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TOLERANCES, INTERVAL ORDERS, AND SEMIORDERS 

M. F . JANOWITZ,* Amherst 

(Received February 5, 1992, in revised form July 21, 1992) 

The paper discusses interval orders and semiorders from the viewpoint of tolerance 

relations on lattices. By concentrating on properties of the associated indifference re-

lations, if is possible to characterize interval orders as moot tolerances and semiorders 

as lattice tolerances on a chain. Some consideration is also given to partial interval 

orders and partial semiorders and they are related to certain kinds of posct toler-

ances. 

1. I N T R O D U C T I O N 

Preference theory abounds with instances where an individual may not be able to 

decide between alternatives jr, y or between alternatives g, z, and yet may still be 

able to decide between .r and z. Luce ([11]) defined semiorders and Fishburn ([7]) 

introduced interval orders to provide mathematical descriptions of such situations . 

Doignon ([<!]) and Fishburn ([7], pp. 19-21) are good sources for references to even 

earlier work involving those concepts. For example, interval orders are a special case 

of a scale introduced by ( .u t tman ([8]) and were recognized as an important concept 

in a paper by Wiener ([16]). The theory of interval orders and semiorders has been 

largely developed in the context of relational systems. Lattice tolerances on the other 

hand have mainly been studied as generalizations of congruence relations. Our goal 

here is to show that there is a natural one-one correspondence between semiorders 

and lattice tolerances on a chain and to also establish a similar correspondence 

between interval orders and semilattice tolerances on a chain. Note that some early 

work relating semiorders on a finite set to tolerances on a finite chain appears in [10]. 

Interval orders (see Fishburn, [()], p. 144) are often defined to be irreflcxive relations 

P on a set X that satisfy the interval order condition: 

If xPy and zVw then .rVw or zPy. 

* The research was supported in part by ONR Contract N-OO0I4-87-K-0379. 
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A semiorder is taken to be an interval order satisfying the following condition: 

If xPy and yPz then xPw or IUPZ for each w E A'. 

It should be noted that this definition of semiorder is equivalent to the definition 

originally given by Luce ([11]) when he formally introduced and studied this con-

cept. Fishburn's definition involves only the strict preference P associated with the 

semiorder, while Luce uses both P and the indifference relation I defined by xly if 

neither xPy nor yPx is true. By concentrating primarily on I, we shall establish the 

desired connection with tolerances on a chain, and show that inteval orders can be 

profitably studied solely in terms of their associated indifference relations. 

To accomplish our goals some preliminary notions are introduced in Section 2, 

while Section 3 is devoted to an examination of the way that tolerances are induced by 

certain types of mappings, and in Section 4 these results are extended to a semilattice 

setting. Having developed this machinery, we can proceed in Section 5 to establish 

the connection with interval orders and semiorders. Finally, in Sections 6 and 7, 

consideration is given to partial interval orders and partial semiorders (see [1], [o], 

[14] and [15]). 

2. PRELIMINARIES 

A working knowledge of lattice theory will be assumed throughout the paper. The 

reader is urged to consult any standard text ([3], for example) on lattice theory for a 

definition of any unfamiliar term. Let P be a partially ordered set (poset). For each 

x E P , let Jr — {t E L : t <J x) denote the principal ideal generated by x, and Fx 

the principal filter it generates. O.V(P) will denote the order ideals of P partially 

ordered by set inclusion, and 0\?(P) the order filters of P partially ordered by the 

converse of set inclusion. For P a lattice, J^ (P) will denote the (lattice) ideals of P , 

and ^(P) its (lattice) filters, with both sets ordered as expected. 

We shall also need the notion of a residuatcd mapping from a poset P into a poset 

Q. We say that, f: P —> Q is residuatcd iff is isotone and there exists an isotone 

mapping //: Q —•* P such that: 

(R l ) p <C h(f(p)) for a l l p e P , and 

(R2) O /(/,(</)) f o r a l l c / G Q . 

The mapping h is called the residual mapping associated with f, and it is easy to 

see that h uniquely determines and is uniquely determined by f. For that reason the 

pair (f, h) is sometimes called a rcsidualed-rcsidual pair. 

If P = Q, the residuated mapping f is called decreasing in case f(p) ^ /> for 

all p £ P- This is equivalent to // being increasing in the sense that h(p) ^> p 
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for all p G P . It will be convenient to let R e s ( P , Q ) denote the set of all residuated 

mappings from P into Q, with Res + (Q , P ) denoting the corresponding set of residual 

mappings from Q into P . When P = Q, this notation will be shortened to Res(P) , 

and Res+(P) . 

