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Abstract: Toll-like receptor 3 (TLR3) is a member of the TLR family, mediating the transcriptional induction of type I

interferons (IFNs), proinflammatory cytokines, and chemokines, thereby collectively establishing an antiviral host response.

Studies have shown that unlike other TLR family members, TLR3 is the only RNA sensor that is utterly dependent on the Toll-

interleukin-1 receptor (TIR)-domain-containing adaptor-inducing IFN-β (TRIF). However, the details of how the TLR3-TRIF
signaling pathway works in an antiviral response and how it is regulated are unclear. In this review, we focus on recent advances

in understanding the antiviral mechanism of the TRIF pathway and describe the essential characteristics of TLR3 and its

antiviral effects. Advancing our understanding of TLR3 may contribute to disease diagnosis and could foster the development of

novel treatments for viral diseases.
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1 Introduction

Antiviral innate immune and inflammatory

responses are the body’s front lines of defense
against viral infection (Yang and Shu, 2020). Rapid

and effective recognition of microbial infection or

danger signals from within the cell by the innate im‐
mune system is a premise for eliciting host responses

to repulse the threats (Liu and Gack, 2020). The innate

immunity of animals depends on pattern-recognition

receptors (PRRs) that specifically recognize pathogen-

associated molecular patterns (PAMPs) and then

activate a signaling cascade triggering the type I inter‐
feron (IFN)- and interleukin-1 (IL-1)-mediated proin‐
flammatory responses (Rai, 2020). The virus-perceiving

PRRs mainly include Toll-like receptors (TLRs), reti‐
noic acid-inducible gene-I (RIG-I)-like receptors

(RLRs), and DNA sensors, such as cyclic guanosine

mono-phosphate-adenosine monophosphate (GMP-

AMP) synthase (cGAS), IFN-γ-inducible protein-16
(IFI16), and the recently identified heterogeneous

nuclear ribonucleoprotein A2/B1 (hnRNPA2B1) (Un‐
terholzner et al., 2010; Sun et al., 2013; Wang L et al.,

2019). TLRs are expressed mostly on the membranes

of endosomes and lysosomes or on the surfaces of

macrophages and dendritic cells (DCs), among other

cell types, and are used to detect a wide range of

microbial cell-wall-associated PAMPs and endosomal

nucleic acids (Blasius and Beutler, 2010; Liu and

Gack, 2020). RLRs are representative of cytoplasmic

PRRs, which recognize both viral and host RNAs,

even in sterile conditions via different mechanisms

(Loo and Gale, 2011; Rehwinkel and Gack, 2020).

Most RNA sensors reside in the endosome and cyto‐
plasm, while PRR-mediated RNA sensing was recently

shown also to occur in the nucleus and mitochondrion

(Liu et al., 2018; Cao LL et al., 2019; Wang Y et al.,

2019). In addition to PAMPs, PRRs can recognize tissue

damage-associated molecular patterns (DAMPs) and

play an essential role in promoting tissue repair and

regeneration. However, they also cause numerous

inflammatory diseases, such as metabolic disorders
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and autoimmune diseases (Mortaz et al., 2017; Gong

et al., 2020).

TLRs were the first PRRs to be identified and

are the best characterized (Kawasaki and Kawai,

2014). The TLR family consists of 10 members

(TLR1–TLR10) in humans and 12 members (TLR1–
TLR9, TLR11–TLR13) in mice (Takeda and Akira,
2015). Each TLR is composed of an ectodomain

(ECD) that mediates PAMP recognition, a transmem‐
brane domain, and a cytoplasmic Toll-IL-1 receptor

(TIR) domain responsible for downstream signaling

(Kang and Lee, 2011). The signaling pathway of

TLRs mainly includes the myeloid differentiation pri‐
mary response protein 88 (Myd88)-dependent TLR

signaling pathway and the TIR-domain-containing

adaptor-inducing IFN- β (TRIF)-dependent TLR sig‐
naling pathway. The members of the TLR family

selectively use adaptor proteins, including the TRIF

(also called TIR-containing adapter molecule 1

(TICAM-1)), MyD88, transverse rectus abdominis

musculocutaneous (TRAM) flap, and TIR-containing

adaptor protein (TIRAP), to activate overlapping but

distinct signaling pathways. These pathways initiate

the transcriptional induction of mediators such as

type I IFN and chemokines (Kawasaki and Kawai,

2014). TLR1, TLR2, and TLR5–TLR9 work via the
Myd88-dependent TLR signaling pathway, TLR3

works via the TRIF-dependent TLR signaling pathway,

and TLR4 triggers both pathways (Takeda and Akira,

2015).

TLR3 recognizes double-stranded RNA (dsRNA),

which is a viral replication intermediate, and initiates

downstream signal transduction, thereby up-regulating

the expression of IFN-α/β and inducing antiviral pro‐
tein (AVP) synthesis activity (Matsumoto et al., 2011).

DEAD (Asp-Glu-Ala-Asp) box polypeptide 1 (DDX1),

DDX21, and DHX36, the members of the DExD/

H-box helicase cytosolic sensors of dsRNA, share

with TLR3, the TRIF for downstream type I IFN sig‐
naling (Zhang et al., 2011). TLR3 is the only receptor

in the TLR family that depends entirely on the TRIF

to induce IFN-β production (Yang and Shu, 2020).
According to the different downstream products acti‐
vated by TRIF, the TLR3-mediated signaling pathway

can be divided into the TRIF-dependent nuclear

transcription factor-κB (NF-κB) pathway and TRIF-
dependent IFN-regulatory factor 3/7 (IRF3/7) pathway

(Matsumoto et al., 2011). Once activated on the

plasmalemma by exogenous dsRNA, TRIF interacts

with tumor necrosis factor (TNF) receptor-associated

factor 3 (TRAF3) and TRAF6 to trigger a series of

cascade reactions. The mechanisms and negative

regulation of TRIF are currently areas of active

research that we emphasize in this review.

2 Characteristics and recognition of TLR3

2.1 Basic characteristics of TLR3

TLR3 is widely expressed in neurocytes, immune

cells, fibroblasts, and various epithelial cells (Kulka

et al., 2004; Town et al., 2006; Fang et al., 2013;

Bugge et al., 2017; Chen et al., 2019). Among immune

cells, only myeloid DCs, macrophages, and mast cells

(MCs) express TLR3. TLR3 localizes both at the cell

surface and in endosomes in MCs and macrophages,

but only in endosomes in myeloid DCs (Matsumoto

et al., 2003, 2011; Agier et al., 2016). DCs are one of

the most important immune cells that produce IFNs,

including type I IFNs (α and β), which are associated
with viral clearance (Matsumoto et al., 2003). TLR3

works in antigen-presenting DCs to induce lymphocyte-

mediated antigen-specific immune responses (Matsu‐
moto et al., 2020; Soto et al., 2020). MCs have been

reported to act as sentinel cells of innate immunity,

extensively engaged in infection control and clear‐
ance (Piliponsky and Romani, 2018; Marshall et al.,

2019). MCs express TLR3 molecules and other pro‐
teins associated with the cellular antiviral response,

like IRF3, types I and II IFN receptors, and major

histocompatibility complex (MHC) I (Witczak et al.,

2020).

TLR3 consists of an ECD, a cytoplasmic TIR

domain, a transmembrane domain, and two flanking

regions, known as the leucine-rich repeat (LRR)

C-terminal (LRR-CT) and N-terminal (LRR-NT) re‐
gions (Choe et al., 2005). The TLR3-transmembrane

domain and ECD structures have been resolved

through X-ray crystallography; nevertheless, the struc‐
ture of a membrane-solvated full-length receptor

remains inaccessible (Liu et al., 2008; Mineev et al.,

2014). Molecular dynamics simulation has demon‐
strated that the stabilization of the TLR3-TIR dimeriza‐
tion interface relies on reciprocal contact between the

αC and αD helices of one subunit and the αC helix
and BB loop of the other (Patra et al., 2020). As a
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highly conserved region in the TIR domain, the BB

loop is essential for mediating interactions among

TIR domain-containing proteins (Singh et al., 2014).

