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Abstract

Background: Exposure to traffic-related air pollution (TRAP) is associated with accelerated cognitive aging and

higher dementia risk in human populations. Rodent brains respond to TRAP with activation of astrocytes and

microglia, increased inflammatory cytokines, and neurite atrophy. A role for Toll-like receptor 4 (TLR4) was

suggested in mouse TLR4-knockouts, which had attenuated lung macrophage responses to air pollution.

Methods: To further analyze these mechanisms, we examined mixed glial cultures (astrocytes and microglia) for RNA

responses to nanoscale particulate matter (nPM; diameter <0.2 μm), a well-characterized nanoscale particulate matter

subfraction of TRAP collected from a local freeway (Morgan et al. Environ Health Perspect 2011; 119,1003–1009, 2011). The

nPM was compared with responses to the endotoxin lipopolysaccharide (LPS), a classic TLR4 ligand, using

Affymetrix whole genome microarray in rats. Expression patterns were analyzed by significance analysis of

microarrays (SAM) for fold change and by weighted gene co-expression network analysis (WGCNA) to identify

modules of shared responses between nPM and LPS. Finally, we examined TLR4 activation in hippocampal

tissue from mice chronically exposed to nPM.

Results: SAM and WGCNA analyses showed strong activation of TLR4 and NF-κB by both nPM and LPS. TLR4

siRNA attenuated TNFα and other inflammatory responses to nPM in vitro, via the MyD88-dependent

pathway. In vivo, mice chronically exposed to nPM showed increased TLR4, MyD88, TNFα, and TNFR2 RNA,

and decreased NF-κB and TRAF6 RNA TLR4 and NF-κB responses in the hippocampus.

Conclusions: These results show TLR4 activation is integral in brain inflammatory responses to air pollution,

and warrant further study of TLR4 in accelerated cognitive aging by air pollution.

Keywords: Air pollution, Nanoparticulate matter, Microglia, Astrocytes, TLR4, NF-kB, TNFα, Cell culture,

Hippocampus

Background

Traffic-related air pollution (TRAP) is associated in human

populations with accelerated cognitive aging [1–4] and in-

creased risk of dementia [5–8]. Exposure to high levels of

fine particulate matter (PM2.5) in older adults is associated

with greater cognitive decline, equivalent to 2 years of nor-

mal cognitive aging [9, 10], and developmental exposure to

TRAP is associated with delayed and impaired cognitive de-

velopment [11, 12].

TRAP-associated changes of normal aging include

decreased white and grey matter [13, 14], while post

mortem samples from a highly polluted Mexican City

showed white matter hyperintensities and neuroin-

flammation [15, 16]. Rodent models given controlled ex-

posure to TRAP particulate material (PM), showed

corresponding loss of dendritic spines [17] and microglial

activation [18, 19]. Brain inflammatory responses include

increased IL-1α and TNFα [17, 18, 20], together with NF-

κB [21] and detoxifying enzymes associated with Nrf2
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[22]. In our model, mice were chronically exposed to

nPM, a nano-scaled subfraction of TRAP [18, 23].

Airborne PM is defined by three size classes: coarse,

PM10; <10 μm diameter; fine, PM2.5; <2.5 μm; and ultra-

fine, PM0.2; <0.2 μm. The PM0.2, though not EPA regu-

lated, have more toxicity and greater redox activity than

larger size fractions [24]. In rodents, in vivo exposure to

PM0.2 shows their penetration into the brain via the nose

[25, 26]. The present studies use a nano-sized water-

soluble subfraction of PM0.2 (nPM) with strong redox and

inflammatory activity in vitro and in vivo that induced

microglial activation TNFα and other cytokines associated

with oxidative stress [24, 27].

To further study glial roles, we used an in vitro model of

mixed glia (astrocytes and microglia), in which nPM

induced TNFα induction with well-defined dose response

[27]. In media from nPM-treated glia, primary neurons had

shorter neurites and fewer growth cones; these nPM effects

were mediated by the TNFα receptor TNFR1 [27]. We hy-

pothesized further that these mechanisms involve a priori

genes of interest NF-κB and TLR4 (Toll-like receptor 4),

through MyD88-dependent pathways, shown for lung

macrophage responses to TRAP [28, 29]. TLR4 has over 30

known ligands [30]. Its role in inflammatory pathways may

include neuroprotective functions, e.g., by increasing

amyloid β-peptide uptake by microglia [31]. While a TLR4

response to air pollution has been hypothesized, its exact

involvement remains unclear, as TLR4 mutant individuals

still showed immune cell response to PM [16].

These questions were agnostically approached by Affyme-

trix microarray in mixed glia cultures for responses to nPM

and to lipopolysaccharide (LPS). The endotoxin LPS is rele-

vant to TRAP induced inflammatory responses. While nPM

does not contain endotoxin [32], the larger sized PM have

endotoxin activity [33], whereas the TLR4 pathway is neces-

sary for LPS responses. Our findings were compared with

LPS responses of BV-2 microglial cells [34, 35] and primary

cultured microglia [36].

Two bioinformatics approaches were used: fold changes

in RNA expression were identified by significance analysis

of microarrays (SAM) and shared modules of RNA re-

sponses between LPS and nPM were identified by

weighted gene co-expression network analysis (WGCNA),

which has advantages over differential expression analysis.

WCGNA enables the reduction of high-dimensional data

into fewer variables for analysis of shared responses be-

tween treatments. While both SAM and WGCNA identify

larger responses, WGCNA also identifies subtler interac-

tions within a network. WGCNA provides further insight

into the relationships between genes, extending beyond

known pathways [37].