There is another type of mapping that turns out to be relevant to the upcoming 

discussion. For join semilattices, we shall say that / is a partial join homomorphism 

in case / ( / ; V / / ) ^ f(p) V / ( / / ) for all p,// G P ; the dual notion of a partial meet 

homomorphism on a (meet) semilattice requires that f(p r\p
f
) ^ f(p) A / ( / / ) . As 

expected, a partial homomorphism on a lattice is taken to be a mapping that is both 

a partial join and a partial meet homomorphism. It should be noted that partial 

homomorphisms need not he isotone. Partial join homomorphisms are characterized 

by the requirement that for each q G Q, f~
X
(Jq) shall be a join subsemilattice of 

P , while partial meet homomorphisms require the dual condition that f~
x
(Fq) he a 

meet subsemilattice of P . 

The notion of a tolerance dates back at least to Zeeman ([17]). Tolerances on 

algebraic structures were introduced by Zelinka ([18]) and have been studied by 

many authors. Our immediate interest lies with a (lattice) tolerance T on a lattice 

L. This is a rellexive symmetric relation T on L that is compatible in the following 

sense: 

c/Tb, rTcl implies that a V cTb V d and a A cTb A d for all a, b, c, d G L. 

It will he convenient to simply use the phrase "tolerance relation11 on a lattice to 

refer to a lattice tolerance relation. 

3 . RESIDUATED-RESIDUAL SCHEMES AND TOLERANCES 

Our goal in this section is to generalize [9], Theorem 12, p. 114 by establishing 

a Injection between arbitrary lattice tolerances and a generalization of decreasing 

residuated mappings. First we need some terminology. 

Def in i t i on 3 . 1 . A residuated-residual scheme on a lattice L is a quadruple 

(f, U\, h, H'l) °f mappings such that : 

(51) For / = 1 , 2 (ji is an isotone mapping of L into the lattice Lz. 

(52) / is a partial join homomorphism of L into L i . 

(53) h is a partial meet homomorphism of L into L9. 

(S<1) f(x) <C (j{(y) in Li & g2(x) <C h(y) in L 2 . 

In the above definition, note in particular that f(x) <C (j\(x) O h(x) J> g-)(x). The 

scheme (/ , </i, h,g->) is called decreasing if these inequalities hold for all x G L. When 
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L = Li = L'j and g\ = (j2 — the identity map, then a residuated-residual scheme 

becomes a residuated-residual pair. Our goal is to establish a connection between 

lattice tolerances and decreasing residuated-residual schemes. 

R e m a r k 3 .2 . It is easy to show that any decreasing residuated-residual scheme 

(f^OxJhO'j) defines a tolerance T on L by the rule xTy if and only if go(j') ^ h(y) 

and g2(y) ^ h(x). 

D e f i n i t i o n 3 .3 . The residuated-residual scheme (/ , y\, /«., yn) will be called a 

standard scheme in case: 

g\(x) = Fr and #2(#) = Jr for all x G L, 

/ : L —- ^ ( L ) is a join honioiiiorphisin, 

//: L —- J^(L) is a meet hoinoinorphisin, and 

(f,!/iJ>,!J'>) is decreasing. 

It is of some interest to note that if every ideal and every filter of L is princi-

pal, then standard scheme > may be identified with residuated-residual pairs on L. 

We summarize the connection between tolerances and decreasing residuated-residual 

schemes with the following theorem. A related result establishing a Injection be-

tween tolerances on L and certain galois connections between J(\J) and ^ ( L ) was 

established earlier in [2]. 

T h e o r e m 3.4. Let L he a lattice. There is a natural one-one correspondence 

between tolerances on L an</ standard schemes. 

P r o o f . Let T be a tolerance on L. For each x G L, define <j\(x) = Fr and 

g2(x) = Jx. Next define h : L — J(V) by 

h(x) = {w G L : w <J v for some v such that cTx'}. 

Similarly, define / : L — -^(L) by 

f(x) = {w G L : w ^ v for some v such that vTJ:}. 

Thus h(x) is the ideal generated by {w G L: wTx}, and /(x-) is the filter generated 

by this set. 

Evidently g\, j2 are both homomorphisms, so we next show that h is a meet 

hoinoinorphisin . Hence let x,x' G L and note that <r G h(x A x') implies that 

tv ^ v for some v such that vTx A x'. But then v V xTx , v V x'Tx\ and this shows 

w G h(.r) A h(x'). On the other hand, w G h(-f) A /'(-"') forces the existence of 

elements i;, v' where w <J v A v', vTx and v'Tx'. It follows that tv G b(x A J J /) since 

(v A i)')T(x' Ax'). A dual argument establishes that / is a join hoiuoinorphism. 
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Suppose now that f(x) <C <j\(y) in ^ ( L ) . This says that y G /(#)> so y ^ v for 

some v such that I;TJ:. Then v A ;i'Tx, and ./: ^ x A y ^ v A x implies xTx A g. But 

joining both sides of this equation with y tells us that x V yTy, whence x G h(y) or 

in other words, a2(.r) <C h(y). A similar argument produces the reverse implication. 

