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Pseudomonas aeruginosa is one of the six bacterial pathogens, Enterococcus faecium, 
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas 
aeruginosa, and Enterobacter spp., which are commonly associated with antimicrobial 
resistance, and denoted by their acronym ESKAPE. P. aeruginosa is also recognized as 
an important cause of chronic infections due to its ability to form biofilms, where the 
bacteria are present in aggregates encased in a self-produced extracellular matrix and 
are difficult or impossible to eradicate with antibiotic treatment. P. aeruginosa causes 
chronic infections in the lungs of patients with cystic fibrosis and chronic obstructive lung 
disease, as well as chronic urinary tract infections in patients with permanent bladder 
catheter, and ventilator-associated pneumonia in intubated patients, and is also an 
important pathogen in chronic wounds. Antibiotic treatment cannot eradicate these biofilm 
infections due to their intrinsic antibiotic tolerance and the development of mutational 
antibiotic resistance. The tolerance of biofilms to antibiotics is multifactorial involving 
physical, physiological, and genetic determinants, whereas the antibiotic resistance of 
bacteria in biofilms is caused by mutations and driven by the repeated exposure of the 
bacteria to high levels of antibiotics. In this review, both the antimicrobial tolerance and 
the development of resistance to antibiotics in P. aeruginosa biofilms are discussed. 
Possible therapeutic approaches based on the understanding of the mechanisms involved 
in the tolerance and resistances of biofilms to antibiotics are also addressed.
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INTRODUCTION

Research done in the last three decades has shown that bacteria in most settings live  
in the biofilm mode of growth, whereas the planktonic single cell state is considered a 
transition phase. The shift of bacteria from the planktonic mode of growth to the biofilm 
state is dependent on the production of adhesins and extracellular matrix components  
that serve as a scaffold and encase the bacteria in the biofilms (Tolker-Nielsen, 2015).  
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The matrix in Pseudomonas aeruginosa biofilms consists mainly 
of polysaccharides, proteins, extracellular DNA and lipids, 
and its composition is strain dependent, and also depends 
on the growth conditions and the age of the biofilm (Pamp 
et  al., 2007). Many P. aeruginosa strains are capable of 
synthesizing the three exopolysaccharides, Pel, Psl, and alginate, 
which play a role in biofilm formation as matrix components 
(Høiby et  al., 1974; Govan and Deretic, 1996; Friedman and 
Kolter, 2004; Matsukawa and Greenberg, 2004; Overhage 
et  al., 2005; Ma et  al., 2006, 2009). Along with the 
exopolysaccharides, proteins such as type IV pili, Cup fimbria, 
CdrA adhesins, LecAB lectins, and Fap amyloid fibers can 
be  part of the P. aeruginosa biofilm matrix (O’Toole and 
Kolter, 1998; Vallet et  al., 2001; Klausen et  al., 2003; Tielker 
et  al., 2005; Diggle et  al., 2006; Giltner et  al., 2006; Borlee 
et  al., 2010; Dueholm et  al., 2013; Rybtke et  al., 2015a). 
Furthermore, extracellular DNA (eDNA) functions as an 
important matrix component in P. aeruginosa biofilms 
(Whitchurch et  al., 2002; Allesen-Holm et  al., 2006). In 
addition, evidence has been provided that rhamnolipids are 
involved in the formation of microcolonies in P. aeruginosa 
biofilms (Pamp and Tolker-Nielsen, 2007).

The secondary messenger cyclic diguanosine-5′-monophosphate 
(c-di-GMP) is a key regulator of the biofilm lifecycle in many 
bacteria, including P. aeruginosa (Fazli et  al., 2014; Jenal et  al., 
2017). High cellular levels of c-di-GMP induce the production 
of adhesins and extracellular matrix components, which lead 
to biofilm formation, whereas low c-di-GMP levels downregulate 
the production of adhesins and extracellular matrix components 
and cause biofilm dispersal so that the bacteria engage in the 
planktonic mode of growth. The synthesis and degradation of 
c-di-GMP in bacteria occur through the opposing activities 
of diguanylate cyclases (DGCs) and c-di-GMP phosphodiesterases 
(PDEs). Many of the DGCs and PDEs contain sensory domains 
that are thought to enable the bacteria to respond to 
environmental cues and adjust their production of biofilm 
matrix components. Some of the two component signaling 
systems in P. aeruginosa have been linked to regulation of 
the production of extracellular matrix components (Goodman 
et  al., 2004; Barraud et  al., 2009; An et  al., 2010; Malone 
et  al., 2010; Petrova and Sauer, 2010; Moscoso et  al., 2011; 
Li et  al., 2013). As a prominent example, the GacA/GacS two 
component system regulates the expression of a number of 
genes including those encoding synthesis of the Pel and Psl 
exopolysaccharides, and it has been shown to intersect with 
c-di-GMP signaling (Goodman et  al., 2004, 2009; Moscoso 
et  al., 2011). Quorum sensing (QS) also affects biofilm  
formation by P. aeruginosa (Davies et al., 1998). The QS system 
in P. aeruginosa consists of the two acyl homoserine lactone-
based systems Las and Rhl, and the quinolone-based system 
PQS, which are interconnected and regulate each other in a  
complex fashion (Juhas et  al., 2005). PQS is positively  
regulating the production of the eDNA matrix component 
(Allesen-Holm et  al., 2006), whereas the Rhl system regulates 
rhamnolipid production, which is important for biofilm 
formation, and the tolerance of P. aeruginosa biofilms to immune 
cells (Pamp and Tolker-Nielsen, 2007; Van Acker et  al., 2009).

One of the most important features of microbial biofilms 
is that the bacteria are able to survive antibiotic treatment 
administered at high doses (Costerton et  al., 1999). If the 
biofilm is dispersed, the planktonic bacteria show sensitivity 
to antibiotics and display low minimal inhibitory concentration 
(MIC) values. The term “tolerance” distinguishes this type of 
biofilm-associated antibiotic treatment survival from “resistance,” 
which is characterized by increased MICs and a resistant 
phenotype of the bacteria dispersed from biofilm. Mechanistically, 
resistance is due to acquired mutations and usually involves 
antibiotic-modulating enzymes, efflux pumps, or mutations that 
eliminate the molecular target of the antibiotic and allows 
bacteria to survive the antibiotic treatment even if not embedded 
in a biofilm. In contrast, the antibiotic-tolerant cells in biofilms 
are able to survive the high antibiotic concentrations only if 
embedded in the biofilms. Both resistance and tolerance are 
involved in the recalcitrance of biofilms to antibiotic treatment 
(Lebeaux et  al., 2014).

