ[ oabw
0Wþ

þ\B1111ðzÞðo11gðzÞÞ
2
[ ðWÞ2þ

�\KabðzÞ[ oah
0
obh

0 � 2\K1bðzÞo1bðzÞ[ obh
0H

�\K11ðzÞðo1bðzÞÞ
2
[ ðHÞ2þ

�\lðzÞ[ aab _u0a _u
0
b �\lðzÞ[ ð _w0Þ2� þ\f a[ u0a

þ\f [w0 þþ\pab[ obu
0
a þ\pa1o1h[Ua

þ r�1
\p11[w0 þ\r

_
[H;

z 2 DðxÞ; x 2 XD;

ð32Þ

where averaged constitutive equations for functions

\pab[ ,\r
_
[ have the form

\pab[ ¼\ �dab[ h0; \pa1o1h[ ¼\ �da1o1h[ h0;

\r
_
[ ¼\c[ _h0 þ T0½\ �dab[ oa _u

0
b þ\

�d1bo1h[ _Ub þ r�1
\

�d11[ _w0� :

ð33Þ

Averages \ � [ occurring in (32), (33) are

constant and calculated by means of (14).

In the framework of consistent asymptotic procedure

we introduce the consistent asymptotic action functional

A0
hgðu

0
a;Ua;w

0;W ; pab; r
_
Þ ¼

Z

L1

0

Z

L2

0

Z

t1

t0

L0dtdndx;

ð34Þ

where L0 is given by (32).

The second step in the asymptotic modelling of

Euler–Lagrange equations (9) is to apply the extended

principle of stationary action to averaged Lagrange

function (32). In this step, expressions (33) are treated

as non-variational parameters.

Under assumption that oL0=oðobu
0
aÞ, oL0=oðoabw

0Þ,

oL0=oðobh
0Þ are continuous, from the extended prin-

ciple of stationary action applied to (34) we obtain the

following system of Euler–Lagrange equations for

u0a;w
0;Ua;W ; h0;H as the basic unknowns

ob
oL0

oðobu0aÞ
�
oL0

ou0a
þ

o

ot

oL0

o _u0a
¼ 0;

� oab
oL0

oðoabw0Þ
�

oL0

ow0
þ

o

ot

oL0

o _w0
¼ 0;

oL0

oUa

¼ 0;
oL0

oW
¼ 0;

ob
oL0

oðobh
0Þ

�
oL0

oh0
¼ 0;

oL0

oH
¼ 0 :

ð35Þ

Combining (35) with (32) and (33) we arrive at the

explicit form of the consistent asymptotic model

equations for u0aðx; n; tÞ;w
0ðx; n; tÞ; Uaðx; n; tÞ;

Wðx; n; tÞ; h0ðx; n; tÞ;Hðx; n; tÞ, x 2 X, ðn; tÞ 2 N� I

\Dabcd
[ obdu

0
c þ r�1

\Dab11
[ obw

0 þ\Dabc1
o1h[ obUc �\ �dab[ obh

0þ

�\l[ aab €u0b þ\f a[ ¼ 0;

\Babcd
[ oabcdw

0 þ\Dab11
o11g[ oabW þ r�1ð\D11cd

[ odu
0
cþ

þ r�1
\D1111

[w0 þ r�1
\D111d

o1h[Ud �\ �d11[ h0Þþ

þ\l[ €w0 �\f [ ¼ 0;

\ðo1hÞ
2
Db1c1

[Uc ¼ �\o1hD
b1cd
[ odu

0
c � r�1

\o1hD
b111
[w0 þ\o1h �db1[ h0;

\ðo11gÞ
2
B1111

[W ¼ �\o11gB
11cd
[ ocdw

0;

\Kab
[ oabh

0 þ\K1b
o1b[ obH�\c[ _H0

¼ T0½\ �dab[ oa _u
0
b þ\

�d1bo1h[ _Ub þ r�1
\

�d11[ _w0�;

\K11ðo1bÞ
2
[H ¼ �\K1b

o1b[ obh
0 :

ð36Þ
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Equation (36) consist of partial differential equa-

tions for macrodisplacements u0a; w
0 and macrotem-

perature h0 coupled with linear algebraic equations for

kinematic fluctuation amplitudes Ua; W and thermal

fluctuation amplitude H. After eliminating fluctuation

amplitudes from the governing equations by means of

Uc ¼ �G�1
cg ½\o1hD

1gl#
[ o#u

0
l þ r�1

\o1hD
1g11

[w0 �\o1h �dg1[ h0�;

