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Toll-like receptor 4 (TLR4) recognizes exogenous pathogen-associated molecular

patterns (PAMPs) and endogenous danger-associated molecular patterns (DAMPs) and

initiates the innate immune response. Opioid receptors (µ, δ, and κ) activate inhibitory

G-proteins and relieve pain. This review summarizes the following types of TLR4/opioid

receptor pathway crosstalk: (a) Opioid receptor agonists non-stereoselectively activate

the TLR4 signaling pathway in the central nervous system (CNS), in the absence of

lipopolysaccharide (LPS). Opioids bind to TLR4, in a manner parallel to LPS, activating

TLR4 signaling, which leads to nuclear factor kappa-light-chain-enhancer of activated

B cells (NF-κB) expression and the production of the pro-inflammatory cytokines tumor

necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6. (b) Opioid receptor agonists inhibit

the LPS-induced TLR4 signaling pathway in peripheral immune cells. Opioids operate

as pro-inflammatory cytokines, resulting in neuroinflammation in the CNS, but they

mediate immunosuppressive effects in the peripheral immune system. It is apparent

that TLR4/opioid receptor pathway crosstalk varies dependent on the cell type and

activating stimulus. (c) Both the TLR4 and opioid receptor pathways activate the

mitogen-activated protein kinase (MAPK) pathway. This crosstalk is located downstream

of the TLR4 and opioid receptor signaling pathways. Furthermore, the classic opioid

receptor can also produce pro-inflammatory effects in the CNS via MAPK signaling and

induce neuroinflammation. (d) Opioid receptor agonists induce the production of high

mobility group box 1 (HMGB1), an endogenous TLR4 agonist, supporting intercellular

(neuron-to-glia or glia-to-neuron) interactions. This review also summarizes the potential

effects of TLR4/opioid receptor pathway crosstalk on opioid analgesia, immune function,

and gastrointestinal motility. Opioids non-stereoselectively activate the TLR4 pathway,

and together with the subsequent release of pro-inflammatory cytokines such as IL-1 by

glia, this TLR4 signaling initiates the central immune signaling response and modifies

opioid pharmacodynamics. The DAMP HMGB1 is associated with the development

of neuropathic pain. To explain morphine-induced persistent sensitization, a positive
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feedback loop has been proposed; this involves an initial morphine-induced amplified

release of IL-1β and a subsequent exacerbated release of DAMPs, which increases

the activation of TLR4 and the purinergic receptor P2X7R. Opioid receptor (µ, δ,

and κ) agonists are involved in many aspects of immunosuppression. The intracellular

TLR4/opioid receptor signaling pathway crosstalk induces the formation of the

β-arrestin-2/TNF receptor-associated factor 6 (TRAF6) complex, which contributes to

morphine-induced inhibition of LPS-induced TNF-α secretion in mast cells. A possible

molecular mechanism is that the TLR4 pathway initially triggers the formation of the

β-arrestin-2/TRAF6 complex, which is amplified by opioid receptor signaling, suggesting

that β-arrestin-2 acts as a functional component of the TLR4 pathway.

Keywords: TLR4—Toll-like receptor 4, opioid receptor, opioid tolerance and dependence, hyperalgesia, crosstalk

INTRODUCTION

Toll-like receptor 4 (TLR4) is a pattern recognition receptor
belonging to the Toll-like receptor (TLR) family that contains
an extracellular domain and an intracellular domain (1). TLR4
activates the innate immune response by recognizing pathogen-
associated molecular patterns (PAMPs, including bacteria,
viruses, fungi, and protozoa) or danger-associated molecular
patterns (DAMPs, mainly endogenous signals for cell death
and tissue damage) (2). Lipopolysaccharide (LPS), an outer
surface component of Gram-negative bacteria, is an exogenous
TLR4 agonist, while high mobility group box 1 (HMGB1)
and heat shock proteins (HSPs) are endogenous TLR4 agonists
(3). TLR4 signaling is roughly divided into two distinct
pathways depending on the usage of the distinct adaptor
molecules, myeloid differentiation primary response gene
88 (MyD88) and Toll-interleukin receptor-domain-containing
adapter-inducing interferon-β (TRIF): the MyD88-dependent
and TRIF-dependent (also known as MyD88-independent)
signaling pathways (2, 3).

