IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 5, MAY 1992

599

Tolerating Faults in Hypercubes
Using Subcube Partitioning

Jehoshua Bruck, Member, IEEE, Robert Cypher, and Danny Soroker

Abstract— We examine the issue of running algorithms on a
hypercube which has both node and edge faults, and we assume
a worst case distribution of the faults. We prove that for any
constant ¢, an n-dimensional hypercube (n-cube) with »“ faulty
components contains a fault-free subgraph that can implement a
large class of hypercube algorithms with only a constant factor
slowdown. In addition, our approach yields practical implemen-
tations for small numbers of faults. For example, we show that
any regular algorithm can be implemented on an n-cube that has
at most n — 1 faults with slowdowns of at most 2 for computation
and at most 4 for communication.

To the best of our knowledge this is the first result showing
that an n-cube can tolerate more than O(n) arbitrarily placed
faults with a constant factor slowdown.

Index Terms—Fault-tolerance, hypercubes, parallel computing,
reconfiguation, subcubes.

I. INTRODUCTION

HE n-dimensional hypercube (n-cube) is one of the most

popular interconnection topologies for parallel computers.
Hypercube-based parallel machines are built and sold com-
mercially and it is expected that they will continue to play
an important role in the future. One of the most important
issues related to such parallel machines is how they can
compute in the presence of faults. In this paper we study how
algorithms that are designed for fault-free hypercubes can be
implemented on hypercubes that contain faults. The efficiency
of the implementation will be measured by its slowdown,
which is defined to be the algorithm’s time requirements
on the faulty hypercube divided by its time requirements
on the fault-free hypercube. In the following discussion we
will view a parallel computer as being a graph in which the
nodes correspond to processors and the edges correspond to
communication links.

The issue of computing with faulty hypercubes and re-
lated neworks has been addressed in several recent papers
[1]-[8], [10], [11], [13]. Particularly notable is the result
by Hastad, Leighton, and Newman [8]. They considered a
faulty hypercube in which every node is faulty with constant
probability p < 1 and the faults are independently distributed.
They proved that, with high probability, the faulty hypercube
can simulate a fault-free hypercube with only a constant

Manuscript received June 24, 1991; revised December 4, 1991.

J. Bruck and R. Cypher are with IBM Almaden Research Center, San Jose,
CA 95120-6099.

D. Soroker is with Shell Development Company, Houston, TX 77001-0481.
This work was done while he was with IBM Almaden Research Center, San
Jose, CA.

IEEE Log Number 9108215.

factor slowdown. Thus, the hypercube is extremely tolerant
of randomly distributed faults.

In this paper we study worst case distributions of faults.
Several other researchers have examined this issue [3], [6],
[10], [11]. One approach that has been studied is to locate a
large fault-free subcube and to use that subcube to emulate the
entire hypercube. However, it has been shown that in order to
guarantee a constant factor slowdown, the n-cube must have
only O(logn) faults [3], [11].

Our approach is to partition the hypercube into small
subcubes, each of which has a small number of faults. More
precisely, we guarantee that the majority of the nodes in each
subcube form a fault-free connected component. We then show
that the existence of such fault-free connected components can
be used to obtain efficient implementations for a wide range of
hypercube algorithms. We focus on two classes of hypercube
algorithms, namely regular algorithms and single-port algo-
rithms. In regular algorithms all processors communicate along
the same dimension in each communication step, while in
single-port algorithms each processor sends or receives at most
one message during each communication step. The classes
of regular and single-port algorithms include a large number
of hypercube algorithms, including all of the algorithms in
the classes Ascend and Descend as defined by Preparata and
Vuillemin [12].

A different but related approach to hypercube fault-tolerance
was studied by Chan and Lee [6]. They showed that the Benes
routing algorithm can be implemented on an n-cube that has
fewer than n faults with a factor of 9 slowdown. In contrast,
we prove that any regular algorithm can be implemented on an
n-cube that has fewer than n faults with slowdown factors of 2
for computation and 4 for communication. We also prove that
for any constant ¢, an n-cube with n° faults can implement any
single-port algorithm with only a constant factor slowdown.
To the best of our knowledge this is the first proof that an n-
cube can tolerate more than O(n) arbitrarily placed faults and
still be guaranteed to implement a large class of algorithms
with only a constant factor slowdown. Following the original
appearance of this result [S], Aiello and Leighton obtained the
same result for any hypercube algorithm, whether or not it is
a single-port algorithm [1].