The term antibiotic tolerance can also be used in the context 
of planktonic bacterial populations, and here it describes 
bacterial cells that survive treatment with bactericidal antibiotics 
without having acquired antibiotic resistance determinants. 
Antibiotic tolerance of planktonic bacteria is mainly caused 
by an altered physiological state of the cells as a consequence 
of environmental stress, and is mediated by cellular stress 
responses and related systems (Brauner et  al., 2016; Trastoy 
et  al., 2018). In biofilms, attached or not to surfaces, bacteria 
are aggregated in a self-produced extracellular matrix, forming 
a structured environment, which is not encountered by planktonic 
cells. The biofilm-specific environment triggers the development 
of tolerant subpopulations, which constitute a large fraction 
of the biofilm, and the tolerance mechanisms, for example, 
related to the extracellular matrix or to the anaerobic conditions 
(Brauner et  al., 2017; Trastoy et  al., 2018), which are distinct 
from those of planktonic cells.

Biofilms are the cause of persistent infections associated with 
a variety of medical implants, and are also connected with 
diseases such as chronic wounds, chronic obstructive pulmonary 
disease, urinary tract infections, and cystic fibrosis (Costerton 
et  al., 1999; Tolker-Nielsen, 2014; Ciofu et  al., 2015; Rybtke 
et  al., 2015b). The ability of microbial biofilms to tolerate 
antibiotics and components of the host immune system is the 
primary reason for the problematic infections they are causing 
(Høiby et al., 2015). The currently used antibiotics may decrease 
the number of bacteria in biofilms, but they cannot completely 
eradicate the biofilms (Fernandez-Barat et  al., 2017), and hence 
relapses of biofilm infections often occur. Therefore, removal 
of infected tissues or implanted devices, and subsequent long-
term antimicrobial therapy may be  required for treatment of 
biofilm infections, if possible. It has been demonstrated that 
young biofilms are much more susceptible to antibiotics than 
more developed biofilms (Hengzhuang et  al., 2014; Stewart, 
2015), underlining the importance of early interventions in the 
treatment of biofilm infections. The main clinical consequence 
of tolerance of biofilms to antibiotics is that the high concentration 
of antibiotics required for treating biofilm infections [for some 
antibiotics up to 1,000 times higher than for planktonic cells 
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(Macia et  al., 2014)] cannot be  achieved in vivo by systemic 
administration without toxicity (Hengzhuang et  al., 2012). 
Providing high antibiotic concentrations through topical 
administration, combined antimicrobials and sequential therapies 
or the use of adjuvants to improve the efficacy of antibiotics 
are therapeutic strategies that are employed or have been proposed 
to treat biofilm infections (Høiby et al., 2015; Ciofu et al., 2017).

A detailed understanding of the mechanisms that are 
involved in the recalcitrance of biofilms toward antimicrobial 
activity will ultimately enable us to develop efficient treatments 
against a wide range of persistent infections. Therefore, more 
research is conducted in order to shed light on the molecular 
mechanisms that are involved in biofilm-associated 
antimicrobial tolerance. In the present review, we first describe 
general mechanisms that contribute to biofilm-associated 
antimicrobial tolerance. Subsequently, we  describe the 
contribution of specific genes to biofilm-associated antibiotic 
tolerance. Then, to emphasize the multifactorial nature of 
biofilm tolerance, we  focus on specific classes of antibiotics, 
and describe biofilm-associated antimicrobial tolerance 
mechanisms that play a role in tolerance to each of these 
antibiotic classes (Figure 1). Finally, mechanisms involved 
in development of mutational antibiotic resistance of biofilm 
cells are described.

GENERAL MECHANISMS OF BIOFILM 
TOLERANCE

The mechanisms of biofilm-associated antibiotic tolerance 
described here are based on work with P. aeruginosa, but  

may also be  relevant for biofilms formed by other organisms 
(Hall and Mah, 2017).

Physical Tolerance—Restricted 
Penetration
When antibiotics are used in the attempt to cure biofilm 
infections, they must cross the extracellular biofilm matrix 
in order to reach the embedded bacteria. A number of 
studies have suggested that biofilm matrices do not inhibit 
diffusion of antibiotics in general, but that restricted 
penetration of antibiotics through biofilms may occur in 
cases, where the antibiotics bind to components of the 
biofilm matrix or the bacterial membranes (Figure 1;  
e.g., Walters et  al., 2003; Tseng et  al., 2013). By the use of 
fluorescently labeled antibiotics, Tseng et  al. (2013) 
demonstrated directly that the positively charged tobramycin 
is sequestered at the periphery of P. aeruginosa biofilms, 
whereas the neutral ciprofloxacin readily penetrates into the 
biofilms. Because the biofilm matrix can be  saturated with 
the antibiotics that it binds, antimicrobial tolerance caused 
by hindered penetration may be  only temporary. However, 
it might allow the bacteria enough time to adapt to a more 
tolerant state (Bagge et  al., 2004b; Pamp et  al., 2008; 
Kindrachuk et  al., 2011). Furthermore, the mechanism may 
be  relevant for infections, where antibiotic concentrations 
at the site of infection are low so that the antibiotics cannot 
saturate the biofilm matrix.