Opioid receptors belong to the seven-transmembrane G

protein-coupled receptor (GPCR) superfamily, the members
of which use G proteins for signal transduction (4). Opioid

receptors are expressed throughout the nervous system and
peripheral tissues and play critical roles in antinociception and

pain management. There are three major subtypes of opioid
receptor: mu (µ), delta (δ), and kappa (κ) opioid receptors (also
called MOR, DOR, and KOR, respectively), among which MOR

plays a predominant role in analgesia (5, 6). Opioid receptors are
activated both by endogenous opioid peptides (dynorphin and

enkephalin) and exogenous synthetic opioid drugs (morphine,
fentanyl, and remifentanil) (7). After activation by agonists,

multiple intracellular effects are initiated, including inhibition of
adenylyl cyclases and cyclic adenosine monophosphate (cAMP),

suppression of Ca2+ channels, stimulation of K+ channels, and
activation of phospholipase C (PLC) and protein kinase C (PKC),
which together inhibit presynaptic neurotransmitter release,

induce postsynaptic hyperpolarization, and decrease neuronal
excitability (5, 8).

It is apparent that the classic functions of the TLR4 and
opioid receptor signaling pathways are remarkably distinct.

Additionally, the stereoselectivity of opioid action at TLR4
and the opioid receptor is also different. To be specific, the
opioid receptor is stereoselective, only binding to (–)-opioid
isomers but not (+)-isomers, while TLR4 is non-stereoselective,
binding to both opioid isomers (9, 10). However, Zhang et
al recently reported that (+)-norbinaltorphimine [formed by
coupling two pharmacophores derived from (+)-naltrexone]
inhibited the LPS-induced TLR4 signaling pathway in microglia,
astrocytes, and macrophages, whereas (–)-norbinaltorphimine
did not, indicating that some xenobiotics show stereoselectivity
for TLR4 (11). An early opioid-binding experiment by Goldstein
et al. in 1971 found that there are saturable but non-
classic non-stereoselective opioid-binding sites, which are much
more abundant (∼30-fold more abundant) than the classic
stereoselective opioid-binding sites (12). This was the first
evidence that opioids could non-stereoselectively bind to non-
classic non-opioid receptors, although, for a long period of
time, the findings of Goldstein et al. were considered to be
experimental “noise” (13, 14).

In 1979, Wybran et al. reported that, based on active and
total rosette tests, morphine inhibited human T lymphocytes,
and this inhibition was completely reversed by the opioid
receptor antagonist naloxone (15). This represents early evidence
showing the immunosuppressive effects of opioids. Further
evidence demonstrated that opioids suppress the immune
system at various stages, starting from innate immune cells,
encompassing antigen presentation, and ending with modulation
of T lymphocyte activation and differentiation (16–18). The fact
that MOR-knockout mice, unlike wildtype mice, did not show
morphine-induced diminished natural killer (NK) cell activity
indicated that MOR was implicated in immunosuppression (19).
However, in 2005, Watkins et al. reported that spinal cord
glia were activated and released neuroexcitatory substances in
response to morphine, thereby inducing neuroinflammation and
causing anti-analgesia effects, indicating a pro-inflammatory role
for opioids in the central nervous system (CNS) (20). Further
evidence collected during the last 10 years has confirmed that
opioids also have pro-inflammatory effects in the CNS and
induce the central immune response (21–23). Recognition of
the involvement of TLR4 in opioid-induced central immune
signaling arose from the early evidence that chronic intrathecal
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(+)-methadone and (+)-morphine (which have no affinity for
the opioid receptor) induced glial activation and increased the
expression of chemokines and cytokines in isolated dorsal spinal
cords from rats (24).