Evidently .72U') ^ h(x) and gj(J') ^ f(x) for all x* G L. 

At this point we have established that (/ , </i, A, 02) is a standard scheme. We 

must still show that it induces the original tolerance T . It will clearly suffice to 

establish that aTb is equivalent to the assertion that r/2(<
r0 <̂  h(b) and (j2(b) <̂  h(a). 

If aTb , then clearly b G h(a) and a G h(b). Suppose conversely that a G h(b) and 

b G h(a). There then exist elements v, w such that a <C vTb and b <̂  ivTa. rFhen 

(/ = a A I 'TIC A b = 6, thus completing the proof. We leave to the reader the routine 

proof that T can he induced by at most one standard scheme (/, g\, /i, #2)- D 

We show next that tolerances may always be defined by a suitable pair of map-

pings. Let. g be a join homomorphisin and // a meet homomorphism of the lattice 

L into the lattice M such that g(x) <C h(x) for all x G L. Define T by the require-

ment that aTb when g(a) <C h(b) and g(b) <C h(a). Then T is easily shown to be a 

tolerance. For if aTb and rTd , then 

g(a V c) = g(a) V g(c) <: b(b) V h(d) <: b(b V d), and 

g(a A c) <: (/(a) A r/(c) <: h(b) A h(d) = b(b A J). 

Similarly /y(rVJ) <C h(aVb) and cy(cAr/) <: h(aAb), whence aVrTbVJ and aAcTbAd. 

We shall denote this by saying that the tolerance T is induced by the L-pair (h,g). 

R e m a r k 3.5. If (//, g) is an L-pair on the lattice L, and T is its induced tolerance, 

it is easily shown that the following conditions are equivalent: (i) g(a) <C li(b); (ii) 

a <C w for some wTb; (iii) b >̂ v for some vTa. 

D e f i n i t i o n 3.6. Proceeding as in Definition 3.3, we take a lattice L and define 

g(x) — Jx and assume that h: L —-> S(L) is a meet homomorphism such that 

g(x) <j h(x) for all x G L. Such a pair of mappings will be called a standard L-

pair. A related construction appears in [1] (Proposition 1.3, p. 372) and has been 

generalized in [13], pp. 142-143. 

T h e o r e m 3.7. There is a bijection between tolerances on the lattice L and stan

dard L- pairs. 

P r o o f . By the remarks preceding Lemma 3.5, every standard L-pair induces a 

tolerance in L. The remainder of the proof is left for the reader. • 
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4 . SEM1LATTICE TOLERANCES 

In this section it will be assumed that L, M denote semilattices. The pair (h<g) 

of mappings of L into M will be called an SL-pair in case: 

g is isotone, 

h is a partial meet homomorphism, and 

g(x) <C h,(x) for all x £ L. 

Associated with such a pair (A, g) there is the tolerance relation T defined by aTb 

if g(a) <̂  h(b) and g(b) <J h(a). In fact T is a meet tolerance on L. For if r/Tb and 

cTd, then 

g(aAc) ^ //(a) A(/(r) <̂  h(b) A h(d) <C b(bAd), 

and a similar argument shows that g(bAd) <C li(aAc), whence a AcTbAd. There are 

dual notions regarding join semilattices and join tolerances that we shall not bother 

to state. 

Def in i t i on 4 .1 . A standard SL-pair is taken to be an .S'J-pair (h, g) of mappings 

of L into 0J(L) with g(x) = Jx. 

T h e o r e m 4 .2 . (i) Every SL-pair on the semilattice L induces a meet tolerance 

on L. 

(ii) Every meet tolerance on a semilattice L is induced by an SL-pair. 

P r o o f . The opening remarks of the section established (i), so we need only 

consider (ii). Taking g(x) = Jx and h(x) the order ideal generated by {w: u>T.r}, it 

is clear that (h,g) is an .S'L-pair of mappings from L into Oy(L). Evidently, 

xTy => g(x) <C h(y) and g(y) <C h(x). 

Suppose conversely that g(x) <J h(y) and g(y) <J h(x). There then exist elements 

v,w G L such that x <̂  v, y <C iv, vTy and wTx. But then x = x A vTw A y = y 

shows that xTy, thus establishing that T is induced by the pair (h,g). D 

R e m a r k 4 . 3 . There is no natural one-one correspondence between meet toler-

ances on L and standard .S'L-pairs of mappings. To see this, consider the semilattice 

L indicated below: 
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Consider the meet congruence T on L defined by xTy if and only i f x A 6 = gAb. 