W ¼ �E�1
\o11gB

11cd
[ ocdw

0 ;

H ¼ �C�1
\K1b

o1b[ obh
0;

ð37Þ

where Gac ¼\Da1c1ðo1hÞ
2
[ , E ¼\B1111ðo11

gÞ2[ , C ¼\K11ðo1bÞ
2
[ , GacG

�1
cg ¼ dag (dag is

an unit tensor) we arrive finally at the asymptotic

model equations expressed only in macrodisplace-

ments u0a; w
0 and macrotemperature h0

D
abcd
h obdu

0
c þ r�1D

ab11
h obw

0 � �D
ab
b obh

0

�\l[ aab €u0b þ\f a[ ¼ 0;

Babcd
g oabcdw

0 þ r�1D
11cd
h odu

0
c þ r�2D1111

h w0

� r�1 �D11
h h0 þþ\l[ €w0 �\f [ ¼ 0;

�K
ab
b oabh

0 � ½\c[ þ T0\ �d1bo1h[G�1
bg

\o1h �dg1[ � _h0 ¼

¼ T0½ �D
ab
h oa _u

0
b þ r�1 �D11

h _w0�;

ð38Þ

where

D
abcd
h �\Dabcd

[ �\Dabg1
o1h[G�1

gn\o1hD
1ncd
[ ;

Babcd
g �\Babcd

[ �\Bab11
o11g[E�1

\o11gB
11cd
[ ;

�D
ab
h �\ �dab[ �\Dabc1

o1h[G�1
cg\o1h �dg1[ ;

�K
ab
b �\Kab

[ �\K1a
o1b[C�1

\K1b
o1b[ :

ð39Þ

Tensors D
abcd
h , Babcd

g are tensors of effective elastic

moduli for uniperiodic shells considered here.

Tensor �D
ab
h is a tensor of effective elastic-thermal

moduli.

Tensor �K
ab
b is a tensor of effective thermal moduli.

Because of functions uaðx; n; tÞ;wðx; n; tÞ, hðx; n; tÞ

have to be uniquely defined inX� N� I, we conclude

that uaðx; n; tÞ;wðx; n; tÞ, hðx; n; tÞ must take the form

of (17) with Ua;W ;H given by (37). However, now

unknowns u0a;w
0;Ua;W ; h0;H in (17) are not

assumed to be slowly-varying in the sense given by

(10), (11).

Equations (38) together with decomposition (17)

represent the consistent asymptotic model of selected

dynamic thermoelasicity problems for the thin uniperi-

odic cylindrical shells under consideration.

5.2 Discussion of results

The important features of the derived consistent

asymptotic model are listed below.

• Contrary to starting Eqs. (4), (5) with periodic,

highly oscillating and discontinuous coefficients,

the asymptotic model Eq. (38) formulated here

have constant coefficients but independent of a

period length. It means that this model is not able

to describe the influence of a cell size on the global

shell thermoelasticity.

• Unknown functions u0a;Ua, w
0;W and h0; H in

(38) are demanded to be bounded and continuous

in �X together with their appropriate derivatives.

• Within the asymptotic model we formulate bound-

ary conditions only for the macrodisplacements

u0a;w
0 and macrotemperature h0. The number and

form of these conditions are the same as in the

classical shell theory governed by starting Eqs. (4),

(5).

• The extra unknown functions Ua;W ; H called

fluctuation amplitudes are governed by a system of

linear algebraic equations and can be always

eliminated from the governing equations. Hence,

the unknowns of final asymptotic model Eq. (38)

are only macrodisplacements u0a;w
0 and

macrotemperature h0.

• The resulting asymptotic model Eq. (38) are

uniquely determined by the postulated a priori

periodic fluctuations shape functions,

hðxÞ 2 FS1ðX;DÞ, h 2 OðkÞ, gðxÞ 2 FS2ðX;DÞ,

g 2 Oðk2Þ, bðxÞ 2 FS1ðX;DÞ, b 2 OðkÞ represent-

ing oscillations of displacement and temperature

fields inside a cell.

