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Abstract. We report on a Tolerant Algebraic Side-Channel Analysis
(TASCA) attack on an AES implementation, using an optimizing pseudo-
Boolean solver to recover the secret key from a vector of Hamming
weights corresponding to a single encryption. We first develop a bound-
ary on the maximum error rate that can be tolerated as a function of
the set size output by the decoder and the number of measurements.
Then, we show that the TASCA approach is capable of recovering the
secret key from errored traces in a reasonable time for error rates ap-
proaching this theoretical boundary – specifically, the key was recovered
in 10 hours on average from 100 measurements with error rates of up to
20%. We discovered that, perhaps counter-intuitively, there are strong
incentives for the attacker to use as few leaks as possible to recover the
key. We describe the equation setup, the experiment setup and discuss
the results.
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1 Introduction

Algebraic Side-Channel Analysis (ASCA), first described in [15], is a method for
recovering the secret key from a side-channel trace (specifically, a power trace)
with a very low data complexity. ASCA is an extension of the more general
discipline of Algebraic Cryptanalysis attacks[12], which represent cryptosystems
as systems of equations, then apply machine solvers to find the cryptographic key
satisfying these equations. To carry out an ASCA attack, the attacker recovers a
vector of side-channel leaks (such as Hamming weights or Hamming distances)
from the power trace, then writes an equation set mapping these leaks to the
evolution of the internal state of the device; finally, a machine solver is used
to find the secret key satisfying these equations. In [15] and [14] it was shown
that if the side-channel vector is represented perfectly it is possible to recover
the key from unprotected AES[13] and PRESENT[4] software implementations
with very low data complexity (typically one or two power traces). However, the
ASCA methodology is very vulnerable to noise or decoding errors in the side-
channel leak vector, limiting its practicality in cases where uncontrollable sources



of noise are present in the system under attack. In [8] a new attack methodology
called Tolerant Algebraic Side-Channel Analysis (TASCA) was presented. This
methodology allows the algebraic methods of [14] to be used for key recovery
from a very small amount of side-channel information, even in the presence of
reasonable amounts of measurement noise. A modification to the standard ASCA
attack which can tolerate some noise was also introduced in [17].

1.1 Anatomy of a TASCA attack
Throughout this report we assume the the attacker is provided with a device
under test (DUT) which performs a cryptographic operation (e.g. encryption).
While encrypting the device emits a measurable side-channel trace, specifi-
cally a power trace which is captured by an oscilloscope of a certain memory
depth and sampling rate. A certain amount of leaks are modulated into the
trace, due to the physical characteristics of the device under attack. These leaks
can teach an attacker about the internal state of the DUT during various stages
of the cryptographic operation. While the leaks are typically integral values
(commonly Hamming weights or Hamming distances), the power trace it-
self is a continuous analog signal which exhibits a certain amount of noise or
errors due to interference and to limitations of the capture mechanism (see [8,
§1.2]).

The TASCA methodology uses the following steps to recover the secret key
from a power trace:
1. In an offline phase, the DUT is first analysed in order to identify potential

leaks, for instance by reverse engineering.
2. Next, the DUT is profiled and a decoding process is devised to map be-

tween a single trace and a vector of leaks.
3. After the offline phase concludes, the attacker is provided with a small

number of power traces (typically a single trace). The traces may be also
accompanied by some auxiliary information such as the known plain-
text/ciphertext associated with this trace. The decoding process is then ap-
plied to the power trace, and a vector of leaks is recovered. This vector is
possibly corrupted by noise.

4. The leak vector, together with a formal description of the DUT found through
reverse engineering, is represented as a system of pseudo-Boolean equations.
This equation set also includes any additional auxiliary information. The
equation set is specially formed such that an optimizing solver can receive
a leak vector which is a slightly different than the original vector (due to
the effect of noise) and still find the correct key assignment. The equation
set also contains a goal function, which is used by the solver to define the
optimality of each candidate solution. In our specific case the goal function
indicates that less-errored solutions are preferable to errored ones.