Staudinger et  al. (2014) reported that when P. aeruginosa 
were grown as aggregates independent of the production  
of exopolysaccharides in viscous environments that  
restrain bacterial motility, then wild type bacteria and an 

FIGURE 1 | Mechanisms involved in biofilm-associated tolerance against different classes of antibiotics. Beta-lactams are represented in gray ellipses, 
fluoroquinolones in green, aminoglycosides in blue and antimicrobial peptides (colistin) in orange. Mechanisms which confer tolerance to several classes of 
antibiotics are listed in the area where the ellipses overlap. Mechanisms which are specific to an antibiotic class are listed in the respective ellipse area.
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exopolysaccharide-deficient pelApslBCDalgD mutant strain 
displayed the same level of antibiotic tolerance. Based on 
these results, it was suggested that the extracellular matrix 
does not play a role in the antimicrobial tolerance displayed 
by P. aeruginosa aggregates. However, subsequently, it was 
demonstrated that biofilm matrix over-expression, as displayed 
by various clinical isolates, significantly protects P. aeruginosa 
aggregates against antimicrobial treatment (Goltermann and 
Tolker-Nielsen, 2017). Alginate-overproducing mucA mutant 
bacteria growing in aggregates showed highly increased 
antibiotic tolerance compared to wild type bacteria in 
aggregates. Similarly, aggregates formed by P. aeruginosa wspF 
and yfiR mutants, which over-produce Pel and Psl 
exopolysaccharide, showed highly increased antibiotic tolerance 
compared to wild type bacteria growing in aggregates. The 
increased antibiotic tolerance was directly attributable to 
overproduction of the exopolysaccharides, since additional 
mutations that rendered the mucA, wspF, and yfiR strains 
deficient in exopolysaccharide synthesis resulted in wild type 
levels of antibiotic tolerance. Overproduction of biofilm matrix 
components increased the tolerance of P. aeruginosa aggregates 
toward tobramycin but also to some degree toward 
ciprofloxacin. As diffusion of ciprofloxacin should not 
be  limited by the matrix components, this may indicate that 
the presence of the matrix components altered the physiology 

of the bacteria in the aggregates, for example, by restricting 
penetration of nutrients or oxygen into the aggregates.

Physiological Tolerance—Slow  
Growth and Persisters
Biofilms contain bacterial subpopulations characterized by a 
wide distribution of metabolic activity. Subpopulations at the 
periphery of the biofilm display high physiological activity, 
whereas subpopulations located in the inner parts of the biofilms 
display low physiological activity or no growth (Pamp et  al., 
2008; Stewart et  al., 2016). This heterogeneity is due to 
consumption of oxygen and nutrients by the metabolically  
active bacteria located in the periphery of the biofilm, leaving 
little or no oxygen and nutrients to the bacteria located in 
the interior of the biofilm (Stewart et  al., 2016). The direct 
consequence of low-metabolic rates for antibiotic tolerance is 
the inactivity of the major antibiotic targets, thus affecting in 
different degrees the efficacy of all bactericidal antibiotics. For 
example, low-protein synthesis alters the effectiveness of inhibitors 
of protein-synthesis such as aminoglycosides, low DNA synthesis 
affects the effect of quinolones and low peptidoglycan production 
affects the effect of beta-lactams (Figure 1). Figure 2B shows 
the distribution of live and dead bacteria in a ciprofloxacin-
treated P. aeruginosa biofilm microcolony grown in a flow chamber.

A B

C D

FIGURE 2 | The effect of ciprofloxacin, colistin and the combination of the two antibiotics on P. aeruginosa PAO1 biofilm subpopulations. The images show vertical 
sections through flow-chamber-grown P. aeruginosa biofilm microcolonies that were treated with either no antibiotic as control (A), ciprofloxacin (B), colistin (C), or 
ciprofloxacin and colistin (D). Live bacterial cells appear green due to expression of gfp, whereas dead bacterial cells appear red due to staining with propidium 
iodide (Pamp et al., 2009). Figure is adapted from Cytometry Part A 75:90–103 with permission from the John Wiley and Sons.
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The poor effect of antibiotics on bacteria with low metabolic 
activity is in addition to target inactivity also caused by adaptive 
stress-responses such as the SOS (Bernier et  al., 2013) and 
stringent response (Nguyen et al., 2011). The stringent response 
is an adaptive response to nutrient and iron starvation, which 
might occur in biofilms in some environments, and it has 
been shown to play an important role in tolerance of biofilms 
to antibiotics (Nguyen et  al., 2011). In many bacterial species, 
including P. aeruginosa, starvation activates the stringent response 
by inducing relA and spoT gene products to synthesize the 
alarmone (p)ppGpp, which regulates the expression of many 
genes. Nguyen et  al. (2011) demonstrated an increased 
susceptibility to fluoroquinolones, meropenem, colistin, and 
gentamycin of biofilms formed by a P. aeruginosa ΔrelAspoT 
double knockout mutant, and provided evidence that this 
phenotype was due to impaired anti-oxidant capacity and 
consequently increased endogenous oxidative stress. However, 
in the case of colistin, this is in contradiction to reports 
showing that the bactericidal effect of this antibiotic is 
independent of ROS (OH.) production (Brochmann et  al., 
2014; Kolpen et al., 2016). Moreover, stringent response activation 
was found to prevent accumulation of HAQ pro-oxidants 
(Nguyen et  al., 2011; Schafhauser et  al., 2014).

The SOS response may be  an important mechanism  
of bacterial survival under stress conditions. The proteins  
that are involved in SOS response include the transcriptional 
repressor LexA and the DNA-binding activating protein RecA 
(in E. coli). In biofilms, the SOS response can be  activated 
due to several biofilm-specific stresses such as oxidative stress 
(Boles and Singh, 2008) and nutrient starvation, and it has 
been shown to be  induced in an age-dependent manner in 
E. coli biofilms causing tolerance to the fluoroquinolone ofloxacin 
(Bernier et  al., 2013).

Another adaptive starvation response to nutrient limitation 
was shown to occur through the involvement of the catabolite 
repressor control protein Crc, which downregulates the metabolic 
activity of the cells in biofilms. Biofilms formed by a  
P. aeruginosa crc mutant were more susceptible to ciprofloxacin 
(which affects the metabolically active cells) and more tolerant 
to colistin (which is effective on metabolically inactive cells) 
than wild type biofilms (Zhang et  al., 2012). Thus, the 
metabolically inactive subpopulation in P. aeruginosa biofilms 
does not arise solely due to nutrient limitation. It appears that 
the cells sense limited nutrient conditions and then differentiate 
into metabolically inactive subpopulations through Crc, possibly 
as a survival strategy (Zhang et  al., 2012). Because oxygen is 
sparingly soluble and is rapidly respirable by aerobic 
microorganisms, oxygen concentration gradients are a common 
feature of bacterial biofilms (Stewart et al., 2016). Thus, oxygen 
concentrations have been shown by microelectrode profiling 
to rapidly decrease in P. aeruginosa biofilms (Walters et  al., 
2003). The finding of upregulation of the global, O2-sensing, 
anaerobic regulator Anr in transcriptomic studies of biofilm 
populations confirmed that cells in biofilms experience hypoxia 
(Stewart et  al., 2015). These anoxic or hypoxic conditions lead 
to reduced bacterial growth rates (Williamson et  al., 2012; 
Sønderholm et  al., 2018). Studies of an in vitro colony biofilm 

model have suggested that 70% (62% ciprofloxacin, 69% 
tobramycin, and 110% ceftazidime) of the antibiotic tolerance 
can be  explained by oxygen limitation under these conditions 
(Borriello et  al., 2004). P. aeruginosa can grow anaerobically 
by utilizing alternative electron acceptors such as NO3