• Taking into account that for a homogeneous shell

with a constant thickness DabcdðxÞ, BabcdðxÞ, lðxÞ,
�dabðxÞ, KabðxÞ, cðxÞ are constant and bearing in

mind that\o1h[ ¼\o11g[ ¼\o1b[ 0 we

obtained from (37) thatUa ¼ W ¼ h ¼ 0 and from
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(39) that D
abcd
h � Dabcd, Babcd

g � Babcd, �D
ab
h ¼ �dab,

�K
ab
b ¼ Kab. Hence, from decomposition (17) it

follows that ua ¼ u0a; w ¼ w0, h ¼ h0. It means

that Eq. (38) generated by asymptotically aver-

aged Lagrange function (32) together with asymp-

totically averaged constitutive Eq. (33) reduce to

the starting Eqs. (4), (5) generated by Lagrange

function (7) together with constitutive Eq. (8) for

invariational parameters occurring in (7).

6 Examples of applications

The biggest advantage of the tolerance model derived

in this paper is that it makes it possible to describe

phenomena depending on the cell size. For that reason,

in this section we shall study two special length-scale

problems applying governing Eqs. (23)–(26) of the

tolerance model. The first of them deals with inves-

tigation of the effect of a cell size k on the shape of

initial distributions of temperature micro-fluctuations

Hð�; tÞ in the closed uniperiodic shell. This special

problem can be studied in the framework of neither the

asymptotic models nor the known commercial numer-

ical models for the periodic shells under consideration.

The second one deals with study of the effect of a

microstructure size k on the distribution of total

temperature field hð�; tÞ ¼ h0ð�; tÞ þ bð�ÞHð�; tÞ,

t 2 I ¼ ½t0; t1�, cf. Eq. ð17Þ3, in the open shell with

infinite axial length dimension (shell strip). In the

second example, the results obtained from the toler-

ance model will be compared with those derived from

the asymptotic model proposed in this contribution.

6.1 Example 1: The effect of a cell size

on the initial distributions of temperature

micro-fluctuations

6.1.1 Introduction

The object of considerations is a thin cylindrical

circular closed shell with r, L1 ¼ 2pr, L2, d as its

midsurface curvature radius, circumferential length,

axial length and constant thickness, respectively. It is

assumed that L2 � L1: The shell has a periodically

inhomogeneous structure in circumferential direction

and constant structure in the axial direction. It is

assumed that the shell is made of two homogeneous

thermoelastic isotropic materials, which are perfectly

bonded on interfaces. Fragment of such a shell is

shown in Fig. 2.

We recall that the basic cell D is defined by:

D � ½�k=2; k=2�, where k is a cell length dimension

in x � x1-direction, cf. Figs. 2 and 3. We also recall

that for period length k the following conditions hold:

k=d[ [ 1; k=r\\1 and k=L1\\1. Setting

z � z1 2 ½�k=2; k=2�, we assume that the cell has a

symmetry axis for z ¼ 0, cf. Fig. 3. Inside the cell, the

geometrical, elastic, inertial and thermal properties of

the shell are described by symmetric (i.e. even)

functions of argument z.

The influence of a period length k on the shape of

the initial distributions of temperature micro-fluctua-

tions Hð�; tÞ will be studied by applying tolerance

model Eqs. (23)–(26).

In order to analyse this problem, we assume that the

external forces f b; f are equal to zero. We neglect the

forces of inertia \l[ aab €u0a, \lðhÞ2[ aab €Ua in

directions tangential to the shell midsurface. At the

same time we also neglect terms containing the first

time derivatives of macrodisplacements u0að�; tÞ and of

displacement fluctuation amplitudes Uað�; tÞ as suffi-

ciently small when compared to terms containing the

first time derivatives of kinematical unknownsw0ð�; tÞ,

Wð�; tÞ.

The investigated problem is rotationally symmetric

with a period k=r; hence u01; U1 ¼ 0 and the remaining

unknowns of the tolerance model u02; U2, w
0,W , h0,H

are independent of x-midsurface parameter. It has to

be emphasized that only unknowns mentioned above

are independent of x. The total displacements u2;w
and total temperature field h in decomposition (17)

depend on x because the fluctuation shape functions

depend on this argument.

