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Hsiuying WANG
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Fugee TSUNG
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The construction of tolerance intervals (TIs) for discrete variables, such as binomial and Poisson variables,

has been critical in industrial applications in various sectors, including manufacturing and pharmaceuti-

cals. Inaccurate estimation of coverage probabilities leads to improper construction of tolerance intervals

and may lead to serious financial losses for the manufacturers. This article proposes procedures to com-

pute the exact minimum and average coverage probabilities of the tolerance intervals for Poisson and

binomial variables. These procedures are illustrated with examples and real data applications. Based on

these procedures, improved tolerance intervals are proposed that can ensure that the true minimum or

average coverage probabilities are very close to the nominal levels.

KEY WORDS: Binomial distribution; Poisson distribution; Quality control; Tolerance interval.

1. INTRODUCTION

The construction of tolerance intervals (TIs) to measure dis-

crete quality characteristics has been one of the major tasks in

developing quality control systems used in the manufacturing

and pharmaceutical sectors. Hahn and Chandra (1981) investi-

gated a general problem on controlling the number of unsched-

uled shutdowns of a complex system. The manufacturer needs

to construct an upper tolerance bound on the maximum num-

ber of unscheduled shutdowns that can be expected, with 95%

confidence, to occur in 90% of the systems in 1 year of op-

eration. If the estimation is inaccurate and the true coverage

probability of the constructed TI is underestimated, this might

cause the company to ignore necessary improvement measures,

leading to serious financial losses. Examples that require an ac-

curate construction of TI for discrete data are found in many

industrial practices. In this article we investigate in more detail

a case on constructing TI to control the occurrence of surface

defects in a steel manufacturing process that follows a Poisson

distribution and another case on constructing TI to control the

number of defective wafers in a semiconductor manufacturing

process that follows a binomial distribution. Other applications

have been presented by Hahn and Meeker (1991) and Hahn and

Chandra (1981).

Although the construction of TIs is as important for discrete

distributions as it is for continuous distributions, there has been

much less work on this type of problem compared with the

developments on continuous distributions (see, e.g., Wald and

Wolfowitz 1946; Odeh and Owen 1980; Wang and Iyer 1994;

Van Der Merwe, Pretorius, and Meyer 2006; Wolfinger 1998;

Hamada et al. 2004; Liao, Lin, and Iyer 2005; Krishnamoorthy

and Mathew 2004; Fernholz and Gillespie 2001).

Nevertheless, Zacks (1970) proposed a criterion for selecting

tolerance limits for monotonic likelihood ratio families of dis-

crete distributions. The tolerance limits chosen according to this

criterion are called the uniformly most accurate tolerance lim-

its. After that, the most widely used TIs for Poisson and bino-

mial variables were constructed by Hahn and Chandra (1981).

A survey of these intervals was presented by Hahn and Meeker

(1991). The TIs were constructed by a two-step process: (1)

Find a confidence interval of the unknown parameter, and (2)

use the bounds of the confidence interval to obtain the tolerance

bounds.

For a binomial or Poisson distribution with an unknown pa-

rameter, θ , the level (1 − α) of the confidence interval for θ are

usually determined by a large-sample approximate method. TIs

are then constructed based on these confidence intervals. When

the sample size is large, the true coverage probability of the TIs

at a fixed point in the parameter space may be close to the nom-

inal level. But when the sample size is not large, the true cov-

erage probability of the TI may be far from the nominal coef-

ficient. Indeed, the TIs constructed by conventional approaches

frequently overcover or undercover, as we demonstrate later. If

the TIs do not overcover, then only a small proportion of units

of the product meet the requirement, which can cause not only

profit loss, but also damage to the manufacturer’s good name.

On the other hand, TIs often can undercover as well; that is,

the TIs or bounds are too conservative. As a consequence, a

customer may not accept a product because the upper tolerance

bound is too large or the lower tolerance bound is too small,

even though the product quality is indeed acceptable. There-

fore, establishing an approach to construct a TI with an accurate

coverage probability is essential in practice.

Although this is an important problem, it is technically chal-

lenging to calculate exact coverage probabilities and derive pre-

cise TIs for discrete distributions. A similar problem has arisen

for confidence intervals because the minimum coverage prob-

ability of a confidence interval for discrete distributions also is

usually unknown. Wang (2007) proposed an approach to cal-

culating the minimum coverage probability for binomial confi-

dence intervals that can exactly derive the point in the parame-

ter space in which the minimum coverage probability occurs, as

well as the minimum coverage probability.

© 2009 American Statistical Association and

the American Society for Quality
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26 HSIUYING WANG AND FUGEE TSUNG

Because the minimum coverage probability is an important

index for evaluating the performance of TIs, it has been esti-

mated through a statistical simulation approach. The simulation

method computes the coverage probabilities at some randomly

chosen points in the parameter space and constructs an estima-

tor based on the minimum value of these coverage probabili-

ties. But this simulation method obtains only a roughly approx-

imated value, not an exact value. In addition to the disadvan-

tage of the rough estimate of the minimum coverage probability,

the simulation method also is more time-consuming. It requires

calculation of more coverage probabilities than our proposed

method. To date, no methodology for computing the exact min-

imum coverage probability for TIs of discrete distributions has

been reported in the literature; to the best of our knowledge,

our proposed approach is the first attempt to demonstrate this

methodology.