In the TLR3 A795P homodimer, the individual

subunits are tilted slightly toward each other, which

influences the orientation of the BB loops on the ho‐
modimer and, in turn, the binding of the TIR domain

of TRIF to the homodimer (Mahita and Sowdhamini,

2018).

2.2 Recognition of dsRNA by TLR3

2.2.1 Activation of TLR3

The common ligands of TLR3 exist on poly(I:C),

dsRNA viruses (e.g., rotavirus (RV), respiratory

syncytial virus (RSV), murine cytomegalovirus

(MCMV)), and single-stranded RNA (ssRNA) virus

(e.g., West Nile virus (WNV)) (Alexopoulou et al.,

2001; Topping and Kelly, 2019; Uehata and Takeuchi,

2020). A recent report showed that endothelial TLR3

could also detect extracellular dsRNA that is secreted

from highly metastatic tumors (Tavora et al., 2020).

TLR3 exists as a monomer and a membrane receptor

in resting cells, and dimerizes only when bound to

ligands via its ECD (Botos et al., 2009). The TLR3

ECD is formed by 23 LRRs, and the crystal structure

resembles a sizeable horseshoe-shaped solenoid (Botos

et al., 2009). Binding of the ECD domain of TLR3 to

dsRNA requires an acidic environment (Leonard et al.,

2008). As TLR3 functions mainly in the endosomes,

several mechanisms have been suggested to account

for delivery of extracellular TLR3-activatory dsRNA

molecules into endosomes (Tabeta et al., 2006; Barton

and Kagan, 2009; Pelka et al., 2018). Mainstream

theories include the uptake of apoptotic bodies from

infected cells (Salio and Cerundolo, 2005), clathrin-

dependent endocytosis (Itoh et al., 2008; Watanabe

et al., 2011), formation of dsRNA complexes with

antimicrobial peptide LL-37 (Singh et al., 2013; Taka‐
hashi et al., 2018), and autophagic uptake of dsRNA

from the cytosol and trafficking to endosomes with

inhibited lysosomal degradation (Søreng et al., 2018;

Galluzzi and Green, 2019; Hase et al., 2020). Whether

TLR3 can be activated from the cell surface is still

unknown.

2.2.2 Structural basis of TLR3

When TLR3 associates with dsRNA, a dsRNA-

TLR3 signaling complex composed of one dsRNA

and two TLR3 molecules is formed (Liu et al., 2008;

Peisley and Hur, 2013). The molecular structure of a

signaling unit (SU) shows that dsRNA ligands bind

two regions, one at the C-terminus (LRR19–LRR21)
and the other near the N-terminus (LRR-NT and LRR1–
LRR3) (Gao et al., 2015). TLR3 binds with ligands

exclusively via surface contacts (mainly hydrogen

bonding and electrostatic interactions), while the

protein–protein interactions occur only at the LRR-
CT in the TLR3-dsRNA complex (Gao et al., 2015).

Mutational analysis of human TLR3 has revealed that

His39, His60, and His108 residues at the N-terminus,

and His539 and Asn541 residues at the C-terminus,

interact with dsRNA. The C-terminal dimerization

site is critical for dsRNA binding and TLR3 signaling

(Liu et al., 2008; Wang Y et al., 2010). Gao et al.

(2015) found a weak dimer interface at the TLR3

ECD C-terminal site, which is required for effective

dsRNA binding, and Pro680 is crucial for maintaining

the dimer interface.

Studies have shown that, like TLR9, once within

endosomes, TLR3 is cleaved by several cathepsins

within its ECD because the full-length (non-cleaved)

proteins are unable to form contacts with one another

essential for receptor dimerization (Ewald et al.,

2011; Fitzgerald and Kagan, 2020). The cleaved frag‐
ments remain associated with each other, and both are

important for the inflammatory activity of TLR9/3

(Fitzgerald and Kagan, 2020). However, more research

is required to clarify the type of cathepsins required

for cleaving TLR3 and how TLR3 is proteolytically

processed. Furthermore, Luo et al. (2012) demon‐
strated that lateral SU clustering is necessary for

productive TLR3 signaling. Three neutralizing Fab

fragments (Fab15, Fab12, and Fab1068) of three

antibodies prevent the lateral clustering of SUs along

the length of the dsRNA ligand, resulting in antago‐
nism towards TLR3 signaling. This indicates that

lateral clustering of SUs is necessary for TLR3 signal

transduction. The structure of the TLR3-dsRNA

signaling complex is shown in Fig. 1.

2.2.3 Structural basis of dsRNA

The minor groove, which contains degenerate se‐
quence information, and the phosphate backbone are

the main determinants of dsRNA binding to receptors

(Doyle and Jantsch, 2002; Leonard et al., 2008). The

major groove, which contains sequence-specific
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information, is a common site of double-stranded

DNA (dsDNA)–protein interaction (Pabo and Sauer,
1984). Since dsRNA is also found in many cellular

RNAs, three mechanisms have been proposed to be

responsible for discrimination between viral and cellu‐
lar dsRNAs by TLR3. First, the endosomal location

of the TLR3 ECD restricts access of cellular dsRNAs

to TLR3 (Sioud, 2006). Second, the presence of modi‐
fied nucleotides such as N-methyladenosine and

2-thiouridine provides an additional physicochemical

specificity for TLR3 to discriminate between self and

non-self dsRNAs (Karikó et al., 2005). Third, TLR3

requires dsRNA to be longer than 40 bp for robust

stimulation, which helps avoid inappropriate recog‐
nition of some cellular small interfering RNAs

(siRNAs), microRNAs (miRNAs), or ssRNAs with

short hairpin structures (Leonard et al., 2008). Other

studies, however, showed that exogenously introduced

21-bp siRNA can also stimulate TLR3, suggesting

that a high dose of RNA may compensate for the

low-affinity interaction with short dsRNA (Karikó

et al., 2004; Kleinman et al., 2008). This evidence

suggests that dsRNA length is not an absolute criterion

used by TLR3 for self and non-self discrimination,

but rather a relative condition that can be scaled by

the abundance of RNA and receptors in the cell (Peis‐
ley and Hur, 2013). How shorter dsRNA ligands (21–
39 bp) activate TLR3 signaling remains to be deter‐
mined. It is also unclear how dsRNA ligands longer

than 90 bp are sensed, which may induce higher-order

oligomerization of the receptor (Luo et al., 2012).

2.2.4 Relevant proteins

TLR3 presents a K63-linked poly-ubiquitination

at K831 by the E3 ubiquitin ligase tripartite motif-

containing protein 3 (TRIM3), which is located mainly

in the Golgi apparatus (Li et al., 2020). Then, the

polyubiquitinated TLR3 is distributed to endolyso‐
somes to sense viral dsRNA and trigger an antiviral

response. The cytoplasmic TIR domain of TLR3 is

Fig. 1 Structure of the human TLR3-dsRNA complex and three crucial interaction sites (Gosu et al., 2019). Individual

chains of the TLR3 complex are shown in white (TLR3) and cyan (TLR3*). dsRNA, hydrogen bonds, and mutant resi‐
dues are shown in orange, green, and magenta, respectively. For clarity, only the TLR3* N- and C-terminal interaction

sites of dsRNA (46 bp) binding are shown. TLR: Toll-like receptor; dsRNA: double-stranded RNA.
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tyrosine-phosphorylated upon ligand binding (Sarkar

et al., 2003). Bruton’s tyrosine kinase (BTK) was
reported to phosphorylate the cytoplasmic domain of

TLR3, particularly the critical Tyr759 residue (Lee

et al., 2012).