Bearing in mind the symmetric form of a cell

D � ½�k=2; k=2�, we assume that fluctuation shape

functions for displacements hð�Þ 2 FS1ðX;DÞ and for

temperature bð�Þ 2 FS1ðX;DÞ are odd with respect to

z 2 ½�k=2; k=2� whereas fluctuation shape function

for displacements gð�Þ 2 FS2ðX;DÞ is even with

respect to z.

We recall that considerations are restricted to

uniperiodic shells composed of homogeneous, iso-

tropic constituents. In this case the components of
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membrane thermal stiffness tensor �dabðxÞ and of heat

conduction tensor KabðxÞ, x 2 X, are: �d12 ¼ �d21 ¼ 0,
�d11 ¼ �d22 and K12 ¼ K21 ¼ 0, K11 ¼ K22.

6.1.2 Analytical results

Under assumptions given in Sect. 6.1.1, the system of

tolerance model Eqs. (25)–(26) separates into the

following system of five equations for

u02ðn; tÞ; w
0ðn; tÞ; U2ðn; tÞ; Wðn; tÞ; h0ðn; tÞ,

ðn; tÞ 2 N� I

\D2222
[ o22u

0
2 þ r�1

\D2211
[ o2w

0 �\ �d22[ o2h
0 ¼ 0;

\B2222
[ o2222w

0 þ\B2211
o11g[ o22W þ\B2222g[ o2222W

þ\l[ €w0 ¼ 0 ;

\ðhÞ2D2222
[ o22U2 �\ðo1hÞ

2
D2112

[U2 �\ �d22bh[ o2H ¼ 0;

\o11gB
1122
[ o22w

0 þ\gB2222
[ o2222w

0 þ\ðo11gÞ
2
B1111

[W

þ ð2\o11gB
1122g[ � 4\ðo1gÞ

2
B1212

[ Þ o22W

þ\ðgÞ2B2222
[ o2222W þ\lðgÞ2[ €W ¼ 0;

\K22
[ o22h

0 �\c[ _h0 ¼ r�1T0\ �d11[ _w0;

ð40Þ

and independent equation for temperature fluctuation

amplitude Hðn; tÞ, ðn; tÞ 2 N� I

\K22ðbÞ2[ o22H�\K11ðo1bÞ
2
[H

�\cðbÞ2[ _H

¼ 0 : ð41Þ

The underlined averages in (40) and (41) depend on

microstructure length parameter k.

The subsequent analysis will be restricted to

Eq. (41) describing micro-fluctuations of temperature

field in axial direction caused by periodic structure of

the shells under consideration.

Setting �Hð�n; tÞ � HðL2�n; tÞ, where �n � n=L2; �n 2

½0; 1�, and denote KðxÞ � K11ðxÞ ¼ K22ðxÞ, x 2 X, we

transform Eq. (41) to the following dimensionless

form with respect to dimensionless argument �n

ðL2Þ
�2
\KðbÞ2[ o22

�H�\Kðo1bÞ
2
[

�H

�\cðbÞ2[ _�H

¼ 0 : ð42Þ

We shall investigate the problem of time decaying

of the temperature fluctuation amplitude �Hð�n; tÞ
setting

�Hð�n; tÞ ¼ H
ð�nÞ expð�ctÞ; t� 0; ð43Þ

with c[ 0 as a time decaying coefficient. Function

H
ð�nÞ represents an initial distribution of temperature

micro-fluctuations, i.e. �Hð�n; t ¼ 0Þ ¼ H
ð�nÞ.

Hence, under denotations

~k2 �
ðL2Þ

2
\Kðo1bÞ

2
[

k2\Kð �bÞ2[
; c
 �

\Kðo1bÞ
2
[

k2\c ð �bÞ2[
;

where �bð�Þ ¼ k�1bð�Þ, Eq. (42) yields

o22H

ð�nÞ � ~k2½1� ðc=c
Þ�H


ð�nÞ ¼ 0; ð44Þ

where c
[ 0 is a certain new time decaying coeffi-

cient depending on microstructure length parameter

k. It can be shown that averages \Kðo1bÞ
2
[ ,

\Kð �bÞ2[ , \cð �bÞ2[ are greater than zero; hence

~k2[ 0 and c
[ 0.The boundary conditions forH
ð�nÞ

are assumed in the form

H
ð�n ¼ 0Þ ¼ H

0; H
ð�n ¼ 1Þ ¼ 0; ð45Þ

where H

0 is the known constant.