Following SAM and WGCNA, we analyzed transcrip-

tion factor target (TFT) enrichment and upstream regula-

tors. Finally, bioinformatics findings were verified in vitro

by siRNA experiments with mixed glia and in vivo with

hippocampal RNA from mice exposed to nPM.

Methods
Animals and ethics statement

Pregnant Sprague Dawley rats, from Envigo (Livermore,

CA, USA) and C57BL/6J female mice, from the NIA

Aged Rodent Colony (Charles River Labs) were main-

tained under standard conditions according to NIH

guidelines. Protocols were approved by the University of

Southern California Institutional Animal Care and Use

Committee.

Collection of nanoscale particulate material (nPM)

The nPM utilized in these studies are a nanoscale

subfraction of TRAP (<200 nm diameter) collected from

urban air in Los Angeles near the CA-110 Freeway using

a high-volume impactor sampler [38]. These aerosols

represent a mix of fresh ambient PM mostly from ve-

hicular traffic [39, 40]. nPM was collected continuously

for 5 weeks on Teflon filters, followed by resuspension

in deionized water by vortexing and sonication [18]. The

nPM comprised approximately 20% by mass of ambient

PM2.5 in that location [41]. Water-soluble metals and

organic compounds were efficiently transferred from the

filter into aqueous suspension for exposures [18]. Rela-

tive to the total filter-trapped ultrafines (PM0.2), the

nPM subfraction eluted into aqueous phase was depleted

in black carbon and water-insoluble organic compounds

[18]. Stock nPM solution had trace endotoxin levels (2.5

EU/mL by Limulus amoebocyte assay) compared to that

eluted from filter collected ambient air (2.0 EU/mL).

Treatment levels were 0.05–0.08 EU/mL, equivalent to

sterile water (FDA 2015). These low EU levels are con-

sistent with the negligible endotoxin activity in ultrafine

PM (below Limulus assay threshold) [32]. Frozen stocks

at 20 °C retain chemical stability for >30 days, including

long-lived free radicals [18, 24]. The nPM was re-

aerosolized to an airborne concentration of 300 μg/ml.

Mice (3 month old) were exposed to nPM or filtered air

for 150 h during 10 weeks (5 h/day, 3 days/week).

Tissue collection

One month after exposure, mice were anesthetized by

isoflurane and saline perfused. One hemisphere was

cryosectioned for histochemistry and the other, micro-

dissected by brain region.

Cell culture

Primary mixed glia (microglia and astrocytes) were cul-

tured from neonatal postnatal day 3 rat cerebral cortex

(mixed sex, Sprague Dawley; Envigo, Livermore, CA).

Mixed glial cultures were used because some astrocyte

responses to LPS are microglial dependent [42, 43].
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Mixed glial cultures were 3:1 astrocytes to microglia

[27]. Cerebral cortex was mechanically dissociated,

strained by a 70-μm Millipore filter, and plated onto 75-

cm2 cell culture flasks in Dulbecco’s modified Eagle’s

medium/F12 (Cellgro, Mediatech, Herndon, VA) supple-

mented with 10% fetal bovine serum, 1% penicillin, and

1% L-glutamine. Cultures were incubated at 37 °C with

95:5% mixture of air:CO2. Media was refreshed twice in

week 1 and once during week 2. Cells were trypsinized,

plated on six-well plates, and treated with nPM (10 μg/

mL, 24 h) or LPS (100 ng/mL, 48 h for microarray, 24 h

for TLR4 knockdown). The 10 μg/mL dose of nPM is

based on published work demonstrating conditioned

media from mixed glia treated with 10 μg/mL nPM re-

duced inhibited neurite outgrowth and reduced the

number of neurites [18].

RNA

Total cell RNA was isolated by TRIzol; cDNA was reverse

transcribed (Promega) and analyzed on Affymetrix Rat

Whole Genome 230.2 array. For individual gene verifica-

tion, q-PCR was done with Taq Master Mix (Biopioneer),

with primers designed with Primer3 and verified by NCBI

Primer-BLAST (Basic Local Alignment Search Tool). Data

was quantified as ΔΔCT and normalized to GAPDH.

Microarray analysis

For nPM microarray, RNA-cDNA was prepared from N = 4

treated and N = 4 controls. For LPS cultures, we compared

five treated versus four control cultures. Microarray was

verified by q-PCR, with N = 14 per group.

Normalization

Raw Affymetrix data were normalized by the Robust

Multi-array Averaging R algorithm [44–46]. The output

is then transformed to log2. LPS and nPM microarrays

were independently normalized to controls within each

individual experiment. These datasets are available as

raw data files, given in Additional file 1.

Significance analysis of microarrays (SAM)

Normalized microarray data were analyzed for fold

change by SAM, to assess differential expression associ-

ated with nPM and/or LPS exposure relative to controls.

The input into SAM was an individual log2 fold change

score for each microarray probe, with significance calcu-

lated using permutation tests (100 permutations) and

presented as q-values to account for false discovery rate,

with an FDR threshold at 1% (q < 0.01).

Weighted gene co-expression network analysis (WGCNA)

Gene expression networks were identified using the

WGCNA package in R [47]. Adjacency matrices for

nPM and LPS were generated by first calculating

biweight midcorrelations of gene expression for each

gene pair. To construct weighted gene networks, these

measures of co-expression (correlation coefficients) are

raised to a power of β—the soft-thresholding power.

This value is chosen by analyzing scale-free topology.

More information on selecting a β value can be found in

work by Zhang and Horvath [48]. For this analysis we

used a soft-thresholding power of 6. Adjacency for each

gene pair was then defined using topological overlap

matrices (TOMs). TOM incorporates higher-order con-

nections by taking into account the number of “neigh-

bors”, or connections, that a pair of genes share [49].