5. Finally, a solver such as SCIP [3] evaluates the equation set and attempts
to find a candidate key which satisfies the equation set while minimizing
the goal function. The solver may fail to terminate in a tractable time, or
otherwise return a candidate key.



6. The candidate key (or, as stated in Subsection 2.2, its immediate neighbor-
hood) is verified.

As indicated in the above list, there are several conditions which must all hold
true before a TASCA attack succeeds. First, the decoder should succeed in
capturing the leaks with an error rate which the solver is robust enough to
handle. Next, the solver should return some key, and not run for an intractable
time. Finally, the returned key should be the correct key.

1.2 Evaluating solver performance

A central component of this attack is a pseudo-Boolean optimizer, described
in more detail in [1]. There are several ways of constructing such a solver, for
example by extending a SAT solver or by constraining an Integer Programming
solver. Regardless of the design choice, a pseudo-Boolean optimizer is generally
slower and less efficient than a single-purpose SAT solver.

An interesting alternative to an optimizing solver was introduced in [14] and
more recently investigated in [17]. In this approach each entry in the recovered
leak vector is not represented as an equation allowing a single acceptable value.
Instead, the equations accept any value from a set of several possible values. The
values in the set are each equally acceptable, that is, there is no incentive for
the solver to choose one value over another. The resulting equation set, which
is essentially similar to the straight ASCA equation set, is then submitted to a
standard SAT solver. As shown in [17], this approach is quite satisfactory given
that a enough leaks and auxiliary information are provided to the solver. Thus,
it is interesting to compare this approach (which we call Set-ASCA) to a full
optimizer-based TASCA attack.

When evaluating the performance of various solving methodologies, several
metrics of performance may be used. For example, one may measure the time it
takes the solver before the key is successfully recovered. SAT solvers are simpler
in construction than PB optimizers and are dramatically faster for instances
of similar size. From a security standpoint, however, it is not obvious that an
attack that recovers a secret key in several days is less useful than one that does
so in several seconds. Another possible metric is the success probability of
the attack to succeed given a typical power trace. While this is an important
practical consideration, we note that from a security standpoint an attack that
can break AES for a small but significant fraction of the instances it encounters
is arguably just as dangerous as one that can break nearly all of the instances.
A third metric is the amount of leaks required – naturally the attack which
requires the least amount of leaks is the most useful. We consider this metric
significant, especially considering the large amount of profiling and preprocessing
involved in a complete attack and the interplay between the amount of required
leaks and the maximum tolerable error rate (see Subsection 2.3). A final and
significant metric is the ability of the solver to tolerate noise and error. There
are several conflicting ways of treating this metric and we will attempt to unify
them in this discussion.



1.3 Structure of this report

This report is organized as follows: In Section 2, we describe a theoretical anal-
ysis, connecting the measurement signal-to-noise ratio and the set size in a Set-
ASCA solver with the success probability. Next, in Section 3, we describe an
experiment setup, both in terms of the DUT and of the software and hardware
configuration of the solver. In Section 4 we list results obtained using standard
(non-optimizing) ASCA on our simulated AES implementation. In Section 5 we
describe the actual tolerant attack on AES and its performance, and finally we
conclude with some discussion in Section 6.

2 Theoretical Considerations

2.1 The TASCA problem space

As discussed in the previous subsection, the TASCA solver is presented with
leak equations and with auxiliary information such as known plaintext and
ciphertext, and is tasked with finding the secret key. Let us discuss the behaviour
of the solver as the function of the amount of leaks it is provided.

At the most extreme case of limited information, the solver is provided with
no leak equations at all and with no auxiliary information. It is immediately
evident that this instance is trivial to solve but will return an incorrect key,
since any key will satisfy this extremely underspecified problem. The same holds
if no leaks are known and only the plaintext or the ciphertext (but not both)
are provided as auxiliary information.

In contrast, if the plaintext and ciphertext are both provided, and no leak
equations exist, the problem degrades to that of standard algebraic cryptanalysis
– with high probability only a single key exists that will satisfy this plaintext-
ciphertext relation, but this cryptanalytic instance is too difficult to solve,
making it impossible for a solver to find the key in a reasonable time[12].