This congruence has tlie classes {0,a} and {b,c}. Letting 

g(x) = g'(x) = Jx, with 

h(a) = h'(a) = h(0) = h'(0) = {0,a}, 

h(b) = h(c) = {0 ,6 ,c} ,and 

h'(b) = h'(c) = {0 , a ,b , c} , 

we have that (h,g) and (h',g') are distinct standard S'L-pairs that each induce T . 

The difficulty arises from the fact that if a standard SL-pair (h", g") induces a 

tolerance T", then g" (x) <C li"(y) need not imply the existence of an element w such 

that x ^ w with wTy. Corollary 4.4 does however contain a special case that will 

be of interest in the next section. 

C o r o l l a r y 4 .4 . Let L be a chain. There is then a natural one-one correspondence 

between meet tolerances and standard SL-pairs. 

P r o o f . We need only notice that if T is induced by the standard S'L-pair (h, g), 

and if g(y) <^ h(x) then 

y ^ x implies y ^ x with xTx, while 

x <C y implies xTy, so y ^ y with gT.r. 

Thus h(x) = {y: y <J w for some wTx}, and this completely specifies the mapping h. 

D 

5. T O L E R A N C E S ON A CHAIN 

When L is a chain so are S(L) and &(L)\ it follows that every tolerance T is 

induced by an L-pair (h,g) where h,g are each homoiiiorphisms from L into a chain 

M . Since every mappping from a chain into a lattice is a partial homomorphism, the 

corresponding result for meet tolerances is that every such tolerance T is induced 

by an /S'L-pair (h, g) where g is a homomorphism and h a partial homomorphism. 

Civen the meet tolerance relation T on the chain L, one can define new relations R 

and P by tlie rules 

XJXAJ if x < y or xTy, 

xPy if x < y and xTy fails. 

If T is induced by the S'L-pair (h,g) where g is a homomorphism and h a partial 

humomorphisin of L into a chain, one then has: 

xlly if and only if g(x) ^ h(y). 

xPy if and only if h(x) < g(y). 

27 



This observation has some rather interesting implications, since by [5] (Proposition 1, 

p. 7) this implies that P is an interval order; if h is in fact also a homomorphism (so 

that T is necessarily a lattice tolerance), it even implies that P is a semiorder. To 

see this, note that by using the standard scheme for T, one can assume that: 

(*) .</(*) $ <l(y) implies h(r) <J h(y). 

Suppose that xPy, yPz but that x.Pw fails, so that wKx. This translates to 

h(z) < <j(y), 

h(y) < </(-), 

g(w) ^ h(x). 

It follows that g(w) < g(y) so by (*), h(w) <C h(y). Hence h(w) < g(z). But this 

says that w;P:, whence P is in fact a semiorder. 

We now supply a converse to the above observations. Thus we assume that P is 

an interval order on X and define the relation R by xP.y if and only if yPx fails. 

By [5] (Proposition l, p. 7) there is a chain (E, <C) and two mappings h,g from X to 

E such that : 

xPy & h(x) < g(y) 

and 

g(x) <C h(x). 

It follows that 

xRyOg(x) <C h(y). 

If we define T = R H R 1 , we then have that: 

xTy <=> g(x) <: h(y) and g(y) <C h(x). 

The idea now is to find a linear order <C0 on X for which T is a tolerance and a P b 

denotes the fact that a < 0 b with aTb false. We begin by defining a weak order W 

by the agreement that : 

aWb&g(a) <C g(b). 

Next we let ^ 0 be an extension of W to a linear order, so that a <C0 b implies aWb. 

But this is all that needs to be done, as it is clear that g is isotone, so by Theorem 

4.2, T is a meet tolerance on (X, <^o)- Evidently, a P b implies a < 0 b with aTb false. 

Suppose on the other hand that a < 0 b with aTb false. Since a P b implies a < 0 b, it 

follows that a <C0 b implies aRb . Thus we have aRb hut not bRa, and this says that 

aPb . If P is a semiorder, we apply [5] (Proposition 2, p. 8) to deduce that gji can 

be chosen so that also 

9(r) ^<j(y)<>h(x)<:h(y). 
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But this says that both y 7; are homomorphisms from (X, <C0) into (E, <C), so by 

Theorem 3.7, T is a tolerance on (X, <Jo). We summarize these observations in the 

next Theorem. 

T h e o r e m 5 . 1 . (i) If T is a meet tolerance on the chain (X, <C), and i f P is defined 

by xPy if and only if x < y with xTy false, then P is an interval order on X . HT 

is a tolerance then P is a semiorder on X . 