Cluster of differentiation (CD14), a class-A

scavenger receptor, and clathrin-mediated endocytic

pathways participate in cellular uptake of extracellular

dsRNA (Lee et al., 2006; Itoh et al., 2008; Limmon

et al., 2008). However, a recent report indicated that

human CD14 acts as a co-receptor only to human

TLR9, not to TLR3, TLR7, or TLR8 (Weber et al.,

2012). Mex3 RNA-binding family member B (Mex3B),

an RNA-binding protein, is reportedly involved in the

process of presenting endocytosed dsRNA to TLR3

in intracellular compartments (Yang et al., 2016; Zhu

et al., 2016). Mex3B acts as a co-receptor of TLR3

in response to dsRNA, promoting dsRNA binding

with endosomal TLR3 and proteolytic processing of

TLR3 (Yang et al., 2016; Zhu et al., 2016). The zinc-

finger FYVE domain-containing protein ZFYVE1 was

revealed to promote the binding of TLR3 to poly(I:C)

by associating with the ECD of TLR3 via its FYVE

domain (Zhong et al., 2020). Ectopically expressed

ZFYVE1 binds to the poly(I: C), and thus enhances

the binding of TLR3 to poly(I: C) (Yamashita et al.,

2012; Zhong et al., 2020). The relationship between

Mex3B and ZFYVE1 in regulating the TLR3-mediated

response is unclear. Luo et al. (2020) demonstrated

that the Sh2 domain-containing leukocyte protein

(SLP) adaptor is the universal TLR adaptor for TLR2,

TLR3, TLR4, and TLR9, and the C-terminal Src

kinase (CSK)-interacting membrane protein (SCIMP)

presents Lyn and other effectors, such as Csk, Gdb2,

and Slp65, to TLRs during cellular activation.

3 TLR3-TRIF signaling pathway

3.1 Overview of TLR3-TRIF signaling pathway

Upon activation, TLR3 recruits TRIF to trigger a

downstream signaling cascade (Matsumoto et al.,

2011). Unlike other TLR family members, TLR3 is

utterly dependent on TRIF (Yang and Shu, 2020). The

TLR3-TRIF signaling pathway involves signal trans‐
duction by TRAF3/6, TRAF family member-associated

NF-κB activator (TANK)-binding kinase 1 (TBK1),
inhibitor of κB (IκB) kinase-related kinase-ε (IKK-ε;

also called IKK-i), receptor-interacting protein-1

(RIP-1), and NF-κB-activating kinase (NAK)-associated
protein 1 (NAP1). This signaling pathway ultimately

activates transcription factors, namely IRF3/7, NF-κB,
and the activator protein 1 (AP-1), thus mediating the

production of type I IFNs, proinflammatory cytokines,

and chemokines, respectively, following TLR3 activa‐
tion. Phosphoinositide 3-kinase (PI3K), p38-mitogen-

activated protein kinase (MAPK), extracellular signal-

regulated kinase (ERK), and c-Jun N-terminal kinase

(JNK) are also activated by TLR3 signaling (Schröder

and Bowie, 2005). TLR3-induced MAPKs are respon‐
sible for activating AP-1, and PI3K is crucial for full

phosphorylation and activation of IRF3 (Ameyar et al.,

2003; Sarkar et al., 2004). Ubiquitination and phos‐
phorylation play an indispensable role in the fine-

tuning of the TLR3 signaling cascade. The general

scenario of the TLR3-TRIF signaling pathway is

described in Fig. 2a.

The TRIF gene of humans is located on chromo‐
some 19p13.3 and encodes 712 amino acids, making

it much larger than the other TIR domain-containing

linker proteins (Mahita and Sowdhamini, 2017). TRIF

consists of an N-terminal protease-resistant domain

(1–153 amino acids (aa)), an intermediate disordered
proline-rich region (154–392 aa), a TIR domain (393–
545 aa), and a C-terminal region (containing an RIP

homotypic interaction motif (RHIM) domain, 661–
699 aa) (Mahita and Sowdhamini, 2017) (Fig. 2b).

The N-terminal region is involved in TRIF-mediated

IRF3 activation, the C-terminal region is crucial for

NF-κB activation and apoptosis, while the TIR do‐
main is essential for binding to TLR3 (Tatematsu

et al., 2010; Kumeta et al., 2014; Patra et al., 2020).

The disordered region between the N-terminal do‐
main and the TIR domain contains binding sites for

many downstream proteins such as TBK1, TRAF2

(332–336 aa), and TRAF6 (TRAF6-binding motif 2
(T6BM) domain, 248 – 256 aa) (Sasai et al., 2010).
Mahita and Sowdhamini (2017) proved that the N-

terminal domain binds to the BB-loop region of the

TIR domain to prevent TLR3 homodimerization. The

physical association between TRAF3 and TRIF has

always been controversial. Many conflicting data about

their physical association have been reported (Sasai

et al., 2010). However, a recent report indicated that

the 21 amino acid sequences (160–181 aa) from the
amino-terminal half of TRIF are crucial for the TRAF3
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Fig. 2 Mechanism of the Toll-like receptor 3 (TLR3)-Toll-interleukin-1 receptor (TIR)-domain-containing adaptor-

inducing interferon-β (IFN-β) (TRIF) signaling pathway and structure of human TRIF. (a) Mechanism of the TLR3-
TRIF signaling pathway. After double-stranded RNA (dsRNA) activates endosomal TLR3, TRIF transiently colocalizes

with TLR3; it dissociates from the receptor and forms a speckle-like structure that relocalizes with downstream-signaling

molecules such as tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2), TRAF6, and receptor-interacting

protein-1 (RIP-1) (Funami et al., 2004, 2007). Then, with the cooperation of TRAF3, TRAF family member-associated

nuclear transcription factor-κB (NF-κB) activator (TANK)-binding kinase 1 (TBK1), inhibitor of κB (IκB) kinase-related
kinase- ε (IKK- ε; also called IKK-i), and NF-κB-activating kinase (NAK) -associated protein 1 (NAP1), this signaling
pathway ultimately activates transcription factors, namely IFN-regulatory factor 3/7 (IRF3/7), the TRIF-dependent NF-

κB, and the activator protein 1 (AP-1), thus mediating the production of type I IFNs, proinflammatory cytokines, and
chemokines, respectively. (b) Schematic structure of human TRIF. TRIF consists of an N-terminal protease-resistant do‐
main (1-153 amino acids (aa)), an intermediate disordered proline-rich region (154-392 aa), a TIR domain (393-545 aa),
and a C-terminal region (containing a RIP homotypic interaction motif (RHIM) domain, 661-699 aa) (Mahita and Sowd‐
hamini, 2017). The disordered region between the N-terminal domain and the TIR domain contains binding sites for

many downstream proteins such as TBK1, TRAF2 (332-336 aa), and TRAF6 (248-256 aa) (Sasai et al., 2010). The physical
association between TRAF3 and TRIF is controversial (Nguyen et al., 2014). ZCCHC3: zinc finger CCHC-type con‐
taining 3; WDFY1: WD-repeat- and FYVE-domain-containing protein 1; TRIM23: tripartite motif-containing protein

23; LUBAC: linear ubiquitin chain assembly complex; RNF166: ring finger protein 166; HECTD3: E6-associated pro‐
tein carboxyl terminus domain containing 3; Nedd4l: neural precursor cell expressed developmentally down-regulated

4-like; MIB: mind bomb; RNF128: RING finger 128; USP2b: ubiquitin-specific protease 2 isoform b; CYLD: con‐
served cylindromatosis; OTUD1: termed OTU domain-containing protein 1; PI3K: phosphoinositide 3-kinase;

NEMO: NF-κB essential modifier; MAPK: p38-mitogen-activated protein kinase; FLIP: viral FLICE-like inhibitory
protein.
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association and modulating TRIF ubiquitination and

degradation (Nguyen et al., 2014). TRIF with a 21-

residue deletion (Δ160–181) inefficiently transactivated
the IFN pathway, and its association with TRAF3 was

weaker than that of wild-type (WT) TRIF (Nguyen

et al., 2014).