It will be assumed throughout this paper that all faults are
static and are known. Both nodes and edges may be faulty.
However, we will only consider node faults, as an edge fault
can be tolerated by assuming that one of the nodes incident
upon it is faulty. It will be assumed that faulty nodes can
neither perform calculations nor route data.

0018-9340/92$03.00 © 1992 IEEE

The rest of this paper is organized as follows. Definitions
and notation are presented in Section II. Section III shows
how faulty hypercubes can be partitioned into subcubes with
large fault-free connected components, and Section IV uses
these partitions to obtain efficient implementations of regular
and single-port algorithms on faulty hypercubes. Section V
presents conclusions and lists some open problems.

I1. DEFINITIONS AND NOTATION

We denote the set {0,1,--- N — 1} by [N]. We will need to
define several operators for multisets, which are collections of
objects in which repetitions are allowed. Let T be a multiset
and let X be any element in T'. The multiplicity of X in T,
denoted mult(X,T), is the number of times X appears in
T. The multiplicity of T, denoted mult(T), is the maximum,
over all X € T, of mult(X,T). Also, set(T) is the set of
all X € T (that is, set(T) is the set obtained by removing
duplicates from 7). Given a multiset 7" and a set S such
that for all X € S, both X € T and mult(X,T) = 1, the
difference of T and S, denoted T'\ S, is the multiset obtained
by removing the elements of S from 7.

The n-cube is a graph that contains 2" nodes, each of
which is labeled with a unique n-dimensional vector of the
form X = (zp-1,Zn_2, - 2p), where for all 7, 0 < i < n,
z; € {0,1} (for notational simplicity, some vectors will be
written without commas). Any two nodes in an n-cube are
adjacent iff their vectors differ in exactly one dimension. The
Hamming weight of a node X in an n-cube is Z:‘:_OI z;. A
node is even if it has an even Hamming weight, and it is odd
otherwise. An m-dimensional subcube of an n-cube is denoted
S = (Sn—1,8n-2," " S0), Where exactly m of the s;’s are *’s
and the remaining s;’s are either 0’s or 1’s. A node X is
contained in S iff for all 4, 0 < ¢ < n, either z; = s; or 5; = *.

An m-partition of an n-cube is a partition of the n-cube
into m-cubes. The partition is defined by identifying the mn
dimensions that are “internal” to the m cube. More formally,
the set P C [n] is an m-partition of an n-cube if |P| = m.
An m-partition P can be viewed as a set of m-cubes where
an m-cube S is in P iff for all 3, 0 < i < n, s; = x iff
i € P. Given a multiset of n-dimensional binary vectors
T and an m-partition of an n-cube P, the projection onto
P of T, denoted proj(P,T), is the multiset of (n — m)-
dimensional binary vectors obtained by removing from each
vector in T the m dimensions specified by P. Let a(P,T)
denote mult(proj(P,T)). Note that if T is a set of faults,
a(P,T) is the maximum number of faults contained in any
m-cube in P.

Recall that it will be assumed throughout that all faults are
node faults. A node which is not faulty will be called healthy.
Let F be a set of faulty nodes in an n-cube. We will say that an
m-cube S tolerates F' iff S contains a connected component of
2™=14 1 or more nodes, all of which are healthy. We will also
say that an m-partition P tolerates F iff for every m-cube S
in P, S tolerates F. Tolerant partitions are valuable because
they guarantee that for any pair of adjacent m-cubes there
is at least one edge connecting the large healthy connected
components in the m-cubes.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 5, MAY 1992

Example: Let F = {(0011),(0010),(1011)}, let P, = {3},
let P> = {2,3}, and let P; = {1,2}. Given these definitions,
proj(Py, F) = {(011), (010), (011)}, proj(Py, F) = {(11),
(10),(11)}, proj(Po, F) = {(01),(00).(11)}, proj(P,
proj(Ps, F) = {(1), (0). (1)}, a(P1.F) = 2, a(Pp, F) = 2,
and a(P;, F) = 1. Partition Pj tolerates F, but neither P;
nor P5 tolerates F'.