We propose novel procedures for calculating the minimum

and average coverage probabilities of TIs for binomial and Pois-

son distributions. With these procedures, we are able to ob-

tain improved TIs with their true minimum or average coverage

probabilities very close to the nominal levels. The article is or-

ganized as follows. The most widely used TIs for binomial and

Poisson distributions are introduced in Section 2. The methods

for computing the minimum and average coverage probabili-

ties of TIs are given in Sections 3 and 4. These methods are

illustrated by numerical examples in Section 5. Improved TIs

with required minimum or average coverage probabilities are

proposed in Section 6. In Section 7 two industrial applications

from the manufacturing industry are used to demonstrate the

applicability of the proposed procedures and the improved tol-

erance intervals. The article concludes in Section 8 with a sum-

mary of our contributions and some concluding remarks.

2. TOLERANCE INTERVALS

The TIs for discrete variables are widely used in industrial

applications in which the quality characteristics (e.g., the num-

ber of defective parts) require specific bounds (i.e., the TI) for

the purpose of control and surveillance. Let F denote the cu-

mulative distribution for a random variable, X. An interval,

(L(X),U(X)), is said to be a β-content, 1 − α confidence TI,

denoted as a (β,1 − α) TI, for F if

Prθ
{[

F(U(X)) − F(L(X))
]

≥ β
}

= 1 − α. (1)

The TIs give us L and U such that we can claim, with a specified

degree of confidence, 1 − α, that a specified proportion, β , or

more of the manufactured items lie between L and U.

For a continuous distribution, there may exist a TI, (L(X),

U(X)), satisfying (1) for all θ . But for discrete distributions,

the value of the left side of (1) depends on the parameter θ .

Therefore, for a fixed β , the left side of (1) is not a constant. In

this situation, it is reasonable to modify the definition of (1) for

a discrete distribution as follows:

Prθ
{[

F(U(X)) − F(L(X))
]

≥ β
}

≥ 1 − α, (2)

and there exists a θ such that the equality holds.

According to Hahn and Meeker (1991) and Hahn and Chan-

dra (1981), the construction of a (β,1 − α) TI for a binomial

or Poisson distribution with an unknown parameter, θ , for the

observed value, x, of X is based on the following two steps:

1. Construct a two-sided (1 − α) confidence interval (l,u)

for θ , where l and u depend on x.

2. Find a minimum number, U(x), and a maximum number,

L(x), such that

Pru(X ≤ U(x)) ≥ (1 + β)/2 and

Prl(X ≥ L(x)) ≥ (1 + β)/2.

The one-sided tolerance bounds can be obtained in a simi-

lar way. An upper (β,1 − α) tolerance interval is constructed

by finding an upper (1 − α) confidence bound of θ , say u, and

then deriving the minimum number, U(X), such that pu(X ≤

U(X)) ≥ β. The interval (0,U(X)) is used as an upper (β,

1 − α) tolerance bound. A lower (β,1 − α) TI is constructed

by finding a lower (1 − α) confidence bound of θ , say l, and

then deriving the maximum number, L(X), such that pl(X ≥

L(X)) ≥ β. The intervals (L(X),n) and (L(X),∞) are used as

lower (β,1 −α) tolerance bounds for the binomial and Poisson

distributions.

For the binomial distribution, the suggested (1 − α) confi-

dence intervals for θ in (I) introduced by Hahn and Meeker

(1991) are

(l,u) = θ̂ ± z(1−α/2)

(

θ̂ (1 − θ̂ )

n

)1/2

(3)

and

(l,u) =

((

1 +
(n − x + 1)F(1−α/2;2n−2x+2,2x)

x

)−1

,

(

1 +
n − x

(x + 1)F(1−α/2;2x+2,2n−2x)

)−1)

, (4)

where za and F(a;r1,r2) are the (100a)th percentile of the stan-

dard normal distribution and the (100a)th percentile of the

F distribution with r1 and r2 degrees of freedom.

For the Poisson distribution, the suggested (1 − α) confi-

dence intervals in Step 1, introduced by Hahn and Meeker

(1991), are

(l,u) = θ̂ ± z(1−α/2)

(

θ̂

n

)1/2

(5)

and

(l,u) =
(

0.5χ2
(α/2;2x)/n,0.5χ2

(1−α/2;2x+2)/n
)

, (6)

where χ2
(a;r1)

is the (100a)th percentile of the chi-squared dis-

tribution with r1 degrees of freedom. Note that (6) is defined as

(0,0.5χ2
(1−α/2;2x+2)

/n) if x = 0.

Intervals (3) and (4) are the Wald and exact confidence inter-

vals for the binomial proportion, and intervals (5) and (6) are the

Wald and exact confidence intervals for the Poisson mean. The

Wald intervals are derived by the large-sample approximation

theory. They do not have satisfactory performance even with a

large sample size. It is well known that the score confidence

interval is better than the Wald interval (see Agresti and Coull

1998; Brown, Cai, and DasGupta 2001). But even if we use the

score interval to construct the TI, its coverage probability still

cannot be very close to the nominal level. Therefore, one goal

of this article is to provide methods for calculating their exact

minimum and the average coverage probabilities.
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TOLERANCE INTERVALS WITH IMPROVED COVERAGE PROBABILITIES 27

3. MINIMUM COVERAGE PROBABILITY

In a discrete distribution, the coverage probability of a TI is a

variable function of the parameter, θ . For a claimed β-content,

the (1 − α)-level TI, the true coverage probability depends on

the true parameter. Because the true parameter value is un-

known, we cannot know the true coverage probability; however,

we do know that it is greater than the minimum coverage proba-

bility. If the minimum coverage probability can be derived, then

the true coverage probability is not less than this value regard-

less of the value of the true parameter. Thus it can provide at

least a conservative estimate of the coverage probability.