(ii) / / ' P is an interval order on the set X, and i f T is defined by aTb <=> a P b and 

bPa both fail, then there exists a linear order <J on X having the property that T is 

a meet tolerance on (X, <C) and a P b is equivalent to a < b with aTb fai.se. / I P is a 

semiorder then T is a tolerance on (X,<C). 

R e m a r k 5.2. The portion of Theorem 5.1 (ii) relating to semiorders is essentially 

contained in the discussion of Roberts ([12], pp. 255-8). The correspondence between 

semiorders on a finite set and tolerances on a finite chain appears in [10]. 

0. PARTIAL INTERVAL ORDERS 

Interval orders involve a pair ( P , I ) of relations on X such that: (i) P is transitive; 

(ii) I is reflexive and symmetric; (iii) P D I = 0; (iv) a,b £ X implies aPb , alb , or 

bPa. Condition (iv) is often not met in practical applications. This is especially 

true in preference modeling that involves multicriteria decisions. It therefore seems 

desirable to relax condition (iv) and introduce some sort of partial interval order. 

This has been clone in both [5] and [15]. The connection between the two approaches 

is explained in [5], p. 10 and p. 16. Results related to those of [5] can be found in [4] 

and the initial work in this area was done by Roy [14]. In that the definitions in [5] 

bear more directly on what we have in mind, let us begin by examining them. 

D e f i n i t i o n G.l ([5], Definition 4, p. 15). A partial interval order of type 1 is a 

pair of relations ( P , I ) on X such that 

I is symmetric and reflexive, 

P n i = (9, 

P I P C P 

A partial interval order of type 2 is defined by adding 

i p - ' i n i P i c i . 

It follows from results in [5] that for a given partial interval order ( P , I ) there 

exists a linearly ordered set (E, <C) and a pair h, g of mappings from X i n t o E having 
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the property that 

g(x) <C h(x) for all x, 

xPy implies li(x) < g(y), 

xly implies g(x) <$ h(y) and g(y) <C h(x). 

This representation by the mappings (h,g) is not particulary useful since the im-

plications only go in one direction. This leads us to suggest that another possible 

model for partial interval orders would involve tolerances on a .suitable poset. First, 

the appropriate terminology must be introduced. 

D e f i n i t i o n 6.2. Let L, M be posets. A pair (h,g) of mappings from L into M 

is called a P-pair in case 

g is isotone, and 

g(x) <^ h(x) for all x G L . 

D e f i n i t i o n 6 .3 . Let L be a poset. A poset tolerance on L is a reflexive symmetric 

relation T having the property that 

a ^ vTb, b <C xTa => r/T6, and 

a <cj b <C c with aTc implies aTb . 

L e m m a 6.4. Every P-pair (h,g) of mappings on a poset L induces a poset tol

erance in the usual manner. 

P r o o f . Left to the reader. • 

L e m m a 6.5. Let T be a poset tolerance on the poset L. There then exists a 

lattice M and mappings g, h : L —-» M such that 

g is isotone, 

g(x) <J h(x) for all x, and 

xTy «-> g(x) <C h(y) and g(y) <C h(x). 

P r o o f . If L does not have a least element, take M = OJ{h) U {0}; otherwise, 

set M = i7y(L). In either case, M is a complete distributive lattice with x —• 

g(x) — Jx isotone. For the poset tolerance T , let h : L —J> M be defined by letting 

h(X) be the order ideal generated by {w: wTx}. The assertions of the Lemma are 

now obvious. • 
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T h e o r e m 6.6. Let T be a poset tolerance on the poset L. Define g,h as in 

Lemma 6.5. //' the relation P is specified by 

xPy^h(x) < g(y), 

then ( P , T ) is a partial interval order of type 2. 

P r o o f . Since T H P = 0 is obvious, we begin by showing that P T P C P . So 

let a P b T r P d and note that 

h(a) < g(b) <C h(c) < g(d), 

from which oPrf follows. Next we sliow that T P - 1 T D T P T C T . Assume a T b P c T d 

and note that 

<j(a) ^ h(b) < <j(c) <C /.(rf). 

A symmetric argument shows a T b ' P _ 1 r ' T d implies g(d) <C h(a), so aTd . Thus the 

pair ( P , T ) is a partial interval order of type 2. • 

R e m a r k 6.7. The relation P specified in the statement of Theorem 6.6 will be 

called the strict partial preference associated with (h,g). A word of caution is in 

order. If (h,g) and (h',g') are distinct P-pairs that induce the same tolerance T on 

the poset L, then the relations P , P ' defined by 

aJ?boh(a) < g(b), 

aP'b^ti(a) <g'(b) 

need not coincide. This can be concretely illustrated by the example of Remark 4.3. 

With (h,g) defined as in Remark 4.3, the relation P is empty, while if T is induced 

by the pair (h',g'), we have xP'y for x £ {0,a} and y £ {b,c}. 