Funami et al. (2016) demonstrated that 14-3-3-ζ
acts as a novel component of the TRIF signalosome

that functions in TLR3-mediated signaling. With the ab‐
lation of the TRIF signalosome in 14-3-3-ζ-knockdown
cells, the synthesis of IFN and inflammatory cyto‐
kines decreased, and TLR3-mediated IRF3 transloca‐
tion, as well as IkBα phosphorylation, was diminished.
The identification of 14-3-3-ζ has shed new light on
TRIF signaling.

3.2 Activation mechanism of the TLR3-TRIF

signaling pathway

3.2.1 Recruitment of TRIF

TRIF is expressed at a low level in most tissues

and cells, and exists diffusely in the cytoplasm of rest‐
ing cells (Funami et al., 2016). After dsRNA activates

endosomal TLR3, TRIF transiently colocalizes with

TLR3; it dissociates from the receptor and alters its dis‐
tribution profile from a diffuse cytoplasmic pattern to a

speckle-like structure that relocalizes with downstream-

signaling molecules (Funami et al., 2004, 2007). Both

TLR3 and TRIF contain a TIR domain, which is cru‐
cial to their interaction once TLR3 binds to the ligand

(Oshiumi et al., 2003). The TIR domain of TLR3 has

three highly conserved sequences, Box1, Box2, and

Box3; Box2 constitutes the BB loop, which is crucial

for binding downstream linker proteins (Singh et al.,

2014). Unlike other TLRs, the BB loop in binding

TRIF does not contain conservative proline residues,

but is replaced by alanine, which is critical for bind‐
ing TRIF. The TLR3 mutant A795H (TLR3 with

Ala795His mutation) has lost the ability to bind to

TRIF (Oshiumi et al., 2003).

A recent report indicated that WD-repeat- and

FYVE-domain-containing protein 1 (WDFY1) acts as

a critical adaptor protein during TLR3 recruitment of

TRIF by associating with the TIR domain of TLR3

(Hu et al., 2015). Their interaction depends on the

tyrosine phosphorylation of TLR3. Zinc finger

CCHC-type containing 3 (ZCCHC3) is also a critical

component of the TLR3-TRIF signaling pathway,

and facilitates the recruitment of TRIF to TLR3 after

poly(I: C) stimulation (Zang et al., 2020). The N-

terminal domain (1– 300 aa) and C-terminal domain
(300–404 aa) of ZCCHC3 are functional for its inter‐
action with the N-terminal/TIR domains of TRIF and

the TIR domain of TLR3, respectively.

3.2.2 TRIF-dependent activation of IRF3

IRF3 and another IRF family member IRF7, are

known to be IFN regulatory factors (Wu and Chen,

2014). Both mediate the activation of NF-κB, but
IRF3 is activated by the TRIF pathway and IRF7 by

the MyD88 pathway (Kawai and Akira, 2010). In in‐
activated cells, IRF3 is phosphorylated to form the

IRF3:IRF3 homodimer or the IRF3:IRF7 heterodimer,

which enters the nucleus and leads to specific gene

expression (Schmid et al., 2014). TRIF-mediated

IRF3 activation is regulated by the protein kinases

IKK-ε and TBK1. Activation may depend on up‐
stream linker proteins, NAP1, TANK, and SINTBAD

(similar to NAP1 TBK1 adaptor) (Tatematsu et al.,

2010; Schmid et al., 2014). NAP1, TANK, and

SINTBAD are similar in structure. NAP1 participates

in the recruitment of IRF3 kinases to the N-terminal

region of TRIF. TANK, as a binding ligand of TBK1,

IKK-ε, and the TRAF family, is responsible for asso‐
ciating TRAF3 with TBK1 and IKK-ε (Ryzhakov and
Randow, 2007).

TRIF is homo-oligomerized at the Pro434 residue

in the TIR domain and the C-terminal region. The re‐
cruitment of TRAF3 by TRIF is essential for the acti‐
vation of IRF3 (Funami et al., 2008). TRAF3 un‐
dergoes a Lys63-linked poly-ubiquitination with the

synergy of the E2 ubiquitin-conjugating enzyme Ubc13/

Uev5 (Zeng et al., 2009; Tseng et al., 2010). Then,

ubiquitinated TRAF3 mediates oligomerization of

TBK1 and IKK-ε via adaptor proteins such as TANK
and NAP1 (Guo and Cheng, 2007; Tatematsu et al.,

2010). TBK1 and IKK-ε are responsible for phosphory‐
lation and activation of IRF3 (Zhou et al., 2020). The

phosphorylated IRF3 dimerizes and translocates to

the nucleus to initiate the transcription of the IFN-β
gene (Honda et al., 2006). The activation, regulation,

substrate, and function of TBK1 and IKK-ε remain to
be elucidated.

c-Src tyrosine kinase is activated by dsRNA in

human DCs, and then is recruited to TLR3 (Johnsen

et al., 2006). In Src kinase-deficient cells, dsRNA-

induced activation of IRF3 and activator of transcription 1
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is abolished. Phosphorylation of TLR3 on tyrosine

759 increases in parallel to Src-dependent IFN-β pro‐
duction (Zhang et al., 2016). Serine/threonine kinase

receptor-associated protein (STRAP) acts as a scaffold

protein in TLR3-triggered signaling (Huh et al., 2017),

and strongly interacts with TBK1 and IRF3 to enhance

IFN-β production. K63-linked poly-ubiquitination
of TRAF3 is promoted by overexpression of the E3

ligase ring finger protein 166 (RNF166) following

Sendai virus (SeV) infection (Chen et al., 2015). The

E6-associated protein carboxyl terminus domain

containing 3 (HECTD3) also acts as an E3 ligase cata‐
lyzing this poly-ubiquitination during bacterial infec‐
tion, but the exact function of HECTD3 during viral

infection is poorly understood (Li et al., 2018). Neu‐
ral precursor cell-expressed developmentally down-

regulated 4-like (Nedd4l) promotes TRAF3-mediated

signal transduction by catalyzing K29-linked ubiqui‐
tination at the C56 and C124 cysteine residues of

TRAF3 (Liu, 2019). E3 ubiquitin ligases, mind bomb

(MIB) and RING finger 128 (RNF128), promote the

K63-linked poly-ubiquitination of TBK1 for its activa‐
tion (Li et al., 2011; Song et al., 2016). In addition

to E3 ligases, the deubiquitinating enzymes (DUBs)

ubiquitin-specific protease 2 isoform b (USP2b) and

the conserved cylindromatosis (CYLD) target TBK1

for K63-linked deubiquitination, and OTU domain-

containing protein 1 (OTUD1) cleaves the K63-linked

polyubiquitin chains from IRF3 (Lu et al., 2018).

TRIF and two other adaptor proteins, stimulator

of IFN genes (STING) and mitochondrial antiviral

signaling (MAVS), mediate the recruitment of IRF3

via a conserved pLxIS motif, the same motif as that

of IRF3 (Zhao BY et al., 2016). The pLxIS motifs of

the three adaptor proteins are phosphorylated by

TBK1 or IKK-ε (Zhao BY et al., 2016). A recent paper
demonstrated that phosphorylated TRIF, MAVS, and

STING bind to a positively charged surface of IRF3

and thus recruit IRF3 for activation by TBK1 (Liu

et al., 2015). TRIF is phosphorylated at its consensus

motif S210/S212/T214 by TBK1, and TRIF S210 is

the critical phosphorylation site for IRF3 activation.

3.2.3 TRIF-dependent activation of NF-κB

NF-κB is a central transcription factor crucial to
innate and adaptive immunities, cell proliferation, apop‐
tosis, and the stress response (Cartwright et al., 2016).