In this section we develop a procedure to calculate the ex-

act minimum coverage probabilities of the TIs for binomial and

Poisson distributions. Let fθ (x) be the probability function of

the binomial or Poisson variable. The minimum coverage prob-

abilities are calculated as follows.

Procedure 1 (Computing the minimum coverage probabil-

ity). For a (β,1 −α) TI, (L(X),U(X)), satisfying L(X) < L(Y)

and U(X) < U(Y) for X < Y , the minimum coverage probabil-

ity can be obtained through the following steps:

Step 1. For each observation, x, x = 0, . . . ,n, make gx(θ) =
∑U(x)

i=L(x) fθ (i).

Step 2. Calculate the solutions of gx(θ) = β for each x. There

may be zero, one, or two solutions. The number of solutions

depends on β and x. Assume that there are totally k solutions

for all x = 0, . . . ,n.

Step 3. Rank all k solutions in Step 2. Let vi be the ith small-

est solution in Step 2.

Step 4. Compute the probability, Prvi(F(U(Y))− F(L(Y)) >

β), for each i, which is the sum of the probabilities of y such

that F(U(Y)) − F(L(Y)) > β . The smallest value among these

probabilities, Prvi(F(U(Y)) − F(L(Y)) > β), vi = 1, . . . , k, is

the minimum coverage probability of the TI.

Note that Step 1 must be modified for the Poisson distrib-

ution, where the sample space is infinite. In practical applica-

tions, we can use estimates of the expected value to select a

value of n (< ∞) such that the probability that the Poisson vari-

able exceeds this n is negligible. This n is an effective upper

bound on the distribution. We then apply Procedure 1 using this

value of n in Step 1.

The proof of this procedure is given in Theorem 1. Before

proving Theorem 1, we need the following notations and lem-

mas.

Proposition 1. For the probability function, fθ (x), of the bi-

nomial distribution or Poisson distribution, (a)
∑U(x)

i=L(x)
fθ (i)

is a decreasing function or an increasing function of θ when

L(x) = 0 or U(x) = n and (b)
∑U(x)

i=L(x)
fθ (i) is a unimodal func-

tion when 0 < L(x) < U(x) < n.

The proof of Proposition 1 for the binomial distribution is

given in lemma 1 of Wang (2007). The Poisson distribution case

can be proved by a similar argument. By Proposition 1, there are

at most two solutions of
∑U(x)

i=L(x) fθ (i) = β . The number of so-

lutions depends on β and on whether the function
∑U(x)

i=L(x) fθ (i)

is an increasing, a decreasing, or a unimodal function. When

∑U(k)
i=L(k) fθ (i) is a unimodal function, there are at most two so-

lutions of θ for
∑U(k)

i=L(k)
fθ (i) set to β , say pk, and qk. When

∑U(k)
i=L(k) fθ (i) is a decreasing function, there is at most one solu-

tion of θ for
∑U(k)

i=L(k)
fθ (i) set to β , say qk, and pk is defined as

0. When
∑U(k)

i=L(k) fθ (i) is an increasing function, there is at most

only one solution for θ for
∑U(k)

i=L(k)
fθ (i) set to β , say pk, and qk

is defined as 1. Note that if β is very close to 1, then there may

be no solutions for
∑U(k)

i=L(k) fθ (i) set to β.

Lemma 1. Assume that L(X) < L(Y) and U(X) < U(Y) if

X < Y. For any k and l, k < l, the equation
∑U(k)

i=L(k)
fθ (i) =

∑U(l)
i=L(l) fθ (i) has only one solution.

Lemma 2. Assume that L(X) < L(Y) and U(X) < U(Y) if

X < Y. For β, if px,pz,py,qx,qz, and qy exist, then px ≤ pz ≤

py, and qx ≤ qz ≤ qy if x < z < y.

Theorem 1. For a TI, (L(X),U(X)), of a discrete distribution

satisfying

L(X) < L(Y), U(X) < U(Y) if X < Y,

the exact coverage probability is the minimum value of the k

probabilities
{

Prθ
(

F(U(Y)) − F(L(Y)) > β
)

: θ ∈ W = {v1, . . . , vk}
}

,

where k is the number of vi, which is one of the existing pi and

qi, i = 0, . . . ,n and v1 < · · · < vk.

The proofs of Lemmas 1 and 2 and Theorem 1 are given in

the Appendix. The procedure for computing the minimum cov-

erage probability is based on Theorem 1.

Remark 1. In Theorem 1, if β is very close to 1 such that

there do not exist any solutions, pi and qi, then the coverage

probability is zero.

Remark 2. If the parameter space is known to be a restricted

parameter space, then Procedure 1 still holds by replacing the

set of solutions in Step 2 by the subset of the solutions belong-

ing to the restricted parameter space. The minimum coverage

probability is the minimum value of the coverage probabilities

at θ in the subset.

4. EXACT AVERAGE COVERAGE PROBABILITY

Instead of reporting a minimum coverage probability, some

researchers are interested in exploring average coverage proba-

bilities. An average coverage probability can reflect the overall

performance of a TI under a given prior on the parameter space.

Compared with the minimum coverage probability, which is the

behavior at a point or at several points in the parameter space,

the average coverage probability can provide a more objective

evaluation of a TI.

Let η(θ) be a prior on the parameter space, �. The average

coverage probability under η(θ) is defined as
∫

�

Prθ
(

F(U(y)) − F(L(y)) > β
)

η(θ)dθ. (7)

This value takes the average of the coverage probability with re-

spect to a prior, η(θ). For the binomial distribution, the prior is
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28 HSIUYING WANG AND FUGEE TSUNG

usually chosen to be the uniform prior, η(θ) = 1 for θ ∈ (0,1).