− and 
NO2

− for respiration through denitrification, or by arginine 
fermentation. However, these alternative pathways have lower 
energy efficacy than aerobic respiration (Arai, 2011). In an 
alginate bead biofilm model, Sønderholm et  al. showed that 
the fastest growth rate was obtained with a combination of 
O2 and NO3

−, enabling both aerobic respiration and denitrification 
(Sønderholm et  al., 2017). The lack of oxygen caused decrease 
in the metabolic activity of the cells in the deeper layer of the 
biofilm altering the effectiveness of beta-lactams, fluoroquinolones, 
and aminoglycosides. An exception is polymyxins and other 
membrane-targeting compounds such as SDS, EDTA, and 
chlorhexidine, which preferentially kill the non-growing  
biofilm bacteria (Pamp et  al., 2008; Chiang et  al., 2012; 
Brochmann et  al., 2014; Kolpen et  al., 2016).

Another tolerance mechanism connected to the low oxygen 
tension in biofilms is due to the requirement of oxygen molecules 
for formation of ROS (hydroxyl radicals), which have been 
shown to be  important for the bactericidal effect of antibiotics 
(Dwyer et  al., 2015; Van Acker and Coenye, 2017). Antibiotic-
induced ROS production have been described during treatment 
of P. aeruginosa and Proteus mirabilis biofilms with quinolones 
(Aiassa et  al., 2010; Jensen et  al., 2014) and Burkholderia 
cenocepacia biofilms with aminoglycosides (Van Acker et  al., 
2013). Biofilms formed by mutants lacking anti-oxidants systems, 
such as catalases (katA for P. aeruginosa and katB for B. 
cenocepacia) showed increased sensitivity to antibiotics. The 
anti-oxidant systems, such as catalases and superoxide dismutase, 
are upregulated by the activation of the stringent response in 
biofilms (Khakimova et al., 2013; Martins et al., 2018) improving 
in this way, the antioxidant capacity of the biofilms and thus 
their tolerance to antibiotics.

As bacterial metabolism plays an important role for the 
tolerance of biofilms to antibiotics, several strategies targeting 
energy production have been proposed to overcome the antibiotic 
tolerance (Meylan et  al., 2018).

Antibiotic tolerance can also be  caused by the formation 
of so-called persister cells. Persister cells are slowly-dividing 
or non-dividing bacteria that are less vulnerable to antibiotics 
than the bulk of the bacterial population, and when antibiotic 
treatment is terminated, these cells can transform to a vegetative 
state and reconstitute infections (Lewis, 2010). The fraction of 
persister cells in biofilms is usually low (~0.01%), and they 
should be distinguished from the spatially confined subpopulation 
of tolerant, metabolically inactive bacteria, which constitute a 
large fraction of the biofilm, and are inactive because they 
lack nutrients. Persister cells are believed to be  the result of 
bacterial differentiation into a dormant state. The reduced 
metabolism exhibited by persister cells evidently enables them 
to escape the activity of antibiotics that target fundamental 
cellular processes (e.g., replication, translation, or cell wall 
synthesis) (Figure 1). Mutant screens have provided evidence 
that a number of genes (e.g., rpoS, spoT, relA, dksA, dinG, 
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spuC, algR, pilH, ycgM, and pheA) are involved in persister 
formation in P. aeruginosa, suggesting that multiple pathways 
can lead to the development of persister cells (Murakami et al., 
2005; Viducic et  al., 2006; De Groote et  al., 2009). Work with 
E. coli has suggested that the second messenger ppGpp drives 
persister formation through the Lon protease and activation 
of toxin-antitoxin (TA) modules (Harms et al., 2016). However, 
more recent work has shown that the data suggesting the 
involvement of TA modules in persister cell formation were 
influenced by the inadvertent infection of mutant strains with 
bacteriophage ϕ80. Experiments performed with un-infected 
bacteria no longer support a role of TA modules in E. coli 
persister formation (Harms et  al., 2017).

Because persister cells may play an important role in persistent 
infections, efforts have been done to revive persister cells in 
order to restore their antibiotic susceptibility. Mannitol was 
demonstrated to increase the aminoglycoside tobramycin’s efficacy 
against P. aeruginosa biofilm persister cells (Barraud et  al., 
2013). This effect was blocked by the addition of a proton 
motive force inhibitor or in a P. aeruginosa mutant strain 
unable to metabolize mannitol, suggesting that mannitol reverts 
the persister phenotype through an active physiological response 
of the bacteria. Thus mannitol, which is known to improve 
CF lung function by facilitating mucus clearance, may also 
enhance antibiotic sensitivity of CF lung biofilms (Barraud 
et al., 2013). The different anti-persisters’ strategies have recently 
been reviewed by Jan Michiels group (Defraine et  al., 2018).

BIOFILM TOLERANCE CAUSED BY THE 
EXPRESSION OF SPECIFIC GENES

A number of genes have been identified as being specifically 
involved in the tolerance of P. aeruginosa biofilms to antibiotics. 
We  use the tolerance term in this case because these genes 
are expressed specifically in biofilms and therefore mediate 
biofilm-associated recalcitrance to antibiotics, but do not mediate 
antibiotic resistance in planktonic cultures. In this section, 
we  describe the involvement of brlR and efflux pump genes 
in antibiotic tolerance, but more examples of specific genes 
involved in biofilm-associated antibiotic tolerance are given 
below in the section focusing on tolerance to specific 
antibiotic classes.

Evidence for a role of the messenger molecule c-di-GMP 
in antibiotic tolerance of P. aeruginosa biofilms was provided 
by Gupta et  al. (2014). As described in the introduction  
section, the level of c-di-GMP is elevated in biofilm cells in 
comparison to in planktonic cells. Artificial increase of the 
c-di-GMP level to “biofilm” levels in planktonic cultures was 
found to lead to a higher tolerance of the bacterial cells to 
antibiotics. PA3177 was identified as an active diguanylate 
cyclase (DGC), whose inactivation rendered biofilm cells sensitive 
to tobramycin (Poudyal and Sauer, 2018b). It was also shown 
that PA3177 contributes to biofilm susceptibility in a manner 
dependent on the levels of c-di-GMP and BrlR. The biofilm 
resistance locus regulator, BrlR, is a Mer-like transcriptional 
activator of biofilm-specific antibiotic tolerance in P. aeruginosa. 

