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Toll-like receptor 4 mediates microglial activation
and production of inflammatory mediators in
neonatal rat brain following hypoxia: role of TLR4
in hypoxic microglia
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Abstract

Background: Hypoxia induces microglial activation which causes damage to the developing brain. Microglia

derived inflammatory mediators may contribute to this process. Toll-like receptor 4 (TLR4) has been reported to

induce microglial activation and cytokines production in brain injuries; however, its role in hypoxic injury remains

uncertain. We investigate here TLR4 expression and its roles in neuroinflammation in neonatal rats following

hypoxic injury.

Methods: One day old Wistar rats were subjected to hypoxia for 2 h. Primary cultured microglia and BV-2 cells

were subjected to hypoxia for different durations. TLR4 expression in microglia was determined by RT-PCR, western

blot and immunofluorescence staining. Small interfering RNA (siRNA) transfection and antibody neutralization were

employed to downregulate TLR4 in BV-2 and primary culture. mRNA and protein expression of tumor necrosis

factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and inducible nitric oxide synthase (iNOS) was assessed. Reactive

oxygen species (ROS), nitric oxide (NO) and NF-κB levels were determined by flow cytometry, colorimetric and

ELISA assays respectively. Hypoxia-inducible factor-1 alpha (HIF-1α) mRNA and protein expression was quantified

and where necessary, the protein expression was depleted by antibody neutralization. In vivo inhibition of TLR4

with CLI-095 injection was carried out followed by investigation of inflammatory mediators expression via double

immunofluorescence staining.

Results: TLR4 immunofluorescence and protein expression in the corpus callosum and cerebellum in neonatal

microglia were markedly enhanced post-hypoxia. In vitro, TLR4 protein expression was significantly increased in

both primary microglia and BV-2 cells post-hypoxia. TLR4 neutralization in primary cultured microglia attenuated

the hypoxia-induced expression of TNF-α, IL-1β and iNOS. siRNA knockdown of TLR4 reduced hypoxia-induced

upregulation of TNF-α, IL-1β, iNOS, ROS and NO in BV-2 cells. TLR4 downregulation-mediated inhibition of

inflammatory cytokines in primary microglia and BV-2 cells was accompanied by the suppression of NF-κB

activation. Furthermore, HIF-1α antibody neutralization attenuated the increase of TLR4 expression in hypoxic BV-2

cells. TLR4 inhibition in vivo attenuated the immunoexpression of TNF-α, IL-1β and iNOS on microglia post-hypoxia.

Conclusion: Activated microglia TLR4 expression mediated neuroinflammation via a NF-κB signaling pathway in

response to hypoxia. Hence, microglia TLR4 presents as a potential therapeutic target for neonatal hypoxia brain

injuries.
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Background
The developing brain is highly vulnerable to oxygen

deprivation or hypoxia [1,2]. Risk factors including pla-

cental insufficiency, decreased utero-placental blood

flow, as well as neonatal pulmonary and/or cardiac dys-

function can compromise neonatal oxygenation, thus

affecting the development and growth of the brain [3,4].

Neuroinflammation, characterized by microglial activa-

tion, has been reported to play an important role in the

hypoxic injuries in the neonatal brain [5,6]. A large

number of a nascent form of microglia, known as the

amoeboid microglial cells (AMCs), preponderate in the

corpus callosum as well as the cerebellum of the devel-

oping brain [1]. Hypoxia-induced activation of AMCs is

known to result in the production of excessive amounts

of inflammatory cytokines, such as, TNF-α and IL-1β,

along with nitric oxide (NO) and reactive oxygen species

(ROS). Collectively, they cause oligodendrocyte death

and axonal degeneration, as well as disruption of the im-

mature blood–brain-barrier (BBB) in the periventricular

white matter (PWM), leading to neonatal mortality and

long-term neurodevelopmental deficits [1,6-8]. A similar

phenomenon is observed in the hypoxic developing

cerebellum in which activated AMCs have been shown

to induce Purkinje neuronal death through production

of TNF-α and IL-1β [9]. However, the mechanism via

which hypoxia induces microglial activation remains to

be fully explored. Hence, determination of the various

mechanisms controlling microglial activation will play an

important part in the suppression of neuroinflammation.

Toll-like receptors (TLRs) are first-line molecules for

initiating innate immune responses. Among more than

ten mammalian TLRs identified [5], TLR4 has been

shown to be expressed on microglia and mediates neu-

roinflammatory diseases [10]. Numerous studies have

demonstrated TLR4-dependent activation of microglia

in neurodegenerative diseases and trauma in the central

nervous system (CNS), such as Alzheimer’s disease (AD)

and Parkinson’ s disease (PD) [11,12], as well as brain in-

jury induced by ethanol [13]. Besides the above, TLR4 is

also reported to be involved in hypoxia-related diseases.

It has been reported recently that TLR4 is involved in

brain damage and inflammation after stroke and spinal

cord injury in adult mice or rats [14,15]. In fact,

increased expression of TLR4 after hypoxic treatment in

microglia has also been reported in vitro [16]; however,

the expression and putative roles of TLR4 in microglia

of neonatal rats following hypoxic injury have remained

elusive.

In light of the critical role of TLR4 in neuroinflamma-

tion and hypoxic-ischemic-related diseases, the current

study was undertaken to determine the expression, puta-

tive roles and mechanism of TLR4 in the microglia of

hypoxic neonatal rats both in vivo and in vitro.

Considering the involvement of hypoxia-inducible fac-

tor-1 alpha (HIF-1α) in the induction of TLR4 expres-

sion in tissue macrophages exposed to hypoxic stress

[17], we sought to determine its role in TLR4 expression

in hypoxic microglia. We report here that TLR4 partici-

pated in microglial activation in the hypoxic developing

brain and microglia. TLR4 expression was constitutively

expressed in microglia distributed in the corpus callo-

sum and cerebellum and was noticeably increased in the

brain of hypoxic pup rats. The increase in TLR4 expres-

sion in hypoxic microglia was dependent on HIF-1α,

and TLR4 was found to mediate the release of pro-

inflammatory mediators through the nuclear factor

kappa-light-chain-enhancer of activated B cells (NF-κB)

pathway. All these could collectively contribute to neo-

natal brain damage resulting from hypoxic exposure.

Hence, regulation of TLR4 expression in microglia may

therefore present as a novel therapeutic target for the

treatment of various pathological states that involve hyp-

oxia in the CNS.

Methods
Animals and hypoxia treatment

One-day-old Wistar rats (n = 58) were exposed to hyp-

oxia by placing them in a chamber (Model MCO 18 M;

SanyoBiomedical Electrical Co, Tokyo, Japan) filled with

a gas mixture of 5% O2 and 95% N2 for 2 h. The rats

were then allowed to recover under normoxic conditions

for 3 and 24 h, and 3, 7 and 14 days before sacrifice; an-

other group of 58 rats kept outside the chamber were

used as age-matched controls. In addition, 3-day-old

neonatal rats (n = 48) were used for the preparation of

primary culture of microglia. All experiments were car-

ried out in accordance with the National Institute of

Health Guide for the Care and Use of Laboratory Ani-

mals (NIH Publications number 80–23). The project was

approved by the Institutional Animal Care and Use

Committee, National University of Singapore (IACUC

number 095/08(A2)11). All efforts were made to reduce

the number of rats used and their suffering.

TLR4 inhibitor administration

To assess the effect of TLR4 on inflammation in neo-

natal brain following hypoxic injury, postnatal rats were

given a singe intraperitoneal injection of TLR4-specific

inhibitor CLI-095 (Invivogen, San Diego, USA, catalogue

number tlrl-cli95) dissolved in dimethyl sulfoxide (DMSO)

(0.5 mg/kg body weight) and grouped as follows: normal

control rats, hypoxia rats, rats + DMSO, hypoxia +

DMSO, rats + CLI-095, hypoxia + CLI-095. Each rat

received a single injection of vehicle or inhibitor 1 h be-

fore exposure to hypoxia (n = 3 rats at each time interval

for each group). A total of 38 rats were used for the drug

administration and the control. As there was no
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noticeable change in microglial activation after DMSO in-

jection, only results from the control, hypoxia and hypoxia

+ CLI-095 groups are presented.