For the Poisson distribution, although the natural parameter

space is unbounded, it is reasonable to assume that the para-

meter space is bounded in real applications. The prior can be

chosen to be the uniform prior or another prior in the bounded

parameter space. In this article we use the uniform prior for the

examples.

For some TIs, the minimum coverage probability may be far

below the nominal level, but the average coverage probability

could be much higher than the minimum coverage probability.

As in the study of the minimum coverage probability, the lit-

erature reports no procedures for calculating the exact average

coverage probability. The average coverage probability is usu-

ally approximated by the simulation approach, which can pro-

vide only a rough estimation. The procedure for computing the

average coverage probability proposed in this article certainly

provides an accurate way to solve this problem.

We give some notation and definitions before describing the

procedure for computing the average coverage probability. Note

that vi is defined as a px or qx. If vi is a px for some x, then let ri

be the smallest y such that qy > px. If vi is a qx for some x, then

let si be the largest y such that py ≤ qx.

Let

hi(θ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

x
∑

j=ri

fθ (j) if vi is a px

si
∑

j=x+1

fθ (j) if vi is a qx.

(8)

Note that the parameter space can be separated into (k + 1)

intervals by the points v1, . . . , vk. For the Poisson distribution,

k may be infinity.

Theorem 2. For θ in the interval (vi, vi+1), i = 0, . . . , k in the

parameter space, the probability function,

Prθ
(

F(U(Y)) − F(L(Y)) > β
)

, (9)

is hi(θ), where v0 and vk+1 are the lower endpoint and the upper

endpoint of the parameter space.

The proof of Theorem 2 is given in the Appendix, which

leads to the following procedure.

Procedure 2 (Computing the exact average coverage proba-

bility). For a (β,1 −α) TI satisfying L(X) < L(Y) and U(X) <

U(Y) for X < Y , the average coverage probability under the

prior η(θ) can be derived by the following four steps:

Steps 1–3. Follow the same steps as in Procedure 1.

Step 4. Compute the summation

S =

k
∑

i=0

∫ vi+1

vi

hi(θ)η(θ)dθ, (10)

which is the exact average coverage probability of the (β,1−α)

TI.

Remark 3. If the parameter space is known to be a restricted

parameter space, then Procedure 2 still holds by replacing the

solutions in Step 2 with the subset of the solutions belonging to

the restricted parameter space. The average coverage probabil-

ity is

S1 =

∫ vo1

a

ho1
(θ)η(θ)dθ

+

o2
∑

i=o1

∫ vi+1

vi

hi(θ)η(θ)dθ +

∫ b

vo2

ho2+1(θ)η(θ)dθ,

where a and b are the lower and upper endpoints of the re-

stricted parameter space, and vo1
, vo1+1, . . . , vo2

are the solu-

tions in Step 2 belonging to the interior of the restricted para-

meter space.

5. NUMERICAL RESULTS

The procedures in Sections 3 and 4 help us derive the mini-

mum coverage probability and the average coverage probability

of the TIs for a binomial or Poisson distribution. The procedures

for calculating the minimum coverage probability and the aver-

age coverage probability are illustrated by an example of n = 10

for the binomial distribution.

Example 5.1. For n = 10, the (0.9,0.95) two-sided toler-

ance intervals based on the usual 0.95 confidence interval (3)

are (0, 0), (0, 5), (0, 7), (0, 8), (0, 9), (0, 10), (1, 10), (2, 10),

(3, 10), (5, 10), and (10, 10) corresponding to x = 0,1, . . . ,10.

The 11 functions, gx(θ), corresponding to x = 0, . . . ,10 are
∑0

i=0 lθ (i),
∑5

i=0 lθ (i), . . . ,
∑10

i=10 lθ (i), where lθ (i) =
(

10
i

)

×

pi(1 − p)n−i. The solutions for gx(θ) set to β = 0.9 are

0.0105,0.3542,0.5504,0.6632, and 0.7943, corresponding to

x = 0, . . . ,4. There are no solutions for gx(θ) set to 0.9 for

x = 5, because its corresponding gx(θ) is 1. The solutions of

gx(θ) set to β = 0.9 are 0.2057,0.3368,0.4496,0.6458, and

0.9895, corresponding to x = 6, . . . ,10. In total, there are 10

points for the solutions. By Procedure 1, we need to calculate

the coverage probabilities at these 10 values of θ . The proba-

bilities are 0.1, 0.9129, 0.9494, 0.9627, 0.8926, 0.8926, 0.9627,

0.9494, 0.9129, and 0.1, corresponding to these 10 points. The

minimum value of these 10 probabilities is 0.1; therefore, the

minimum coverage probability of this TI is 0.1.