ITI. FAULT-TOLERANT PARTITIONS

Our general approach to hypercube fault-tolerance consists
of identifying a partition of the hypercube which tolerates the
faults and then using this partition to implement regular or
single-port algorithms efficiently. In this section we will show
how to find such a partition given an arbitrary set of faulty
nodes. We will consider three cases based on the number of
faults that are tolerated.

Throughout this section, ' will denote the set of faulty
nodes in an n-cube. Our goal will be to find an m-partition P
of the n-cube which tolerates F'. Smaller values of m will lead
to more efficient implementations of regular and single-port
algorithms, so we will always attempt to minimize m.

A. n — 1 Faults

Note that even if F' consists of only a single fault, there are
no mmn-partitions that tolerate F' for which m < 2. As a result,
we will only consider m-partitions for values of m that are 2
or larger. The following theorem shows that 2-partitions can
be used whenever the n-cube contains fewer than n faults.
The theorem depends on the following two lemmas, the first
of which was proven by Chan and Lee [6].

Lemma 3.1: For all n > 1, given any set F' of n or fewer
faulty nodes in an n-cube, there exists a 1-partition P of the
n-cube such that a(P, F) < 1.

Lemma 3.2: For all n > 2, given any set F of n — 1 or
fewer faulty nodes in an n-cube, there exists a 2-partition P
of the n-cube such that a(P, F) < 1.

Proof: From Lemma 3.1 there exists at least one di-
mension ¢ such that a({i},F) < 1. Let p; be the largest
such dimension ¢ and let ' = proj({p:1},F). Note that
F’ is a set of at most n — 1 (n — 1)-dimensional binary
vectors, so from Lemma 3.1 there exists a dimension py such
that a({p2},F’) < 1. Let P = {p1,p2}. Then (P, F) =
mult(proj(P, F)) = mult(proj({p2}, F')) < 1. O

Example: Assume that a 5-cube has the following set of
faults.

F = {(00000), (01110), (01000), (01001)}.

If P = {2,4} then proj(P, F) = {(000), (110), (100), (101)}
and o P, F) = mult(proj(P, F)) = 1.

Theorem 3.3: For all n > 2, given any set F' of n — 1 or
fewer faulty nodes in an n-cube, there exists a 2-partition P
of the n-cube which tolerates F.

Proof: From Lemma 3.2 there exists a 2-partition P for
which a(P, F) < 1. Thus each 2-cube in P contains at most 1
faulty node. Therefore, each 2-cube in P contains a connected
component of 3 healthy nodes and P tolerates F.

BRUCK et al.: TOLERATING FAULTS IN HYPERCUBES USING SUBCUBE PARTITIONING 601

B. 2n — 5 Faults

Theorem 3.3 showed that 2-partitions are capable of toler-
ating any set of n — 1 or fewer faults. The following theorem
shows that for n faults we may be forced to use m-partitions
with m > 4.

Theorem 3.4: For all n > 3, there exists a set F' of n faulty
nodes in an n-cube such that no 2-partition tolerates F' and
no 3-partition tolerates F.

Proof: Let F be the set of n nodes with Hamming weight
1 and let Z be the node with Hamming weight 0. It is easily
verified that any 2-cube containing Z does not contain a
connected component of 3 or more healthy nodes, and any
3-cube containing Z does not contain a connected component
of 5 or more healthy nodes. O

The following theorem demonstrates that 4-partitions are,
in fact, able to tolerate significantly more than n faults. The
theorem depends on the following lemma which was proven
by Kleitman [9].

Lemma 3.5: Let S be an m-cube and let Fs be a set of
faulty nodes in S. If S does not tolerate Fs then |Fg| >
(1))

Theorem 3.6: For all n > 4, given any set F' of 2n — 5 or
fewer faulty nodes in an n-cube, there exists a 4-partition P
of the n-cube which tolerates F'.

Proof: We will show that there exists a 4-partition P
such that a(P, F) < 5. It will then follow immediately from
Lemma 3.5 that P tolerates F'.

Let F. and F, denote the even nodes in F' and the odd
nodes in F, respectively. Assume without loss of generality
that |F,| < n — 3. From Lemma 3.2 there must exist a 2-
partition P; such that a(P;, F,) < 1. Note that any 2-cube
in P, contains only 2 even nodes, so a(P,Fe) < 2 and
a(P 1, F) S 3.