The next step is to establish a converse to the above results. Suppose ( P , I ) is a 

partial interval order of type 2. By [5], Proposition 6, p. 14 there exist interval order 

extensions (Q*, J*) of ( P , I ) such that P = f| Q* and I = f| J*. By Theorem 5.2, 
Jfc k 

there exist linear orders <Ĉ  on X such that J^ is a meet tolerance on (X, ^k). Thus 

there exist chains (Ek, ^'k) and mappings gk, hk from (X, <^.) into E* such that 

gk is one-one and isotone, 

9k(z) ^'k hk(x) for all x, and 

xJky <=> 9k(x) ^k hk(y) and gk(y) ^'k hk(x). 

Let M = Y\ Efc be equipped with the product partial order ^ 0 - Define g, h: X —* M 
k 

by the agreement that 

(
A*) =  І9k{x))

k
 and  h(x)  =  (h

k
(x))

k
. 



Thus 

g(x) <:0 h(y) <=> (jk(x) <^k hk.(y) for ail k. 

It is immediate that 

(j is one-one, 

y(-
r
) ^o h(x) for all x, and 

xly & j(x) <:0 b(g) and (j(y) <:0 /*(*). 

One can now define a partial order <:j on X by taking <:i= f] <:̂ .. If x <:} g, then for 
k 

each index k, we have x <^ y so that (jk-(x) <: yk-(y), and consequently y(x) <:0 r/(g) 

in M . Thus y is an isotone mapping from (X,<.Ji) into M . By Lemma G.4, I is a 

poset tolerance on (X, <^i). This is all summarized in the next theorem. 

T h e o r e m G.8. Let ( P , I ) he a partial interval order of type 2 on X . There exists 

a partial order <: on X such that I is a poset tolerance on (X,<:) . Every poset 

tolerance arises in this manner. 

7. PARTIAL SEMIORDERS 

In this section we shall extend the definition of poset tolerances and explore their 

connection to what are called partial semiorders in [5]. 

Def in i t i on 7 .1 . Let P , Q be posets. A pair (h,y) of mappings from P into Q 

is called an S-pair in case: 

y,h are each isotone, and 

y(x) <: h(x) for all x £P. 

Def in i t i on 7.2. Let L be a poset. A poset tolerance T on L is said to be of 

type 0 in case it satisfies the following conditions: 

(51) a <: vTb, b <: wTa =r> aTb , 

(52) a J> vTb, b ^ u;T« => aTb , and 

(53) a <: b <: c with aTc implies both aTb and bTc. 

This merely says that T is a poset. tolerance on both L and its dual. T is called 

a poset tolerance of type 1 in case it satisfies (S l) , (S2), and the stronger condition 

(S37) [x] — {w: wTx] is convex for each x £ L. 
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Finally, the pair ( P , T ) is called a po.se/ interval order if there is an 5-pair (h,g) 

such that 

g(x) ^y(y)&h(x)^h{y), 

xTy <=> g(x) ^ h(y) and g(y) <$ h(x), 

xPy&h(x) <g(y). 

We shall call such an 6-pair symmetric and say that the pair ( P , T ) is induced by 

the symmetric .S'-pair (b ,g ) . 

R e m a r k 7 .3 . Evidently every poset interval order yields a poset tolerance of 

type 1, and every poset tolerance of type 1 is of type 0. Robert C. Powers has 

provided an example of a type 0 poset tolerance that is not type 1. With L as in the 

diagram below, take T so that x T a , x'Tc and yTy for all y. Note that T is a poset 

tolerance on both L and its dual; yet (S3') fails since [x] is not convex. 

$ 6 

The construction of Lemma 6.5 now produces the following mappings from L into 

0'S(L)\J{Q}: 

g(y) = Jy for all ?/, 

h(x) = h(c) = {*, a, 6, c}, /i(6) = {a, 6}, h(a) = {*, a}. 

It is curious that the associated strict partial preference P consists only of the pair 

(b ,c), while if T is viewed as a tolerance T* on the dual of L, the corresponding 

construction would produce bP
m
a. We still need an example of a type 1 partial 

semiorder that is not. type 2. We precede this with a preliminary result. 

L e m m a 7.4. Let ( P , T ) />e a poset interval order that is induced by the symmetric 

S-pnir (b, g). Then: 

( a ) P T P C P ( f i ) P P T C P (7) T P P C P . 