Example 5.2 (Example 5.1 continued). When applying Pro-

cedure 2, it is necessary to calculate the functions for hi(θ),

which are h0(θ) =
∑5

i=0 lθ (i), h1(θ) =
∑5

i=1 lθ (i), h2(θ) =
∑6

i=1 lθ (i), h3(θ) =
∑7

i=1 lθ (i), h4(θ) =
∑7

i=2 lθ (i), h5(θ) =
∑8

i=2 lθ (i), h6(θ) =
∑8

i=3 lθ (i), h7(θ) =
∑9

i=3 lθ (i), h8(θ) =
∑9

i=4 lθ (i), h9(θ) =
∑9

i=5 lθ (i), and h10(θ) =
∑10

i=5 lθ (i), cor-

responding to v0 = 0, v1 = 0.0105, . . . , v9 = 0.7943, and v10 =

0.9895. Then, by numerical calculation,

S =

∫ 0.0105

0

h0(θ)dθ +

∫ 0.2057

0.0105

h1(θ)dθ

+ · · · +

∫ 1

0.9895

h10(θ)dθ = 0.8228,

is the exact average coverage probability.
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Table 1. Minimum and average coverage probabilities for the (0.9, 0.95) two-sided TIs for the binomial distribution

based on (3) and (4) with different sample sizes, n

Minimum confidence Minimum confidence Average Average

level of TI level of TI level of TI level of TI

n based on (3) based on (4) based on (3) based on (4)

5 0.1 0.9932 0.7063 0.9992

10 0.1 0.9926 0.8228 0.9986

15 0.1 0.9902 0.8774 0.9968

20 0.1 0.9868 0.9001 0.9950

25 0.1 0.9851 0.9130 0.9946

30 0.1 0.9811 0.9242 0.9943

35 0.1 0.9855 0.9293 0.9946

40 0.1 0.9846 0.9363 0.9938

45 0.1 0.9835 0.9407 0.9932

50 0.1 0.9839 0.9439 0.9930

The Matlab programs for computing the minimum and av-

erage coverage probabilities for binomial and Poisson distribu-

tions are available from the authors on request.

Tables 1 and 2 list the minimum and average coverage proba-

bilities corresponding to different sample sizes, n, based on the

confidence intervals in (3) and (4).

Note that the performance of the lower tolerance bound is the

same as that of the upper tolerance bound. Tables 1 and 2 show

that for the TI based on (3), the two-sided TI and the one-sided

tolerance bound have very similar performance. The minimum

coverage probability is 0.1 for any sample size, far away from

the nominal level of 0.95. This indicates that the minimum cov-

erage probability cannot be improved by increasing the sample

size, and that the coverage probability is near 0.1 when the true

proportion, θ , is near the point at which the minimum coverage

probability occurs. Although the minimum coverage probabil-

ity is much lower than the nominal level, its average coverage

probability increases as the sample size increases, and it can

reach the nominal level when the sample size is not small. If we

use the average coverage probability as a criterion to evaluate

TIs, then the TI based on (3) performs well when n is not small;

but if we use the minimum coverage probability as a criterion,

then this TI can be criticized for its lower minimum coverage

probability.

Remark 4. The minimum coverage probability based on (3)

is 0.1 regardless of sample size, because the point in the para-

meter space at which the minimum coverage probability occurs

is a variable function of the sample size. This point decreases to

0 or increases to 1 as the sample size increases. In this case, re-

gardless of the sample size, there exists a point in the parameter

space with coverage probability 0.1.

Tables 1 and 2 show that for the TI based on (4), unlike the

TI based on (3), the performance of the two-sided interval is

not very similar to that of the upper bound. The minimum cov-

erage probability and the average coverage probability of the TI

based on (4) are equal to or larger than the nominal level, 0.95,

for all n. Because its minimum coverage probability is close

to its average coverage probability, the performance of this TI

is rather stable for each proportion, θ , in the parameter space.

This large difference between the minimum coverage probabil-

ities for the two TIs is similar to that seen in confidence interval

estimation, because in the confidence interval estimation, the

coverage probability of (4) can reach 1 − α, even though the

infimum coverage probability of the Wald interval (3) is 0.

We may propose to construct an improved TI based on this

TI such that the minimum or average coverage probability is

close to the nominal level by choosing a smaller α value in the

first step of the two-step procedure. Details on how to choose a

smaller α value are given in the next section.

Table 2. The minimum and average coverage probabilities for the (0.9, 0.95) upper tolerance bound for a binomial

distribution based on (3) and (4) with different sample sizes, n

Minimum confidence Minimum confidence Average Average

level of TI level of TI level of TI level of TI

n based on (3) based on (4) based on (3) based on (4)

5 0.1 0.9932 0.8484 0.9996

10 0.1 0.9554 0.8876 0.9921

15 0.1 0.9523 0.9140 0.9897

20 0.1 0.9591 0.9265 0.9892

25 0.1 0.9519 0.9326 0.9867

30 0.1 0.9505 0.9400 0.9817

35 0.1 0.9529 0.9400 0.9822

40 0.1 0.9504 0.9422 0.9812

45 0.1 0.9504 0.9437 0.9788

50 0.1 0.9504 0.9441 0.9791
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30 HSIUYING WANG AND FUGEE TSUNG

Figure 1. Coverage probabilities of the tolerance intervals based

on (3) and (4).

Figures 1 and 2 give the plots of the coverage probabilities

of the two-sided (0.9,0.95) TIs for a binomial distribution with

n = 50 and a Poisson distribution with θ ≤ 30.

These plots show that for the binomial distribution, the cov-

erage probability of the TI based on (3) is lower than that based

on (4), and for the Poisson distribution, the coverage probabil-

ity based on (5) also is lower than that based on (6). But in both

distributions, the minimum and average coverage probabilities

of the TIs are either lower or higher than the nominal level,

except when the lower and upper tolerance bounds are based

on (4) (see Tables 1 and 2 and Figures 1 and 2).

In the next section we propose improved TIs to meet the re-

quired coverage probability based on the procedures outlined in

Sections 3 and 4.