Another extreme case is the case where all side-channel data is presented
to the solver, without any measurement error. As shown in [14], even with no
auxiliary information the solver has enough information to solve the prob-
lem successfully and efficiently and find the correct key in a reasonable
time. Obviously, any additional auxiliary information such as known plaintext
or ciphertext only increases the probability of a successful outcome.

The amount of leak information provided to the solver is measured both by
the number of measurement equations and by the amount of error tolerance
built into each equation. As opposed to ASCA problems, for which the leak
equations are precisely defined, TASCA (and Set-ASCA) leak equations admit
several possible values for each leak, allowing the solver to tolerate some amount
of noise in the measurements.

2.2 Dealing with incorrect answers

The solver does not always succeed in recovering the correct key. Based on our
practical experience, we have observed three common failure modes. The first



type of failure occurs when the solver reports that the problem is unsatisfiable.
The source of this failure is a decoding failure – the decoder introduces more
noise into the leak equations than the solver is capable of dealing with. Another
type of failure occurs when the solver times out and does not return any answer
within the specified time. At other times the solver returns an incorrect key,
usually because the low amount (or high error tolerance) of the leak equations
causes the problem to be under-defined.

A specific type of the third failure mode, which we discovered to be quite
common, results in the solver returning a partially correct key. Due to the
specific byte-oriented micro-architecture we address in this work, this mode is
usually characterized by a partition of the key bytes into a group of perfectly
correct bytes and a group of completely random bytes. Since the error tends to
be localised to only a few bytes, the key can be recovered in some cases from the
incorrect result using a moderate amount of brute-force searching.

To analyse the brute-force effort required by an attacker, assume that e of
the 16 bytes are incorrect, and that the rest are correct. The attacker must go
over all

(16
e

)
≈ 24e possible locations for those errored bytes, then try 256e = 28e

possible candidate assignments for these positions, resulting in an approximate
total effort of 24e · 28e = 212e AES operations. Most modern Intel CPUs have
a native implementation of AES (AES-NI), which allows a sustained rate of
more than 231 AES operations per second on a contemporary system[2]. As
illustrated below in Table 1, an attacker can use a single machine with an AES-
NI implementation to probe the close neighborhood of a candidate key and find
the correct key within several hours, even if as many as 4 of the 16 bytes returned
are incorrect.

Incorrect Key Bytes 0 1 2 3 4 5
AES operations required 1 212 224 236 248 260

Estimated time using AES-NI[2] <1 sec <1 sec <1 sec 25 sec 24 hr 9 yr
Table 1. Estimated time for brute-force searching for incorrect key candidates

2.3 Measuring error tolerance

Since there are different ways of encoding error into an equation set, it is difficult
to compare the ability of different methods to deal with errors. Therefore, it is
useful to find a way to discuss errors in terms of standard metrics such as signal
to noise ratio or bit error rate.

As stated in Subsection 1.1, the side-channel leak is first passed through a
decoder, where it is converted to set of leak equations, and next to a solver.
The solvers we discuss here deal with errors by permitting more than one valid
assignment to each individual leak (i.e. they follow either the Set-ASCA or the
TASCA methodologies). Thus, a set of k values are accepted for each leak. A



necessary condition for the solver (Set-ASCA or TASCA) to succeed is that the
correct value of each leak is a member of the acceptable set presented to the
solver1.

Let us now assume that we wish to carry out an attack based on Hamming
weights of internal calculations performed by an 8-bit microcontroller. In this
model each leak xi is an integer value which takes a value between 0 and 8.
The leak is modulated onto the amplitude of the power trace, subjected to some
additive noise, and finally recovered by the attacker.

As shown in [10], in the case of an 8-bit microcontroller the amplitude of
the power trace is approximately linearly dependent on the Hamming weight.
To recover the Hamming weight from the power trace, the attacker typically
measures the amplitude of the power trace at one or more points in time, then
applies an affine transform to these measurements to arrive at x̂i, the estimated
value for the leak xi. This estimated value can thus be seen as the result of the
original integral leak xi and an additive Gaussian noise element νi ∼ N (0, σ):
x̂i = xi + νi.