Biofilms formed by a brlR mutant were found to be  more 
susceptible to various antibiotics than wild-type biofilms,  
whereas planktonically grown brlR mutant bacteria were as 
susceptible to the antibiotics as the wild type (Liao and Sauer, 
2012). Evidence was provided that BrlR is a transcriptional 
activator of the efflux pumps encoded by the mexAB-oprM 
and mexEF-oprN operons, and transcriptional downregulation 
of these genes was found to be  an important factor for the 
antibiotic susceptibility phenotype observed for brlR biofilms 
(Liao et  al., 2013). Furthermore, it was shown that the activity 
of the BrlR transcriptional regulator is stimulated by binding 
of c-di-GMP (Chambers et  al., 2014). BrlR activates also the 
expression of ABC transporters, with the ABC transporter 
PA1874-1877 directly contributing to the antibiotic tolerance 
of biofilms (Poudyal and Sauer, 2018a). Zhang and Mah (2008) 
showed that PA1874-1877 was 10 times more highly expressed 
in P. aeruginosa biofilms compared to planktonic cells and 
that deletion of the genes encoding this pump increases 
susceptibility of biofilms to tobramycin, gentamycin, and 
ciprofloxacin while planktonic susceptibility was not affected. 
Deletion of the genes encoding this pump (PA1874-1877) 
resulted in an increase in the sensitivity of P. aeruginosa biofilms 
to tobramycin and gentamicin. In addition to affecting the 
expression of genes encoding proteins involved in efflux pumps 
and ABC-multidrug transporters, BrlR also affects the expression 
of genes encoding modification of LPS and membrane protein 
composition, as well as metabolism and energy generation. 
This multitude of different potential targets might explain the 
involvement of BrlR in the regulation of biofilm tolerance to 
various antibiotics (Poudyal and Sauer, 2018a). However, in 
contrast to the results described above, Stewart et  al. (2015) 
were unable to detect a difference in biofilm-associated antibiotic 
tolerance to tobramycin between wild-type P. aeruginosa and 
the brlR mutant. It is possible that the difference in tolerance 
to tobramycin between the wild-type and the brlR mutant is 
observed only at high antibiotic concentrations, which were 
not investigated by Stewart et  al. (2015).

Bacterial multidrug efflux pumps are capable of pumping 
antibiotics out of the bacterial cell via an energy requiring 
process dependent on membrane potential and ATP. Different 
forms of stresses can induce efflux pumps, such as induction 
in P. aeruginosa of MexXY-OprM by oxidative stress, MexEF-
OprN by nitrosative stress, and MexCD-OprJ by membrane-
damaging agents (Poole, 2014). As these types of stresses 
might be encountered in biofilms, they might lead to induction 
of efflux pumps in P. aeruginosa biofilms contributing to 
antibiotic tolerance. In other species, such as Burkholderia 
cenocepacia, efflux pumps have been shown to be  involved 
in the tolerance of biofilms to tobramycin and ciprofloxacin 
(Buroni et  al., 2014).

TOLERANCE OF IN VIVO BIOFILMS

Different antibiotic tolerance mechanisms may be  of  
importance for the survival of biofilms in different environments 
(Hall and Mah, 2017). In vivo, the local biofilm environments 
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may be  quite variable, depending on the site of infection. For 
example, pharmacokinetic/pharmacodynamic studies have shown 
that in order to overcome the antibiotic tolerance of biofilms 
in mouse lungs, high doses and/or prolonged treatment are 
required (Hengzhuang et al., 2012). These high dosages cannot 
be  administered systemically to the patients in the clinical 
settings due to toxicity but can be achieved by local administration 
(inhalation therapy). In vivo, the sizes of the biofilms are smaller 
than in most of the in vitro models (Høiby et  al., 2015) and 
the local biofilm environments may be quite variable, depending 
on the site of infection. Therefore, different antibiotic tolerance 
mechanisms may be  the underlying cause of the survival of 
bacteria in different types of biofilm infections. For example, 
in cystic fibrosis patients, the P. aeruginosa biofilms are not 
surface-attached but present as clusters of cells in the airway 
mucus (Bjarnsholt et al., 2013), and surrounded by inflammatory 
polymorphonuclear cells, which are consuming a large proportion 
of the available oxygen (Kolpen et  al., 2010; Jensen et  al., 
2017). Accordingly, evidence has been provided that the bacteria 
in these biofilms experience anaerobic conditions (Worlitzsch 
et  al., 2002; Aanaes et  al., 2011). On the contrary, the  
P. aeruginosa biofilms which are attached to endotracheal tubes 
causing nosocomial ventilator-associated pneumonia in patients 
in intensive care units are most likely localized in an aerobic 
environment, suggesting that the bacteria in the periphery of 
these biofilms experience aerobic conditions (Høiby et al., 2015).

In vivo, the complexity of the tolerance of biofilms to 
antibiotics might be  increased by the heterogeneity of the 
biofilm-forming clinical strains with different gene expression 
patterns due to clonal evolution and adaptation during chronic 
infections such as in the chronic lung infection with P. aeruginosa 
in CF patients (Rossi et  al., 2018).

Multispecies biofilms are frequently encountered in nature 
but their significance in chronic infections is unclear as imaging 
of in vivo biofilms in many cases showed monospecies bacterial 
aggregates, except for oral and intestinal biofilms (Burmolle 
et  al., 2010). It has been reported that in vitro established 
multispecies biofilms, including P. aeruginosa, displayed increased 
tolerance to antibiotics compared to monospecies biofilms 
(Ryan et  al., 2008; Tavernier et  al., 2017).

TOLERANCE OF BIOFILMS TO 
DIFFERENT ANTIBIOTIC CLASSES

In this section, we  describe biofilm-associated antimicrobial 
tolerance mechanisms that play a role in tolerance to specific 
antibiotic classes. This emphasizes the multifaceted nature of 
biofilm-associated antibiotic tolerance.