Primary culture and hypoxia treatment of microglial cells

Preliminary examination by immunofluorescence label-

ing showed an apparent increase in TLR4 expression in

the corpus callosum and cerebellum. In view of this, pri-

mary culture of microglia from these brain areas was

prepared for in vitro investigations. Glial cells were

isolated from the cerebrum and cerebellum of rat pups

(3-day-old) and were placed in a 75 cm2 flask at a density

of 1.2 × 106 cells/ml of DMEM (Sigma-Aldrich, St Louis,

MO, USA) supplemented with 10% fetal calf serum

(Hyclone, Thermo Scientific, Waltham, MA, USA), non-

essential amino acids, and insulin. The flasks were then

placed in a 5% CO2 incubator at 37°C. The medium was

changed every 48 h. Once confluent (12 to 14 days),

microglia were isolated from the mixed glial population by

a method previously described [18]. The purity of micro-

glia was assessed by immunocytochemical labeling using

lectin from tomato (Lycopersicon esculentum) (1:100,

Sigma, MO, USA, catalogue number L-0401), a marker of

microglia. Microglial cultures with more than 96% purity

were used for the study. For immunostaining (as described

below) 2.5 × 105 cells/well were plated in poly-L-lysine

coated coverslips placed in 24-well plates. For hypoxia

treatment, the culture medium was changed to fresh

medium for routine culture before the cells were exposed

to hypoxia by placing them in a chamber filled with a gas

mixture of 3% O2 + 5% CO2 + 92% N2 for 24 h.

TLR4 neutralization in primary microglia

Primary culture microglia were plated in 24-well plates

with a coverslip, at a density of 2.5 × 105 cells/well and

divided into four groups: group I was exposed to

hypoxia for 24 h; group II was treated with TLR4

neutralization antibody (10 μg/ml, a non-toxic concen-

tration) (Santa Cruz Biotechnology, Santa Cruz, CA,

USA, catalogue number sc-10741) for 1 h and immedi-

ately challenged with hypoxia for 24 h; group III was

treated with TLR4 neutralization antibody for 25 h in

normoxic conditions; group IV was incubated with nor-

mal complete medium and used as a control. After the

various treatments, the cells were used for immunofluor-

escence staining.

Double immunofluorescence labeling in postnatal rats

and primary culture microglia

Double immunofluorescence was carried out in the cor-

pus callosum and cerebellum of rats at 3 days after hyp-

oxic exposure (n = 5) and their corresponding controls

(n = 5) to confirm the expression of TLR4 in microglia.

Rats were anesthetized in 6% sodium pentobarbital and

perfused with a fixative containing 2% paraformaldehyde

in 0.1 M phosphate buffer, pH 7.4. The brains were

removed and placed in the same fixative for 4 h, after

which they were kept at 4°C overnight in 0.1 M phos-

phate buffer containing 15% sucrose. Sections (40 μm

thick) of the corpus callosum and cerebellum were cut

using a cryostat (Leica Microsystems Nussloch GmbH,

Nussloch, Germany). The sections were washed with

PBS, blocked with 5% normal serum for 1 h, and incu-

bated in anti-rabbit TLR4 polyclonal antibody (dilution

1:100; Santa Cruz Biotechnology, catalogue number sc-

10741) overnight at room temperature. After incubation,

Cy3-conjugated secondary antibody was added and incu-

bated at room temperature for 1 h. The sections were

again incubated with the FITC-conjugated lectin from

tomato (Lycopersicon esculentum) (1:100). Double im-

munofluorescence staining was also carried out with TLR4

and OX42 (1:100, Chemicon, International, Temecula, CA,

catalogue number CBL1512) for the corpus callosum. The

sections were then washed in PBS and mounted using a

fluorescent mounting medium (Dako, Oregon City, USA,

catalogue number S3023). Cellular localization was then

examined under a confocal microscope (FV1000; Olympus,

Tokyo, Japan) with the same exposure settings for each

comparison group. Double immunofluorescence was also

carried out in hypoxic rats to investigate the changes of

TNF-α, IL-1β and iNOS expression after injection of TLR4

inhibitor. Double immunofluorescence staining of iNOS

(anti-mouse 1:100, BD Pharmingen, San Jose, CA USA,

catalogue number 610432) expression at 3 h, as well as that

of TNF-α (1:100; anti-rabbit polyclonal, Millipore Bio-

science Research Reagents, Billerica, MA, USA, catalogue

number AB1837P) and IL-1β (1:100, anti-rabbit polyclonal,

Millipore Bioscience Research Reagents, catalogue number

AB1832P) at 3 d after hypoxia in microglia (lectin labeled)

in CLI-095-injected rats and the corresponding controls

were processed as described above. For double immuno-

fluorescence staining in the primary microglia, the cells

were fixed with 4% paraformaldehyde for 20 minutes and

separately incubated with anti-rabbit TLR4, anti-rabbit

TNF-α, anti-rabbit IL-1β, anti-mouse iNOS and anti-rabbit

NF-κB/p65 (1:100, Santa Cruz Biotechnology, catalogue

number sc-109) and were processed with the immuno-

fluorescence staining as described above, then the sections

were mounted using a fluorescent mounting medium

(Sigma, catalogue number F6057).

BV-2 cell culture and hypoxia treatment

BV-2 cells were used for in vitro study because our re-

cent studies [19,20] have shown that this microglial cell

line responds swiftly to hypoxia exposure. This was con-

firmed in this study, in which expression of HIF-1α was

readily detected in hypoxic BV-2 cells, and the induced
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HIF-1α expression was acute in onset. BV-2 cells were cul-

tured at 37°C in growth medium containing DMEM sup-

plemented with 2% fetal bovine serum (FBS) (Invitrogen,

Carlsbad, CA, USA), and 1% antibiotic in a humidified

incubator containing 5% CO2, and 95% air. The culture

medium was changed to fresh medium for routine culture

before the cells were exposed to hypoxia by placing them in

a chamber filled with a gas mixture of 3% O2 + 5% CO2 +

92% N2 for 2, 4, 6, 8, 12 and 24 h.

HIF-1α neutralization in BV-2 microglia

BV-2 microglia were plated in 24-well plates with cover-

slips at a density of 1.5 × 105 cells/well and divided into

four groups: group I was subjected to hypoxia for 8 h;

group II was treated with HIF-1α antibody at (10 μg/ml,

a non-toxic concentration) (Chemicon, catalogue num-

ber 400080) for 1 h and immediately challenged with

hypoxia for 8 h; group III was treated with HIF-1α anti-

body for 9 h in normoxic conditions; group IV was incu-

bated with normal growing medium and was used as a

control. After various treatments, the cells were used for

immunofluorescence staining. For western blot analysis,

BV-2 cells were plated in 6-well plates following the

above treatments.

Silencing of TLR4 with small interfering RNA (siRNA)

TLR4 expression was silenced using TLR4 small interfer-

ing RNA (siRNA) (Ambion, Foster City, CA, USA, cata-

logue number s75207) according to the manufacturer’s

instructions. Non-treated BV-2 cells and BV-2 cells trans-

fected with nonspecific scramble siRNA that does not

target any mouse genes (Control siRNA) were used as

controls. The reverse transfection method was adopted

for silencing. Briefly, after subculture, BV-2 cells were

resuspended in Optimem (GIBCO, Invitrogen, catalogue

number 31985070) and plated in 6-well plates at a density

of 3 × 105 cells/ml. This was followed by adding 500 μl

Optimem with 10 μl siRNA and 4 μl lipofectamine drop-

wise in the above well. The cells were incubated with the

siRNA mix for 8 h and then the medium was replaced

with DMEM with 2% FBS without antibiotics and incu-

bated for another 16 h for RNA extraction to check the

knockdown efficiency by reverse transcription (RT)-PCR.