6. IMPROVED TOLERANCE INTERVALS

From the numerical results given in Section 5, we know that

the coverage probabilities for most of the existing TIs of the

Figure 2. Coverage probabilities of the tolerance intervals based

on (5) and (6).

binomial and Poisson distributions in the literature are either

much higher or much lower than the nominal level. In this sec-

tion we construct improved TIs based on Procedure 1 or Proce-

dure 2 such that the minimum or average coverage probabilities

can be close to the nominal level. For the binomial distribu-

tion, the approach is to choose a smaller α value in the confi-

dence interval (4), such that the minimum coverage probabil-

ity or the average coverage probability of the TIs constructed

from the two-step procedure are equal to the nominal level. The

Poisson distribution can be determined similarly. If we adopt

the minimum coverage probability criterion, then we can use

Procedure 1 to calculate the minimum coverage probability for

different α and choose an α such that its minimum coverage

probability is close to the nominal level. If we adopt the aver-

age coverage probability criterion, then we can use Procedure 2

to calculate the average coverage probability for different α and

choose an α such that its average coverage probability is close

to the nominal level. The appropriate αs for different sample

sizes are presented in Tables 3–5. Note that from Table 2, the

minimum coverage probabilities of the upper tolerance bounds

based on (4) are close to the nominal level; thus in this case, we

do not need to search for other α values, and we simply use the

conventional α value of 0.05.

Because both minimum and average coverage probability

criteria are given and two sets of α are suggested, we may be in-

terested in which criterion we should use. This choice may de-

pend on the tolerance in each case. For example, as described by

Hahn and Meeker (1991), in response to a request by a regula-

tory agency, a manufacturer must provide a statement concern-

ing whether the maximum noise limit, under specified operating

conditions, is met by a high proportion of units, such as 95% of

a particular model of a jet engine. In this case, the manufacturer

desires a one-sided upper 90% tolerance bound that will be met

by at least 95% of its jet engines. In this example, if we use

the minimum coverage probability criterion, then we require

that for an upper 90% tolerance bound, Um, the noise limit of

at least 95% of the units of each product be less than the upper

bound, Um. If we use the average coverage probability criterion,

then we require that for an upper 90% tolerance bound, Ua, the

noise limit of an average of 95% of the units of all products be

less than the upper bound, Ua. It is obvious that Ua < Um. If

the agency cannot accept the upper tolerance bound Um but can

accept Ua, then we may use the second criterion to report to the

agency that the products meet the noise requirement under the

second criterion. However, if the agency requires that at least

95% of units of each product must meet the requirement, then

we must use the minimum coverage probability criterion and

produce the products that satisfy the requirement.

7. ILLUSTRATIVE EXAMPLES

The binomial and Poisson TIs are useful in many industrial

applications. Here we use two real examples for illustration.

A Binomial Example. The first example is from a semicon-

ductor manufacturing process. The locations of chips on a wafer

as measured on 30 wafers. On each wafer, 50 chips are mea-

sured, and a defective wafer is identified whenever a misreg-

istration, in terms of horizontal and/or vertical distance from
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Table 3. Suggested α values in (4) such that the minimum coverage

probability for the (0.9, 0.95) two-sided TI for the binomial

distribution based on (4) is close to the nominal level, 0.95,

as well as their corresponding minimum and average

coverage probabilities for different sample sizes, n

Minimum coverage Average coverage

n α probability probability

10 0.25 0.9494 0.9842

15 0.17 0.9593 0.9847

20 0.16 0.9449 0.9800

25 0.16 0.9546 0.9793

30 0.15 0.9498 0.9779

35 0.13 0.9514 0.9789

40 0.12 0.9582 0.9815

45 0.12 0.9574 0.9793

50 0.12 0.9562 0.9784

the center, is recorded. The defective number follows a bino-

mial distribution, B(50, θ). The data can be obtained from the

NIST/SEMATECH e-Handbook of Statistical Methods: http://

www.itl.nist.gov/div898/handbook/pmc/section3/pmc332.htm.

Note that because the original data are overdispersed, we use

part of the data in this example. These data are given in Table 6.

The tolerance intervals for the data set based on (3) and (4)

are (1,20) and (1,21).