The p50/p65 heterodimer of NF- κB activates the

expression of IFN-β and proinflammatory cytokines
(Kawai and Akira, 2007; Kohl et al., 2019). The K63-

linked polyubiquitin chains of RIP-1 and TRAF6

can recruit the transforming growth factor-β (TGF-β)-
activated kinase 1 (TAK1)-TAK1-binding protein 2

(TAB2)-TAB3 complex via the ubiquitin-binding ac‐
tivity of TAB2/3, causing TAK1 autophosphorylation

and activation (Yang and Shu, 2020). TAK1 activates

the IκB kinase complex, which consists of the IKK-α
and IKK-β kinases scaffolded by NF-κB essential
modifier (NEMO), ultimately activating NF-κB or

stimulating MAPK-mediated AP-1 transcriptional

responses (Emmerich et al., 2013; Mitchell et al.,

2016). RIP-1 associates with TRIF via the RHIM do‐
main at the C-terminal of TRIF followed by RIP-1 in‐
teraction with TNF receptor-associated death domain

(TRADD) protein. TRADD is an adaptor protein re‐
lated to the ubiquitination of RIP-1, via the homotypic

death domain (Meylan et al., 2004; Ermolaeva et al.,

2008; Park et al., 2015). TRAF6 binds with the

T6BM domain in the N-terminal region of TRIF to

mediate NF-κB activation (Mahita and Sowdhamini,
2017). In addition, TRAF6 mediates the recruitment

of meddlesome-associated TBK1 to stimulate the rapid

induction of glycolysis following TLR3 activation (Tan

and Kagan, 2019). The rapid glycolysis drives metabolic

changes in the cell, resulting in an increased need for

histone modifications related to durable transcriptional

activities in the nucleus or enhanced protein synthesis

and secretory activities associated with TLR3 signaling

(Corcoran and O'Neill, 2016; Langston et al., 2019).

The activation of the NF-κB signaling pathway
is a sign of viral infection. Once NF-κB is activated,
it up-regulates many cytokines and chemokines (such

as TNF-α and IL-6), which give positive feedback
through the NF-κB pathway, thereby amplifying the
initial inflammatory signal. The activation of NF-κB
is influenced by many regulators that act on adaptor

proteins and kinases of the NF-κB pathway. The E3
ligase TRIM23 regulates the activation of NEMO by

atypical K27-linked poly-ubiquitination, and the linear

ubiquitin chain assembly complex (LUBAC), another

E3 ligase, catalyzes the linear ubiquitination of NEMO

at K285 and K309 (Zheng and Gao, 2020). The viral

FLICE-like inhibitory protein (FLIP) forms a stable

complex with a central region of the inhibitor of IKK-γ
and activates the NF-κB pathway via IKK activation
(Baratchian et al., 2016).
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4 Negative regulation of TLR3 signaling

The PRR pathways are controlled by many exter‐
nal and intracellular molecules to maintain a balance

between activation and inhibition, thus balancing the

beneficial and adverse effects of antigen detection

(Antosz and Choroszyńska, 2013). The mechanism of
negative regulation with TLR is most developed in

immune cells. It is strictly limited to a specific TLR

and operates at multiple levels of TLR signaling.

Here, we focus on TLR3-negative regulators, which

inhibit signals at different stages of activation (Fig. 3).

4.1 Negative regulation of ubiquitination modifying

enzymes

E3 ubiquitin ligases and deubiquitinases (DUBs),

as the master regulators of TLR signaling, coopera‐
tively regulate the dynamic and reversible ubiquitination

process (Zheng and Gao, 2020).

The TLR3-binding E3 ligase RNF170 mediates

the K48-linked poly-ubiquitination of K766 in the

TIR domain of TLR3 (Song et al., 2020). RNF170

promotes the degradation of TLR3 via the proteasome

pathway, thus selectively inhibiting TLR3-mediated

pathways (Song et al., 2020). TRIM38 associates with

Fig. 3 Negative regulation of TLR3 signaling. The trunk of the TLR3-TRIF signaling pathway is shown in purple; ubiqui‐
tination modifying enzymes that negatively regulate the pathway are in blue; other negative regulators, such as membrane

proteins, adaptor proteins, and phosphatases, are in pink. AP-1: activator protein 1; c-Cbl: Casitas B-lineage lymphoma;

DTX4: Deltex 4; DUBA: deubiquitinating enzyme A; DUSP14: dual-specificity phosphatase 14; IκB: inhibitor of κB;
IKK: IκB kinase-related kinase; IKIP: IKK-interacting protein; IRF3: interferon (IFN)-regulatory factor 3; MAPK:
mitogen-activated protein kinase; MKRN2: makorin ring finger protein 2; NF-κB: nuclear transcription factor-κB;
NEMO: NF-κB essential modifier; PDLIM2: PDZ and LIM domain-containing protein 2; PSMB: proteasome β subunit;
RAUL: transcriptional activator (RTA)-associated ubiquitin ligase; RBCK1: RBCC protein interacting with PKC1;

RIP-1: receptor-interacting protein-1; RNF: ring finger protein; SARM: sterile α and HEAT/Armadillo motif; SHP:
small heterodimer partner; SOCS: suppressor of cytokine signaling; TGF-β: transforming growth factor-β; TAK1:
TGF-β-activated kinase 1; TLR3: Toll-like receptor 3; TNF: tumor necrosis factor; TRAF: TNF receptor-associated factor;
TBK1: TRAF family member-associated NF-κB activator (TANK)-binding kinase 1; TRAIL: TNF-related apoptosis-
inducing ligand; TRIF: Toll-interleukin-1 receptor (TIR)-domain-containing adaptor-inducing IFN-β; TRIM: tripartite
motif-containing protein; TRIP: TRAF-interacting protein; USP2a: ubiquitin-specific protease 2 isoform a; USP19:

ubiquitin-specific protease 19; WWP2: WW domain-containing protein 2.
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the N-terminus of TRIF through its PRYSPRY domain

to mediate K48-linked poly-ubiquitination and degra‐
dation of TRIF. Other proteins involved in this pro‐
cess are WW domain-containing protein 2 (WWP2)

and Casitas B-lineage lymphoma (c-Cbl) (Han et al.,

2010; Xue et al., 2012; Yang et al., 2013).

The E3 ubiquitin ligases TRAF-interacting pro‐
tein (TRIP), Deltex4 (DTX4), TRIM27, and TRIM8

are responsible for modulating the turnover of TBK1

through K48-linked poly-ubiquitination (Cui et al.,

2012; Zhang et al., 2012; Zheng et al., 2015; Ye et al.,

2017). The E3 ligases RBCC protein interacting with

PKC1 (RBCK1), c-Cbl, TRIM26, and RNA transcrip‐
tional activator (RTA)-associated ubiquitin ligase

(RAUL) target the nuclear IRF3 for K48-linked poly-

ubiquitination and degradation (Yu and Hayward,

2010; Wang et al., 2015; Zhao XB et al., 2016).

E3 ligase ubiquitin-specific protease 19 (USP19)

induces deconjugation of K63- and K27-linked polyu‐
biquitin chains from TAK1, resulting in disruption of

the TAK1-TAB2/3 complex (Lei et al., 2019). Addi‐
tionally, USP19 impairs the recruitment of TRIF to

TLR3/4 by catalyzing the removal of TRIF K27-linked

polyubiquitin moieties (Wu X et al., 2019). TRIM29

and TRAF7 promote the turnover of NEMO by facili‐
tating the K48- and K29-linked poly-ubiquitination

of NEMO, respectively (Xing et al., 2016). Makorin

ring finger protein 2 (MKRN2) and PDZ and LIM

domain-containing protein 2 (PDLIM2) cooperatively

promote the K48-linked poly-ubiquitination and prote‐
asomal degradation of nuclear p65 (Shin et al., 2017).

RNF182 can also contribute to the degradation of p65

via K48-linked ubiquitination, thus inhibiting TLR3-

triggered proinflammatory responses (Cao Y et al.,

2019).