Individual TOMs were estimated for both nPM and LPS.

A consensus topological overlap (across nPM and LPS)

was calculated using the component-wise (parallel) mini-

mum of the individual TOMs. TOMs were then con-

verted to dissimilarity matrices by subtracting from 1.

Modules were then defined by employing hierarchical

clustering with TOMs as input with the following

WGCNA parameters: unsigned network, minimum

module size of 30, and medium sensitivity (deepSplit =

2). Hierarchical clustering assigns each gene to a specific

module (denoted by different colors), which represent

networks of highly interconnected genes.

Following module assignment, eigengenes were esti-

mated for each module. The eigengene is a single quanti-

tative value for a module, which represents its overall

gene score, based on levels of messenger RNA (mRNA)

for all genes assigned to that module. The use of eigen-

genes enables dimension reduction—instead of comparing

gene expression between exposure and controls for thou-

sands of genes, comparisons of higher-order measures of

gene expression between exposure and controls can be

carried out for less than 100 modules. We then screened

for hub genes (genes that are highly connected within a

given module). Although the hierarchical clustering as-

signs each gene to one module, module membership can

be defined by calculating eigengene-based connectivity

(kME) for each gene-by-module pair as the correlation be-

tween expression levels of a gene and the eigengene

(quantitative score) for a module. kME was calculated in

each set (nPM and LPS), then consensus kME scores were

generated as meta-analytic scores by Stouffer’s method.

Based on kME, hubs for each module were defined as the

genes with the highest connectivity (kME ≥0.80).

Pathway analysis

Pathway enrichment analysis by Kyoto Encyclopedia of

Genes and Genomes (KEGG) (www.genome.jp/kegg/)

and Gene Ontology (GO; Gene Ontology Consortium,

geneontology.org) used two gene sets as inputs—those

with differential expression for both the nPM and LPS

treatment (SAM results), and those identified as hub

genes in modules enriched by both nPM and LPS
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(WGCNA results). Whereas GO was utilized in SAM to

determine only the most enriched responses, GO is uti-

lized here to describe the composition of the module

and therefore uses relaxed stringency. Increased and de-

creased transcripts were considered independently [50].

Pathway figures were generated using Cytoscape with

the ClueGo plugin [51], with enriched processes

depicted as nodes, and networks, which are groups of

connected nodes.

Genes significant by SAM from each dataset, and

shared hub genes from modules enriched by both treat-

ments were analyzed for enriched transcription factor

targets (TFTs) using WEB-based Gene Set Analysis

Toolkit (WEB-GESTALT); cutoff at p < 0.01. Because

TFT analysis makes corrections for false positives, TFT

analysis has more power in connected networks

(WGCNA modules) versus broad gene lists (SAM re-

sults) and can therefore detect greater TFT enrichment

in a subset versus complete gene lists.

TLR4 siRNA cultures

Glia were transfected with lipofectamine (10 μL/well

media) and TLR4 siRNA (Thermo Fisher Scientific,

siRNA ID 198667), or negative control siRNA (Thermo

Fisher Scientific, AM4611), combined with Opti-MEM

media and added to culture media. For control cultures,

only Opti-MEM media was added to culture media.

After 48 h, cells were treated with either nPM (10 μg/

mL, 24 h) or LPS (100 ng/mL, 24 h), and harvested for

RNA (TRIzol) and protein (RIPA buffer).

Scrambled RNA induced JNK1/2 (no change by nPM,

1.6× by scrambled RNA) and STAT1 (4.7× by nPM, 7.4×

by scrambled RNA), with no effect on other genes quer-

ied. nPM effects were unchanged by scrambled RNA.

Inflammatory proteins

Protein concentration was analyzed by the V-PLEX Proin-

flammatory Panel 2 immunoassay (K15059D-1, Mesoscale

Diagnostics, Rockville, MD).

Statistical analysis

Ordinary one-way analysis of variance test was used,

with Tukey’s posttest to correct for multiple compari-

sons. All analysis used Graphpad Prism 6.

Heatmap

Hierarchical clustering and heatmap generation were

performed in MatLab (Version R2014b) to identify the

relation of gene expression changes among different

groups of this study. Genes were clustered by Pearson

correlation coefficients.

Results
Strategy

Mixed glial acute responses to nPM and LPS were analyzed

by whole genome microarray and processed in tandem by

significance analysis of microarrays (SAM), and by weighted

gene co-expression network analysis (WGCNA) (Fig. 1).

SAM identified responses in individual RNAs, by fold

change, to nPM or LPS. WGCNA determined shared RNA

responses between nPM and LPS treatments, defined as

modules for groups of RNAs with correlated expression.

The results from SAM and WGCNA were then analyzed

for enriched biological processes, by Gene Ontology (GO),

and for transcription factor targets (TFTs).

Guided by results from microarray analysis, we investi-

gated TLR4 involvement in nPM response by TLR4

knockdown in vitro, and investigated TLR4 activation in

the hippocampus following chronic in vivo exposure.

Significance analysis of microarrays (SAM)

The nPM treatment altered 1996 RNAs, with 920 in-

creased and 1076 decreased (Venn diagrams, Fig. 2a–c;

q < 0.1). This analysis only considered RNA changes with

Fig. 1 Flowchart of analysis. RNA responses of mixed glial cultures to

nPM or LPS were analyzed by whole genome microarray for fold

change by significance analysis of microarrays (SAM), and for shared

RNA responses by weighted gene co-expression network analysis

(WGCNA), given as correlation modules. Correlation modules are the

clusters of correlated genes. The results from SAM and WGCNA were

then analyzed for biological processes using the Gene Ontology (GO)

database, and transcription factor targets (TFTs). GO output is given as

nodes, which are enriched biological processes, and as networks,

which are groups of connected nodes. Responding RNAs that met the

criteria for fold change were analyzed for GO and TFT enrichment. For

WGCNA, only modules of shared responses between nPM and LPS

were examined
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q-values of 0.01 and with minimum changes of 1.5× for

increases and of 0.7× for decreases. LPS induced 1316

RNA responses, with 606 increased and 710 decreased.

nPM altered 50% more RNAs than LPS, for both the in-

creased and decreased.