To put this model into standard engineering signal and noise terms, the signal
power Ps can be defined as the variance of the Hamming weights of the inputs,
assuming a uniform distribution of the inputs, and the noise power Pn as the
variance of the noise ν, leading to the standard definition of signal-to-noise ratio:

Definition 1.
SNR = 10 log10

Ps

Pn

= 10 log10

1
256
∑256

i=0 (HW (i)− E [HW (i)])2

σ2

= 10 log10 2− 10 log10
1
σ2

≈ −20 log10 σ + 3

Now that x̂i is defined, it needs to be presented to the solver. Assuming the
solver is a TASCA or Set-ASCA solver with a set of size k, the natural approach
would be for the decoder to populate the set of valid solutions with the k integer
values closest to x̂. A necessary condition for the solver to succeed would then
be that one of the elements of the set output by the decoder is the original xi.
The elements of this set may all be considered equally desirable (in the case of
Set-ASCA), or otherwise ranked according to their distance from x̂i (in the case
of TASCA). For example, if the set size k is 1 (corresponding to ASCA) and
the decoder observation was x̂i = 2.2, the set will contain the value 2. In other
words, if the decoder outputs the symbol closest to x̂i, and the original symbol xi

was 2, the attack will succeed only if the decoded value x̂i is between 1.5 and 2.5,
or equivalently if νi is between −0.5 and 0.5. If k is 2, it will include the values
1 This is not a sufficient condition – even if all leaks are recovered correctly the problem
may still be under-defined or computationally intractable.



2 and 3, and the attack will succeed only if x̂ ∈ (1.5, 3, 5). In general, if k values
are acceptable than νi must be in the range

[
−k

2 ,
k
2
]
. For a decoding success

we require this condition to hold for all leaks in the leak vector simultaneously.
Assuming the noise is i.i.d. for all leaks, the probability of such an event is:

Pr (Decoding Success)

= P

(
x̂i ∈

[
xi −

k

2 , xi + k

2

]
|xi

)m

= P

(
xi + νi ∈

[
xi −

k

2 , xi + k

2

]
|xi

)m

= P

(
νi ∈

[
−k2 ,

k

2

]
|xi

)m

= P

(
νi ∈

[
−k2 ,

k

2

])m

=
(

1√
2πσ2

ˆ k
2

− k
2

e− x2
2σ2 dx

)m

By fixing the set size k and the number of leaks m and solving for σ, we can
find the maximum Gaussian noise power tolerable by sets of a certain size if a
certain success probability is desired.

If we define the per-leak error rate as the probability that a set of size 1 does
not contain the correct value of x, we can convert the value of σ to an error rate
using the following relation:

Definition 2.

Perror = P

(
νi /∈

[
−1

2 ,
1
2

])
= 1− 1√

2πσ2

ˆ 1
2

− 1
2

e− x2
2σ2 dx

Table 2 summarises these results. It can be seen from the table that each set
size corresponds to a certain maximal error rate and, equivalently, to a certain
minimal signal-to-noise ratio.

Leak Count m =100 leaks m =200 leaks
Set size k min. SNR [dB] max. error rate min. SNR [dB] max. error rate

1 20.8 0.1% 21.2 0.05%
2 14.8 5.2% 15.2 4.3%
3 11.3 19.5% 11.6 17.7%
4 8.8 33.1% 9.1 31.1%

Table 2. Relation between error rate and set size for normally distributed noise when
we require Pr (Decoding Success) = 99%



Figure 1 displays the probability that a decoder using a set of size k = 3 will
correctly capture all measurements with a fixed error rate. It can be seen that
as the number of equations m grows, the probability of decoding success falls
exponentially. We see that an increase in information causes a decrease in the
robustness of the attack, making it more sensitive to errors. Thus (and perhaps
counter-intuitively) it makes sense to provide the solver with the least amount
of side-channel information required for a successful key recovery, even if more
information is available.
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Fig. 1. Decoder success rate as a function of leak count m, with a fixed set size k = 3
and an error rate of 30% (σ = 0.4824, SNR=9.3dB)

3 Experiment Setup

In this section we describe the setup we used for our experiments with ASCA,
Set-ASCA, and TASCA.