The solution to Eq. (44) depends on relations

between time decaying coefficients c and c
. The

following special cases can be taken into account.

10Þ If 0\c\c
 and setting ~k2c �
~k2½1� ðc=c
Þ�

then

H
ð�nÞ ¼ H

0½expð�

~kc�nÞð1� expð�2 ~kcÞÞ
�1

þ expð ~kc�nÞð1� expð2 ~kcÞÞ
�1�;

ð46Þ

in this case the initial temperature micro-fluctuations

decay exponentially.

20Þ If c ¼ c
 then

H
ð�nÞ ¼ H

0ð1�

�nÞ; ð47Þ

we deal with a linear decaying of the initial temper-

ature micro-fluctuation amplitude.

40Þ If c[ c
 and setting j2 � ~k2½ðc=c
Þ � 1� 6¼

ðnpÞ2ðL2Þ
�2

then

H
ð�nÞ ¼ H

0 sinðjð1�

�nÞÞðsinðjÞÞ�1
; ð48Þ

the temperature micro-fluctuations oscillate.

50Þ If c[ c
 and j2 � ~k2½ðc=c
Þ � 1� ¼ ðnpÞ2

ðL2Þ
�2

then the solution doesn’t exist.
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6.1.3 Numerical calculations

The numerical analysis is based on solutions (46)–(48)

to Eq. (44).

We recall that thermal properties KðxÞ � K11

ðxÞ ¼ K22ðxÞ, cðxÞ, x 2 X, of the composite shell

under consideration are k-periodic functions in x 2 X.

We assume that thermal properties of the component

materials are described by constant heat conduction

coefficients K1, K2 and constant specific heats c1, c2,

cf. Fig. 3. Inside the cell, functions KðzÞ, cðzÞ, z 2 D,

have the form

KðzÞ; cðzÞ ¼
K1; c1 for z 2 ð�g k=2; g k=2 Þ ;

K2; c2 for z ¼ ½�k=2 ; �g k=2� [ ½g k=2; k=2�;

(

ð49Þ

where g 2 ½0; 1� is a parameter describing distribution

of material properties in the cell, cf. Fig. 3.

The fluctuation shape function bðxÞ 2 FS1ðX;DÞ,

x 2 X describes the expected form of temperature

disturbances caused by a periodic structure of the

shell. This function has to be k-periodic in x and must

satisfy condition\bðzÞcðzÞ[ ¼ 0, z 2 D. Note, that

for every function being k-periodic in x 2 X, we can

restrict its domain X to cell D. On the basis of

knowledge of the physically reasonable temperature

fluctuations in periodic structures being under bound-

ary conditions similar to those introduced in this

paper, cf. [7], in the problem under consideration the

fluctuation shape function can be taken as:

bðzÞ ¼ k sinð2pz=kÞ, z 2 D � ½�k=2; k=2� � X.

Calculational results based on solutions (46)–(48)

to Eq. (44) are shown in Figs. 4, 5, 6 and 7.

The calculations are made for g ¼ 0:4, for fixed

ratio L2=L1 ¼ 2 and for various ratios

e � k=L1 2 ½0:01; 0:1�, K2=K1 2 ½0:001; 1�. It can be

observed that under assumption L2=L1 ¼ 2, values of

ratio e � k=L1 imply the following values of ratio

k=L2: k=L2 ¼ k=ð2L1Þ ¼ 0:5e. We recall that the

problem discussed here deals with a closed circular

shell and hence L1 ¼ 2pr.

Plots of the exponentially and linearly decaying

solutions H
ð�nÞ ððc=c
Þ
2 � 1 : ðc=c
Þ

2 ¼
0:1; 0:5; 0:8; 0:9; 1Þ versus dimensionless coordi-

nate �n � n=L2 2 ½0; 1� are presented in Fig. 4a. Plots

for the exponentially decaying solutions H
ð�nÞ

ððc=c
Þ
2
\1 : ðc=c
Þ

2 ¼ 0:1; 0:5; 0:8; 0:9Þ versus

dimensionless coordinate �n � n=L2 2 ½0; 0:2� are

shown in Fig. 4b. All diagrams mentioned above are

performed for ratios k=L1 ¼ 0:1, K2=K1 ¼ 0:5.