DUBs, such as A20, deubiquitinating enzyme A

(DUBA), and USP2, are reported to be involved in

the type I IFN pathway. Zinc-finger protein A20 is a

negative regulator that regulates both MyD88- and

TRIF-dependent TLR signaling pathways (Saitoh et al.,

2005). Saitoh et al. (2005) reported that A20 negatively

regulates TLR3-mediated IFN-β gene transcription by
inhibiting IRF3 activation. A20 also prevents NF-κB
activation via the A20–TRAF6 axis (Boone et al.,
2004). DUBA negatively regulates TLR3-mediated

type I IFN production by selectively cleaving the

Lys63-linked polyubiquitin chains on TRAF3 (Kaya‐
gaki et al., 2007). USP2a negatively regulates NF-κB

activation by cleaving K63-linked polyubiquitin chains

on TRAF6 (He et al., 2013). USP2b targets TBK1 and

deubiquitinates TBK1 K63-linked poly-ubiquitination,

thus negatively modulating the TLR3/4 signaling

pathway (Zhang et al., 2014).

The members of the suppressor of cytokine sig‐
naling (SOCS) family also participate in immune re‐
sponse regulation (Antosz and Choroszyńska, 2013).
SOCS1 targets the subunit p65 (RelA)-NF-κB and

leads to proteolysis of the NF-κB molecule by ubiqui‐
tination (Ryo et al., 2003). SOCS3 represses TRAF6

activation to block the subsequent activation of TAK1,

which must activate both the NF-κB and MAPK
pathways (Frobøse et al., 2006).

4.2 Negative regulation of membrane proteins

The TNF-related apoptosis-inducing ligand

(TRAIL) cytokine was identified as a member of the

TNF superfamily which initiates the apoptotic path‐
way in many cancer cell lines (Yuan et al., 2018). Diehl

et al. (2004) claimed that TRAIL-R inhibits TLR

signaling by stabilizing IkBα and decreasing the
expression of the transcription factor NF-κB, and
showed that TLR2, TLR3, and TLR4 ligands bolster

the expression of TRAIL-R. In contrast, in the case of

TRAIL-R deficit, there is an increased production of

cytokines in response to these ligands (Diehl et al.,

2004).

4.3 Negative regulation of adaptor proteins

β-Arrestin 1 and β-arrestin 2 are ubiquitously ex‐
pressed multifunctional scaffolding proteins that affect

inflammatory signaling in various cell lines (Freed‐
man and Shenoy, 2018). β-Arrestins participate in intra‐
cellular signaling by playing a role as MAPK scaffolds

or mediating Src activation (Laporte and Scott, 2019).

Witherow et al. (2004) indicated that β-arrestin is
involved in modulating TLR signaling by affecting

NF-κB activation. Research by Wang et al. (2006)
showed that β-arrestin interacts with TRAF6 via the
TIR domain, thus preventing the auto-ubiquitination

and oligomerization of TRAF6 required for the activa‐
tion of NF-κB andAP-1.

Sterile α and HEAT/Armadillo motif (SARM),
the most conserved member of the TIR adaptor family,

is located in the cytoplasm and directly affects the

cytosol TRIF, decreasing NF-κB and IRF3, and

thus negatively regulates TRIF-dependent signaling
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induced by TLR3 and TLR4 (Carty and Bowie, 2019).

Research by Peng et al. (2010) showed that, in

human cells, SARM blocks the TRIF- and MyD88-

dependent activation of AP-1 and the endogenous

form of AP-1.

4.4 Negative regulation of phosphatases

Small heterodimer partner (SHP) is also a nega‐
tive TLR signaling regulator (Zhang and Shen, 2011).

In resting cells, SHP inhibits NF-κB-dependent signal‐
ing by interacting with p65-NF-κB (Zhang and Shen,
2011). Upon stimulation, SHP decreases the TRAF6

Lys63-link polyubiquitin by interacting with the

RING TRAF6 domain (Yuk et al., 2011). DUSP14, a

member of the dual-specificity phosphatase (DUSP)

family, represses TNF- and IL-1β-triggered NF-κB
activation by dephosphorylating TAK1 T187 (Zheng

et al., 2013).

4.5 Other negative regulators

PSMB1 is a proteasome β subunit (PSMB) family
member, which inhibits the TLR and RLR signaling

pathways (Sorokin et al., 2009; Wu FY et al., 2019).

The silencing of PSMB1 increases IFN-β production,
whereas overexpression of PSMB1 inhibits activation

of virus-induced IFN-β promoter (Wu FY et al., 2019).
PSMB1 promotes the degradation of IKK-ε by interact‐
ing with IKK-ε through the ubiquitin-proteasome
system (Wu FY et al., 2019). IKK-interacting protein

(IKIP) inhibits the formation of IKK complex by bind‐
ing to IKK-α/β in competition with NEMO, thus hin‐
dering the phosphorylation of IKK-α/β and negatively
regulating the activation of the downstream NF-κB
signaling pathway (Wu HF et al., 2020). In the presence

of lipopolysaccharide (LPS), poly(I:C), TNF-α, and
IL-1β stimulation, the phosphorylation of IKK-α/β,
IκB, and p65 is enhanced, and the expression of
TNF-α and IL-6 is increased in the macrophages of
IKIP-deficient mice (Wu HF et al., 2020).

The signals transmitted from TLR are controlled

by specific inhibitors, which show tissue and cellular

specificity in many cases. However, the mechanisms

underlying this specificity are poorly understood.

Many inhibitory factors known to affect TLR signaling

have yet to be evaluated.

5 Antiviral effects of TLR3

TLR3 may be a double-edged sword that func‐
tions in ensuring or compromising host immunity

against viruses (Perales-Linares and Navas-Martin,

2013) (Table 1). TLR3-mediated signaling during viral

infections protects against correlative diseases by

reducing the viral loads and modulating immune

responses, while over-activation of the pathogenic

immune response induced by TLR3 signal transduc‐
tion can lead to pathogenesis (Perales-Linares and

Navas-Martin, 2013). Thus, the tight balance between

a controlled antiviral response and excessive immune

activation determines the pathological outcome of

TLR3-related diseases. The TLR3 pathway can con‐
trol immunity to most of the clinically relevant viral

infections in humans, including those caused by flavi‐
viruses, hepatitis viruses, RV, herpesvirus, retroviruses,

encephalomyocarditis virus, orthomyxoviruses, and

the currently epidemic severe acute respiratory syn‐
drome coronavirus 2 (SARS-CoV-2).

Table 1 Roles of TLR3 in antiviral responses

Protection Herpes simplex virus
type 1 (HSV-1)

Encephalomyocarditis
virus (EMCV)

Coxsackievirus strain B
serotype 3 (CVB3)

Murine cytomegalovirus

(MCMV)

Central nervous
system (CNS)

Myocardium,
brain

Myocardium,
meninges,
pancreas

Liver

Encephalitis or
others

Encephalomyo‐
carditis

Acute and chronic
myocarditis,
meningitis, and
pancreatitis

Hepatitis

TLR3 recruits the metabolic checkpoint kinase
complex mTORC2, thus enabling the activation
of molecules (including mTORC1) required for
type I IFN induction (Mielcarska et al., 2018).

TLR3 decreases viral replication in the heart, and
decreases myocardial injury (Hardarson et al., 2007).

TLR3 resists CVB3 infection and prevents the
progression from myocarditis to iDCM (Abston
et al., 2013; Sesti-Costa et al., 2017).

Cytokine (type Ⅰ IFN, IFN-γ, and IL-12p40)
production, and NK cell and NKT cell activation

are impaired in TLR3-deficient mice compared

with wild-type mice (Matsumoto et al., 2011).

Effect Virus Target organ Disease Role of TLR3

To be continued
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Deterioration

Bi-direction

Unclear

Rotavirus (RV)

Poliovirus (PV)

Human immunodeficiency

virus 1 (HIV-1)

Severe acute respiratory

syndrome coronavirus

2 (SARS-CoV-2)

Influenza A virus (IAV)

Phlebovirus

Hepatitis C virus (HCV)

Hepatitis B virus (HBV)

West Nile virus (WNV)

Influenza A (H1N1)

Tick-borne encephalitis

virus (TBEV)

Kidney

Bone marrow

CD4+ and

CD8+ T cells,

macrophages,

others

Respiratory

tract

CNS, brain

Liver

Liver

Liver

Brain

Lung

CNS

Glomerulonephritis

Poliomyelitis

Immunodeficiency,

encephalitis,

and others

Coronavirus

disease 2019

(COVID-19)

Encephalopathy

Hepatopathy

Hepatitis C

Hepatitis

Encephalitis

Pneumonia

Encephalitis

TLR3 plays a synergistic role with protective factors

and down-regulates the expression of cytokines

induced by RV (Jiang et al., 2017).