3.1 The Device Under Test

As a DUT we chose an 8-bit microcontroller implementation of AES-128, based
on the standard NIST implementation of [13] and on a hardware implementation
specified in [16]. We assumed that the device leaks the Hamming weight of the
8-bit operand on its data bus. Following the observations of Subsection 2.3, we



aimed to provide the minimum amount of (errored) measurements to the solver.
Thus, we only modeled the first few rounds of AES. We made the following
assumptions:

– Only the plaintext (or the ciphertext) are provided to the solver, but not
both2.

– The leaks from the key expansion process are not available to the solver,
since we assume that the DUT performs round key expansion in advance.3

– The AddKey and AddRoundKey operations leak the Hamming weights
of the 16 state bytes after the XOR with the key/round key, as well as the
Hamming weights of the key bytes themselves, giving a total of 32 fresh leaks
per subround.

– The SubBytes operation is implemented as a look-up table (LUT). The
equations representing the SubBytes operation use the canonical represen-
tation (see [8, §5.2]), using a single equation per output bit or a total of
8 equations per invocation of SubBytes. The LUT operation leaks only the
Hamming weights of the 16 state bytes after the SubBytes operation (and
not any other internal state information), for a total of 16 fresh leaks per
subround.

– The ShiftRows operation is implemented logically as index shuffling and as
such does not leak any information.

– The MixColumns operation is implemented using 8-bit XTIME and XOR
operations as specified in [6, §5.1] and as such leaks 36 additional bytes of
internal state per round. In addition to the 16 leaks of the final state, this
gives a total of 52 fresh leaks per subround.

In total each round of AES (consisting of SubBytes, ShiftRows, MixColumns
and AddKey/AddRoundKey) leaks 100 Hamming weights of 8-bit values.

The experiments were performed under various error rates and set sizes up
to the theoretical thresholds calculated in Subsection 2.3. We chose to focus on
the performance of the solver and not on that of the decoder, assuming that
the leaks satisfied the necessary condition for decoding success outlined in
Subsection 2.3. To apply an error rate of e to the Hamming weight measurement
vector of length m, em indices are chosen independently at random, and the
Hamming weight at each of these selected indices is modified by either ±1 (for
sets of size k = 3) or by +1 (for sets of size k = 2).

3.2 Solver Software and Hardware

The solver used in our experiments was SCIP version 1.2.0 compiled for Windows
64-bit[3]. This solver is currently the best non-commercial solver available for
2 If both plaintext and ciphertext are provided, the solver will never return an incorrect
key – it will either terminate with the correct key or run for an intracable amount
of time.

3 It was already established in [9] that the Hamming weights leaked from an 8-bit
microcontroller implementation of AES during key expansion are sufficient for full
key recovery, even without any additional state information.



non-linear optimization problems, as listed by [11]. The solver was run on on a
quad-core Intel Core i7 950 at 3.06GHz with 8MB cache, running Windows 7
64-bit Edition. To take advantage of the multiple hyper-threading cores of the
server, six instances of the solver were run in parallel. It should be noted that
running a single instance at a time will result in noticeably better performance
due to less contention on the L2 cache (equation solving is very RAM intensive)
and due to Intel’s Turbo Boost feature which speeds up one computational core
when the others are idle[5]. The running time of each instance was limited by
a shell script – ASCA and Set-ASCA instances were limited to two hours and
TASCA instances limited to two days. A set of MATLAB scripts was used to
create random instances, run the solver and collect the results automatically.

4 Results – ASCA with no errors

As stated in [8, §3.3], each ASCA or TASCA instance consists of a general
description of the cryptographic algorithm as a set of equations, an assignment
of any known inputs to the algorithm, a specification of the measurement setup,
and finally a set of potentially errored measurements. For TASCA instances we
also include a goal function, which instructs the solver to aim for a solution
(i.e. key assignment) which minimizes the amount of noise in the measurements.
If we change the measurement equations so that they do not admit noise (i.e.,
let k = 1) and eliminate the goal function, we transform the problem from a
TASCA instance to an ASCA instance similar in form to that used in [15]. An
ASCA instance typically has a smaller solution space and is thus much easier
to solve. We used ASCA instances to determine the minimal amount of side-
channel information which can be provided to the solver for an efficient and
correct response.