Biofilm-Associated Tolerance Toward 
Beta-Lactam Antibiotics
The in vitro testing of minimal biofilm inhibitory concentration 
of beta-lactams showed up to 1,000-fold higher concentrations 
compared to planktonic MIC (Moskowitz et  al., 2004; Macia 
et al., 2014). In general, beta-lactams have poor anti-biofilm effect. 

This is due to the beta-lactams mode of action targeting the 
peptidoglycan synthesis and being effective only on actively 
growing, dividing cells. Thus, the primary tolerance mechanism 
of biofilms to beta-lactams is related to the slow growth of 
bacteria in biofilms (Figure 1).

The induction of beta-lactamase transcription or surplus 
beta-lactamase released from killed bacteria in the outer 
susceptible biofilm layer in response to the presence of a 
beta-lactam antibiotic impairs the penetration of the beta-
lactam molecules through the biofilm layers (Dibdin et  al., 
1996; Bagge et  al., 2004a). Using a translational fusion of 
ampC with an unstable green fluorescent protein reporter, 
Bagge et  al. (2004a) demonstrated that in the absence of 
beta-lactam antibiotic, the level of ampC-encoded beta-lactamase 
in P. aeruginosa biofilms is negligible. However, expression 
of the enzyme was found in the periphery of the biofilm 
when induced with low concentrations of imipenem (a strong 
inducer of ampC), while high concentrations of imipenem 
led to induction of ampC throughout the biofilm. The 
inactivation of the beta-lactam molecules by the enzymes in 
the biofilm matrix has pharmacokinetic/pharmacodynamic 
consequences, as the time-dependent effect of ceftazidime, a 
cephalosporin that is hydrolyzed by the AmpC beta-lactamase 
of P. aeruginosa, was changed to a dose-dependent effect 
(Hengzhuang et  al., 2013), suggesting that beta-lactams have 
to be used in high dosages in order to overwhelm the degradative 
capacity of the enzymes (Bowler et  al., 2012). Alternatively, 
treatment of biofilm infections with combination of beta-
lactams and beta-lactamase inhibitors (such as ceftolozane/
tazobactam or ceftazidime/avibactam (Torrens et  al., 2016) 
or beta-lactamase stable compounds, like the carbapenem 
meropenem, can overcome this tolerance mechanism. In 
accordance, meropenem showed good in vitro activity on 
biofilms of P. aeruginosa (Moskowitz et  al., 2004).

Biofilm-Associated Tolerance Toward 
Fluoroquinolone Antibiotics
In vitro, fluoroquinolones are much more active against biofilm 
bacteria than beta-lactams and the minimal biofilm inhibitory 
concentrations (MBIC) of P. aeruginosa are more similar to 
the planktonic MICs (Moskowitz et  al., 2004; Macia et  al., 
2014) than for other antibiotics. As fluoroquinolones have good 
anti-biofilm effect as well as good tissue penetration, and are 
available for oral administration, they are frequently used in 
combination therapy for treatment of biofilm infections such 
as bone and joint implant-associated infection and chronic 
lung infections (Høiby et  al., 2015; Ciofu et  al., 2017).

Quinolones are uncharged molecules and diffuse easily 
through the biofilm matrix. In vitro study of quinolones on 
sub-optimally growing or non-growing P. aeruginosa showed 
significant bactericidal activity (Eng et  al., 1991). However, 
the low oxygen concentration in biofilms affects the  
bactericidal effect of quinolones, probably due to formation 
of ROS in insufficient levels to cause bactericidal effect  
(Figure  1). The low oxygen level seems to be  the primary 
mechanism for the tolerance of biofilms to quinolones together 
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with adaptive responses such as SOS and the stringent response 
(Stewart et  al., 2015). It has been shown that targeting the 
low oxygen tension by exposure of biofilms to hyperbaric 
oxygen therapy (HBOT) improves the anti-biofilm effect of 
quinolones (Kolpen et  al., 2017; Gade et  al., 2018).

Biofilm-Associated Tolerance Toward 
Aminoglycoside Antibiotics
A plethora of mechanisms appear to play a role in the tolerance 
of P. aeruginosa biofilms toward aminoglycoside antibiotics 
(Figure 1). These mechanisms include binding of the 
aminoglycosides by various components of the biofilm matrix, 
as well as expression of specific genes that confer biofilm-
associated aminoglycoside tolerance.

Alginate may act as a shield against aminoglycoside 
antibiotics in biofilms formed by alginate over-producing  
P. aeruginosa strains. Thus, evidence was provided that biofilms 
formed by an alginate over-producing P. aeruginosa strain 
were significantly more tolerant to tobramycin than biofilms 
formed by the isogenic non-mucoid strain (Hentzer et  al., 
2001). Furthermore, it has been shown that the Psl 
exopolysaccharide affords some degree of biofilm-associated 
tolerance toward aminoglycosides. In one study, the protective 
effect of Psl against tobramycin was pronounced in young 
P. aeruginosa biofilms (Billings et  al., 2013), but other studies 
have provided evidence for a role of Psl in tobramycin tolerance 
of mature P. aeruginosa biofilms as well (Yang et  al., 2011). 
The Pel exopolysaccharide can also provide protection against 
aminoglycosides in P. aeruginosa biofilms. Thus, biofilms 
formed by mutants lacking Pel were found to be  more 
susceptible to tobramycin and gentamycin than the 
corresponding wild-type biofilms (Colvin et al., 2011). Moreover, 
eDNA can also play a role in hindering penetration of 
aminoglycosides into P. aeruginosa biofilms. DNA can bind 
positively charged antibiotics such as aminoglycosides (Ramphal 
et  al., 1988; Hunt et  al., 1995), and accordingly Chiang et  al. 
(2013) provided evidence that biofilms formed by a DNA-release 
deficient P. aeruginosa quorum-sensing mutant were susceptible 
to tobramycin, but became tobramycin tolerant if they were 
supplied with DNA that incorporated into the biofilm.

Aminoglycoside tolerance of P. aeruginosa biofilms has also 
been linked to extracellular DNA-mediated activation of the 
pmr and arn genes through binding of magnesium as well 
as local acidification (Mulcahy et  al., 2008). The arn gene 
products confer aminoglycoside tolerance through the addition 
of aminoarabinose to the lipid A moiety of LPS (Lewenza, 
2013). In addition, the PmrA-regulated PA4773-4775 locus 
codes for enzymes that catalyze synthesis of spermidine, which 
is a polyamine that localizes to the outer membrane and 
reduce outer membrane permeability for aminoglycosides 
(Johnson et  al., 2012).