Let the multiset T = proj(P1, F) and note that mult(T) =
a(P;,F) < 3. Letthe set U = {X € T | mult(X,T) = 1},
and let the sets U, and U, denote the even nodes in U and
the odd nodes in U, respectively. Assume without loss of
generality that |U,| < |Ue|. Let the multiset V = T\ U,
let the multiset W = T\ U,, and let the set Y = set(W) (see
Fig. 1). Because Y = U, U set(V), Y| < |U,| + |set(V)].
But |U,| < |U|/2 and |set(V)| < (2n — 5 — |U])/2 so
Y] < n — 3. Therefore, from Lemma 3.2 there must exist
a 2-partition P, such that a(P,Y) < 1. Note that any 2-
cube in P, contains only 2 even nodes, so a(P;,U) < 2,
and note that mult(W) < 3, so a(P,, W) < 3. Therefore,
a(Py,T) < a(P,Ue) + a(P, W) < 5.

The desired 4-partition P is obtained by merging the 2-
partitions P, and P,. More formally, P = P; U P» (assuming
for the sake of notational simplicity that both dimensions in
P, are greater than both dimensions in P»). Then

a(P, F) = mult(proj(P, F))
= mult(proj(P, proj(P1, F)))
= mult(proj(P»,T))
= a(P,T).

Thus, a(P, F) < 5, which completes the proof. O

©01010)
(©11011)
(101000)
(110101)
©00100)
(011001)
(101111)
“T001100)
001100)
(010011)
(010011)
(100110)
(100110)
(100110)

Fig. 1. Divisions of the multiset T

C. Asymptotic Results

In this subsection we will prove that for any n-cube with
a set of faults F' where |F| is polynomial in n, there exists
an m-partition of the n-cube which tolerates F', where m isa
constant. The proof is in two main steps. First we prove that
we need only to consider the set Z of m-cubes that contain
node 0. Then we prove by an averaging argument that if no
m-cube in Z tolerates a set of faults F, then |F| must be large.
We first need several new definitions.

Let P(n,m) be the set of all m-partitions of an n-cube. Let
n, m, and = be integers where n > m > 0and 1 <z < 2™.
For any set of nodes F' in an n-cube, let

B(n,m,F) = a(P, F).

min
PeP(n,m)
Thus, 3(n,m, F) is the maximum number of elements of F
that are guaranteed to occur in at least one of the m-cubes,
regardless of which m-partition is chosen. Let y(n,m,z) be
the smallest y such that there exists a set of n-cube nodes
F where |F| = y and B(n,m,F) > z. In other words,
y(n,m,z) is the smallest number of faults such that every
m-partition of an n-cube contains an m-cube with at least x
faults.

Also, let

T

ball(n,r) = Z (T:),

i=0

let rad(n, z) = max{r | ball(n,r) < z}, and let rem(n,z) =
z —ball(n,rad(n, x)). Thus, ball(n,r) is the number of items
in a ball of radius 7 in an n-cube, rad(n,z) is the radius of
the largest complete ball contained in a (possibly incomplete)
ball of z items in an n-cube, and rem(n, z) is the number of
items in the outermost layer of an incomplete ball of z items
in an n-cube (or 0 if the ball is complete). Finally, let

() _olm=r)

density(n,m,r) =) = =yt

We will now show that a large number of faults are required
to make every m-partition of an n-cube contain an m-cube

602

that has many faults. The following technical lemma shows
that we need only to consider a set of m-cubes that contain
a common node.

Lemma 3.7: Let Z be the set of all m-cubes in an n-cube
that contain the node with Hamming weight 0. Given any set
of n-cube nodes F there exists a set of n-cube nodes G such
that |G| = |F] and for all Z € Z, |GN Z| > p(n,m, F).

Proof: For each partition P € P(n,m), let Sp be an
m-cube in P that contains the largest number of elements in
F. Note that |Sp N F| > B(n.m,F). Let S = {Sp | P €
P(n,m)}. We will show that we can transform F' and S,
one dimension at a time, to obtain G and Z. Let j be any
dimension, 0 < j < n. Given the dimension j, we can create
F’ and &' from F and S as follows.