In this review, we discuss the potential crosstalk between
the TLR4 and opioid receptor signaling pathways and the
implications of the crosstalk for opioid analgesia, immune
function, and intestinal motility. Firstly, four aspects of
TLR4/opioid crosstalk are discussed: (a) Opioid receptor
agonists directly activate the TLR4 signaling pathway in the
absence of LPS, indicating crosstalk within the cell membrane.
(b) Opioid receptor agonists inhibit the LPS-induced TLR4
signaling pathway, indicating negative intracellular crosstalk.
(c) Both the TLR4 and opioid receptor pathways activate the
mitogen-activated protein kinase (MAPK) pathway, representing
downstream crosstalk between the TLR4 and opioid receptor
pathways. (d) Opioid receptor agonists induce the production of
HMGB1, an endogenous TLR4 agonist, supporting intercellular
(neuron-to-glia or glia-to-neuron) interactions. Secondly, we
summarize and update current knowledge on opioid-induced
central immune signaling and the effect of non-stereoselective
TLR4 activation in the CNS on opioid analgesia; findings
on the role of HMGB1 in maintaining morphine-induced
persistent sensitization are also discussed. Thirdly, we summarize
the peripheral immunosuppressive effect of opioids on innate
immune cells, involving modulation of the immune system
related to TLR4 signaling and LPS-activated immune cells.
Fourthly, the differential involvement of TLRs (in intact
animals vs. isolated colon segments) regarding morphine-
induced inhibition of gastrointestinal transit are discussed.

TLR4/OPIOID RECEPTOR PATHWAY
CROSSTALK

Opioid Receptor Agonists Bind to TLR4
and Non-stereoselectively Activate TLR4
Many clinically relevant opioid receptor agonists, such as
morphine, fentanyl, and oxycodone, bind to TLR4 by docking
to the LPS-binding pocket of myeloid differentiation (MD)-
2 (9, 21, 25, 26). Additionally, endogenous opioid peptides,
for example, endomorphin (MOR), enkephalin (DOR), and
dynorphin (KOR), and certain opioid metabolites are also TLR4
ligands (27–29). Morphine-3-glucuronide (M3G), an inactive
metabolite of morphine, has little to no affinity for opioid
receptors but enhances pain by activating the TLR4 signaling
pathway (29). Naloxone and naltrexone are known as opioid
receptor antagonists and are usually used to block the effects of
opioids (30). Interestingly, acting as TLR4 antagonists, naloxone
and naltrexone inhibit the opioid- or LPS-induced TLR4
signaling pathway (9, 25) and reverse TLR4-related neuropathic
pain (31, 32).

Opioid receptor agonists bind to TLR4 and subsequently
stimulate the TLR4 signaling pathway, which ultimately activates
nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB) and releases pro-inflammatory cytokines (9, 21, 24,
25, 33). Wang et al. showed that, similar to LPS, morphine

induced TLR4 dimerization and led to the formation of the
(TLR4/MD-2)/(TLR4/MD-2) heterotetramer after docking with
TLR4/MD-2 complexes (21). TLR4, MD-2, and MyD88 were
found to be crucial for morphine-induced TLR4 pathway
activation, as reduced production of NF-κB, interleukin (IL)-1β,
and tumor necrosis factor (TNF)-α and inhibition of morphine-
induced neuroinflammation were observed when TLR4, MD-
2, or MyD88 was either knocked out or knocked down in
in vivo and in vitro experiments (21). Moreover, the p38 and
extracellular signal-regulated kinase (ERK) MAPK pathways are
also involved in morphine-induced TLR4 pathway activation
(21). Taken together, these findings show that opioids, like LPS,
bind to TLR4 and activate the TLR4/MyD88-dependent pathway
(including MAPK signaling cascades) (21). This extracellular
interaction between opioids and TLR4 has mostly been observed
in the CNS, including astrocytes, microglia, and endothelial
cells, and it produces a pro-inflammatory effect and mediates
neuroinflammation (13, 14, 23). It remains unclear whether
this kind of crosstalk between opioids and TLR4 exists beyond
the CNS.