Among the RNA responders to LPS and nPM, 530

were shared: 268 increased in both; 223 decreased in

both (Fig. 2a–c; q < 0.1). A subset of 39 RNAs had diver-

gent directions of response to nPM and LPS, with 80%

increased by nPM. Divergent responses were analyzed

by GO (“SAM biological processes analysis by Gene

Ontology (GO)”).

Verification by q-PCR

Eight TNFα-associated RNA level changes detected by

microarray were confirmed by q-PCR: five increased

(Jak2, STAT1, TNFα, TNFRSF9, and TRAFD1) and three

non-changers (Fos, TRAF3ip, and TRAF6) (Additional

file 2: Figure S1).

Fig. 2 Venn diagram of RNA by significance analysis of microarrays

(SAM). Areas of each circle are in proportion to gene numbers. a

Total RNAs altered by either treatment. b Increased RNAs by either

treatment. c Decreased RNAs by either treatment

Fig. 3 GO processes for nPM responses, analyzed by significance analysis of microarrays (SAM). a nPM-increased RNAs: (920), clustered into networks.

Note the single node of NF-κB regulation, and TLR signaling pathway network. The cellular migratory network was condensed from 13 nodes to 5.

Migratory pathways for T cells and other leukocytes identified by GO analysis are not depicted. b nPM-decreased RNAs (1076): Although 17% more

RNAs were decreased than the increases, there were fewer enriched pathways. p < 0.00001. Colors denote different networks. Nodes with two colors

belong to both networks. Each network has one highlighted node (colored text, chosen by experimenter) that best represents network function. The

circle size represents the number of genes enriched in the node. The width of connecting lines represents the strength of connectivity between nodes,

as measured by kappa score
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SAM biological processes analysis by Gene Ontology (GO)

The top enriched biological processes (20% minimum

enrichment) by nPM or LPS were determined from GO.

nPM responses: Increased RNAs were associated with 28

GO processes (depicted as nodes, Fig. 3a), including genes

of a priori interest NF-κB and TLR4 (“Background”).

“Regulation of NF-κB import into nucleus” was represented

as one node. Multiple node networks included “Toll-like

receptor signaling pathway” (four nodes), “cytokine secre-

tion” (three nodes), and “positive regulation of JAK-STAT

cascade” (three nodes). Not depicted in Fig. 3a are “cell

migration” nodes, which were enriched for migratory pro-

cesses of neutrophils, granulocytes, and T cells. These were

excluded because of overlap in “migratory” genes between

cell types. Decreased RNAs from nPM treatment had two

GO networks, each with two nodes: “DNA-dependent

DNA replication” and “microtubule depolymerization”

(Fig. 3b).

KEGG pathway analysis corroborated the main GO

findings: increased RNAs for enrichment in NF-κB, TLR

signaling, and cytokine response; decreased RNAs, for

enrichment in DNA replication (not shown).

LPS responses: Increased RNAs yielded 18 enriched

nodes, including “response to tumor necrosis factor”, “I-

kappaB kinase/NF-kappaB signaling”, “response to oxida-

tive stress”, “reactive oxygen species metabolic process”,

“chronic inflammatory response”, “response to interferon

gamma”, “nitric oxide biosynthetic process”, and “response

to cytokine” (Additional file 2: Figure S1). Unlike nPM

GO, LPS had enriched processes for “antigen processing

and presentation of peptide antigen” and “reactive

nitrogen species metabolic processes”, among others. De-

creased RNAs were enriched for “regulation of protein

serine/threonine kinase activity” and “response to woun-

ding” (not shown).

Data from prior microarray analysis of LPS-treated

BV-2 microglial cells [34, 35] and primary cultured

microglia [36] were also analyzed for GO processes.

These datasets showed LPS responses of NF-κB, IFN-y,

oxidative stress, and cytokine pathways, corresponding

to our results.

Divergence between nPM and LPS: For the 39 RNAs

with divergent responses by SAM, identified above (“Sig-

nificance analysis of microarrays (SAM)” section), one

third (15/39) were in the “response to chemical

stimulus”.

Weighted gene co-expression network analysis (WGCNA)

Joint modules of response to nPM and LPS were identi-

fied by WGCNA. The WGCNA for nPM and LPS re-

sponses gave 45 gene modules, shown as a cluster

dendrogram (Fig. 4a). Of these 45 modules (Fig. 4b), 38

were associated with nPM, 4 modules associated with

LPS (Fig. 4c), and 2 modules enriched in both exposures

(Fig. 4c, right column). These shared modules were the

blue module, composed of increased RNAs (total 2042),

and turquoise module, decreased RNAs (total 2612).

The relationship of the 45 modules with fold change, as

derived by SAM, is seen in Fig. 4d.

Fig. 4 Weighted gene network co-expression analysis (WGCNA) of nPM and LPS responses, grouped as modules. a Dendrogram using hierarchical

clustering to group genes by lowest values generated by a dissimilarity matrix. b Modules, color labeled for each gene (arbitrary colors), with modules

placed by highest similarity between gene clusters. 45 modules were generated by WGCNA. c Statistical significance of each weighted gene co-expression

network analysis (WGCNA) module, for nPM, LPS, and shared responses. Module colors from Fig. 4b are in the leftmost column (Mod). Modules from Fig. 3

with significant change (p < 0.01) are denoted by *. Of these 45 modules, 38 were enriched in the nPM subset, 4 in LPS subset, and 2 in the shared subset.