P r o o f . To establish these facts, note that a P b T c P d implies that h(a) < g(b) <̂  

h(c) < g(d), aTbPcPd forces g(a) <C h(b) < g(c) so h(a) ^ h(c) < g(d)\ finally, if 

a P b P c T d , then h(b) < g(c) ^ h(d) implies g(b) ^ g(d) so h(a) < g(b) ^ h(d). D 
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R e m a r k 7.5. To obtain an example of a type l poset tolerance T such that 

( P , T ) is not a poset interval order, consider the example of Remark 7.3 and define 

g', h': L — OS(L) U {0} by taking 

g'(x) = {x}, h'(x)={x,a,b,c}, 

g'(c) = {x,a,b,c}, h'(c) = {*',«, b,c}, 

g'(b)= {x,a,b}, h'(b)= {x,a,b}, 

g'(a) - {.r,«}, h'(a) = {x,a}. 

The pair (h',g') is then an .S'-pair in the sense of Definition 7.7 and tlie poset 

semiorder T ' that it induces lias the classes 

[x] = {x, «, b, c} [y] = {y, x] for y = «, b or c. 

If P ' is the strict partial preference associated with (h',g'), we then have «P 'b , bP'c 

and C T ' J : . In that aP'x fails, we have that T ' is type 1 but ( P ' , T ' ) is not a poset 

semiorder. 

L e m m a 7.6. Every S-pair (h,g) of nmj)pings on a poset L induces a poset toler

ance of type 1 in the usual manner. 

P r o o f . This is left to the reader. • 

L e m m a 7.7. Every poset tolerance T of type 1 on the poset L is induced by an 

S-pair. 

P r o o f . Taking M as in the proof of Lemma 6.5, we define mappings g,h: 

L —• M by taking g(x) = Jr and h(x) to be the order ideal generated by {w: wTx\ 

for some X\ <̂  x}. Then g,h are isotone and g(x) <C h(x) for all x £ L. The trick 

now is to show that T is the poset tolerance induced by (h,g). 

Trivially, if xTy then x £ h(y) since xTy with y <̂  y, so g(x) <̂  h(y) and similarly 

g(y) <C h(x). So let us assume conversely that g(x) <C h(y) and g(y) <C h(x) and try 

to establish xTy. We know that there exist elements v,w,x\,y\ £ L such that 

x <C wTy\ <C y and y <C vTx\ <C x. 

It follows that x\ <C wTy\ and gi <C uTx'j so by (SI), x\Ty\. Using (S3), we now 

see that x\Ty\, x\Tv with y\ <C y <C v implies X' IT/ / . Similarly by (S2), vTx\ <C «-, 

tvTi/i <C v together imply vTiv; the combination of vTw and t'TJ:i now forces vTx. 

Using the fact that x\Ty and vTx, we now have 

x ^> x\Ty and y ^> vTx. 

A second application of (S2) now forces xTy. n 
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Our next goal is to establish the analog of Theorem 6.8 for poset interval orders. 

Before this task can be undertaken we shall need some machinery from [5]. A cycle 

of a relation R is any sequence of pairs in R of the form x0x\, X\XO, . . ., xnx0. 

Given two relations V and W on X, we follow [5], p. 16 and denote by V y W the 

relation formed by all pairs xy for which there exist x0, x\, . . ., xn G X, with xx0, 

x0x\, . . ., xny members of V U W , with the number of pairs in V strictly greater 

than the number taken in W . Similarly, V A W is formed by all pairs xy for which 

there exist x0, x\, . . ., xn E X with -r.ro, -fo^i, • • •, * n g belonging to V U W , and for 

which the number of pairs from W is strictly less than 2 plus the number of those 

from V . We are now ready to introduce the seiniorder version of Definition 6.L 

D e f i n i t i o n 7.8 ([5], Definition 6, p. 17). A partial semiorder of type 1 is a pair 

of relations ( P , I ) on X such that 

I is symmetric and reflexive, 

p n i = 0, 

each cycle of P U I has fewer pairs in P than in I, 

P v i e P 

A partial semiorder of type 2 is defined by adding 

P A i n P - 1 A I C I. 

Doignon et al ([5], Proposition 8, p. 16) prove that if ( P , I ) is a partial semiorder of 

type 2, then there exist semiorder extensions (Qk,3k) of ( P , I ) such that P =-- f] Qk 
k 

and I = n*^-- W° begin our discussion by constructing a poset interval order from 
k 

the partial semiorder ( P , I ) of type 2. By [5], Proposition 2, p. 8 there exist a family 

(Ek, ^'k) of chains and mappings (jk, hk of X into Ejt such that 

9k(
x
) ^'k h-k(x) for all x, 

xPky*>hk(x) <kgk(y), 

x3ky & gk(x) ^'k hk(y) and gk(y) <CJk hk(x), and 

9k(*) <k 9k(y) & hk(x) ^ hk(y). 