As they do not express opioid receptors, HEK-BlueTM-
hTLR4 cells (which are human embryonic kidney [HEK] 293
cells transfected with human TLR4 and related accessory
proteins) are usually used to examine opioid effects targeted
at TLR4 (25); TLR4 activity can be detected in these
HEK-BlueTM cells. Hutchinson et al. showed that, in the
absence of LPS, nine opioids (morphine, methadone, M3G,
etc.) at 10–100µM non-stereoselectively activated the TLR4
signaling pathway, while naloxone and naltrexone did not
(9). Moreover, the authors found that (–)-isomers (morphine
and methadone) and (+)-isomers produced equivalent TLR4
activity, indicating that (+)-isomers and (–)-isomers have
similar potency (9). Another two studies demonstrated that
morphine at 3 and 10µM, fentanyl at 0.3µM, and M3G
at 1–100µM produced significant activation of the TLR4
pathway, while M6G (0.1–100µM) did not (25, 33). Research
has shown that LPS is the most potent agonist of TLR4
(9, 25, 33), while M3G is the second most potent. M3G is
a consistent activator of TLR4 (M3G > 1µM can activate
the TLR4 pathway), while other opioid receptor agonists
produce significant activation of the TLR4 pathway only
at certain doses (9, 25, 33). Although these remaining
opioid receptor agonists (including morphine, methadone,
levorphanol, pethidine, buprenorphine, fentanyl, oxycodone, and
dextrorphan) produced significant stimulation of TLR signaling
(9), it is difficult to rank them in order, because of the
limited data.

Opioid Receptor Agonists per se Activate
TLR4 but Inhibit LPS-Induced TLR4
Signaling Pathway Activation
In 2013, Stevens et al. reported that co-treatment of HEK-BlueTM

cells with morphine (3–100µM) or fentanyl (1–100µM) plus
LPS (100 ng/ml) led to significant inhibition of TLR4 signaling
activation in a non-competitive fashion, compared with LPS
alone (25). Moreover, this inhibition was not blocked by an LPS
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antagonist (LPS-RS) or an opioid antagonist (naloxone or β-
funaltrexamine [FNA]) (25). These findings are consistent with
an in vitro experiment by Xie et al. (also using HEK-BlueTM

cells) and an in vivo experiment involving mice (33). The in vitro
data showed that morphine and M3G (>1µM) decreased LPS-
induced TLR4 signaling activation (33). The in vivo data also
supported this conclusion, as the plasma from morphine-treated
mice inhibited LPS-induced TLR4 activation (33).

This phenomenon of opioids inhibiting LPS-induced TLR4
signaling activation is consistent with early studies (including
on mast cells, human neutrophils, and human macrophages)
(34–38) that showed that morphine and remifentanil inhibited
LPS-induced production of TNF-α, IL-6, IL-8, IL-10, and IL-
12 (34–38). Naloxone dose-dependently reversed the morphine-
induced inhibition of LPS-induced TNF-α secretion in mice in a
study by Bencsics et al. (36), while naltrexone did not prevent the
decrease in LPS-induced IL-10 and IL-12 production in mice in a
study by Limiroli et al. (35). In a study of human neutrophils, the
p38 and ERK1/2 signaling pathways, but not c-jun N-terminal
kinase (JNK) signaling, were implicated in remifentanil-induced
inhibition of LPS-induced TLR4 signaling, and a KOR antagonist
could reverse this inhibition (37). A further study by Madera-
Salcedo et al. on bone marrow-derived mast cells proposed an
underlying mechanism involving intercellular crosstalk between
the TLR4 and opioid receptor pathways that induced the
formation of an β-arrestin-2/TNF receptor-associated factor 6
(TRAF6) complex (34).

β-arrestins interact with certain TLR4 signaling molecules,
such as IκB and TRAF6, and negatively regulate NF-κB activity
(34, 39–41). In a study by Witherow et al., β-arrestin-1 and β-
arrestin-2 bound to IκBα and subsequently attenuated NF-κB
activity in transfected HeLa cells (39). Moreover, suppression
of β-arrestin-1 expression using RNA interference led to a 3-
fold increase in TNF-α-induced NF-κB activity (39). Gao et al.
reported that activation of β2-adrenergic receptors (a type of
GPCR) induced β-arrestin-2/IκBα formation, which inhibited
the LPS/NF-κB signaling pathway and decreased IL-8 and TNF-α
production in HEK293T cells (41). TRAF6 is a critical mediator
of TLR/IL-1 signaling. β-arrestins can interact with TRAF6 and
prevent TRAF6 autoubiquitination or oligomerization, which
subsequently inhibits NF-κB and AP-1 activity, as shown in
in vitro and in vivo experiments (40).