D f = Unon Fan O fioe o fo) s in Bt

(Frors Fip1 0, fione fo) o (faons e Fiynn L
i1 fo) isin FL
2) f' = (f,’l_l,--'J:]I’+1,1,f]'-_1,--~f6)/iS in I/?/ iff
/
(va/t—lﬂ"' j+1707fj—17"'f6) and (fn~l',"'fj+1’l’

i1, fo) are in F

3) S = (Sh_y,---5)41,0,8)_y,---Sp) is in S’ iff

n—=17"
(S':l—l7.'.S;+l‘O?S;—l7...56) or (5:1»17"'53'+1»17
t 1,0 5p) s in S.
4) S = (S;_l.,--vS;H,*,S;-_l,“'S()) is in &' iff S’ is
in S.

Note that Rules 1 and 2 above compare each pair of nodes
that are neighbors across dimension j. If exactly one of them
is faulty, the fault is moved to the node whose label has a 0
in dimension j. Rule 3 puts an m-cube whose label has a 0
in dimension j into S’ if and only if either it or its neighbor
across dimension j is in S. Rule 4 puts an m-cube from S
into &’ if and only if j is one of the internal dimensions of the
m-cube. Note that Rules 3 and 4 transform each m-cube in &
into an m-cube in S’ with the same set of internal dimensions.

It is easy to verify that |F’| = |F| and for all §' € &,
|F' n'S'| > B(n,m,F). As a result, the procedure which
produced F’ and S’ from F and S can be applied iteratively
for all dimensions 7, 0 < j < n, to obtain G and Z. O

Theorem 3.8: For any n, m, and x where n > m > 0
and 1 < =z < 2™, y(n,m,z) > ball(n,r) + rem(m,x) -
density(n,m,r + 1) where r = rad(m, z).

Proof: By contradiction. Assume the claim is false, in
which case there exist n, m, z, and v = rad(m,z) such
that y(n,m,z) < y where y = ball(n,r) + rem(m,z) -
density(n,m,r + 1). Therefore, there exists a set of n-cube
nodes F' where |F| < y and 8(n,m,F) > z. Let Z be the
set of all m-cubes in an n-cube that contain the node with
Hamming weight 0. From Lemma 3.7 it follows that there
exists a set of n-cube nodes G where |G| < y and for all
ZeZ|ZNG| 2 x.

For any n-cube node g, let hits(g) = |{Z € Z | g € Z}|.
Note that if node g has a Hamming weight w where w > m
then hits(g) = O, while if w < m then hits(g) = ().

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 5, MAY 1992

Therefore,

x(;>§ Z|ZOG|

ZeZ

=Y hits(q).

g€G

Clearly, in order to maximize the total number of hits for
G while minimizing its size, G should consist of a set of
items with minimal Hamming weights. But a ball of radius r
centered on the node with Hamming weight 0 has ball(n,)
items and only ball(m,r) - () hits. Therefore, G obtains at
least

n n
(z — ball(m,r)) - (m) = rem(m,x) - (m)

hits from nodes with Hamming weight » + 1 or more. As a

result,

rem(m,z)- ()

|G| > ball(n,r) +

(o)
= ball(n,r) + rem(m, z) - density(n,m,r + 1)
=Y
which is a contradiction. 0

Let

é(n,m) = ball(n, r)+rem(m,))-density(n, m,r+1)

Clmy2)

where

et 5)

Combining Theorem 3.8 and Lemma 3.5 yields the following
result.

Theorem 3.9: For all n > m > 0, given any set F' of
fewer than ¢(n, m) faulty nodes in an n-cube, there exists an
m-partition of the n-cube which tolerates F.

For example, ¢(n,2) = 1+ n/2. Thus, Theorem 3.9 shows
that any set of n/2 or fewer faults can be tolerated by some
2-partition, which is weaker than the bound of n — 1 or
fewer faults given by Theorem 3.3. Also, note that ¢(n, 4) =
1+ (n? + 11n)/12. Thus Theorem 3.9 shows that any set of
(n?® 4+ 11n)/12 or fewer faults can be tolerated by some 4-
partition, which is stronger than the bound of 2n — 5 or fewer
faults given by Theorem 3.6 for all values of n. However,
the proof of Theorem 3.9 is nonconstructive, so all O(n*) 4-
partitions may have to be tested in order to find one which
tolerates F', while the proof of Theorem 3.6 implies a more
efficient algorithm for determining such a 4-partition.