Shared modules, which will be further analyzed for pathway enrichment, are marked by arrows. Scale bar is correlation coefficients between module

eigengene and treatment condition. d Normalized fold change of RNA for each gene from nPM and LPS responses, respectively: red, increases; blue,

decreases. Upper left, expanded section of b and c
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In the blue module (increased RNAs), nPM responders

had twofold more hub genes (1196/2042) than LPS

responders (558/2042). For the shared responses of nPM

and LPS, hub genes were 25% (497/2042). The turquoise

module (decreased RNAs) with 530 shared hub genes

had 2.7-fold more hub genes for nPM (1842/2612) than

for LPS (681/2612). The hub genes of the blue and

turquoise modules were highly correlated by kME and

by fold change (biweight mid-correlation +0.44 for nPM,

blue; −0.24 for nPM, turquoise).

WGCNA process analysis by Gene Ontology (GO)

The hub genes of the two shared WGCNA modules,

blue and turquoise, were analyzed by GO (Fig. 5a, b,

respectively).

The shared hub genes for both nPM and LPS treatment

in the blue module (increased RNAs) enriched similar bio-

logical processes as the SAM analysis for nPM treatment

(Fig. 3a): “I-kappaB kinase/NF-kappaB signaling”, “TLR

signaling pathway”, “JAK-STAT cascade”, “cytokine

secretion”, and “response to LPS”, among other processes

(Fig. 5a). The shared nodes include genes composing the

intracellular TLR4 signaling pathway, components of NF-

κB, and downstream inflammatory cytokines like TNFα,

IL-1α, and IL-1β. All a priori genes of interest (“Back-

ground”) were in the blue (increased) module.

The shared hub genes in both nPM and LPS treatment,

of turquoise module (decreased RNAs), were enriched for

“DNA replication” (also in Fig. 3b), “regulation of

dendritic spine development”, “chromatin assembly or

disassembly”, “positive regulation of purine nucleotide

biosynthetic process”, and “cellular biogenic amine

metabolic process” (Fig. 5b).

Transcription factor DNA binding target (TFT)

Responding RNAs were analyzed for TFTs of their re-

spective genes (Table 1). For nPM, by SAM, there was

no enrichment of any TFT. Response to nPM, analyzed

by WGCNA, was enriched for BACH1 (regulator of

Nrf2 and phase-2 detoxification responses), interferon

Fig. 5 Composition and biological relevance of the two modules enriched by both nPM and LPS. Blue (a) and turquoise (b) modules, by GO. Shown

above are some select GO processes of interest that are enriched in the two modules. Notably, WGCNA composed the blue module of all increased

RNAs, while the turquoise module was decreased RNAs. a Many of the pathways observed in the more stringent GO analysis of SAM analysis of nPM

are represented in the shared blue module. These include the TLR4 signaling pathway, NF-κB pathway, and inflammatory cytokines. b Some similar

pathways to decreased RNAs by SAM are observed in the turquoise module, including DNA replication. Nodes with highlighted texted were chosen

as the node that best represents the network; node colors distinguish between networks. Nodes with two colors belong to both networks. The circle

size represents the number of genes enriched in the node. The width of connecting lines represents the strength of connectivity between nodes
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regulatory factors (IRFs), and other TFTs (Table 1). LPS

showed 10 TFTs by SAM, and 8 by WGCNA, with

multiple TFTs for interferon regulatory factors (IRFs) by

both analyses.

The shared responses showed the largest enrichment

of TFTs, with six TFTs for IRFs and five for NF-κB from

the RNAs shared by SAM. Analysis by SAM had four

and two TFTs for IRF and NF-κB, respectively.

Both IRFs and NF-κB are controlled by intracellular

processes following TLR4 activation, suggesting that

TLR4 is a mediator of glial responses to nPM and LPS.

TLR4 siRNA experimental manipulations

We verified that TLR4 mRNA was increased 2× by

nPM, with no change by LPS (Fig. 6a), whereas TLR4

protein was not altered by nPM or LPS (Fig. 6b). The

lack of TLR4 protein induction corroborates findings

that LPS, despite activating TLR4, does not increase

TLR4 protein by 24 h post treatment [52]. The bioinfor-

matics findings were validated by siRNA manipulation

of TLR4.

TLR4 knockdown

The siRNA knockdown of TLR4 was confirmed for pro-

tein and mRNA. TLR4-siRNA treatment lowered RNA

similarly in controls (65%) and nPM (80%) (Fig. 6a).

siRNA for TLR4 lowered protein levels by 60% in all

groups (Fig. 6b). Scrambled siRNA treatments for TLR4

did not differ from controls (Fig. 6a).

Inflammatory proteins

nPM treatment increased protein concentration for six

of seven investigated proteins (Fig. 7). TLR4 siRNA

reduced induction by nPM for TNFα, IL-1β, IL-6, and

KC. TLR4 siRNA had no effect on nPM response for IL-

5, IL-4, and IFN-y.

The 30-fold increase of TNFα protein by nPM was

blocked by siRNA (−80%) (Fig. 7a). TNFα mRNA was

also increased eightfold by nPM, and blocked by siRNA

(−80%) (see below). IL-1β protein increased by nPM

(5.5×) (Fig. 7b). siRNA treatment induced IL-1β (2.3×),

with a modest further induction by nPM (1.3×) (Fig. 7b).