In the study by Madera-Salcedo et al., morphine treatment
of mast cells prevented the production of the LPS-induced
pro-inflammatory cytokine TNF-α and the activation of the
TLR4 signaling molecules ERK1/2 and IKK (both of which
belong to the MyD88-dependent pathway) (34). There were
also morphine-induced decreases in TRAF6 ubiquitination
and TRAF-activated kinase 1 (TAK1) phosphorylation (34).
Given that β-arrestin operates as a negative regulator of the
TLR4 pathway, unsurprisingly, morphine and LPS co-treatment
induced the formation of the β-arrestin-2/TRAF6 complex in
the mast cells, which subsequently inhibited the TLR4 signaling
pathway. Only the combination of MOR and DOR antagonists
could reverse the morphine-induced inhibition of LPS-induced
secretion of TNF-α in mast cells, indicating that MOR/DOR
heterodimers may be implicated in this antagonism (34).

Unfortunately, there is currently no evidence regarding
whether this intracellular negative crosstalk (opioid-induced
inhibition of LPS-induced TLR4 pathway activation) exists in
other cell types. Although TLR4 initiates the innate immune
response, the extent to which this negative TLR4/opioid crosstalk
participates in opioid-induced immunosuppression is also
unclear. It is apparent that the phenotypes related to TLR4/opioid
receptor pathway crosstalk are complicated and varied dependent
on the cell type or cellular microenvironment. In the CNS,
opioids non-stereoselectively activate TLR4 and operate as pro-
inflammatory cytokines, thereby resulting in neuroinflammation
(21–23). In contrast, in mast cells or other peripheral immune
cells, opioids inhibit LPS-induced TLR4 pathway activation (34–
38) and mediate peripheral immunosuppressive effects (18). We
infer that the cell function and stimuli likely determines the
phenotype that TLR4/opioid crosstalk will initiate. In the future,
more studies are needed to investigate the precise mechanisms.

Both the TLR4 and Opioid Receptor
Pathways Activate the MAPK Pathway
The MAPK pathway includes a range of proteins such as p38,
ERK, and JNK, which are involved in many facets of cellular
regulation, from gene expression to cell death (42). In the
TLR4/MyD88-dependent signaling pathway, MyD88 activates
TRAF6 and TAK1. Next, TAK1 activates p38, ERK, and JNK,
which subsequently activate activator protein 1 (AP-1) and
produce pro-inflammatory cytokines, thereby mediating the
inflammatory response (2, 43–45).

The opioid receptor is primarily controlled by interactions
with two proteins: G proteins and β-arrestins, which initiate
G protein signaling and β-arrestin signaling, respectively (46–
48). Evidence shows that both the G protein and β-arrestin
pathways can activate MAPK (8, 49, 50). Acute ultra-low-dose
morphine upregulated spinal phosphorylation of JNK1, JNK2,
and c-Jun, and activated spinal astrocytes, which were inhibited
by naloxone,MOR silencing, and a JNK inhibitor (51). The spinal
JNK activated by PKC also contributed to morphine thermal
hyperalgesia (51). Xie et al. showed that morphine-induced
apoptosis of microglia was mediated by the GSK-3β and p38
MAPK pathways in an opioid receptor-dependent manner (52).
In hippocampal neural progenitor cell lineages, ERK was also
activated by morphine and fentanyl via the PKC-dependent and
β-arrestin-dependent pathways, respectively (50).

The TLR4-induced MAPK pathway can initiate immune and
inflammatory responses, defending against harmful stimuli (2,
43–45), while the opioid receptor-induced pathway is more
complicated. Merighi et al. showed that, in activated mouse
microglia, morphine acted as a pro-inflammatory mediator and
induced the production of nitric oxide (NO), TNF-a, IL-1β, and
IL-6 via the PKC-Akt-ERK1/2 signaling pathway in a MOR-
dependent manner (53). Subsequently, the same group found
that, in activated microglia treated with low-dose morphine,
NF-κB was a downstream component of the PKC-Akt-ERK1/2
signaling pathway (54). As discussed above, spinal astrocytes
were activated via the MOR-PKC-JNK signaling pathway and
were involved in the contribution of morphine to thermal