In Fig. 5 there are diagrams of the oscillating

solutions H
ð�nÞ made for ðc=c
Þ
2
[ 1 : ðc=c
Þ

2 ¼

1:1 and for ðc=c
Þ
2
[ 1 : ðc=c
Þ

2 ¼ 1:3 versus

dimensionless coordinate �n � n=L2 2 ½0; 1�. These

diagrams are performed for ratios k=L1 ¼ 0:1,

K2=K1 ¼ 0:5.
In Fig. 6 there are diagrams of exponentially

decaying solutions H
ð�nÞ ððc=c
Þ
2
\1 : ðc=c
Þ

2 ¼
0:1; 0:5; 0:8; 0:9Þ versus ratio K2=K1 2 ½0:001; 1�

made for k=L1 ¼ 0:1 and �n ¼ 0:05.

Plots of exponentially decaying solutions H
ð�nÞ

ððc=c
Þ
2
\1 : ðc=c
Þ

2 ¼ 0:1; 0:5; 0:8; 0:9Þ versus

ratio k=L1 2 ½0:01; 0:1� performed for K2=K1 ¼ 0:5

and �n ¼ 0:05 are presented in Fig. 7.

6.1.4 Discussion of analytical and computational

results

On the basis of analytical results (46)–(48) and

computational results shown in Figs. 4, 5, 6 and 7,

the following conclusions can be formulated:

1. The shape of initial temperature micro-fluctua-

tions H
ð�nÞ depends on relations between the

given time decaying coefficient c[ 0 and a

certain time decaying coefficient c
[ 0 depend-

ing on microstructure length parameter k. The

initial temperature micro-fluctuations decay expo-

nentially for 0\c\c
, cf. Eq. (4646) and Fig. 4.

They decay linearly for c ¼ c
, cf. Eq. (47) and

Fig. 4a. If c[ c
 then the temperature micro-

fluctuations have non-decayed form; they oscil-

late, cf. Eq. (48) and Fig. 5.

2. From results shown in Fig. 4a, b, it can be

observed that the strongest decaying of function

H
ð�nÞ occurs for a very small value of ratio c=c
,

i.e. for c=c
 ¼ 0:1. In this case, values of H
ð�nÞ

can be treated as equal to zero for �n[ 0:06. It
means that for 0\c\\c
 the initial temperature

micro-fluctuations can be treated as equal to zero

outside a very narrow layer near boundary n ¼ 0.

Thus, the tolerance model proposed here enables

analysis of the boundary-layer phenomena.

3. Analysing results presented in Fig. 5, we can

observe that with increasing values of ratio c=c
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for c[ c
, the initial micro-fluctuations H
ð�nÞ

stronger oscillate. At the same time, the maximum

values of function H
ð�nÞ decrease strongly as the

ratio c=c
 increases.

4. From results shown in Fig. 6 it follows that values

of dimensionless initial temperature micro-fluctu-

ations H
ð�nÞ decrease with the increasing of ratio
K2=K1 2 ½0:001; 1�, i.e. with the decreasing of

differences between thermal properties of the

component materials described by constant heat

conduction coefficients K1, K2. Because the value

of K1 for the thermally stronger material is fixed

then these differences decrease if values ofK2 tend

to value of K1.

5. Analysing results presented in Fig. 7, it can be

seen that values of dimensionless initial temper-

ature micro-fluctuations H
ð�nÞ (exponentially

decaying solutions) increase with the increasing

of ratio k=L, i.e. with the decrease of differences

between cell size k and the length dimension L of

the shell midsurface in periodicity direction.

6. The length-scale special problem discussed here

can be analysed in the framework of neither the

asymptotic model (38) formulated in this contri-

bution nor the known asymptotic models com-

monly used for investigations of thermoelastic

problems for micro-periodically shells under

consideration. It can be observed that within the

asymptotic model, after neglecting the length-

scale terms, Eq. (42) reduces to equation

\Kðo1bÞ
2
[

�H ¼ 0, which has only trivial solu-

tion �H ¼ 0.