IV. IMPLEMENTING REGULAR
AND SINGLE-PORT ALGORITHMS

In this section we will apply the partitioning results from the
previous section to obtain efficient implementations of regular
and single-port algorithms in the presence of faults. We will
concentrate on the most efficient case, in which there are fewer
than n faults, and on asymptotic bounds.

BRUCK et al.: TOLERATING FAULTS IN HYPERCUBES USING SUBCUBE PARTITIONING 603

A. n — 1 Faults

Using a technique which involves partitioning into sub-
cubes, Chan and Lee have shown that the Benes routing
algorithm can be implemented on an n-cube with less than n
faulty nodes with a factor of 9 slowdown [6]. They accomplish
this by partitioning the n-cube into subcubes based on the
dimension that is being used for communication. Theorem 4.1
improves the slowdown and generalizes their result, as it can
be used to implement arbitrary regular algorithms. We will
assume that in a single step of the regular algorithm, pairs of
processors which differ in a given dimension can exchange a
packet. The regular algorithm will be implemented on a faulty
n-cube in which each processor can both send and receive a
single packet in one time step.

Theorem 4.1: Any regular hypercube algorithm can be im-
plemented on an n-cube that has at most » — 1 faulty nodes
with a factor of 2 slowdown for computation and a factor of
4 slowdown for communication.

Proof: Let F be the set of faulty nodes. From Lemma 3.2
there must exist a 2-partition P such that (P, F') < 1. Each
2-cube in P is a set of 4 nodes connected as a square, where
at most one of the nodes is faulty. We will use partition P
to simulate a healthy hypercube by the faulty hypercube. The
nodes of the simulated hypercube will be called virtual nodes
and the nodes of the faulty hypercube will be called actual
nodes. Virtual nodes which correspond to healthy actual nodes
will be called vh-nodes, and virtual nodes which correspond
to faulty actual nodes will be called vf-nodes. Each vh-node
is simulated by the corresponding actual node, while each vf-
node is simulated by the node which is diagonally opposite it
in its 2-cube in P. Because each actual node is responsible
for at most 2 virtual nodes, all computations can be performed
with a factor of 2 slowdown.

Each communication operation is implemented in at most
four steps as described below. We call a message that goes
between a pair of vh-nodes a vh-message, and a message that
goes to or from a vi-node a vf-message. Recall that all virtual
nodes communicate along the same dimension, which will be
called the selected dimension.

First, consider the case in which the selected dimension
is local to the 2-cubes in P. In this case, fault-free 2-cubes
perform the communication in one time step. Those 2-cubes
that have a fault first send the vh-messages in one time step.
Then the vf-messages are sent in one time step, as the actual
nodes that are communicating are adjacent.

Now consider the case in which the selected dimension is
external to the 2-cubes in P. In this case, pairs of adjacent 2-
cubes exchange messages. We focus on one such pair, denoted
{A, B}. We number the nodes in each 2-cube 1 through 4 in
clockwise order, starting at the upper left corner (see Fig. 2).
There are three cases to consider.

If neither A nor B has a fault, all messages are vh-messages
and they are implemented in one time step.

If A and B contain a total of exactly one fault, then by
symmetry we can assume that the faulty node is A;. in this
case, the vh-messages are first sent in one time step. Then the

Fig. 2. Node labels in communicating 2-cubes A and B.

vi-messages are sent in three time steps along the paths
A3z — By — By — By
Bl—fBQ——)Bg—>A3.
If A and B each contain a fault, then by symmetry we can
assume that either A; and By are faulty, or that A; and Bs
are faulty, or that A; and Bj are faulty. If A; and B; are
faulty, the vh-messages are sent in the first time step and then
the vf-messages take the paths A3 — B3 and B3 — As. If Ap

and B, are faulty, the vh-messages are sent in the first time
step and then the vf-messages take the paths

As — By — By — By
By —» By — B3 — A3
By — Ay — Az — Ay
Ay — Az — Aq4 — By
Finally, if A; and Bj are faulty, the vh-messages take the paths
Ay — Ay — Ay — Ay — By
By — By — By — By — Ao
Ay —» By — By — By — By
By — Ay — Ay — Ay — Ay
and the vf-messages take the paths
As — Ay — By —» By — B
By — By — Ay — A3 — A3
A3 = A3 — Ay — Ba— By
Bi — By — By — Ay — As.