The ndvB gene was identified to be  involved in tolerance 
of P. aeruginosa PA14 biofilms toward tobramycin and gentamicin 
through a transposon mutant screen (Mah et  al., 2003). An 
ndvB mutant was less tolerant to tobramycin and gentamicin 

than the wild type when grown in biofilms, but when grown 
planktonically the ndvB mutant and wild type were equally 
susceptible to the aminoglycosides. The mechanism appeared 
to be  biofilm-specific due to specific expression of the ndvB 
gene in biofilm cells compared to planktonic cells (Mah et  al., 
2003; Beaudoin et  al., 2012). Tolerance mediated by ndvB was 
shown to be  due to drug sequestration by cyclic periplasmic 
glucans, as well as due to a role in the activation of ethanol 
oxidation genes (Mah et  al., 2003; Beaudoin et  al., 2012).

A number of the previously described mechanisms that 
involve expression in biofilms of specific antibiotic tolerance-
mediating genes like brlR and PA1874-1877 confer tolerance 
to aminoglycosides (Mah et  al., 2003; Zhang and Mah, 2008; 
Liao and Sauer, 2012; Poudyal and Sauer, 2018a). In addition, 
as described previously, the stringent response in P. aeruginosa 
has been suggested to play a role in the tolerance of biofilms 
to various antibiotics, including aminoglycosides, by reducing 
oxidative stress (Nguyen et  al., 2011).

The lack of oxygen and low metabolic rate of the bacterial 
cells in the deeper layers of the biofilms also plays a role in 
the tolerance of biofilms to aminoglycosides, as aminoglycosides 
require an active, oxygen-dependent up-take through the 
cytoplasmic membrane in order to reach their ribosomal target, 
and lack of oxygen impair the membrane potential and the 
transport of these molecules into the cytoplasm (Figure 1; 
Verklin and Mandell, 1977; Taber et  al., 1987; Stewart et  al., 
2015). Accordingly, that targeting the low oxygen tension by 
exposure of biofilms to hyperbaric oxygen therapy (HBOT) 
improves the anti-biofilm effect of aminoglycosides both  
in vitro (Møller et  al., 2019) and in vivo (Lerche et  al., 2017). 
In addition, it has also been proposed that a set of metabolites, 
such as fumarate, which promote TCA cycle activity, could 
potentiate tobramycin lethality in P. aeruginosa bacteria with 
low-metabolic activity (persisters) (Koeva et  al., 2017).

Biofilm-Associated Tolerance Toward 
Antimicrobial Peptides
Most antimicrobial peptides are positively charged similar to 
the aminoglycosides. Therefore, some of the mechanisms that 
are involved in the tolerance of P. aeruginosa biofilms toward 
aminoglycosides may also play a role in biofilm tolerance to 
antimicrobial peptides. For example, it may be  expected that 
binding of antimicrobial peptides by the negatively charged 
biofilm matrix components, such as eDNA, can play a role 
in tolerance of P. aeruginosa biofilms toward antimicrobial 
peptides. In addition, the Psl exopolysaccharide has been 
shown to confer protection of P. aeruginosa biofilms against 
colistin and polymyxin B (Billings et  al., 2013). Moreover, 
evidence has been provided that the stringent response plays 
a role in tolerance of P. aeruginosa biofilms toward colistin 
(Nguyen et  al., 2011; Khakimova et  al., 2013).

As described previously, upregulation of the pmr and arn 
genes in P. aeruginosa biofilms may occur through eDNA-
mediated cation chelation and acidification (Mulcahy et al., 2008; 
Wilton et  al., 2016). Moreover, evidence has been provided 
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that exposure of P. aeruginosa biofilms to colistin leads to 
upregulation of the pmr and arn genes in the metabolically 
active peripheral subpopulation (Pamp et  al., 2008). The arn 
gene products mediate a reduction of the net negative charge 
of LPS, which reduces the interaction with and uptake of 
polymyxins (Lewenza, 2013). Upregulation of the pmr/arn 
operon plays a role in colistin tolerance of P. aeruginosa biofilms 
together with activation of MexAB-OprM efflux pump (Pamp 
et  al., 2008). In addition, Chiang et  al. showed that also the 
efflux pumps encoded by the mexCD-oprJ and muxABC-opmB 
genes are expressed in response to colistin exposure (Figure 1; 
Chiang et al., 2012). Colistin could not eradicate the metabolically 
active peripheral subpopulation, but was efficient in eliminating 
the metabolically inactive subpopulation in the deeper layers 
of the biofilm (Figure 2C; Pamp et  al., 2008). This is in 
agreement with data showing the increased bactericidal activity 
of colistin on P. aeruginosa biofilms grown under anaerobic 
conditions (Kolpen et  al., 2016).

The combination of colistin targeting the metabolically inactive 
population with antibiotics targeting the metabolically active 
population, such as ciprofloxacin and tobramycin, has been 
shown to be  able to eradicate P. aeruginosa biofilms in vitro 
(Figure 2; Pamp et  al., 2008) and in vivo (Herrmann et  al., 
2010). In cystic fibrosis patients, eradication therapy with colistin 
or tobramycin inhalations and oral ciprofloxacin are used to 
treat P. aeruginosa lung infections after the first identification 
of the bacteria in airway secretions (Høiby et  al., 2015).

It has been shown that sub-MIC concentrations of the 
different classes of antibiotics can stimulate biofilm formation 
both in Gram positive and Gram negative bacteria. The 
involved mechanisms have been reviewed recently (Ranieri 
et  al., 2018) and include eDNA release, induction of phage 
elements and a variety of regulatory responses. For example 
in the case of P. aeruginosa imipenem can induce production 
of alginate (Bagge et  al., 2004b), ciprofloxacin can induce 
SOS response and tobramycin can induce biofilm formation 
through c-di-GMP with increased tolerance of the biofilm 
(Hoffman et  al., 2005).

DEVELOPMENT OF ANTIBIOTIC 
RESISTANCE IN BIOFILMS

The described tolerance mechanisms, all contribute to the 
persistence of biofilms, which provide a fertile ground for the 
emergence of antibiotic-resistant mutants. In planktonic cultures, 
it has been reported that tolerance precedes the occurrence 
of resistance (Levin-Reisman et  al., 2017).