Figure 2 shows the success probability of non-error-tolerant ASCA measure-
ments as a function of the runtime with different amounts of side-channel data.
It can be seen that 20%-60% of the problems are solved within about 1 minute
while the rest take much longer to run. This agrees with the findings of [14].

Table 3 summarizes the success rate of the ASCA solver as a function of time
for different amounts of side-channel data. Based on Subsection 2.2, we consider
as success cases where the solver terminates and returns a key which is at most
4 bytes apart from the correct one.

Amount of side-channel data Mean solving Success rate after...
time 10 sec 80 sec 2 hrs

Round 1 (100 leaks) 392 sec 12.4% 19% 93.6%
Round 1 + AddRoundKey(132 leaks) 1950 sec 14.2% 30.8% 65.6%

Round 1 + AddRoundKey + SubBytes (148 leaks) 102 sec 0% 64% 66%
Round 1 + Round 2 (200 leaks) 137 sec 0% 64.2% 66.3%

Table 3. Success rate of the ASCA solver at different times
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Fig. 2. ASCA cumulative success rates for different amounts of side-channel data

Based on these results we conclude that side-channel measurements from a
single AES round without any errors are usually sufficient for full key recovery.
We discovered that if we reduced the leak count to less than a full round, the
probability of success became vanishingly small. Note that the success probabil-
ity after 2 hours is largely unaffected by the amount of side-channel information.
Thus, if the attacker has sufficient time, it makes sense to use only a single round
of leaks and no more, and thus increase the robustness of the attack.

A possible drawback to using a small amount of side-channel data is the risk
of a situation in which the problem is underspecified, causing the solver to return
an incorrect answer. To demonstrate the impact of this effect, Figure 3 shows
the distribution of incorrect key bytes in the recovered solution for 100 and 132
of side-channel measurements, where instances which timed out after 2 hours
were assigned the all-zero key.

We can see that with 100 leaks, only 6.4% of the recovered keys had more
than 4 incorrect key bytes. With 132 measurements this rate drops to 0.2%, but
an additional 35% of the instances fail with a solver time-out. With additional
measurements the fraction of wrong bytes drops to nearly 0 (graphs omitted).
As discussed previously in Subsection 2.2, even 3 or 4 incorrect key bytes can
be considered a correct result, if we allow the immediate neighborhood of the
candidate key to be probed using brute force. In all cases the key was either
recovered correctly (at least partially), or the operation timed out, leading us to
conclude that 100 leaks (1 full AES round) are enough to uniquely determine
the key in the case of error-free ASCA (i.e., k = 1), even if the ciphertext is not
provided to the solver.



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.1

0.2

0.3

0.4

0.5

0.6

Wrong key bytes

P
ro

ba
bi

lit
y

(a) Round 1 (100 side-channel measure-
ments)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.1

0.2

0.3

0.4

0.5

0.6

Wrong key bytes

P
ro

ba
bi

lit
y

(b) Round 1 + AddRoundKey (132
side-channel measurements)

Fig. 3. ASCA wrong key histograms

5 Results – TASCA and Set-ASCA with errors

This section describes the results of TASCA runs on simulated power traces of
AES which have been corrupted with noise. We tested the average solving time
and average success rates for various combinations of side-channel information
amounts and error rates. We also measured the effect of the optimizing aspect
of the solver (the goal function) on the performance of our solver.

5.1 Effect of error rate

The objective of this experiment was to measure the effect of the error rate
on the solving time and success probability of our TASCA solver. Based on
the conclusions of the previous section, we provided our TASCA solver with one
round of side-channel leaks (m =100 measurements) and with a known plaintext.
The error rate was chosen to be between 0% and 25%. According to Table 2, a
decoder has at least a 99% probability of success when producing such a set of
equations, given the above parameters and a set of size k =3. Figure 4 shows
our results. We also ran the experiment with k = 2 and error rates of up to 5%
(results omitted).