TLR3-TRIF signaling pathway governs IFN

induction and host protection against PV

infection (Oshiumi et al., 2011).

TLR3 decreases HIV-1 infection in macrophages

and enhances the development of HIV-specific

CD4+ and CD8+ cytotoxic T lymphocytes (Cheng

et al., 2018; Nguyen et al., 2020).

TLR3- and IRF7-dependent type I IFN immunity

may be essential for preventing life-threatening

COVID-19 pneumonia (Zhang et al., 2020).

TLR3 signaling pathways are activated preferentially

following IAV infection to release a range of

proinflammatory cytokines (Huo et al., 2018).

Compared with TLR3-deficient mice, wild-type

mice demonstrate decreased resistance to lethal

infection. The result may be caused by overpro‐
duction of inflammatory mediators via TLR3

signaling (Gowen et al., 2006).

Protection: TLR3 inhibits HCV replication in Huh7

cells (Zhou et al., 2016).

Deterioration: TLR3 possibly contributes to the

intrahepatic and unbalanced proinflammatory

response (Li et al., 2012).

Protection: TLR3-knockout mice are unable to

express IL-8 and other requisite molecules to

activate immune responses against HBV (Maire

et al., 2008). Activation of mDC using TLR3

ligands leads to improved NK cell function in

CHB infection (Tjwa et al., 2012).

Deterioration: TLR3 polymorphism rs3775291 was

associated with an increased risk of developing

CHB (Geng et al., 2016; Fischer et al., 2018).

Protection: TLR3 restricts WNV replication in

neurons and antagonizes against NS1 (Daffis

et al., 2008; Wilson et al., 2008).

Deterioration: compared with TLR3-deficient mice,

wild-type mice are less resistant to lethal WNV

infection (Wang et al., 2004). Increased frequency of

WNV encephalitis in elderly humans may be related

to increased TLR3 signaling (Kong et al., 2008).

The presence of TLR3 rs5743313/CT polymorphism

has a close relationship with the increased risk of

pneumonia in children infected by the pandemic

A/H1N1/2009 (Esposito et al., 2012). TLR3 does

not worsen the pathogenesis of pH1N1 infection

(Leung et al., 2014).

TLR3 may be a risk factor for TBEV infection

(Kindberg et al., 2011).

Table 1

Effect Virus Target organ Disease Role of TLR3

CD: cluster of differentiation; CHB: chronic hepatitis B; iDCM: inflammatory dilated cardiomyopathy; IFN: interferon; IL: interleukin; IRF:

IFN-regulatory factor; mDC: myeloid dendritic cell; mTORC: mammalian target of rapamycin complex; NK: natural killer; NKT: natural

killer T; NS1: non-structural protein 1; pH1N1: pandemic H1N1 influenza; TLR3: Toll-like receptor 3; TRIF: Toll-IL-1 receptor (TIR)-

domain-containing adaptor-inducing IFN-β.

An essential role for TLR3 in protection from

herpes simplex virus type 1 (HSV-1) infection has

been demonstrated (Zhang et al., 2007). HSV-1 is a

prevalent neurotropic virus that infects the central ner‐
vous system (CNS) and generates herpes simplex en‐
cephalitis (HSE) in children with inborn errors of
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TLR3 immunity (Sancho-Shimizu et al., 2011). The

pathogenesis of HSE in children with TLR3-pathway

deficiencies is related to impaired TLR3- and Unc-93

homolog B (UNC-93B)-dependent IFN-α/β intrinsic
immunity against HSV-1 in the CNS (Lafaille et al.,

2012). Sato et al. (2018) demonstrated that TLR3 was

required for innate immune responses to HSV-1 in

neurons and astrocytes. Upon HSV-1 infection, TLR3

recruited the metabolic checkpoint kinase complex

mammalian target of rapamycin complex 2 (mTORC2),

which led to chemokine induction and TLR3 traffick‐
ing to the cell periphery, thus enabling the activation

of molecules (including mTORC1) required for type I

IFN induction (Mielcarska et al., 2018). In contrast,

the failure to express a functional TLR3 disrupted sig‐
naling mechanisms that induced antiviral response

during infection with HSV-1, indicating that TLR3 is

essential for effective antiviral immunity in HSV in‐
fection (Mielcarska et al., 2018).

Coxsackievirus strain B serotype 3 (CVB3) is a

positive-sense ssRNA virus of the Picornaviridae family

(Esfandiarei and McManus, 2008). CVB3 is one of

the main causes of myocarditis, and causes a wide

range of other infections such as meningitis and pan‐
creatitis (Corsten et al., 2012). It has been reported

that TLR3-deficient mice are more susceptible to acute

CVB3-induced myocarditis, which is externalized as

increased viral load and myocardial tissue damage

(Negishi et al., 2008). Abston et al. (2013) revealed

that TLR3 prevented the progression from myocarditis

to inflammatory dilated cardiomyopathy (iDCM)

following CVB3 infection by reducing the IL-4 level

and acute viral replication in the heart. Sesti-Costa

et al. (2017) found that TLR3 up-regulated CD80 and

CD86 in DCs to resist CVB3 infection. In the absence

of TLR3, DCs secreted higher levels of the inhibitory

molecule programmed death-ligand 1 (PD-L1), while

lowering the levels of TNF-α and IL-10 (Sesti-Costa
et al., 2017).

The up-regulation of epithelial TLR3 expression

during infancy might contribute to age-dependent

susceptibility to RV infection (Pott et al., 2012). Jiang

et al. (2017) demonstrated that probiotics acted on the

TLR3/NF-κB signaling pathway during treatment for
diarrhea caused by RV. This not only played a syner‐
gistic role with protective factors, but also down-

regulated the expression of cytokines induced by RV,

thus protecting small intestinal epithelial cells and

repairing small intestinal injury. Sander et al. (2017)

found that prostaglandin E2 (PGE2) directly induced

autoimmunity in RV infection and triggered TLR sig‐
nals, thereby inhibiting viral binding and stimulating

viral gene expression.

Based on existing data, it is postulated that TLR3

may contribute to the progression toward the acquired

immune deficiency syndrome (AIDS). Myeloid DCs

are the primary targets of human immunodeficiency

virus 1 (HIV-1) lentiviral transduction following sub‐
cutaneous immunization (Martin-Gayo and Yu, 2017).

The lentiviral activation of DCs depends on TLR3/7

(Breckpot et al., 2010). Bhargavan et al. (2016) demon‐
strated that TLR3 activation increased HIV-1 transac‐
tivation via the NF-κB and JNK pathways. Other evi‐
dence suggests that selective TLR3 activation promotes

the production of type I IFNs, β-chemokines, and
miRNA-155, which preferentially target the 3' untrans‐
lated region (UTR) of HIV-1 transcript. This signifi‐
cantly decreases HIV-1 infection in macrophages and

enhances the development of HIV-specific CD4+ and

CD8+ cytotoxic T lymphocytes in humanized mice

(Cheng et al., 2018; Nguyen et al., 2020). The gene

expression of TLR3 is markedly increased in advanced

HIV-1-infected human macrophages, but shows no

significant difference in chronic HIV-1-infected and

healthy ones (Alvarez-Carbonell et al., 2017; Liu and

Gack, 2020). In addition, triggering TLR3 with specific

ligands could have therapeutic potential against HIV-1

infection in humans. A combined TLR3 agonist and

CD40-targeting HIV-1 vaccine therapy is being estab‐
lished against HIV-1 disease (Cheng et al., 2018; Saxena

et al., 2019). The HIV5pep with poly(I:C) vaccination

approach was demonstrated to activate the replication

of HIV-1 reservoirs and enhance the anti-HIV-1 T-cell

response, resulting in reduced HIV-1 pools (Cheng

et al., 2018).