For each index k, define a weak order Wk on X by the rule .rW^.g if and only if 

9k(*) ^1- 9k(y)- Now let ^jt be a linear order on X that extends Wk in the sense 

that x ^k 1/ implies xWky. It is immediate that gki hk are isotone mai)pings from 

(X,^k) into the chain Ejt. Taking M = f ] E* with the product partial order ^ 0 , 
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we now define g, h as we did in the proof of Theorem 6.7. Letting <^i= f] ..*$*,, it is 
k 

clear that 

g, h are isotone mappings of (X, $Ji) into M , 

g(x) <C0 h(x) for all x, 

f
j(x) ^o g(y) <=> h(x) <:0 h(y), and 

**2/ <=> </(*) ^o h(;y) and g(y) <:0 b(x). 

It follows that I is a poset interval order on (X, ^ i ) . 

Next we assume that ( P , T ) is a poset interval order, so that ( P , T ) is induced by 

a symmetric 5-pair (h,g). In view of Lemma 7.4, each of the following assertions is 

true: 

(«) P T P C P (/?) P P T C P (7) T P P C P . 

We shall prove that ( P , T ) is a partial semiorder of type 2 by proving a number of 

claims. 

Cla im 1. Eacii cycle o f P U l has fewer pairs in P than in I. 

P r o o f . Suppose there were a cycle icP-»1Ifc-P-;2I*2 . . .P! ' ' I f c |i- that had at least 

as many pairs from P as from I. With no loss in generality, we may assume that 

( a ) , (p), (7) have been applied to reduce the length of the cycle as far as possible. 

Evidently ji <C l for all i, and k7- J> 2 for / < l. It follows that / <J 2, so j P I r . ,/TP.r, 

or X P I I P J ; , all of which are impossible. D 

C l a i m 2. P y K P . 

P r o o f . \1xP\7Iy, then . r P ^ I ^ P ^ I * ' 2 . . . Pjt
I

kt
y with more pairs from P than 

from I. Assuming that (o) , (fi) and (7) have been applied as many times as possible, 

it is immediate that / > 2(l — 1), whence / = 1, and consequently xPy. • 

C l a i m 3 . If xP A ly, then g(x) <$ h(y). 

P r o o f . If the assertion of Claim 3 were false, then it would fail for some pair 

xy for which xP A l t / with •/;, y connected by a minimal length sequence of relations 

from P U I. In view of (a ) , (/?), and (7), it follows as in the proof of Claim 1 that. 

(**) xP
h
l
k
'P

h
l
k2

 ...P
jt
l
kt

y 

with ji <C 1 for all i and k; ^ 2 for i < t. If the last two relations in (**) were P P , 

P I , or I P the choice of (**) as having minimal length would force the existence of 

elements v,iv such that g(x) <C h(v) and (i) vPwPy, or (ii) vPwIy, or (iii) vlwPy. 

Now (i) clearly forces g(x) < h(y); with (ii), g(x) <J h(v) < g(w) <C //(//); finally, in 

(iii) we have g(v) <C h(iu) < g(y), so h(v) <C h(y) and consequently, g(x) <C h(v) <: 

h(y). a 
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T h e s i t u a t i o n is s u m m a r i z e d in t h e nex t T h e o r e m . 

T h e o r e m 7 . 8 . Let P , I he binary relations on X . The following conditions a r e 

then equivalent: 

(i) ( P , I ) is a partial scimordcr of type 2. 

(ii) There exists a partial order ^ on X for which ( P , I ) is a poset semiorder. 

(iii) Each of the following is true: 

I /.s symmetric and reflexive, 

P n i = W, 

P I P U P P I U I P P C P . 

8. CONCLUSION 

T h e o r ig ina l m o t i v a t i o n b e h i n d t h e defini t ion of s e m i o r d e r s by Luce [11] a n d inter-

val orders by r i s h b u r n [6] involved cons ider ing m e a s u r e m e n t s to have va l id i ty only 

wi th in s o m e interval of tin* reals. A b s t r a c t vers ions of b o t h concep t s have usua l ly 

been s t u d i e d from the a spec t < >f relat ional s y s t e m s . Inves t iga t ions in to their o r d i n a l 

proper t ies seem largely to have concen tra ted on proper t ies of their a s soc ia t ed s t r i c t 

orders P . T h e focus of T h e o r e m 5.2 lies with the indifference relat ion I , a n d c o m e s 

full circle to show tha t t h e a b s t r a c t version of interval orders and semiorders can 

still !>e t h o u g h t of in t e r m s of m e a s u r e m e n t t h a t has assoc ia ted wi th it a no t i on of 

fu/ 'ziness. Thesv ideas are formalized1 by rela t ing t h e m to t he theory of to lerances on 

l a t t i ces . T h i s is of course closely related to results such as those in F i shburn [7]. 
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