Antibiotic resistance implies mutations in resistance genetic 
determinants leading to increased antibiotic minimal inhibitory 
concentrations for bacterial cells disrupted from biofilm and 
it is accepted as a side-effect of prolonged maintenance 
antibiotic therapy.

In contrast to the planktonic, fast-dividing cells that are 
traditionally used to study antibiotic resistance development 
in shaking cultures, biofilm-grown bacteria encounter gradients 

of nutrients and oxygen which lead to a heterogeneous bacterial 
population including slow-growing or non-dividing cells 
(Stewart, 2015; Stewart et al., 2016). Knowledge of mutagenesis 
in non-dividing or nutrient-deprived cells (stationary-phase or 
adaptive mutagenesis (Foster, 2007; Sekowska et  al., 2016)) 
suggests that the mutation rate will be  higher and represented 
by different types of mutations in biofilms compared to planktonic 
cultures (Bjedov et  al., 2003; Bharatan et  al., 2004; Kivisaar, 
2010; Maharjan and Ferenci, 2017). The mechanisms responsible 
for the increased biofilm mutagenesis involve oxidative stress 
(Boles and Singh, 2008), SOS-responses to DNA-damage and 
RpoS-dependent responses (Bjedov et al., 2003; Kivisaar, 2010). 
Compared to planktonic, homogenous populations, the spatially 
structured and heterogeneous environment of the biofilms can 
be  considered as a collection of different niches with different 
selective pressures (Rainey et  al., 2000; Kassen and Rainey, 
2004; Melnyk et  al., 2015) which provide the opportunity of 
a larger variety of resistant mutants to persist, without competition 
in the biofilm (Perron et  al., 2007).

A common trait observed in biofilm evolution experiments 
is the diversification of the bacterial population to a higher 
degree than encountered in evolution studies using planktonic 
cultures (Steenackers et  al., 2016). Another characteristic of 
the evolution in biofilms, especially observed during chronic 
infections, is the frequent isolation of bacteria with high 
mutation rates, e.g. hypermutators due to mutations in their 
DNA-repair mechanisms (Oliver et  al., 2000; Labat et  al., 
2005; Macia et  al., 2005; Daurel et  al., 2007). This occurs 
in spite of the generally accepted fact that mutator phenotypes 
are self-limiting due to the high risk of deleterious mutations 
(Denamur and Matic, 2006). This suggests that mutators are 
maintained in some biofilm niches and are probably 
compensating for the slow bacterial growth by ensuring a 
pool of spontaneous mutants that allow adaptation of the 
biofilm and emergence of resistance in biofilms. It has 
previously been shown that when adaptation is limited by 
the supply of mutations, selection favors strains with increased 
mutation rates owing to mutational inactivation of the 
mismatch repair system (Bjedov et  al., 2003). An enhanced 
adaptability of the mutators over the wild type was observed 
when grown in competition experiments in flow-cell biofilms 
(Lujan et  al., 2011; Macia et  al., 2011).

It was recently shown by in vitro experimental evolution 
studies that antibiotic resistance developed by distinct pathways 
in planktonic cultures and biofilms exposed to sub-inhibitory 
levels of ciprofloxacin (Ahmed et  al., 2018). While the size 
of the ciprofloxacin resistant subpopulation was higher in 
biofilms, the levels of resistance (MICs) were lower compared 
to planktonically evolved cultures, which correlate to mutations 
in efflux pumps in biofilms and mutations in target genes in 
planktonic cultures. A rapid emergence of nfxB mutants 
overexpressing the MexCD-OprJ efflux pump in biofilms 
exposed to low doses of ciprofloxacin, with mutants comprising 
80–90% of the biofilm population after 4  days treatment, was 
also demonstrated (Figure 3; Zaborskyte et  al., 2016). This 
suggests that biofilm growth promotes the occurrence and 
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maintenance of low-level resistance mutants, representing the 
first-step mutations with potential accumulation of mutations 
leading to increased MIC at later steps.

CONCLUSIONS AND PERSPECTIVES

The ESKAPE pathogen Pseudomonas aeruginosa, is an important 
cause of persistent infections due to its ability to form biofilms 
which display tolerance and resistance to antimicrobial agents. 
The multiple and various mechanisms employed by P. aeruginosa 

to survive antibiotic treatment while growing in a biofilm 
represent an important therapeutic challenge. The molecular 
mechanisms underlying tolerance of biofilms to antibiotics 
are targets for therapeutic interventions for potentiating the 
anti-biofilm effect of antibiotics. To identify the best 
intervention targets, a clarification of the relative contribution 
of the mechanisms involved in the tolerance of biofilms to 
specific classes of antibiotics is needed. In addition, different 
tolerance mechanisms might be triggered in vivo at the biofilm 
infection site depending on the specific environmental 
conditions, such as the access to nutrients and oxygen, which 

FIGURE 3 | The development of nfxB mutants in 72 h-old PAO1 flow-cell biofilm during treatment with low-dose ciprofloxacin. Biofilms of PAO1 mCherry-PCD-gfp 
(mCherry integrated at the attB site; mini-Tn7::PCD-gfp inserted upstream of the glmS gene) were grown in three independent channels of flow-cell chambers for 
72 h and were then treated with 0.2 μg/ml CIP for a total of 96 h. Imaging by CLSM was done every 24 h. Red color represents wild-type cells due to constitutive 
expression of mCherry, whereas green color shows nfxB mutants due to expression of the PCD-gfp reporter which is upregulated specifically in these mutants. The 
images show orthogonal 3D biofilm views (left panel) or perspective view (right panel) with overlay of red and green channel fluorescence (Zaborskyte et al., 2016). 
Figure is reproduced from Antimicrobial Agents and Chemotherapy, 61, Issue 3, e02292–16 with permission from the American Society of Microbiology.
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depend on several factors such as tissue vascularization, and 
degree and type of inflammation (Jensen et al., 2017). Thorough 
understanding of the relative importance of the antibiotic 
tolerance mechanisms for the persistence of different types 
of biofilm infections requires further research. Knowledge of 
the complexity of biofilm-specific antibiotic tolerance and of 
the biofilm-specific dynamics of antibiotic resistance evolution 
will ultimately provide a basis for the development of 
therapeutic solutions for patients suffering from chronic 
biofilm infections.
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