IL-6 protein increased 80× by nPM, with reduced induc-

tion by nPM in siRNA cultures (3.4×) (Fig. 7c). nPM

treatment increased KC 142×, with reduced induction by

nPM in siRNA cultures (5.8×) (Fig. 7d).

TLR4 pathways

nPM activated the MyD88-dependent TLR4 pathway, but

did not activate the MyD88-independent endocytosis path-

way. MyD88 was increased by both LPS and nPM (1.3× for

both), and blocked by siRNA-TLR4 (Fig. 8a). TRAF6, which

is downstream of MyD88-dependent TLR4 activation, did

not respond to nPM or LPS (not shown). TAK1, a down-

stream effector of TRAF6, was also unchanged by nPM or

Table 1 Transcription factor target (TFT) analysis

Transcription
factor

nPM LPS Shared

SAM WGCNA SAM WGCNA SAM WGCNA

AP-1 – – 1 – – –

BACH1 – 1 – – – –

IPF1 – 1 – – – –

IRFs – 3 6 4 6 4

NFAT – 1 1 1 – 1

NF-κB – – 2 2 5 2

NF1 – 1 – – – –

SRF – – – – 2 1

STAT1 – – – 1 1 –

Numbers represent the total of different TFT binding sequences enriched for

each dataset queried. Only the blue and turquoise modules (Fig. 4) were used

for WGCNA

Abbreviations: AP-1 activator protein 1, BACH1 BT3B and CNC homology 1, IPF1

insulin promoter factor 1, IRF interferon regulatory factor, NFAT nuclear factor of

activated T cells, NF–κB nuclear factor kappa-light-chain-enhancer of activated B

cells, NF1 neurofibromin 1, SAM significance analysis of microarrays, SRF serum

response factor, STAT1 signal transducers and activator 1

Fig. 6 TLR4 response in mixed glia. Mixed glia: TLR4 siRNA treatment

lowered TLR4 mRNA and protein, and attenuated nPM induction of TLR4

mRNA. Media groups are non-transfected. a TLR4 mRNA, but not protein,

was induced by nPM. TLR4 siRNA decreased TLR4 mRNA levels by 90%

in nPM (ANOVA, p < 0.0001) and 70% in control groups (p < 0.0001). LPS

treatment reduced TLR4 mRNA (p < 0.05). b TLR4 protein was not

changed by nPM or LPS. TLR4 siRNA reduced protein levels by ca. 60%

in all groups (ANOVA, p < 0.05)
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LPS (not shown). TRAFD1, which shows negative feedback

on TRAF6, was increased by nPM and LPS (2× and 3×, re-

spectively), blocked by TLR4 siRNA (Fig. 8b).

NF-κB was increased by nPM (2×), with induction

blocked by TLR4 siRNA (Fig. 8c). Mentioned above (“In-

flammatory proteins”), TNFα was increased 8× by nPM,

and blocked by TLR4 siRNA (−80%) (Fig. 8d). TNFR1

mRNA did not respond to nPM or LPS (not shown).

In the JAK/STAT pathway, JAK2 was activated by nPM

and LPS (6.1× and 3.7×, respectively), with siRNA block-

ade (Fig. 8e). STAT1 mRNA was increased by nPM (4.8×)

and by LPS (9.1×), and also siRNA blocked (Fig. 8f).

TRIF (Toll/IL-1 receptor domain-containing adaptor

protein-inducing IFN-β), of the MyD88-independent

endocytosis pathway, was decreased by LPS (0.72×, p

< .05) and did not respond to nPM (not shown). IFN-

β did not respond to nPM or LPS (not shown). This

further confirms the absence of endotoxin activity in

our nPM, because the “endocytosis pathway” is a

known endotoxin-specific TLR4 response.

Figure 9 summarizes these responses (“Inflammatory

proteins” and “TLR4 pathways”) by pathway.

Comparative expression

A heatmap of all genes queried by q-PCR in the TLR4

pathway (Fig. 9) shows clusters by genes on the y-axis,

and treatment groups on the x-axis (Fig. 10).

Fig. 7 Inflammatory protein panel. Mixed glia: induction of inflammatory cytokines by nPM, with attenuation by TLR4 siRNA. Media groups are

non-transfected cultures. a TNFα was increased by nPM treatment (p < 0.001). siRNA treatment reduced TNFα protein response to nPM (p < 0.0001).

TNFα protein in siRNA cultures treated with nPM did not differ from controls. b IL-1β was increased by nPM (p < 0.001). IL-1β induced by nPM was

attenuated by TLR4 siRNA (p < 0.001). c nPM increased IL-6 protein (p < 0.0001). TLR4 siRNA reduced nPM IL-6 induction versus non-transfected cultures

(p < 0.0001). d KC protein was increased by nPM in both non-transfected cultures (p < 0.0001) and TLR4 siRNA (p < 0.001), with attenuated induction in

siRNA cultures. e IFN-y was increased by nPM (p < 0.0001) and by TLR4 siRNA (p < 0.0001). f IL-5 was increased by nPM (p < 0.001), and by siRNA

(p < 0.01), with no further increase by nPM. g IL-4 was decreased by nPM (p < 0.05)
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Treatment clustering (x-axis): the non-transfected cul-

tures, the control group shows the least similarity to the

nPM and LPS groups. The clustering of three TLR4

siRNA groups suggests similar responses. Importantly,

on the heat map, the TLR4 siRNA-treated cultures are

in the adjacent column to the control group, indicating

the siRNA treatment returned RNA to control levels.

Gene clustering (y-axis): NF-κB, TLR4, and JAK2, cluster

with TLR4.

In vivo nPM exposure

To investigate TLR4 involvement in vivo, we examined

TLR4-associated responses in the hippocampus of adult

mice chronically exposed to nPM for 150 h over 10 weeks.