It is straightforward to verify that no node either receives or
sends more than one message at any given time. d

B. Asymptotic Results

We will now show that the results of the previous section
can be used to implement any single-port algorithm on an n-
cube that has n®() faulty nodes with only a constant factor
slowdown. We will divide the m-cube into m-cubes, where
m = O(1), and we will use a single healthy node in each m-
cube to simulate the actions of the remaining nodes in the same
m-cube. The use of a single healthy node per m-cube will
simplify the presentation, but it should be noted that in practice
many healthy nodes could be used to improve the performance.
In order to facilitate communication between neighboring m-
cubes, we will require that the single healthy node be in
a connected component of healthy nodes that consists of a
majority of the nodes in the m-cube.

604

Theorem 4.2: Any single-port algorithm can be imple-
mented on an n-cube that has 7O faulty nodes with only a
constant factor slowdown.

Proof: Let F be the set of faulty nodes. First, calculate
the smallest value of m such that ¢(n,m) > |F|. It is
straightforward to show that m = O(1).

From Theorem 3.9 there must exist an m-partition P which
tolerates F'. Note that the desired m-partition P can be found
in n®Y) time sequentially, as there are n) possible m-
partitions and each can be checked in n°() time.

In each m-cube in P, designate the healthy nodes in the
largest connected component of healthy nodes as the active
nodes for that m-cube. Also, in each m-cube select one of
the active nodes to be the primary node for that m-cube. In
order to implement a single-port algorithm, use the primary
node in each m-cube to perform the calculations for all of the
nodes in the m-cube. Because m = O(1), the primary node
simulates only a constant number of nodes and the slowdown
in computation time is constant.

The communication operations of the single-port algorithm
are implemented by using only the active nodes. Specifically,
when the single-port algorithm communicates between two
nodes in the same m-cube, the primary node for that m-cube
is responsible for both nodes and no actual communication
is required. When the single-port algorithm communicates
between nodes in different m-cubes, the primary nodes of
those different m-cubes must communicate. Assume that a
node in m-cube A has to send a message to a node in m-cube
B. First, note that A and B must be adjacent m-cubes and
that there must exist a link between one of the active nodes
in A and one of the active nodes in B (because a majority
of the nodes in each m-cube are active). Thus, the primary
node in A sends the message through the active nodes in A,
across the link between active nodes in A and B, and through
the active nodes in B to the primary node in B. Because
each node in a single-port algorithm only sends and receives
a single message in unit time, and because m = O(1), all of
the communications that are required to implement a single
operation of the single-port algorithm require only constant
time and constant memory per node. a

V. CONCLUSIONS AND OPEN PROBLEMS

We have presented a new technique to tolerate faults in
an n-cube in a worst case scenario. We obtained the best
known results in terms of the number of faults assuming a
constant factor slowdown in communications and computation.
In particular, our technique can be used to handle any number
of faults that is polynomial in the dimension n. We also
presented a practical implementation of regular algorithms on
n-cubes with at most n — 1 faults.

There are several open problems related to the results given
here. One open problem is to find an efficient algorithm for
constructing a tolerant m-partition when there are over 2n — 5
faults. Currently, finding such a partition requires Q)
sequential time. Another important open problem is to find
practical implementations of single-port algorithms on n-cubes
with n or more faults.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 5, MAY 1992

REFERENCES

[1] B. Aiello and T. Leighton, “Coding theory, hypercube embeddings, and
fault tolerance,” in Proc. 3rd Annu. ACM Symp. Parallel Algorithms
Architectures, 1991, pp. 125-136.

[2] F. Annexstein, “Fault tolerance of hypercube-derivative networks,” in
Proc. Ist Annu. ACM Symp. Parallel Algorithms Architectures, 1989,
pp. 179-188.

[3] B. Becker and H.U. Simon, “How robust is the n-cube?,” Inform.
Computat., vol. 77, pp. 162178, 1988.

[4] J. Bruck, “Optimal broadcasting in faulty hypercubes via edge-disjoint
embeddings,” IBM Res. Rep., RI7147, 1989.