The microglia were subjected to hypoxia for 8 h at 40 h

after transfection. After that, cells were either fixed for im-

munofluorescence staining, or protein was extracted for

western blotting as below. For cell viability analysis, re-

verse transfection was carried out in a 24-well plate. At

40 h after transfection, both the transfected and non-

transfected BV-2 cells were subjected to hypoxia for 8 h.

Cell viability analysis of BV-2 cells

The effect of hypoxia and siRNA transfection on the via-

bility of BV-2 cells was evaluated by CellTiter 96W

AQueous One Solution Cell Proliferation Assay kit (Pro-

mega, Fitchburg, WI, USA, catalogue number G3580).

The cell viability of the non-treated BV-2 cells, control

siRNA transfected BV-2 cells, TLR4 siRNA transfected

BV-2 cells and the corresponding cells subjected to

hypoxia for 8 h was measured. We added 3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2 h-tetrazolium, inner salt (MTS) reagent

into each well (20 μl/well) followed by incubation for 4 h

at 37°C in a humidified atmosphere of 5% CO2 and 95%

air, before the absorbance at 490 nm was measured using a

microplate reader (GENIOS, Tecan, Switzerland). Cell via-

bility was expressed as a percentage of control BV-2 cells.

Immunofluorescence staining in BV-2 cells

BV-2 cells were fixed with 4% paraformaldehyde in

0.1 M PBS for 15 minutes. Following rinsing with PBS,

the coverslips with adherent cells were used for im-

munofluorescence staining. In every group, BV-2 cells

were incubated, with either anti-rabbit TLR4 (1:100),

anti-mouse HIF-1α (1:100), anti-rabbit TNF-α (1:100;

Chemicon, Temecula, CA, USA, catalogue number

AB2148P), anti-rabbit IL-1β (1:100; Chemicon, catalogue

number AB1413), anti-mouse iNOS (1:100) or anti-

rabbit NF-κB/p65 (1:100) overnight at room temperature.

Subsequently, the cells were incubated in FITC/Cy3-con-

jugated secondary antibodies for 1 h at room temperature.

After washing, the coverslips were mounted using a fluor-

escent mounting medium with 40,6-diamidino-2-phenylin-

dole (DAPI). All images were captured using a confocal

microscope (Fluoview1000, Olympus, Tokyo, Japan).

Real time RT-PCR

Total RNA was extracted from all of the cells using the

RNeasy Mini kit (Qiagen, Valencia, CA, USA). RT reac-

tions were performed using the RT system kit (Promega,

Singapore). The resultant cDNA was diluted 10 times in

double distilled H2O and kept at −20°C for RT-PCR ana-

lysis. Primer pairs for HIF-1α, TNF-α, IL-1β, iNOS and

β-actin were designed using the primer design program

(Primer 3 software version 1.0). The primer sequences

for the genes and their corresponding amplicon size are

listed in Table 1. RT-PCR was performed using a Light-

Cycler (Roche Diagnostics, Indianapolis, IN, USA), and

individual RT-PCRs were carried out in glass Light

Cycler capillaries (Roche Diagnostics) according to the

manufacturer’s instructions. The RT-PCRs were carried

out in a 10-μl final volume containing the following: 5 μl

2xSYBR Green I master mix (Qiagen); 1 μl of 5 μM for-

ward primer and 1 μl of 5 μM reverse primer; and 3 μl

of diluted cDNA. After an initial denaturation step at

95°C for 15 minutes, temperature cycling was initiated.

Each cycle consisted of denaturation at 94°C for 15 sec,

annealing at 60°C for 25 sec, and elongation at 72°C for
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20 sec. In total, 55 cycles were performed. Mouse β-

actin was amplified as the control for normalizing the

quantities of transcripts of each of the genes mentioned

above. The differences in expression for HIF-1α, TNF-α,

IL-1β and iNOS between the control and treated cells

were calculated by normalizing with the β-actin gene ex-

pression according to the following formula [21]:

�Fold change ¼ 2� Ct controlð Þ gene��Ct controlð Þ actin½ �

� Ct activatedð Þgene�� Ct activatedð Þactin½ �:

Western blotting analysis

Culture medium was removed from the culture plate,

and cells were washed twice with ice-cold PBS. Cells

were lysed with lysis buffer, mechanically scraped off

with a rubber scraper and centrifuged at 13,000 rpm for

25 minutes. Protein concentration of samples was then

determined by using a protein assay kit (Bio-Rad,

Hercules, CA, USA, catalogue number 500–0002). Next,

20 μg of the protein sample was loaded and separated

on 10% sodium dodecyl sulfate-polyacrylamide gels. The

proteins embedded in the gel were then transferred to

polyvinylidene difluoride membranes using a semidry

electrophoretic transfer cell (Bio-Rad). The membranes

were washed with TBS-0.1% Tween buffer and then

incubated with 5% nonfat dry skim milk for 30 minutes

at room temperature. Next, they were incubated with

anti-mouse TLR4 (1:1000; Santa Cruz Biotechnolo-

gy, catalogue number sc-293072), anti-mouse HIF-1α

(1:1000), anti-rabbit TNF-α (1:1000), anti-rabbit IL-1β

(1:1000), anti-rabbit NF-κB/p65 (1:1500), and anti-

mouse β-actin (dilution 1:10,000; Sigma-Aldrich, cata-

logue number A5441) overnight on a shaker at 4°C.

After three washes with TBS-0.1% Tween, the mem-

branes were incubated with horseradish peroxidase-

conjugated secondary antibody for 1 h. The proteins

were detected with a chemiluminescence detection sys-

tem according to the manufacturer’s instruction (Super-

signal West Pico Horseradish Peroxidase Detection Kit;

Pierce Biotechnology, Rockford, IL, USA, catalogue

number 34077) and developed on the film. The band in-

tensity was quantified in Image J software (National

Institutes of Health, NIH, USA). All experiments were

repeated at least in triplicate.

Assay of TNF-α and IL-1β concentration in primary

microglia by ELISA

The levels of TNF-α and IL-1β in the supernatant of

primary cultured microglia after hypoxia and TLR4

neutralization were determined with TNF-α ELISA kit

(IBL, Hamburg, Germany, catalogue number BE45471)

and IL-1β ELISA kit (IBL, catalogue number 27193).

The ELISA measurements were performed according to

the manufacturer’s instructions.

Measurement of reactive oxygen species by flow

cytometry

Intracelluar ROS production in BV-2 cells of different

groups was evaluated by detecting the fluorescence

intensity of 20, 70-dichlorofluorescene, the oxidized prod-

uct of the fluoroprobe 5-(and 6)-chloromethyl-20, 70-

dichlorodihydrofluorescein diacetate (CM-H2DCFDA,

Molecular Probes, Invitrogen, catalogue number C6827)

according to the manufacturer’s instruction. The amount

of ROS production was considered to be directly propor-

tional to fluorescence intensity given as cell counts and

fluorescence intensity at the y-axis in the flow cytometry.

Nitric oxide concentration measurement

BV-2 cells were treated as described above and the

supernatant was collected. NO concentration was mea-

sured by NO colorimetric BioAssay™ Kit (US Biological,

Swampscott, MA, USA, catalogue number K262-200),

according to the manufacturer’s instruction.

Phosphorylated-NF-κB p65 protein level analysis

After siRNA transfection, the cell pellets were collected

and then the total protein in control and treated BV-2

cells was extracted. The protein concentration was mea-

sured by Pierce BCA protein Assay Kit (Pierce Biotech-

nology). Phospho-NF-κB/p65 protein level analysis was

carried out using PathScan Phospho-NF-κB/p65 (Ser536)

Sandwich ELISA Kit (Cell signaling, Danvers, MA, USA,

catalogue number 7173) according to the manufacturer’s

instruction.