TLR4 and MyD88 RNAs were increased by this nPM ex-

posure (2.1× and 1.4×, respectively) (Fig. 11a, b), while

NF-κB and TRAF6 were decreased (0.8× and 0.75×,

respectively) (Fig. 11c, d). Increases were observed for

TNFα (10×) (Fig. 11e) and TNFR2 (1.6×) (Fig. 11f). There

was no response of TNFR1, c-Fos, or c-Jun (not shown).

Discussion
This is the first comprehensive expression analysis of

rodent in vitro glial responses to TRAP particulate

matter, which shows broad activation of immune and

stress pathways in response to nPM, with 2000 tran-

scripts responding. Guided by the expression analysis,

we then demonstrated TLR4 knockdown attenuated a

subset of inflammatory response to nPM. Finally, we

showed that TLR4 and associated TLR4 pathway

RNAs were altered in the hippocampus following in

vivo nPM exposure.

This is also the first direct comparison of LPS and air

pollution PM for gene expression responses. WGCNA

in conjunction with SAM was used to show the exten-

sive overlap of inflammatory responses between nPM

and LPS. About 25% of the RNAs responding to nPM

were shared with LPS responses. The overlap was

enriched for inflammatory responses like TLR4, NF-κB,

TNFα, and multiple interleukins. Shared responses to

nPM and LPS were also enriched in transcription fac-

tor targets (TFTs) for NF-κB and IRFs. These findings

Fig. 8 TLR4 pathway activation in mixed glia. Mixed glia: nPM increased mRNAs in the MyD88-dependent TLR4 signaling pathway. Media groups

are non-transfected cultures. All values are given as log2 fold change. a MyD88 was increased by both nPM and LPS (p < 0.05), with no change

observed in TLR4 siRNA-treated cultures. b TRAFD1 mRNA was increased by nPM treatment (p < 0.0001) and by LPS treatment (p < 0.0001), and

rescued by siRNA treatment (p < 0.0001). c NF-κB mRNA was increased by nPM treatment (p < 0.01), and rescued by siRNA treatment (p < 0.05). d

TNFα mRNA was induced by nPM treatment (p < 0.0001). siRNA treatment reduced nPM induction of TNFα mRNA (p < 0.0001). e JAK2 mRNA was

increased by nPM and LPS treatment (p < 0.0001), and rescued by siRNA treatment (p < 0.0001). f STAT1 mRNA was increased by nPM and LPS

treatment (p < 0.01 and p < 0.0001, respectively), and rescued by siRNA treatment (p < 0.05)
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are consistent with the exacerbation of lung LPS

inflammatory responses when combined with PM

exposure [53, 54].

Importantly, the shared LPS and nPM responses were

not due to endotoxin presence in these nPM samples. The

negligible endotoxin activity of the nPM is consistent with

findings that the endotoxin contained within PM is mostly

bound in large diameter particles (coarse PM) [33], which

are excluded from collection of nPM. Physiologically, the

coarse PM are mainly trapped in upper airways.

The nPM and LPS treatments differed 10-fold in the

scale of responding RNA modules by WGCNA: nPM

treatment enriched 85% (38/45) modules, while LPS

enriched only 9% (4/45). This 10-fold greater genomic re-

sponse to nPM than LPS may be attributed to the greater

chemical heterogeneity of the nPM, which includes transi-

tion metals, nitrate, sulfate, and water-soluble organic

compounds [18].

Glial activation by air pollution exposure is characte-

rized by cell-specific markers like GFAP (astrocytes) and

Iba1 (microglia) [18, 23, 55], and by inflammatory

cytokines like TNFα and IL-1α [17, 18, 20, 21]. Our re-

sults with mixed glia corroborate the cytokine increases,

and extend the responses to new signaling pathways

including TLR4, NF-κB, and JAK/STAT, as shown by

WCGNA (blue module). The enrichment of transcrip-

tion factors for NF-κB and IRFs by nPM treatment

suggests the important role of TLR4 activation in glial

responses to nPM.

The TLR4-dependent glial responses to nPM were

shown by TLR4 knockdown in vitro, which attenuated

the nPM induction of TNFα and other cytokines.

This is best visualized by the heatmap (Fig. 10). Non-

transfected control and nPM or LPS-treated cultures

were on opposite extremes of the heat map, indica-

ting the least similarity of any conditions. Conversely,

Fig. 9 Proposed pathway of TLR4 activation by nPM treatment. Red: TLR4-dependent increased mRNA or protein (cytokines). Dark blue: proteins or

mRNA unresponsive to nPM. White: proposed intermediates, not examined. nPM activated MyD88-dependent pathways, increasing NF-κB mRNA and

increasing downstream cytokine productions of NF-κB activation. JAK/STAT pathway was also activated by nPM with TLR4 dependence. LPS-mediated

TLR4 receptor activation by endocytosis was not altered by nPM treatment

Fig. 10 mRNA responses in the TLR4 pathway. Fold change values

were standardized, and are shown from red (increased) to blue

(decreased). Genes queried are clustered on the y-axis, with genes

clustered based on correlation. Treatment groups are clustered on

the x-axis, with groups showing similar responses clustered

closer together
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TLR4 siRNA cultures treated with nPM or LPS were

adjacent to control cultures, indicating highest simi-

larity of any treatment groups. Though both nPM

and LPS responses are TLR4 dependent, they function

through divergent intracellular TLR4 signaling

pathways. LPS activates TLR4 through both the TLR4

receptor endocytosis response to endotoxin, and the

MyD88-dependent NF-κB inflammatory pathway. The

nPM activated the NF-κB inflammatory response through

MyD88-dependent signaling, but not the endocytosis

pathway. NF-κB activation leads to increased TNFα, IL-

1β, and IL-6 (seen in "Inflammatory Proteins") [56]. In

vivo exposure of mice to nPM induced hippocampal RNA

changes for TLR4 components of MyD88-dependent NF-

κB activation, and the TNFα pathway.