From these data, because the fraction of defective wafers

ranges between 0.1 and 0.26, we may assume that the parame-

ter space is restricted to (0,0.4) instead of (0,1). The minimum

coverage probability of the two (0.9,0.95) two-sided TIs based

on (3) and (4) for θ ∈ (0,0.4) can be derived by Procedure 1,

which is the minimum value of the coverage probabilities for

the solutions in Step 2 belonging to (0,0.4) by Remark 2. By

calculation, the minimum coverage probabilities for TIs based

on (3) and (4) are 0.1 and 0.9839, which occur at θ near 0.02

and at θ near 0.048. The average coverage probabilities for

TIs based on (3) and (4) are 0.9345 and 0.9937. Because the

true fraction of defective wafers could be near 0.02, the cov-

erage probability of the TI based on (3) is only 0.1, which is

much lower than the nominal level of 0.95. In this case the TI

based on (4) is more acceptable than that based on (3) from

the standpoint of the minimum coverage probability. Note that

Table 4. Suggested α values in (4) such that the average coverage

probability for the (0.9, 0.95) two-sided TI for a binomial

distribution based on (4) is close to the nominal level, 0.95,

as well as their corresponding minimum and average

coverage probabilities for different sample sizes, n

Minimum coverage Average coverage

n α probability probability

10 0.37 0.7985 0.9506

15 0.34 0.8705 0.9488

20 0.29 0.8874 0.9509

25 0.27 0.8911 0.9495

30 0.27 0.8911 0.9501

35 0.25 0.8923 0.9497

40 0.23 0.8873 0.9506

45 0.24 0.8910 0.9505

50 0.22 0.9160 0.9523

Table 5. Suggested α values in (4) such that the average coverage

probability for the (0.9, 0.95) upper tolerance bound for a binomial

distribution based on (4) is close to the nominal level, 0.95,

as well as their corresponding minimum and average

coverage probabilities for different sample sizes, n

Minimum coverage Average coverage

n α probability probability

10 0.22 0.7928 0.9543

15 0.16 0.8457 0.9556

20 0.15 0.8562 0.9505

25 0.13 0.8705 0.9496

30 0.12 0.8828 0.9516

35 0.12 0.8853 0.9525

40 0.10 0.9009 0.9543

45 0.10 0.9014 0.9538

50 0.10 0.9007 0.9516

if we choose a wider parameter space that includes the interval

(0,0.4), then the minimum coverage probability of the TI based

on (3) is still 0.1, and the minimum coverage probability of the

TI based on (4) is close to 0.9839, as given in Table 1. We still

conclude that the TI based on (4) is more acceptable than that

based on (3).

If the true parameter is known to belong to a subset, like

(0.154, 0.400), then, by calculation, the minimum coverage

probabilities for TIs based on (3) and (4) are 0.9573 and 0.991.

The average coverage probabilities for TIs based on (3) and (4)

are 0.9774 and 0.9917. In this case the TI based on (3) is accept-

able. This indicates that the performance of the TI also depends

on the parameter space.

A Poisson Example. The second example is from a steel

manufacturing process (Montgomery 1996). We consider part

of the data set for this example. Here the surface defects are

counted on 21 rectangular steel plates. The 21 defect counts,

following the Poisson distribution, P(λ), are

1,0,4,3,1,2,0,2,1,1,0,0,2,1,3,4,3,1,0,2,4.

The TIs based on (5) and (6) for the data are (0,9) and (0,12).

The numbers in the data range between 0 and 4. We may

consider a parameter space for the true mean of the Pois-

son distribution with a wider range of (0,9). By Procedure 1

and Remark 2, the minimum coverage probabilities of the two

(0.9,0.95) two-sided TIs based on (5) and (6) for λ ∈ (0,9)

can be derived. The minimum coverage probabilities are 0.1

and 0.9870 for intervals based on (5) and (6). Their correspond-

ing average coverage probabilities are 0.8806 and 0.9966. This

Table 6. The semiconductor data

Sample Fraction Sample Fraction Sample Fraction

number defective number defective number defective

1 0.24 11 0.10 21 0.22

2 0.16 12 0.12 22 0.18

3 0.20 13 0.24 23 0.24

4 0.14 14 0.16 24 0.14

5 0.18 15 0.20 25 0.26

6 0.28 16 0.10 26 0.18

7 0.20 17 0.26 27 0.12
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32 HSIUYING WANG AND FUGEE TSUNG

means that the coverage probability of the first TI is too far

away from its nominal coverage probability, and that the second

TI is too conservative, because its minimum coverage probabil-

ity is much larger than its nominal level of 0.95. As in the bi-

nomial distribution, the performance of the TIs depends on the

parameter space.

In both examples, the conventional TIs perform unsatisfacto-

rily. We suggest using the improved TIs proposed in Section 6

for these two examples.

For the binomial distribution, the α value for the improved

TI in Table 3 for sample size n = 50 is 0.12 when the parameter

space is (0,1). In this binomial example, because the possible

parameter space is (0,0.4), by Remark 2, we can find an α value

such that the minimum coverage probability of the TI based on

(4) in this restricted parameter is close to 0.95. By computation,

the suggested α value is 0.12, the same as the α value for the

natural parameter space (0,1). The improved TI for the bino-

mial data set with respect to α = 0.12 is (1,17). The minimum

and average coverage probabilities with respect to this parame-

ter space are 0.9562 and 0.9791.

For this Poisson example, by computation using Remark 2,

the suggested α value for the TI based on (6) is 0.17 when the

restricted parameter space is (0,9). The improved TI is (0,10).

The minimum and average coverage probabilities with respect

to this parameter space are 0.9493 and 0.9792.

Remark 5. In a real application, if the data are overdispersed,

then estimated improved tolerance limits can be found by sep-

arating the data into several groups such that the data are not

overdispersed in each group, then calculating the tolerance lim-

its for the data in each group. The largest upper tolerance and

smallest lower tolerance limits provide the estimated upper and

lower tolerance limits for the full data set.

8. CONCLUSION

The minimum and average coverage probabilities are two im-

portant indexes for evaluating the performance of TIs. Obtain-

ing the exact values for these two probabilities is critical. Here

we have proposed the first method for computing the exact min-

imum and average coverage probabilities for TIs of binomial

and Poisson distributions.

With the procedures proposed in this article, we need only

calculate the coverage probabilities at some finite points in the

parameter space. Then the exact values can be derived by mak-

ing inferences on these finite coverage probabilities. As demon-

strated by our simulation studies, our procedures definitely pro-

vide a more accurate and efficient way to achieve this goal.

Procedures 1 and 2 allow precise calculation of the minimum

and average coverage probabilities of the conventional TIs in

the literature. Our results indicate that most of the TIs are higher

or lower than the nominal level. Because inaccurate coverage

probability information will lead to serious losses, regardless

of whether it is an overestimation or an underestimation, our

proposed procedures may be of great help in precisely report-

ing the TI information and helping both the manufacturer and

customer make informed decisions.