Table 1 Sequence of specific primers used for

quantitative real-time PCR

Gene Sequence

TLR4 Forward ctacctggaatgggaggaca

Reverse cttagcagccatgtgttcca

HIF-1α Forward gcagcaggaattggaacatt

Reverse gcatgctaaatcggagggta

TNF-α Forward cgtcagccgatttgctatct

Reverse cggactccgcaaagtctaag

IL-1β Forward gcccatcctctgtgactcat

Reverse aggccacaggtattttgtcg

iNOS Forward gcttgtctctgggtcctctg

Reverse ctcactgggacagcacagaa

NF-κB Forward gcgtacacattctggggagt

Reverse ccgaagcaggagctatcaac

TLR4, Toll-like receptor 4; HIF-1α, Hypoxia-inducible factor-1 alpha; iNOS,

Inducible nitric oxide synthase; NF-κB, Nuclear factor kappa-light-chain-

enhancer of activated B cells.
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Statistical analyses

The data were presented as mean ± SD. The statistical

significance of differences between control, hypoxic and

treatment groups was calculated using Student’s t-test

and one-way analysis of variance (ANOVA). Statistical

significance was determined by *P <0.05 and **P <0.01.

Results
TLR4 expression is increased in cerebral and cerebellar

microglia after hypoxia exposure in neonatal rats

To assess the role of TLR4 in microglia in the develop-

ing brain following a hypoxic injury, we first profiled the

change in TLR4 expression in microglia in the corpus

Figure 1 Toll-like receptor 4 (TLR4) immunofluorescence and protein expression was increased in the corpus callosum and cerebellum

in neonatal rats following hypoxic exposure. Confocal images showing the distribution of lectin/OX42 (green) and TLR4 (red) immunoreactive cells

in the corpus callosum and cerebellum at 3 days after hypoxic exposure and the corresponding control (A-C). Colocalized expression of TLR4 and lectin/

OX42 immunoreactive cells (arrows) in corpus callosum (Ac, Af; Bc, Bf) and cerebellum (Cc, Cf) can be seen. Note the upregulated expression of TLR4 in

some lectin/OX42-positive microglial cells after hypoxia (Af, Bf, Cf). Western blotting of TLR4 protein expression in the corpus callosum (3 h, and 1, 3, 7 and

14 days) and cerebellum (3 h, and 1 and 3 days) of rats after hypoxic exposure and their corresponding controls is shown. The upper panels show specific

bands of TLR4 (95 kDa) and β-actin (43 kDa). The lower panels are bar graphs showing significant changes in the optical density following hypoxic

exposure (h) (normalized with β-actin, shown as fold change of control in 3 h (c)). TLR4 protein expression in the corpus callosum is significantly increased

at 3 h, and 1 and 3 days after hypoxic exposure when compared with the matching control. At 7 and 14 days, TLR4 protein expression level was declined

in comparison with the comparing control (D). TLR4 protein expression level in the cerebellum also increased significantly following hypoxia at 3 h, and 1

and 3 days when compared with the matching control (E). Significant differences in protein levels between hypoxic and control rats are expressed as *P

<0.05 and **P <0.01. Fold-change values are calculated from triplicates and represented as mean ± SD. Scale bars in A-C = 50 μm. TLR4, Toll-like receptor 4.
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callosum and cerebellum, as well as cultured microglia

subjected to hypoxia. In vivo, most TLR4 expression was

colocalized in the lectin/OX42-labeled microglia in the

corpus callosum as well as in the white matter of the

cerebellum (Figure 1). In the corpus callosum, weak

TLR4 expression was expressed in sporadic microglia

but was increased in microglia 3 days after hypoxia

(Figure 1A and B). In the cerebellum, TLR4 immunoex-

pression, which was weak in the intensity of microglia in

control rats, was also enhanced at 3 days after hypoxic

exposure (Figure 1C). Western blot analysis of protein

from the corpus callosum showed that TLR4 protein

expression level was increased at 3 h after hypoxic

exposure when compared with the matching control. A

similar phenomenon was observed in rats killed at 1 and

3 days after hypoxia (Figure 1D). Likewise, TLR4 protein

level in the cerebellum also increased significantly the

first 3 days after hypoxia compared to control by west-

ern blot analysis (Figure 1E). Consistent with results

in vivo, changes in TLR4 immunoexpression were also

observed in the primary cultured microglia, in which TLR4

immunofluorescence intensity was markedly enhanced ver-

sus controls when the cells were subjected to hypoxia for

24 h (Figure 2A). It is noteworthy that microglial external

morphology and cell density remained relatively unaltered

after 24 h of hypoxia (Figure 2B).

Figure 2 Toll-like receptor 4 (TLR4) expression was increased in primary cultured microglia following hypoxia. (A) Confocal images

showing the expression of TLR4 (Ab, Ae; red) in primary cultured microglia labeled with lectin (Aa, Ad; green) in both control and hypoxia for

24 h. TLR4 immunoflurosence intensity is markedly enhanced after hypoxia exposure (Af) in comparison with the control (Ac). Nuclei are stained

with DAPI (blue). (B) TLR4 was neutralized with its antibody in control and hypoxia conditions. In control microglia, microglia + TLR4 Ab,

microglia + hypoxia and microglia + hypoxia + TLR4 Ab, there is no noticeable difference in cell morphology between different groups under

the phase-contrast microscope. Scale bars = 20 μm (A) and 100 μm (B).
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TLR4 blocking in primary microglia reduced production of

inflammatory mediators

To investigate the role of TLR4 in the activated microglia,

we blocked TLR4 using its antibody before hypoxic expos-

ure and then examined the expression of inflammatory

mediators. Treatment of primary microglia with TLR4

antibody did not affect the cell morphology and cell dens-

ity (Figure 2B). TNF-α, IL-1β and iNOS immunofluores-

cence in microglia was noticeably enhanced after hypoxic

exposure but was attenuated in hypoxic microglia

Figure 3 (See legend on next page.)
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pretreated with TLR4 antibody (Figure 3A). To further

confirm the changes in TNF-α and IL-1β, quantitative

anlysis of TNF-α and IL-1β in the supernatant of cultured

microglia was performed by ELISA. In parallel to the

changes in the protein expression revealed by immuno-

fluorescence staining, both the secretion of TNF-α and

IL-1β, especially the former, was increased after hypoxic

treatment and the increase was markedly suppressed by

TLR4 neutralization (Figure 3B and C).

Hypoxic exposure up-regulated TLR4 expression in BV-2

cells

The BV-2 microglial cell line was used for the investiga-

tion of TLR4 function in hypoxic microglia. The HIF-1α

subunit is tightly regulated by oxygen and its upregula-

tion is regarded as evidence of the hypoxic condition. To

confirm that the hypoxic effect on BV-2 cells was suc-

cessfully achieved, HIF-1α expression was first assessed

by RT-PCR and western blot analysis. The external cell

morphology of BV-2 cells subjected to hypoxia for 8 h

appeared relatively unchanged (Figure 4A) and the cell

viability was not significantly different from the control

cells (Figure 4B). By RT-PCR, HIF-1α mRNA expression

level was comparable between the hypoxia and control

BV-2 cells (Figure 4C). In contrast, protein expression

of HIF-1α was significantly increased following 2 and

4 h hypoxic exposure, especially so with 4 h of hypoxia

(P<0.01) (Figure 4D). Immunofluorescence staining

showed that HIF-1α, which was weakly expressed in nor-

mal BV-2 cells, was markedly enhanced after 4 h of hy-

poxia (Figure 4E). TLR4 protein expression level in BV-2

cells was compared between the control and hypoxic

groups. TLR4 was increased after 4, 6, 8 and 12 h of

hypoxic exposure for which the TLR4 protein expression

was most pronounced at 8 h as revealed by western blot

(Figure 5A). Immunofluorescence staining confirmed

that TLR4 was weakly expressed in normal BV-2 cells

but its immunofluorescence intensity was increased con-

spicuously after 8 h of hypoxia (Figure 5B).