The activation of TLR4 with TNFα induction by nPM

has implications for the neurodegenerative and cognitive

impact of air pollution exposure (see “Background”). We

hypothesize that TLR4 activation in glia is a mediator of

neurite atrophy induced in young mice by air pollution PM,

assessed as the area of silver-stained neuronal processes [8].

In co-cultures of mixed glia and neonatal neurons, nPM

impairs neurite outgrowth, mainly via the TNFα secreted

by nPM exposed mixed glia [27]. TLR4-knockout mice

showed protection from airway inflammation [57], giving a

rationale for considering neuroprotection by drugs that

block TLR4. However, blocking TLR4 in humans, as a

therapeutic approach must be considered cautiously, be-

cause attenuated TLR4 function, seen in human TLR4 SNP

variants, increases the susceptibility to infection [58].

The direct translocation of nPM into the brain, via the

nose, is consistent with the rapid translocation of

radiolabeled carbon and manganese ultrafine PM into the

brain from the olfactory neurons in the olfactory epithelium

[25, 26]. Moreover, we recently showed rapid microglial ac-

tivation in the olfactory epithelium following nPM expos-

ure, with subsequent cortical neuroinflammation [23].

Other neurodegenerative conditions also involve TLR4

in glial and neuronal responses [59]. In cerebral ischemia/

reperfusion models for stroke injury, HSP70 binds to

TLR4, activating MyD88-IRAK-TRAF6 and NF-κB

pathways, with downstream induction of TNFα and other

cytokines [60, 61], as observed for nPM-LPS responses

(Fig. 8). The synergies of cerebral ischemic damage with

air pollution, observed clinically and in a rodent model

[40], may now be understood as mediated by the nPM-

LPS TLR4 modules described here and the TLR4 role in

cerebral ischemia [59].

The role of TLR4 may extend to pro-amyloidogenic

air pollution associations [8, 62–64]. In transgenic

mouse AD models, neurodegenerative changes were

modulated with varying TLR4 expression [65, 66].

Although no TLR variant has been validated as a risk

factor for AD, TLR4-mediated monocyte responses

showed individual variations with more than 1000 QTLs

[67]. Notably, most of these QTLs involve genes associ-

ated with lysosome pathways, consistent with the endo-

somal associations of nPM-LPS in glial responses. These

QTLs may be examined in future studies for SNPs that

modify neurotoxic impact of air pollution. We antici-

pate a broad sharing of inflammatory gene variants that

converge on TLR pathways in the neurodegenerative

impact of air pollution that accelerates cognitive aging

and increases dementia risk.

Conclusions
This in vitro evidence showed TLR4-dependent and in-

dependent glial responses to nPM. Knockdown of TLR4

Fig. 11 Hippocampal responses to nPM exposure in vivo. Mouse in vivo: Chronic nPM exposure induced components of the TLR4 pathway in

hippocampus. mRNA responses by q-PCR are given, shown in relation to pathway (Fig. 7). a TLR4 mRNA was induced by nPM (p < 0.05). b MyD88

mRNA was increased by nPM (p < 0.05). c TRAF6 mRNA was decreased by nPM (p < 0.0001). d NF-κB was decreased by nPM (p < 0.05). e TNFα

mRNA was increased by nPM (p < 0.01). f TNFR2 mRNA was increased by nPM (p < 0.05). n = 7
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reduced nPM induction of numerous inflammatory cyto-

kines, and attenuated activation of NF-κB and JAK/

STAT pathways. Chronic nPM exposure caused TLR4

activation in the hippocampus and increased TNFα,

which we hypothesize is a mediator of neurite atrophy in

the hippocampus. These results further resolve the

mechanisms by which nPM elicits neuroinflammation,

and suggest TLR4’s involvement in cognitive impair-

ments from air pollution exposure.

Additional files

Additional file 1: Gene kME relationship between modules: The two

shared modules, enriched by both treatments, had strong inverse correlations

between the gene-module specific kMEs, which is the eigengene-based

connectivity for a gene within a module (nPM, R =−0.994; LPS, R =−0.968).

Each gene is given a kME for every module, and then placed into the module

of best fit. Thus, individual RNAs with increased expression had strong inverse

associations with the eigengene for the turquoise module, while RNAs with

decreased expression had strong inverse associations with the eigengene for

the blue module. As examples, TNFα had a kME of +0.93 in the blue module,

but −0.91 in the turquoise module; again, the subunits NF-κB1 and NF-κB2

had positive kMEs of +0.91 and +0.96, respectively, in the blue module, but

negative kMEs of −0.86 and −0.93, respectively, in the turquoise module.

Together this suggests that the turquoise and the blue modules represent a

single network, where the turquoise comprises the decreased RNAs in the

network and the blue comprises the increased RNAs. (ZIP 43372 kb)

Additional file 2: Figure S1. A, LPS-increased RNAs: clustered into

networks. 16 nodes, composing 6 networks and 3 individual nodes, are

depicted. B, LPS-decreased RNAs: two single nodes are depicted. Colors

denote different networks. Nodes with two colors belong to both networks.

Each network has one highlighted node (colored text, chosen by

experimenter) that best represents network function. The circle size represents

the number of genes enriched in the node. The width of connecting lines

represents the strength of connectivity between nodes, as measured by kappa

score. (ZIP 347 kb)
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