7. Notice that from Eq. (43) it follows that for an

arbitrary but fixed time argument t the shape of

temperature micro-fluctuation amplitude �Hð�n; tÞ

is the same as the form of initial temperature

micro-fluctuation amplitude H
ð�nÞ:

6.2 Example 2: The effect of a cell size

on the distribution of the total temperature

field

The effect of a microstructure size k on the distribution

of total temperature field hð�; tÞ approximated by

micro-macro decomposition ð17Þ3, i.e.

hð�; tÞ ¼ h0ð�; tÞ þ bð�ÞHð�; tÞ, t 2 I ¼ ½t0; t1�, will be

investigated for an open shell with infinite axial length

dimension (shell strip). The shell strip has a micro-

periodic structure along circumferential direction and

constant structure in the axial direction. Examples of

shells with an uniperiodic structure are shown in

Figs. 1 and 2, where now axial dimension L2 is treated

as infinite.

Considerations will be restricted to the heat

conduction problem independent of n-coordinate.

We assume that the uniperiodic shell strip is composed

of homogeneous, isotropic constituents. We also

assume that temperature fluctuation shape function

bð�Þ 2 FS1ðX;DÞ is odd with respect to z 2 D �

½�k=2; k=2� (the cell has a symmetry axis for z ¼ 0)

and that bðx ¼ 0Þ ¼ bðx ¼ LÞ ¼ 0, where L � L1.

Now, the heat conduction Eq. (26) reduce to the

form

\K11
[ o11h

0 þ\K11
o1b[ o1H�\c[ _h0 ¼ 0;

\K11
o1b[ o1h

0 þ\K11ðo1bÞ
2
[Hþ\cðbÞ2[ _H ¼ 0 :

ð50Þ

The micro-macro decomposition ð17Þ3 has now the

form

hðx; tÞ ¼ h0ðx; tÞ þ bðxÞHðx; tÞ; ðx; tÞ 2 X� I;

ð51Þ

where h0 and H are governed by Eq. (50).

Let the shell be subjected to the initial temperature

distribution given by hðx; t ¼ 0Þ ¼ ~axþ ~b and the

constant temperature distribution given by

hðx ¼ 0; tÞ ¼ a0, hðx ¼ L; tÞ ¼ aL. Under assumption

bðx ¼ 0Þ ¼ bðx ¼ LÞ ¼ 0, from (51) it follows that the

boundary conditions for averaged temperature h0 are:

h0ðx ¼ 0; tÞ ¼ a0, h
0ðx ¼ L; tÞ ¼ aL. The initial con-

ditions have the form: h0ðx; t ¼ 0Þ ¼ ~axþ ~b,

Hðx; t ¼ 0Þ ¼ 0. The solution to Eq. (50), satisfying

the aforementioned boundary and initial conditions,

exists provided that ~a ¼ ðaL � a0Þ=L and ~b ¼ a0.

Under denotations

s �
\cðbÞ2[

\K11ðo1bÞ
2
[

; j �
\K11

o1b[

\K11ðo1bÞ
2
[

;

ð52Þ

where s[ 0 is a certain time parameter depending on

a cell size k, this solution is given by
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h0ðx; tÞ ¼ ~axþ ~b;

Hðx; tÞ ¼ j ~a exp �
t

s

� �

� 1
� �

:
ð53Þ

It follows that the distribution of temperature in the

shell strip considered here can be approximated by

hðx; tÞ ¼ ~axþ ~b � j ~a exp �
t

s

� �

� 1
� �

bðxÞ : ð54Þ

Let us compare result (54) with the result from the

asymptotic model. This model can be directly derived

from Eq. (50) by neglecting underlined term involving

the microstructure length parameter k

\K11
[ o11h

0 þ\K11
o1b[ o1H�\c[ _h0 ¼ 0;

\K11
o1b[ o1h

0 þ\K11ðo1bÞ
2
[H ¼ 0 :

ð55Þ

For asymptotic model Eq. (55) we obtain

hðx; tÞ ¼ ~axþ ~b þ j ~abðxÞ : ð56Þ

It is easy to see that if t ! 1 then the solution (54)

obtained in the framework of tolerance model (50)

tends to the solution (56) derived from asymptotic

model (55). Thus the effect of a period length k on the

distribution of temperature is significant only for small

values of t and can be neglected for t[ [ s. This

effect is also proportional to \K11o1b[ ~a, being

caused simultaneously by the heterogeneity of shell

material described by K11ðxÞ and the gradient ~a ¼

ðaL � a0Þ=L of the averaged temperature field h0.