Silencing of TLR4 gene in BV-2 cells

To further confirm the role of TLR4 in BV-2 cells after

hypoxic treatment, we used siRNA knockdown TLR4

gene in BV-2 cells. BV-2 cells were either transfected

with TLR4 siRNA or control siRNA. Transfected BV-2

cells appeared more ramified when compared with the

control BV-2 cells under the phase-contrast microscope

(Figure 6A). Compared with the non-transfected control

BV-2 cells, the cell viability was about 96% after control

siRNA transfection, and 85% after TLR4 siRNA transfec-

tion (Figure 6B). TLR4 mRNA expression level in BV-2

cells was significantly decreased when transfected with

TLR4 siRNA. The silencing efficiency was achieved at

about 88.96% at 24 h when compared to control siRNA-

transfected cells (Figure 6C). Moreover, TLR4 protein

expression was reduced by about 65% in TLR4 siRNA-

transfected cells compared to control siRNA-transfected

cells at 48 h after transfection as revealed by western blot

analysis (Figure 6D). This was further verified by confocal

immunofluorescence microscopy, which showed an ob-

vious reduction in TLR4 immunostaining in TLR4 siRNA-

transfected BV-2 cells (Figure 6E).

Knockdown of TLR4 expression in BV-2 cells inhibited

production of inflammatory mediators

Increase in mRNA expression of hypoxia-induced in-

flammatory mediators such as TNF-α, IL-1β and iNOS

was partially inhibited in hypoxic BV-2 cells with TLR4

gene knockdown. TNF-α mRNA expression level was

increased five-fold in BV-2 cells transfected with control

siRNA and subjected to hypoxia for 8 h; however, when

BV-2 cells transfected with TLR4 siRNA were subjected

to hypoxia, the increase was inhibited significantly. A

similar trend was observed in IL-1β and iNOS mRNA

expression levels across the different groups. The most

striking change was observed in iNOS mRNA expres-

sion, which was increased by nine times after BV-2 cells

were transfected with control siRNA and subjected to

hypoxia for 8 h. It was substantially decreased by about

55% in BV-2 cells transfected with TLR4 siRNA and

exposed to hypoxia for the same duration (Figure 7A).

In parallel with mRNA expression, western blot results

demonstrated that TNF-α, IL1-β and iNOS protein ex-

pression levels were also inhibited considerably in hyp-

oxic BV-2 cells transfected with TLR4 siRNA compared

with those transfected with control siRNA (Figure 7B).

(See figure on previous page.)

Figure 3 Neutralization of Toll-like receptor 4 (TLR4) with its antibody attenuated the hypoxia-induced expression of TNF-α, IL-1β, and

inducible nitric oxide synthase (iNOS) in primary cultured microglia. TLR4 was neutralized with its antibody to assess its role in production

of inflammatory factors. (A) Confocal images showing the expression of TNF-α (d-f), IL-1β (m-o) and iNOS (v-x) in primary microglia labeled with

lectin (a-c, j-l, s-u; green) in different groups. Very weak TNF-α, or almost undetectable IL-1β and iNOS immunoexpression is detected in the

control microglia (g, p, y). The immunoflurescence intensity is enhanced in microglia subjected to hypoxia exposure (h, q, z). This increased

immunofluorescence intensity is attenuated in microglia exposed to hypoxia but pretreated with TLR4 Ab (i, r, za). TNF-α (B) and IL-1β (C)

concentration in the supernatant of microglia in different groups was investigated with ELISA. Release of TNF-α and IL-1β is significantly increased

after hypoxia in comparison to the control levels. The hypoxia-induced increase in TNF-α and IL-1β release was suppressed when the microglia

were neutralized with TLR4 antibody. Significant differences in protein levels between different groups are indicated as *P <0.05 and **P <0.01.

The values represent the mean ± SD in triplicate. Scale bars in A = 20 μm.

Yao et al. Journal of Neuroinflammation 2013, 10:23 Page 9 of 21

http://www.jneuroinflammation.com/content/10/1/23



Confocal immunofluorescence microscopy showed an

obvious reduction in TNF-α, IL-1β and iNOS immunos-

taining intensity in hypoxic BV-2 cells with TLR4

knockdown compared with the hypoxic control siRNA-

transfected BV-2 cells (Figure 7C). Flow cytometry

results showed that intracellular ROS production, which

was significantly increased in hypoxic control siRNA-

transfected BV-2 cells, was suppressed significantly in

hypoxic BV-2 cells with TLR4 knockdown compared

with the former (Figure 8A). In addition, similar changes

in NO concentration in the supernatant of different

groups mentioned above were observed (Figure 8B).

Figure 4 (See legend on next page.)
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Hypoxia-induced increase in TLR4 expression in BV-2 cells

was via HIF-1α

We have shown that hypoxia modulates TLR4 expres-

sion in microglia. However, the underlying mechanism

of TLR4 expression in hypoxic BV-2 cells remains

unclear. It has previously been reported that hypoxic

stress upregulates the expression of TLR4 in macro-

phages via HIF-1, of which the main subunit, HIF-1α,

binds to the TLR4 promoter region under hypoxic con-

ditions [16]. To determine the mechanism of TLR4

(See figure on previous page.)

Figure 4 Hypoxia-inducible factor-1 alpha (HIF-1α) expression in hypoxic BV-2 cells. (A) The external cell morphology appears relatively

unchanged in BV-2 cells exposed to hypoxia for 8 h when compared with the control. (B) Bar graph shows the viability of BV-2 cells after hypoxia

compared to control. Note that the viability of cells in the two groups is comparable. (C) Reverse transcription (RT)-PCR analysis of HIF-1α mRNA

expression in BV-2 cells exposed to hypoxia for 2, 4, and 6 h and control (c). Note that there is no significant difference between different groups.

(D) Western blot analysis of HIF-1α protein expression in different groups. Specific band of HIF-1α (120 kDa) and β-actin (43 kDa) is shown in the

upper panel of D. Bar graphs in the lower panel of D shows significant changes in the optical density following 2 and 4 h of hypoxic exposure

(normalized with β-actin, shown as fold change of control), notably after exposure to hypoxia for 4 h. (E) Confocal images showing the

expression of HIF-1α in BV-2 cells and those exposed to hypoxia for 4 h. Weak HIF-1α expression is detected in the control BV-2 cells (Eb, Ec). The

immunofluorescence intensity is enhanced markedly after hypoxic exposure (Ee, Ef). Significant differences in protein levels between hypoxic and

control BV-2 cells are indicated as *P <0.05 and **P <0.01. The values represent the mean ± SD in triplicate. Scale bars = 100 μm (A) and 20 μm (E).

Figure 5 Toll-like receptor 4 (TLR4) expression was increased in BV-2 cells following hypoxia. (A) Western blotting of TLR4 protein

expression in BV-2 cells exposed to hypoxia for 2, 4, 6, 8 and 12 h and control (c). The left panel shows specific bands of TLR4 (95 kDa) and

β-actin (43 kDa). The right panel is a bar graph showing significant changes in the optical density following hypoxic exposure (normalized with

β-actin, shown as fold change of control). Note significant increase in TLR4 expression after hypoxic treatment of varying durations in BV-2 cells,

especially at 8 h. (B) Confocal images showing TLR4 expression in control BV-2 cells and those exposed to hypoxia for 8 h. Weak TLR4 expression

is detected in the control BV-2 cells (Bb, Bc), with enhanced immunofluorescence intensity after 8 h of hypoxic exposure (Be, Bf). Significant

differences between control and hypoxic BV-2 cells are expressed as *P <0.05 and **P <0.01. The values represent the mean ± SD in triplicate.