In general, the TASCA approach showed itself capable of recovering the secret
key, with a success probability of 30%-80%, from errored traces in 6 to 24 hours
for sets of size 2 and 3, even with error rates all the way up to the theoretical
boundary of 19.5% previously calculated in Subsection 2.3. Interestingly, we
could find no significant correlation neither between the error rate and the success
rate, nor between the error rate and the solving time. This is in contrast to our
previous results on Keeloq, where increasing the error rate caused a measurable
increase in the running time and a corresponding decrease in the success rate.

We note that we have also performed some successful key recovery attacks
with 100 leaks and a set of size k = 4. Since these instances take a very long time
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Fig. 4. Effect of error rate on success rate and solving time for 3-set TASCA of AES
with m = 100 leaks (20 experiments per data point)

to execute on our system, we cannot provide any quantitative results regarding
their efficiency at this time.

5.2 Comparing TASCA and Set-ASCA

As discussed in Subsection 1.2, an alternative approach to TASCA called Set-
ASCA was introduced in [14] and more recently investigated in [17]. In this
approach the k values in the set are each equally acceptable, that is, there is
no incentive for the solver to choose one value over another. The represents a
loss of information when compared to full TASCA. The Set-ASCA equation set,
which is essentially similar to the straight ASCA equation set, is then submitted
to a standard SAT solver. Assuming an identical quantity of leaks is used in
both cases, Set-ASCA has been shown in [17] to be about 20 times faster than
(optimizing) TASCA. However, there are structural advantages of TASCA over
Set-ASCA which must be considered, especially in cases where the set is large. It
has been shown in [15] that if the Hamming weight side-channel is precisely spec-
ified (ASCA), and that if a sufficiently large amount of side-channel information
is provided, then a correct key for AES encryption can be recovered with good
probability. Stated another way, given enough side-channel data only a single
key assignment can satisfy the precisely-specified side-channel leak equations. In
the case of TASCA or Set-ASCA, where the side-channel is imprecisely spec-
ified, either more side-channel information or additional auxiliary information
(such as known plaintext and ciphertext pairs) should intuitively be required to
guarantee only a single key satisfies the leak equations. If less than the required
amount of side-channel information is available, and the auxiliary information
is also limited or not available, many keys – potentially an exponential amount



– may satisfy the same side-channel leak equations. If a non-optimizing solver is
used in this case, it will arbitrarily choose a satisfying solution and terminate,
making its success probability exponentially small. In contrast, an optimizing
solver will only terminate once it has found a solution which minimizes the goal
function. Assuming the goal function has been correctly specified, we hypothe-
sise that an optimizing TASCA approach is more likely to find the correct key
than a random satisfying assignment.

To investigate this scenario, we compare a TASCA and a Set-ASCA solver
operating on m =100 leaks of side-channel data with 0% errors, varying the set
size from k = 1 (standard ASCA) to k = 4. Table 4 describes our results.

Set Size k 1 2 3 4
Success probability (TASCA) 78% 87.5% 73% 72.7%

(Set-ASCA) 78% 9.2% 0% 0%
Mean solving time in minutes (TASCA) 6.45 245.2 901.99 1332.07

(Set-ASCA) 6.45 171.05 7.18 2.92
Table 4. TASCA vs. Set-ASCA performance with 100 leaks

Note that for a set size of k =1, both TASCA and Set-ASCA solvers are
reduced to the case of standard ASCA, making their performance identical. As
we expected, the solving time of the optimizer is much worse than that of the
SAT solver, a difference that only grows as the set size grows. On the other
hand, it can clearly be seen that the accuracy of Set-ASCA falls dramatically
when we must increase the set size k to overcome decoder failures: the solver
may terminate quickly, but it provides the correct key in only 9% of the cases for
k = 2 and is always wrong for k = 3 or k = 4. This is caused by the large set of
admissible solutions made possible by the lower precision of the leak equations.
Since the SAT solver chooses one of these solutions arbitrarily, its success rate
falls dramatically as the set size grows. In contrast, the optimizer is motivated
to choose the best solution from the available set. As a result, its success rate is
largely determined by the error rate (as we saw in Subsection 5.1) and not by
the set size.