Studies have shown that TLR3 is closely related

to the current pandemic of coronavirus disease

2019 (COVID-19) caused by a novel virus strain,

2019 novel coronavirus (2019-nCoV)/SARS-CoV-2.

SARS-CoV-2 is a positive-sense, ssRNA, β-coronavirus
of the Coronaviridae family, which disrupts the host

innate immune response and causes fatal acute respi‐
ratory distress syndrome (ARDS) (Guan et al., 2020;

Wu F et al., 2020). An enrichment in rare variants pre‐
dicted to be loss-of-function (LOF) at the 13 human

loci known to govern TLR3- and IRF7-dependent
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type I IFN immunity to influenza virus has been found

in patients with lethal COVID-19 relative to those

with asymptomatic or benign infection (Zhang et al.,

2020). Therefore, TLR3- and IRF7-dependent type

I IFN immunity may be essential for preventing

life-threatening COVID-19 pneumonia. Furthermore,

TLR3 agonists, like chloroquine, can be considered

potential drugs for repurposing in COVID-19 treat‐
ment (Gao et al., 2020; Prasad et al., 2020). TLR3 is

also a critical antigenic receptor for binding newly

designed multi-epitope vaccines for COVID-19 (Dong

et al., 2020; Ismail et al., 2020).

Hidaka et al. (2006) found a missense mutation

(F3035) in the TLR3 gene related to encephalopathy

caused by the influenza A virus (IAV). Meng et al.

(2016) reported that after IAV infection, mouse masto‐
cytoma cell line (P815) cells mediate hyper-induction

of proinflammatory cytokines and chemokines, with

TLR3 playing a key role in the expression of proin‐
flammatory cytokines. Huo et al. (2018) showed that,

compared with other virus infections and inflamma‐
tion, the TLR3 signaling pathways are activated

preferentially following IAV infection to release a

range of proinflammatory cytokines.

Evidence suggests that TLR3 shows both protec‐
tive and damaging functions in the context of some

human viral infections. Hepatitis C virus (HCV), a

ssRNA virus, induces hepatitis C, probably along

with developing complications such as cirrhosis, liver

failure, and hepatocellular carcinoma (Spearman et al.,

2019). Li et al. (2012) reported that TLR3 may con‐
tribute to the intrahepatic and unbalanced proinflam‐
matory response. In contrast, a recent report showed

that TLR3 activates macrophages to release exosomes

that contain anti-HCV microRNA-29 (miR-29) family

members, thereby inhibiting HCV replication in Huh7

cells (Zhou et al., 2016). Mosaad et al. (2019) further

proved that the heterozygous CT genotype of TLR3

rs3775290 might be a susceptibility risk factor for

chronic HCV infection. In contrast, the combination

of female CC-AT-GA and the homozygous CC geno‐
types may be protective.

Hepatitis B virus (HBV) is a prevalent infectious

agent which causes impaired liver function in humans

(Assar et al., 2012). The role of TLR3 in HBV infec‐
tion is also bi-directional. It has been reported that

TLR3-knockout mice are unable to express IL-8 and

other requisite molecules to activate immune responses

against HBV (Maire et al., 2008). An et al. (2007)

found that patients with chronic HBV infection pre‐
sented a slower elevation of TLR3 expression than

healthy controls. Ondondo et al. (2009) revealed that

patients with chronic hepatitis B (CHB) expressed

lower TLR3 in monocyte-derived DCs (MoDCs) than

normal controls. Based on the above two research

findings, impairment of TLR3 expression and function

was thought to be a major reason for the persistence

of HBV infection (Karimi-Googheri and Arababadi,

2014). Additionally, Tjwa et al. (2012) demonstrated

that activation of myeloid DC using TLR3 ligands led

to improved natural killer (NK) cell function in CHB

infection. Wang K et al. (2010) found that messenger

RNA (mRNA) levels of TLR3 increased in CHB in

the active phase, suggesting that TLR3 may play a vital

role in starting innate immunity. Nevertheless, recent

reports showed that the TLR3 polymorphism rs3775291

was associated with reduced spontaneous hepatitis B

surface antigen (HBsAg) seroclearance (SC) of HBV

infection and an increased risk of developing CHB

(Geng et al., 2016; Fischer et al., 2018).

WNV is a flavivirus transmitted by mosquitoes,

which causes encephalitis, especially in the elderly

and immunocompromised individuals (Kramer et al.,

2008). WNV non-structural protein 1 (NS1) is a crucial

gene required for viral RNA replication and inhibit‐
ing TLR3-mediated signal transduction (Wilson et al.,

2008). However, data on the role of TLR3 signaling

in WNV protection or pathogenesis are controversial.

While some studies have suggested that TLR3 serves

a protective role against WNV by restricting WNV

replication in neurons and through its antagonism

against NS1 (Daffis et al., 2008; Wilson et al., 2008),

others have demonstrated that compared with TLR3-

deficient mice, the WT mice were less resistant to lethal

WNV infection (Wang et al., 2004). Kong et al. (2008)

found that during WNV infection, the expression of

TLR3 was reduced in macrophages of young donors,

but increased in those of the elderly. This change with

aging suggested that increased incidence of WNV

encephalitis in elderly humans may be linked to in‐
creased TLR3 signaling, which may lead to elevated

cytokine levels and contribute to the permeability of

the blood-brain barrier. Recent research showed that

immunization with NS1 might reduce brain inflamma‐
tion in the context of TLR3 deficiency (Patel et al.,

2019).
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The presence of the TLR3 rs5743313/CT poly‐
morphism is closely related to an increased risk of

pneumonia in children infected by the pandemic A/

influenza A (H1N1)/2009 influenza virus (Esposito

et al., 2012). A recent study showed that A/HK/

415742/09 (pandemic H1N1 influenza (pH1N1)) virus-

infected TLR3−/− mice did not have better survival than
pH1N1-infected WT mice and showed no difference

in viral titer and leukocyte infiltration in the lungs,

suggesting that TLR3 did not worsen the pathogenesis

of pH1N1 infection (Leung et al., 2014). The precise

role of TLR3 against influenza in humans remains to

be determined.

The effect of TLR3 on susceptibility to tick-borne

encephalitis virus (TBEV) infection is poorly under‐
stood. Research by Kindberg et al. (2011) showed that

the WT rs3775291 TLR3 allele was more common

among TBEV patients than in healthy controls, sug‐
gesting that TLR3 might be a risk factor for TBEV in‐
fection. It was recently reported that polymorphisms

in TLR3 have a statistically significant impact on

TBEV infection (Mickienė et al., 2014).

6 Conclusions and future directions

In this review, we discussed the TLR3-mediated

antiviral response based on the activation and regula‐
tion of the TRIF signaling pathway. The TRIF and

TRIF-mediated signaling pathways are critical for un‐
derstanding the role of TLR3 in the immune response,

which could give us a new direction to clarify the

pathogenesis of diseases and find cures. Significant

progress has been made in dissecting the mechanisms

of TRIF-dependent activation of IRF3 and NF-κB,
but how the TRIF/AP-1 pathway works needs further

study. Recent work has focused on proteins that act as

adaptors or mediate the activation of adaptors on the

TRIF pathway, but some of their mechanisms remain

to be further determined. A variety of enzymes that

act as negative regulatory agencies of TLR3 have

been found, but how these regulators are activated

during viral infection and their cell type- and species-

specific roles remain unclear.

Moreover, the dual role of TLR3 in ensuring or

compromising host immunity against viruses is still

largely unknown. In the case of chronic RNA viral in‐
fections that lead to sustained IFN-α/β signaling, the

TLR3-TRIF axis may be crucial in determining how

the balance between antiviral and immune regulatory

pathways affects defensive versus offensive responses.

In future work, the TLR3-TRIF pathway may be

essential for the establishment of specific therapeutic

approaches to diminish TLR3-driven disease.
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