Scale bar in B = 20 μm.
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Figure 6 Downregulation of Toll-like receptor 4 (TLR4) after TLR4 siRNA transfection in BV-2 cells. The cells appear more ramified with

long extending processes when transfected with either control siRNA or TLR4 siRNA, when compared with the non-transfected control cells

under the phase-contrast microscope (A). The viability of BV-2 cells transfected with control siRNA and TLR4 siRNA is 96% and 85%, respectively,

of the non-transfected control value (B). Silencing efficiencies were analyzed by reverse transcriptase (RT)-PCR (C), western blots (D) and

immunofluorescence staining (E) at 24, 48 and 48 h after transfection respectively. RT-PCR analysis shows that the efficiency of siRNA-mediated

suppression of TLR4 is about 88.9% compared to negative control (normalized with β-actin) (C). (D) The upper panel shows the specific band of

TLR4 (95 kDa) and β-actin (43 kDa). The lower panel shows bar graphs depicting significant changes in the optical density following hypoxic

exposure (given as fold change of the control siRNA transfected group). Note the remaining TLR4 protein expression in TLR4 siRNA-transfected

BV-2 cells is about 38% compared to the control siRNA-transfected BV-2 cells. Immunofluorescence images show that TLR4 immunoreactivity is

markedly reduced in TLR4 siRNA transfected BV-2 cells compared to negative control (E). *P <0.05 and **P <0.01. The values represent the mean

± SD in triplicate. Scale bars = 100 μm (A) and 20 μm (E).
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Figure 7 (See legend on next page.)
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increase in hypoxic microglia, we next investigated the

role of HIF-1α in the regulation of TLR4 expression in

hypoxic BV-2 cells. Earlier, we showed that HIF-1α

mRNA expression level was not significantly affected

but that of the protein expression was significantly

increased in hypoxic BV-2 cells compared with the con-

trol (Figure 4). Hence, we inhibited HIF-1α protein func-

tion using HIF-1α antibody in BV-2 cells. Western blot

analysis showed that TLR4 expression level, which was

increased after hypoxic exposure for 8 h, was significantly

reduced when hypoxic cells were pretreated with HIF-1α

antibody and returned to control levels (Figure 9).

NF-κB pathway was involved in TLR4 mediated microglial

activation after hypoxic stress

NF-κB activation has been reported to be involved in

TLR4 signaling in microglia. NF-κB is an essential tran-

scription factor for cytokines and iNOS expression in

microglia after hypoxic treatment [22]. To gain further

insight into the downstream effects of TLR4 expression

in hypoxic microglia, we sought to determine whether

the NF-κB pathway activation is responsible for the tar-

get gene expression induced by TLR4 after hypoxic

treatment in microglia. This study confirmed that hyp-

oxia induced the activation of the NF-κB pathway in

microglial cells both in primary cultured (Figure 10A)

and in BV-2 cells (Figure 10B).

In BV-2 cells, western blotting analysis indicated a sig-

nificant increase in NF-κB in control siRNA-transfected

BV-2 cells exposed to hypoxia when compared with the

corresponding control. The increase in NF-κB expres-

sion was significantly prevented when BV-2 cells with

TLR4 knockdown were exposed to hypoxia (Figure 10C).

Additionally, the localization of the p65 subunit of NF-κB

was assessed by immunofluorescence. Hypoxic exposure

was found to increase the expression of the NF-κB sub-

unit p65 in both the nucleus and cytoplasm, whereas

NF-κB p65 was localized primarily in the cytoplasm in

microglia during the resting state. Importantly, the

immunofluorescence intensity of NF-κB p65 in both

the nucleus and cytoplasm was reduced in the hypoxic

TLR4 knockdown BV-2 cells compared with the hyp-

oxic non-transfected and scramble siRNA-transfected

BV-2 cells (Figure 10B). Similar results were observed

in primary cultured microglia, in which the NF-κB sub-

unit p65 expression in both the nucleus and cytoplasm

was reduced in cells with blockade of TLR4 by antibody

neutralization compared with the strong immunofluor-

escence intensity in the nucleus and cytoplasm induced

by hypoxic exposure (Figure 10A). ELISA analysis of

phospho-NF-kB p65 proteins showed that the phospho-

NF-kB p65 protein expression was increased 1.5-fold

following hypoxia, but the increase was inhibited in

hypoxic BV-2 cells with TLR4 knockdown, confirming

the results derived from western blot analysis and im-

munofluorescence (Figure 10D).

TLR4 inhibition attenuated the expression of

inflammatory mediators in neonatal rats following

hypoxic injury

To investigate the effect of TLR4 in the hypoxia-induced

neuroinflammation in vivo, a specific TLR4 inhibitor

CLI-095 was administrated into the neonatal rats before

hypoxic exposure. Immunoexpression of TNF-α, IL-1β

and iNOS on microglia both in corpus callosum and

cerebellum was investigated by double immunofluores-

cence staining. Increase in TNF-α and IL-1β expression

in microglia in the corpus callosum and cerebellum was

observed at 3 days after the hypoxic exposure but the in-

crease was noticeably suppressed in TLR4-inhibited rats

(Figure 11). In comparison to TNF-α and IL-1β, iNOS

immunoexpression in microglia appeared to be transient

and was most intense at 3 h after hypoxia both in the

corpus callosum and cerebellum. Based on this time

point, an obvious attenuation in iNOS immunofluores-

cence intensity on microglia in CLI-095-injected rats

was confirmed when compared with rats subjected to

hypoxia only (Figure 12).

(See figure on previous page.)

Figure 7 Suppression of Toll-like receptor 4 (TLR4) with siRNA reduced the mRNA, protein expression and immunoreactivity of TNF-α,

IL-1β and inducible nitric oxide synthase (iNOS) induced by hypoxic stress in BV-2 cells. (A) Reverse transcriptase (RT)-PCR analysis of TNF-

α, IL-1β and iNOS gene expression in BV-2 cells transfected with control siRNA, transfected with control siRNA + hypoxia, transfected with TLR4

siRNA and TLR4 siRNA + hypoxia. Note that TNF-α, IL-1β and iNOS mRNA expression is increased significantly by different amountsrespectively

after hypoxic exposure in control siRNA-transfected BV-2 cells (TNF-α, 5-fold; IL-1β, 6-fold; iNOS, 9-fold) (normalized with β-actin), but the increase

was significantly suppressed in hypoxic TLR4 siRNA-transfected BV-2 cells compared with control siRNA-transfected BV-2 cells exposed to hypoxic

stress. Notably, iNOS mRNA expression is decreased by 55% of the control. (B) Western blot analysis of TNF-α, IL-1β and iNOS protein expression

in different groups of BV-2 cells given different treatments. The upper panel shows specific bands of TNF-α (25.6 kDa), IL-1β (17 kDa), iNOS

(130 kDa) and β-actin (43 kDa). The lower panel of bar graphs shows significant changes in the optical density following hypoxic exposure (given

as fold change of control siRNA transfected group). TNF-α, IL-1β and iNOS protein expressions are significantly increased after hypoxic exposure

in control siRNA-transfected BV-2 cells and this increase is significantly decreased after hypoxic exposure in TLR4-transfected groups.

(C) Immunofluorescence images show that TNF-α, IL-1β and iNOS immunoreactivity is markedly reduced in TLR4 siRNA-transfected BV-2 cells

subjected to hypoxic exposure compared to cells transfected with control siRNA. *P <0.05 and **P <0.01. The values represent the mean ± SD in

triplicate. Scale bar in C = 20 μm.
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Discussion
Microglial cells are the primary immune effector cells in

the brain and play a pivotal role in the neuroinflamma-

tory processes associated with a variety of neurological

and pathological disorders [23]. We have reported that

microglia are involved in hypoxic injuries in the develop-

ing brain, affecting both neurons and oligodendrocytes

[1,6,24]. Hence, a fuller understanding of the underlying

molecular mechanisms of microglial activation under

such conditions would be desirable for the design of a

novel therapeutic strategy for the management of hyp-

oxic damage.

It is well documented that TLR4 in microglia is a key

player of neuroinflammation in several neurodegenera-

tive and CNS trauma diseases [12-14,25]. The data pre-

sented herein provide the first evidence of the role of

microglial TLR4 in a neonatal rat model of hypoxic in-

jury. It is unequivocal from the present results that

TLR4 signaling participates in the microglial activation

in the hypoxic developing brain. TLR4 immunoexpres-

sion was localized in microglia in the neonatal rat corpus

callosum and cerebellum and was increased in hypoxia.

In vitro studies further demonstrated that TLR4 expres-

sion in hypoxic microglia was dependent on HIF-1α and

more importantly, that TLR4 mediates the production of

inflammatory mediators through the NF-κB pathway.

The effect of TLR4 as demonstrated in vitro was further

confirmed in vivo by TLR4 inhibition with its specific in-

hibitor, namely, CLI-095. It is therefore suggested that

this TLR4 pathway activation contributes to the neonatal

brain damage resulting from hypoxic exposure.