Frontiers in Immunology | www.frontiersin.org 4 July 2020 | Volume 11 | Article 1455

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Zhang et al. TLR4/Opioid Receptor Pathway Crosstalk

hyperalgesia (51). The p38 MAPK pathway has also been linked
to microglial activation and it contributed to postoperative
thermal hyperalgesia and mechanical allodynia in rats (55) and
morphine tolerance (56). Therefore, in glia, the intracellular
TLR4/opioid receptor pathway crosstalk involves the MAPK
pathway, which mediates the pro-inflammatory response and
modifies the opioid analgesia effect (13, 14).

Opioids Induce HMGB1 Production
HMGB1 is a DNA-binding protein and is abundant in the cell
nucleus (57). HMGB1 is an endogenous agonist of TLR4. During
activation or cell death, HMGB1 translocates from the nucleus
to the cytoplasm or extracellular space (57, 58). Extracellular
HMGB1 binds to and stimulates a variety of receptors, including
the receptor for advanced glycosylation end products (RAGE),
TLR2, TLR4, TLR5, CD24, and other receptors (58–63). The
HMGB1-RAGE signaling pathway was the first demonstrated
pathway implicated in cell growth, migration, differentiation, and
up-regulation of cell-surface receptors in endothelial and somatic
cells (58). In addition, HMGB1-TLR4 signaling initiates the
innate immune response, which activates NF-κB and produces
cytokines such as TNF-α, IL-1β, and IL-6 in macrophages,
monocytes, and glial cells (62, 63).

HMGB1 is passively released from necrotic or damaged
cells or actively secreted by stimulated immune cells (57, 59).
In macrophages and monocytes, HMGB1 was found to be
released after stimulation with LPS, TNF-α, or IL-1β (64, 65).
Notably, a study of chronic intrathecal injection of morphine
showed that the expression of HMGB1, TLR4, and RAGE
in the rat spinal dorsal horn increased (66), while another
study of a neuropathic pain model showed that subcutaneous
administration of morphine increased HMGB1 expression even
at 5 weeks after morphine was ceased (67). In these two
studies of morphine, only extracellular HMGB1, acting as a pro-
inflammatory mediator, HMGB1 in the media also increased
(66, 67). Taken together, these findings indicate that morphine
increases the expression and release of HMGB (66, 67).
Studies investigating the underlying mechanism demonstrated
that TLR4, P2X7R, caspase-1 antagonists, and TLR4 siRNA
inhibited the increased levels of HMGB1, while opioid receptor
antagonists did not (66). Therefore, TLR4 may partially mediate
morphine-induced HMGB1 production (66, 67).

TLR4/OPIOID RECEPTOR PATHWAY
CROSSTALK, CENTRAL IMMUNE
SIGNALING, AND OPIOID ANALGESIA

Opioids are used to treat severe pain, but they can also cause anti-
analgesic effects, resulting in tolerance, hyperalgesia, or allodynia
(68). Previous reviews highlighted that opioid-induced central
immune signaling contributed to decreased opioid analgesic
efficacy (13, 14, 23). In this section, we summarize the main
opinions on opioid-induced central immune responses (13,
14, 23): (a) Non-neuronal immunocompetent cells (mainly
astrocytes and microglia) in the CNS play a critical role in
opioid-induced central immune signaling, modifying opioid

pharmacodynamics by mediating pro-inflammatory reactivity.
(b) The opioid-induced central immune signaling events include
the release of a variety of immune molecules such as IL-
1, TNF-α, IL-6, CCL2, CX3CL1, ATP, and NO, disruption
of glutamate homeostasis, and increased neuronal excitability,
which subsequently attenuate opioid analgesic efficacy. (c)
Many intracellular signaling pathways are involved in opioid-
induced neuroinflammation; the most prominently reported
ones are the TLR4, MAPK, inositol trisphosphate (IP3)/Akt, and
ceramide/sphingosine signaling pathways. Both classic opioid
receptors and non-opioid receptors participate in this opioid-
induced cellular adaptation. (d) in vivo, in vitro, and in silico
approaches have demonstrated that opioids bind to TLR4 and
non-stereoselectively activate the TLR4 signaling pathway. This
non-stereoselective opioid activation of TLR4 triggers glial
reactivity, which induces the release of neuroexcitatory immune
mediators that play key roles in neuroinflammation.