We also have specified improved TIs based on the proposed

procedures. These TIs can obtain the required coverage prob-

ability regardless of sample size, because the α value is modi-

fied depending on the sample size when constructing TIs. With

these improved TIs, we need not worry about whether the true

coverage probability is higher or lower than the nominal level,

because we can let either their minimum or average coverage

probability be very close to the nominal level. Both the manu-

facturer and customer will surely benefit from the use of these

improved TIs.
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APPENDIX: PROOFS

Proof of Lemma 1

We need to show that
∑U(k)

i=L(k) fθ (i) and
∑U(l)

i=L(l) fθ (i) have

one solution. Note that

U(k)
∑

i=L(k)

fθ (i) −

U(l)
∑

i=L(l)

fθ (i) =

L(l)−1
∑

i=L(k)

fθ (i) −

U(l)
∑

i=U(k)+1

fθ (i). (11)

By the order of θ in (11), the first term in (11) is larger than

the second term in (11) when θ goes to 0, and the reverse is

true when θ goes to 1. Note that the first term in (11) is a de-

creasing function or a unimodal function, and that the second

term in (11) is an increasing function or a unimodal function.

Consequently, there is only one solution for (11) set to 0.

Proof of Lemma 2

(a) If L(x) = L(y) = 0, then, by assumption, we have

L(z) = 0 if x < z < y. Because
∑U(x)

i=0 fθ (i),
∑U(y)

i=0 fθ (i), and
∑U(z)

i=0 fθ (i) are decreasing functions by Proposition 1 and
∑U(x)

i=0 fθ (i) ≤
∑U(z)

i=0 fθ (i) ≤
∑U(y)

i=0 fθ (i), we have qx < qz < qy.

(b) If U(x) = U(y) = n, then, by assumption, we have

U(z) = n. Because
∑n

i=L(x) fθ (i),
∑n

i=L(y) fθ (i) and
∑n

i=L(z) fθ (i)

are increasing functions, and
∑n

i=L(X) fθ (i) ≥
∑n

i=L(Z) fθ (i) ≥
∑n

i=L(Y) fθ (i), we have qx < qz < qy.

(c) For cases other than (a) and (b), if we can show that

the equation
∑U(k)

i=L(k)
fθ (i) =

∑U(l)
i=L(l)

fθ (i) has only one solution,

and the value for θx is an increasing function of x, where θx oc-

curs at the maximum value of
∑U(x)

i=L(x) fθ (i), then px and qx are

increasing functions of x. If py < px and θx < θy, it follows that

the equation
∑L(x)

i=L(x) fθ (i) =
∑U(y)

i=L(y) fθ (i) has two solutions. By

Lemma 1,
∑L(x)

i=L(x)
fθ (i) =

∑U(y)

i=L(y)
fθ (i) has only one solution;

therefore, px and qx are increasing functions of x. Consequently,

we have px < pz < py and qx < qz < qy.

Proof of Theorem 1

Assume that there are totally k points of pi and qi. We

rank the k endpoints from the smallest to the largest. Let vi,

i = 1, . . . , k, denote the ith smallest value of these endpoints.

For a θ ∈ (vi, vi+1), let k0(θ) denote the smallest x such that

θ < qx and k1(θ) denote the largest x such that px < θ . By
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Lemma 2, the coverage probability of the interval at a para-

meter, θ , is

Pθ

(

F(U(X)) − F(L(X)) > β
)

=

k1(θ)
∑

i=k0(θ)

fθ (i). (12)

We show that

inf
vi<θ<vi+1

Pθ

(

F(U(X)) − F(L(X)) > β
)

= min
θ=viorvi+1

Pθ

(

F(U(X)) − F(L(X)) > β
)

. (13)

With this result, the infimum of the coverage probabilities

for θ ∈ (vi, vi+1) is the minimum of the coverage probabilities

Pvi(F(U(X)) − F(L(X)) > β) and Pvi+1
(F(U(X)) − F(L(X)) >

β). Thus, when (13) holds, the infimum of the coverage prob-

abilities for θ in the parameter space is the minimum of the

coverage probabilities, {Pθ (F(U(X)) − F(L(X)) > β) : θ ∈ W}.

Now we prove (13). Note that for a fixed i, k0(θ) and k1(θ)

are constants for all θ ∈ (vi, vi+1), because there are no other

px and qx between vi and vi+1. According to Proposition 1, (12)

is a unimodal function, a decreasing function or an increasing

function of θ . Thus, by the properties of these functions, the

minimum value of infvi<θ<vi+1
Pθ (F(U(X))−F(L(X)) > β) oc-

curs at θ = vi or vi+1. Thus the proof is complete.

Proof of Theorem 2

By a similar argument as in the proof of Theorem 1, the

coverage probability of (12) for θ belonging to an interval

(vi, vi+1) is
∑bi

j=ai
fθ (j) for some ai and bi depending on i.

By definition, when vi is a px, the maximum value and the

minimum value of y such that F(U(y)) − F(L(y)) ≥ β for

θ ∈ (vi, vi+1) are x and ri. When vi is a qx, the maximum value

and the minimum value of y such that F(U(y)) − F(L(y)) ≥ β

for θ ∈ (vi, vi+1) are si and x + 1. By Lemma 2, when vi is

a px, we have F(U(y)) − F(L(y)) ≥ β for θ ∈ (vi, vi+1) and

ri ≤ y ≤ x, and when vi is a qx, we have F(U(y))− F(L(y)) ≥ β

for θ ∈ (vi, vi+1) and x + 1 ≤ y ≤ si. Therefore, the proof is

completed.

[Received March 2007. Revised June 2008.]
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