Hypoxia results in changes in the signaling pathways

and gene expression related to physiological as well as

pathological responses. We have shown that TLR4 in

microglia was overexpressed in the cerebrum and cere-

bellum of neonatal rats after hypoxic treatment. Very

interestingly, many in vivo experimental and clinical

studies have similarly reported that TLR4 expression is

elevated in cells and tissues in hypoxia-related disease.

Figure 8 Suppression of Toll-like receptor 4 (TLR4) with siRNA

reduced the production of reactive oxygen species (ROS) and

nitric oxide (NO) induced by hypoxic stress in BV-2 cells.

Intracellular ROS and production of NO in BV-2 cells transfected with

control siRNA, control siRNA + hypoxia, transfected with TLR4 siRNA

and TLR4 siRNA + hypoxia were checked. (A) The upper panel

shows cell counts (y-axis) and log10 expression of fluorescence

intensity (x-axis). The lower panel is a bar graph showing a

significant change in the fluorescence intensity of intracellular ROS

production following the above treatments. Note the ROS

production, which is increased after hypoxic exposure in control

siRNA-transfected BV-2 cells, is significantly decreased after hypoxic

exposure in the TLR4-transfected group. (B) NO production in

supernatant also shows a similar change as with ROS in the different

groups mentioned above *P <0.05 and **P <0.01. The values

represent the mean ± SD in triplicate.
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The levels of TLR4 mRNA and protein have been found

to be increased in murine hearts after myocardial ische-

mic injury, and in human hearts derived from patients

with dilated cardiomyopathy and myocarditis [26,27]. In

addition, TLR4 expression is significantly increased in

Kupffer cells in rat liver grafts, and in tubular epithelial

cells and infiltrating leucocytes within the kidney follow-

ing ischemia [28,29]. Here, we have shown that TLR4

protein expression in primary microglia subjected to

hypoxic exposure for 24 h was increased. In BV-2 cells,

TLR4 protein overexpression was sustained with long-

term hypoxic exposure from 4 to 12 h compared with

the significant increase in mRNA expression from 2 to

6 h hypoxia exposure (data not shown). Consistent with

our result, the increase in TLR4 protein expression in

BV-2 microglial cells or primary microglial cultures is

also reported with exposure to an extremely low concen-

tration of oxygen (O2 tension <0.2%) for 8 or 24 h [17].

Hypoxic stress induced either by a low oxygen tension

or CoCl2 can also enhance TLR4 expression in macro-

phages [16]. However, some studies report that relatively

long-term hypoxia for 48 to 72 h diminishes TLR4 ex-

pression as a result of mitochondrial generation of ROS

in human umbilical vein endothelial cells [30]. It would

appear, therefore, from the above studies that differences

in duration of hypoxic exposure and the type of cells

investigated may account for the discrepancy in TLR4

expression over time.

It is widely demonstrated that exogenous ligands to

TLR4 such as lipopolysaccharide (LPS) and endogenous

ligands to TLR4, such as members of the heat shock

protein family and proteoglycans, can lead to the induc-

tion of proinflammatory cytokines [20,31]. Intracerebral

injection of LPS into the developing periventricular

white matter of immature rodents results in the loss of

oligodendrocytes, hypomyelination and formation of

periventricular cysts through the action of TLR4 [32].

Hence, a hypothesis that TLR4 mediates the production

of proinflammatory cytokines, which in turn, contributes

to damage in the developing brain after hypoxia, was

formed. To test this hypothesis, we adopted siRNA

transfection and antibody neutralization in BV-2 cells

and primary cultured microglia, separately, in the

present study. We show here that inhibition of TLR4 ex-

pression in microglia effectively suppressed the overex-

pression of inflammatory factors elicited by hypoxic

stress. This suggests that increased microglial TLR4 acti-

vation correlates with the production of inflammatory

factors after hypoxic stress, even in the absence of ex-

ogenous TLR4 ligands such as LPS. A similar function

of TLR4 has also been reported in microglia stimulated

with other factors. For example, we have reported previ-

ously that TLR4 signaling mediated the inflammation in

microglia that was stimulated with saturated fatty acid

[33]. It has also been reported that TLR4 is upregulated

in ethanol-induced microglial activation and response,

suggesting that the activation of microglial TLR4 signal-

ing could trigger the release of inflammatory mediators,

which in turn could induce white matter abnormalities

and neuronal dysfunctions [13]. Accumulating evidence

has shown a general participation of TLR4 in the neu-

roinflammatory process and brain damage of different

pathological factors, suggesting that TLR4 exacerbates

brain damage in neuroinflammatory diseases. In con-

trast, studies with TLR4 mutation mice indicate that

microglia are activated via TLR4 signaling to reduce β-

amyloid deposits and preserve cognitive functions from

β-amyloid-mediated neurotoxicity [12]. In this case, ac-

tivation of microglia through TLR4 appears to be

Figure 9 Neutralization of Hypoxia-inducible factor-1 alpha

(HIF-1α) with its antibody attenuated the hypoxia-induced

expression of Toll-like receptor 4 (TLR4) in BV-2 cells. HIF-1α

was neutralized with its antibody to assess its role in TLR4

expression. TLR4 protein expression was evaluated in control BV-2

cells, BV-2 cells + HIF-1α Ab, BV-2 cells + hypoxia and BV-2 cells

pretreated with HIF-1α Ab + hypoxia by western blot. The upper

panel shows the specific band of TLR4 (95 kDa) and β-actin (43 kDa).

The lower panel bar graph shows significant changes in the optical

density in different groups mentioned above (given as fold change

of control). Note that the increased TLR4 expression after hypoxia in

BV-2 cells is significantly depressed with HIF-1α neutralization.

*P <0.05 and **P <0.01. The values represent the mean ± SD

in triplicate.
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neuroprotective in Alzheimer’s disease. Therefore, whether

TLR4 is neuroprotective or neurotoxic in neuroinflamma-

tory disorders may vary with different pathological condi-

tions and the different stages of these diseases. TLR4

activation appears to be tightly controlled, in order to

regulate the switch between its different roles in immune

surveillance or neuroinflammatory propagation. The

present results tend to support the theory that TLR4 pro-

motes the production of major inflammatory mediators

such as TNF-α, IL-1β, iNOS, ROS and NO, which have

been implicated in oligodendrocyte and neuronal death,

thus, suggesting its detrimental role in hypoxic neonatal

brain injury.

The identification of factors responsible for the induc-

tion of TLR4 expression in microglia under hypoxia has

remained elusive. HIF-1 has been reported to mediate

the TLR4 expression in macrophages under hypoxic

conditions [16]. This has prompted us to determine the

role of HIF-1 in TLR4 expression in hypoxic microglia.

HIF-1 is a major transcription factor activated during

hypoxia in pathological conditions and it plays critical

roles in inducing hypoxia-related gene expression and

Figure 10 Suppression of Toll-like receptor 4 (TLR4) with TLR4 antibody or siRNA inhibited Nuclear factor kappa-light-chain-enhancer

of activated B cells (NF-κB) activation induced by hypoxic stress in primary microglia and BV-2 cells. Immunofluorescence images

showing NF-κB/p65 expression in primary microglia (A) and BV-2 cells (B). NF-κB/p65 is mainly localized in the cytoplasm of control microglia

colocalized with lectin (Aa, Ad, Ag) and control siRNA-transfected BV-2 cells (Ba, Bd). The expression is intensely augmented both in the

cytoplasm and nucleus after hypoxic treatment in both cell groups (Ae, Ah; Bd, Be). NF-κB/p65 immunoreactivity in the cytoplasm and nucleus

after hypoxic exposure in primary microglia with TLR4 Ab (Af, Ai) is noticeably suppressed. A similar decrease is observed in TLR4 siRNA-

transfected BV-2 cells subjected to hypoxic exposure (Bc, Bf). (C) Western blot analysis of NF-κB/p65 protein expression in BV-2 cells of different

groups. The upper panel shows specific bands of NF-κB/p65 (65 kDa) and β-actin (43 kDa) and the lower panel bar graph shows significant