6 Conclusions and Discussion

This report demonstrates that the TASCA approach, which was previously ap-
plied to the low-security Keeloq cipher, is also usable for full-strength ciphers
such as AES. The secret key can be recovered from 60%-70% of AES instances
even when only a single trace is provided, and even when 20% of the trace signal
is corrupted by noise. This new cryptanalytic capability may compromise secure
systems whose defense against (statistical) side-channel attacks was an aggres-
sive rekeying schedule which results in a small amount of traces per given key –



as we showed, even a single encryption is enough to recover the key, assuming
that the device under attack has been properly profiled by the attacker.

6.1 A strategy for successful TASCA attacks

As shown in this report, the choice of operating parameters can have a sub-
stantial effect on the running time and success probability of an algebraic side-
channel attack. We showed that increasing the amount of side-channel measure-
ments available to the solver has a mixed effect. On one hand, as shown in [17],
it decreases the space of possible solutions sufficiently to allow the use of non-
optimizing solvers with better running times. On the other hand, it increases
the sensitivity of the solver to noise. For a fixed amount of side-channel leaks,
we showed that increasing the size of the set of acceptable values per leak (k)
increases the running time but does not decrease the success probability of the
attack.

In view of these findings, we can recommend that implementers first char-
acterise the expected signal-to-noise ratio of the DUT using standard signal
processing techniques; Next, they should choose the minimal amount of side-
channel leaks (m) required for a successful key recovery; Finally, they should
choose the minimal set size (k) which can tolerate the expected amount of noise
with good probability. Specifically in the case of AES, we discovered that using
m =100 leaks is a good choice for signal to noise ratios of as low as 20dB for
k =1, up to 14dB for k =2, and up to 11dB for k =3.

6.2 Comparison with Keeloq results

There are several differences between the Keeloq[7] cipher and the AES[13] ci-
pher, when viewed from the viewpoint of a TASCA attack. On one hand, the
Keeloq cipher seems easier to analyse because of its weak diffusion property –
the key bits are shifted into the Keeloq cipher state one bit at a time, whereas
in 8-bit AES they are introduced into the state one byte at a time. On the other
hand, the Keeloq implementation runs on an ASIC circuit which leaks 32-bit
Hamming distances, a side-channel leak which is generally considered more dif-
ficult to attack in contrast to the 8-bit Hamming weights leaked by the AES
implementation.

Table 5 contrasts AES and Keeloq instances in terms of instance size and
solving time. The Keeloq instances usem =90 subrounds (and hence 90 measure-
ments), while the AES instances use one AES round withm =100 measurements.
In both cases the TASCA cases use a set size of k = 3 and the leaks are corrupted
with a 5% error rate. It can be seen from the table that despite the fact that
the AES instance is only 9 times larger than the Keeloq instance, it is harder
to solve by three orders of magnitude. Another interesting difference, which we
demonstrated in Figure 4, is the low correlation between the error rate and the
solving time for AES – as shown in [8], the solving time of Keeloq TASCA in-
stances grew super-linearly with the error rate, while we could observe no such



condition in the case of AES. In our experiments, AES instances took roughly
the same amount of time to solve regardless of their error rate.

Keeloq AES Ratio
ASCA instance size 140KB 1.3MB x9.3
ASCA instance time 0.36 sec 387 sec x1072
TASCA instance size 140KB 1.3MB x9.3
TASCA instance time 22 sec 8.7hr x1436

Table 5. Comparison of AES and Keeloq performance

Both differences in behaviour between AES and Keeloq may be attributed
to the different diffusion properties of the two ciphers. While in Keeloq the key
is introduced into the equation one bit at a time, in AES it is XORed into
the plaintext as soon as encryption begins and further diffused by the following
operations. The good diffusion property of AES makes it difficult for the solver
to infer the value of one variable from the assignment of another. This both
increases the runtime and defeats the “added value” granted to the solver for
correctly determining a partial solution. Since diffusion has such a profound
effect, finding a more precise power model of the cipher which allows additional
leaks to be considered and reduces this diffusion property should AES instances
easier to solve.
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