{5] J. Bruck, R. Cypher, and D. Soroker, “Running algorithms efficiently on
faulty hypercubes,” in Proc. 2nd Annu. ACM Symp. Parallel Algorithms
Architectures, 1990, pp. 37-44.

[6] M.Y. Chan and S.J. Lee, “Fault-tolerant permutation routing in hyper-
cubes,” Univ. Texas at Dallas Tech. Rep., UTDCS-5-90.

[7] D. Dolev, J.Y. Halpern, B. Simons, and R. Strong, “A new look

at fault-tolerant network routing,” Inform. Computat., vol. 72, no. 3,

pp- 180-196, Mar. 1987.

J. Hastad, T. Leighton, and M. Newman, “Fast computation using faulty

hypercubes,” in Proc. 21st Annu. ACM Symp. Theory Comput., 1989,

pp- 251-263.

D. Kieitman, “On the problem by Yuzvinsky on separating the n-cube,”

Discrete Math., vol. 60, pp. 207-213, 1986.

T. Leighton and B. Maggs, “Expanders might be practical: Fast algo-

rithms for routing around faults on multibutterflies,” in Proc. 30th Annu.

IEEE Symp. Foundations Comput. Sci., 1989, pp. 384-389.

M. Livingston, Q. Stout, N. Graham, and F. Harary, “Subcube fault-

tolerance in hypercubes,” Tech. Rep. CRL-TR-12-87, Univ. Michigan

Comput. Res. Lab., Sept. 1987.

F.P. Preparata and J. Vuillemin, “The cube-connected cylces: A versatile

network for parallel computation,” Commun. ACM, vol. 24, no. 5,

pp- 300-309, May 1981.

M.O. Rabin, “Efficient dispersal of information for security, load

balancing, and fault tolerance,” J. ACM, vol. 36, no. 2, pp. 335-348,

Apr. 1989.

8

i

[9

—

[10])

[11]

(12]

(13

Jehoshua Bruck (5'86—M’89) was born in Haifa,
Israel, on April 19, 1956. He received the B.Sc.
and M.Sc. degrees in electrical engineering from
the Technion - Israel Institute of Technology in 1982
and 1985, respectively, and the Ph.D. degree in
electrical engineering from Stanford University in
1989.

From 1982 to 1985 he was with the IBM Haifa
Scientific Center, Israel. In March 1989, he joined
IBM Research Division at the Almaden Research
Center, San Jose, CA, where he currently manages
the Foundations of Massively Parallel Computing group. His research interests
include parallel computing, fault-tolerant computing, error-correcting codes,
and neural networks.

Robert Cypher was born in Schenectady, NY, in
1959. He received the B.S. degree in mathematical
sciences from Stanford University in 1982 and the
M.S. and Ph.D. degrees in computer science from
the University of Washington in 1987 and 1989,
respectively.

He is currently a Research Staff Member of
the IBM Almaden Research Center and a Consult-
ing Assistant Professor in the Stanford University
Computer Science Department. He is interested in
both the theoretical and practical aspects of parallel
processing. He has done research in parallel algorithms for image processing,
computational geometry, sorting, and data routing. He is also interested in
VLS, signal processing, fault-tolerance, and the design of interconnection
networks.

BRUCK et al.: TOLERATING FAULTS IN HYPERCUBES USING SUBCUBE PARTITIONING

Danny Soroker was born in Jerusalem, Israel, in
1959. He received the B.Sc. degree in computer
engineering and the M.Sc. degree in electrical engi-
neering from the Technion—Israel Institute of Tech-
nology, Haifa, in 1981 and 1983, respectively, and
the Ph.D. degree in computer science from the
University of California, Berkeley, in 1987.

From 1988 to 1990 he was a Visiting Scientist at
IBM Almaden Research Center, San Jose, CA. In
1990 he joined the Computer Science Department of
Shell Development Company, where he is currently
an Associate Research Computer Scientist at the Bellaire Research Center,
Houtston, TX. His current research interests encompass many aspects of
parallel computing, including algorithms, networks, programming, and fault
tolerance.

Dr. Soroker is a member of the Association for Computing Machinery and
the IEEE Computer Society.

-~ —— —

605