changes in the optical density of different groups (given as fold change of control BV-2 cells). Note the NF-κB/p65 protein expression, which is

increased after hypoxic exposure in control siRNA-transfected BV-2 cells, is significantly decreased after hypoxic exposure in TLR4-transfected

groups. (D) ELISA analysis of phospho-NF-kB/p65 in different groups of BV-2 cells showing a similar trend as in C. *P <0.05 and **P <0.01. The

values represent the mean ± SD in triplicate. Scale bars in A and B = 20 μm.
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cellular responses. HIF-1 is a heterodimeric protein that

consists of HIF-1β and HIF-1α, among which HIF-1β is

constitutively expressed while HIF-1α expression is

tightly regulated by oxygen [34,35]. Therefore, the over-

all activity of HIF-1 is dictated by the intracellular HIF-

1α level. In this study, a hypoxia model was first

achieved in BV-2 cells by placing the cells in a chamber

filled with a gas mixture of 3% O2, 5% CO2 and 92% N2

for 0.5 h or more followed by assessing the HIF-1α pro-

tein expression. Remarkably, there was no significant dif-

ference in HIF-1α mRNA expression level between the

hypoxic and control cells. On the other hand, HIF-1α

protein expression was significantly increased in hypo-

xia. It has been reported that HIF-1α is degraded rapid-

ly by the hydroxylation of prolyl hydroxylase, and the

enzymatic activity of prolyl hydroxylase is oxygen-

dependent. Under hypoxic conditions, the enzymatic ac-

tivity of prolyl hydroxylase is significantly reduced,

resulting in the increase in HIF-1α [36,37]. Our findings

of increased HIF-1α protein expression in hypoxic BV-2

cells is in accordance with the mechanism of HIF-1α in-

crease in hypoxic conditions. A major finding in this

study was that TLR4 expression was regulated by HIF-

1α in hypoxic microglia. This is evidenced by the fact

that TLR4 expression decreased on neutralization of

HIF-1α with its antibody. Indeed, several recent studies

support the notion of the link between HIF-1α and

TLR4. Studies in macrophages found that TLR4 expres-

sion is upregulated via HIF-1α in response to hypoxic

stress. Interestingly, some studies also found that LPS, a

ligand of TLR4 can induce accumulation and DNA-

binding activity of HIF-1α protein in murine microglial

cells [38], macrophage-differentiated cells [39] and

macrophages [40]. In other words, LPS can raise the

level of HIF-1α in a TLR4-dependent fashion, suggesting

that TLR4 may act conversely to regulate HIF-1α expres-

sion. Positive correlation between TLR4 and HIF-1α has

also been found in pancreatic ductal adenocarcinoma cells

Figure 11 Toll-like receptor 4 (TLR4) inhibition suppressed the increase in TNF-α and IL-1β immunoexpression on microglia in the

corpus callosum and cerebellum in neonatal rats after hypoxic treatment. Confocal images showing the expression of TNF-α and IL-1β in

lectin-labeled (green) microglia in the corpus callosum (A) and cerebellum (B) of control, hypoxia and hypoxia + CLI-095 rats at 3 days after the

hypoxic exposure. (A) Increase in TNF-α and IL-1β expression in microglia of the corpus callosum was evident in hypoxic rats. In hypoxia + CLI-

095 rats, both increase in TNF-α and IL-1β was inhibited compared with the hypoxia rats. (B) TNF-α was undetected in the cerebellar microglia of

normal rats (b) but its immunoexpression was intensely induced in hypoxic rats, while in hypoxia + CLI-095 rats the immunofluorescence

intensity was attenuated. IL-1β immunofluorescence intensity was enhanced after hypoxia but the increase was inhibited in hypoxia + CLI-095

rats. Scale bars in A and B = 20 μm.
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indicating that there may exist a crosstalk between the

TLR4 signal pathway and the HIF-1 signal pathway, which

may act synergistically to promote the progression of pan-

creatic ductal adenocarcinoma [41]. We have demon-

strated the role of HIF-1α in TLR4 expression in hypoxic

microglia; but it remains to be elucidated whether the two

act synergistically.

NF-κB is a transcription factor known to regulate

genes of a spectrum of processes such as inflammation,

stress responses, innate, and acquired immunity [42,43].

Under normal physiological conditions NF-κB is loca-

lized in the cytoplasm in an inactive state bound to In-

hibitor of nuclear factor-κB (IκB). Under pathological

conditions IκB is phosphorylated and degraded, resulting

in active NF-κB [44]. Activated NF-κB is in turn phos-

phorylated and subsequently translocated to the nucleus

where it regulates target gene expression. It has been

reported that hypoxia induces rapid degradation of

Figure 12 Toll-like receptor 4 (TLR4) inhibition suppressed the increased inducible nitric oxide synthase (iNOS) expression on microglia

in the corpus callosum and cerebellum in neonatal rats after hypoxic treatment. Confocal images showing the expression of iNOS

expression in lectin-labeled (green) microglia in the corpus callosum (A) and cerebellum (B) of control, hypoxia and hypoxia + CLI-095 rats at 3 h

after the hypoxic exposure. (A) iNOS expression was barely detected on microglia of control rats; however, it was markedly enhanced in hypoxic

rats. The expression was decreased on microglia of hypoxia + CLI-095 rats compared with the hypoxic rats. (B) A similar phenomenon was

observed in microglia in the cerebellum. Scale bars in A and B = 50 μm.
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phosphorylated IκB and an increase in phosphorylated

NF-κB in hypoxic microglia of neonatal rats [45]. Activa-

tion of the NF-κB pathway through the TLR4 pathway

has been reported not only in LPS-treated but also in

non-TLR4 ligands, such as fatty acid-treated microglia

[17,33]. The present results showed nuclear transloca-

tion of NF-κB in hypoxic BV-2 microglial cells, and

more importantly, the translocation was prevented by

TLR4 knockdown. Moreover, the increase in phosphory-

lated NF-κB expression, which was increased after hy-

poxic exposure, was inhibited after TLR4 knockdown.

Results with primary cultured microglia are in accor-

dance with the observations made in BV-2 cells. The

present results suggest that TLR4 mediates the activa-

tion/nuclear translocation of NF-κB in microglia after

hypoxia stress. In contrast, it has been reported that

hypoxia suppressed LPS-induced NF-kB activation in

microglia [17]. It is suggested that the mechanism

involved in cells treated with hypoxia alone may be dif-

ferent from LPS stimulation along with hypoxic expos-

ure. Although our results have shown that NF-κB

signaling represents one of the downstream pathways of

TLR4-induced production of inflammatory factors, the

possibility of involvement of other pathways such as

mitogen-activated protein kinase (MAPK) [46] and Notch

pathways in hypoxia-induced inflammation (unpublished

data for Notch pathway) should also be considered.

CLI-095, a specific inhibitor of TLR4, also called TAK

242, has been reported to specifically and effectively in-

hibit TLR4 signaling in different animal models [47-50].

We have demonstrated the effect of TLR4 inhibition on

microglial activation in vivo and this has further con-

firmed the role of TLR4 in neonatal brain damage fol-

lowing hypoxia. Very interestingly, the protective effect

observed with microglia in both the cerebrum and cere-

bellum indicates that TLR4 may mediate in damage in

both oligodendrocytes and Purkinje neurons. Indeed, ob-

vious reduction in apoptosis of oligodendrocytes and

Purkinje neurons was found after TLR4 blockade in hyp-

oxic rats (data not shown), although direct evidence for

the contribution of the inhibition of the activation of

microglia awaits further investigation. Notwithstanding, it

can be confidently concluded from the present results that

TLR4 inhibition can effectively inhibit release of inflam-

matory mediators by microglia in hypoxic neonatal rats.

Conclusions

The present findings have highlighted that TLR4 signaling

regulates the expression of hypoxia-induced inflammatory

mediators via the NF-κB pathway and is linked to the in-

flammatory process in neonatal hypoxic brain injury. Thus,

inhibiting the activation of microglia via TLR4 in neonatal

hypoxic injury may be neuroprotective, for which the TLR4

signaling pathway represents a potential therapeutic target.
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