7 Remarks and conclusions

The objects of analysis are thin linearly thermoelastic

Kirchhoff–Love-type circular cylindrical shells hav-

ing a periodically micro-heterogeneous structure in

circumferential direction (uniperiodic shells), cf.

Figs. 1 and 2.

Considerations are based on the known Kirchhoff–

Love theory of elasticity combined with Duhamel-

Neumann thermoelastic constitutive relations and on

Fourier’s theory of heat conduction. The exact shell

Eqs. (4) and (5) describing the dynamic thermoelastic

problems for the shells considered in this contribution

have highly oscillating, non-continuous and periodic

coefficients.

The main aim of this paper is to formulate and

discuss a new mathematical non-asymptotic averaged

model of thermoelastic problems for the periodic

shells under consideration. In order to do it, the

tolerance modelling technique [5–8] and a certain

extension of the known stationary action principle [7]

are applied. The tolerance model derived here is

represented by the stress–strain-temperature relations

(23), (24) and the dynamic equilibrium Eq. (25)

coupled with the heat conduction Eq. (26). The

tolerance model equations have constant coefficients

depending also on a cell size. Hence, this model makes

it possible to analyse the effect of a period length on

the global thermodynamic shell behaviour (the length-

scale effect). Solutions to the initial-boundary value

problems have the physical sense only if the basic

kinematic and thermal unknowns of the tolerance

model are slowly-varying functions in periodicity

direction. This requirement can be verified only a

posteriori and it determines the range of the physical

applicability of the model.

The second aim is to formulate a certain asymptotic

model of dynamic thermoelasticity problems for the

shells under consideration. As a tool of modelling we

shall apply the consistent asymptotic approach [7, 8]

and extended stationary action principle. Governing

Eq. (38) of the asymptotic model have constant

coefficients being independent on a microstructure

size.

Both the tolerance and asymptotic models are

uniquely determined by the periodic, highly oscillat-

ing fluctuation shape functions representing distur-

bances of temperature and displacement fields inside a

cell. These functions must be known in every consid-

ered problem.

As illustrative examples, certain special length-

scale problems were discussed. The first of them dealt

with time decaying of initial fluctuations of temper-

ature field in the uniperiodic closed shell. It was

analysed in the framework of the proposed tolerance

model (23)–(26). It was shown that in the uniperiodic

shells under consideration the form of initial temper-

ature micro-fluctuations depends on relations between

the given time decaying coefficient c[ 0 and a

certain time decaying coefficient c
[ 0 depending on

microstructure length parameter k. The initial tem-

perature micro-fluctuations can decay exponentially.

They can decay linearly. For a certain relation

between c and c
, the temperature micro-fluctuations
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have non-decayed form; they oscillate. Moreover, if

0\c\\c
 then the micro-fluctuations are strongly

decaying near the boundary n ¼ 0 and can be treated

as equal to zero outside a certain narrow layer near this

boundary. Thus, it has been shown that the tolerance

model proposed here enables analysis of the bound-

ary-layer phenomena. All the effects mentioned above

cannot be investigated in the framework of the

asymptotic models.

The second length-scale problem dealt with the

effect of a microstructure size k on the distribution of

total temperature field hð�; tÞ in an open uniperiodic

shell with infinite axial length dimension (shell strip).

The heat conduction Eq. (26) of the tolerance model

were applied. The result obtained from the tolerance

model was compared with that derived from the

asymptotic one. It was shown that the length-scale

effect is significant only for small values of argument t

and can be neglected for t[ [ s, where s is a certain

time parameter depending on a cell size k.
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versus homogenization. Częstochowa University Press,
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modelling of the hyperbolic heat transfer problems in

periodic lattice-type conductors. J Therm Stress 27:825–841

17. Ostrowski P, Michalak B (2015) The combined asymptotic-

tolerance model of heat conduction in a skeletal micro-

heterogeneous hollow cylinder. Compos Struct 134:343–352

18. Ostrowski P, Michalak B (2016) A contribution to the

modelling of heat conduction for cylindrical composite

conductors with non-uniform distribution of constituents.

Int J Heat Mass Transf 92:435–448
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