The non-stereoselective response and opioid-induced
hyperalgesia still observed in triple opioid receptor (MOR, DOR,
and KOR)-knockout mice suggests that non-stereoselective
non-classic opioid actions are implicated in opioid analgesia in
these studies (10, 69, 70). At least some of these actions have been
attributed to TLR4 (9, 13, 14, 21, 23). A diversity of clinically
relevant opioids can bind to the TLR4/MD2 heterodimer, induce
TLR4 oligomerization, and trigger a pro-inflammatory response,
thereby resulting in neuroinflammation (21). Additionally,
acute blockade (71, 72), genetic mutation (73), and knockout
(74) of TLR4 each resulted in a significant potentiation of the
magnitude and duration of opioid analgesia, compared with the
observations in control animals.

However, evidence also shows that opioid tolerance and
hyperalgesia were still retained in TLR4-mutant and -knockout
mice (75–77). Nevertheless, findings from thesemice, with regard
to the influence of TLR4 on nociception, must be interpreted
with caution and require further investigation. This is because of
two findings: (a) some TLR4 agonists have been found to signal
around TLR4 mutation (78) and (b) TLR4 is by no means the
only receptor that mediates glial activation, and compensatory
pathways may be activated in the absence of TLR4 (79).
Hutchinson et al. believe that opioid-induced TLR4 signaling
initially triggers opioid-induced central immune signaling (13);
this does not mean that all opioid-induced neuronal activity
depends on TLR4, but rather that this activity is complemented
and facilitated by the TLR4 pathway (13).

HMGB1 is considered to be a pro-inflammatory cytokine
and it is significantly expressed in rats with neuropathic pain
caused by partial sciatic nerve ligation (80). Anti-HMGB1
monoclonal antibody significantly attenuated hind paw tactile
hypersensitivity in these rats (80). Aside from neuropathic pain,
increased HMGB1 has also been linked to other types of chronic
pain including diabetic, arthritic, and cancer-induced pain (81–
83). In a diabetic pain model, which involved the development
of persistent mechanical allodynia, HMGB1 was significantly
increased and anti-HMGB1 antibody inhibited mechanical
allodynia (81). There is also other evidence demonstrating
the critical role of HMGB1 in abnormal pain processing.
Intrathecal, intraplantar, and perineural injection of HMGB1
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produced mechanical hypersensitivity (62, 84, 85). HMGB1 is a
multifunctional protein that interacts with a variety of receptors.
Tolerance, hyperalgesia, and allodynia have been shown to
involve HMGB1 activating the RAGE, TLR4, and TLR5 signaling
pathways (60, 61, 84, 86).

In a mouse model of neuropathic pain, morphine has recently
been reported to prolong the duration of mechanical allodynia
for months after morphine treatment was ceased (87). The
authors demonstrated that the prolonged neuropathic pain arose
from activated spinal microglia, release of IL-1, and the NOD-like
receptor protein 3 (NLRP3) inflammasome, a protein complex
that activates IL-1β via caspase-1 (87). The amplification of
spinal microglial activation may be explained by the “two-hit
hypothesis,” with nerve injury being the first “hit” and morphine
treatment the second (87). However, the question is how spinal
NLRP3 inflammasome signaling is continuously activated long
after morphine treatment is stopped. In another study, Grace
et al. concluded that morphine treatment leads to persistent
release of DAMPs (including HMGB1 and biglycan) via TLR4,
the purinergic receptor P2X7R, and caspase-1, and these DAMPs
are involved in continuous NLRP3 inflammasome activation
(67). There is a positive feedback loop that maintains the
NLRP3 inflammasome activation, which begins with morphine-
induced amplified release of IL-1β and ends with disruption
of glutamate homeostasis and exacerbated release of DAMPs
that increase the activation of TLR4 and P2X7R to maintain
persistent NLRP3 inflammasome activation (67, 87). Opioid
non-stereoselective activation of TLR4, together with the release
of DAMPs that increase the activation of TLR4 and P2X7R
signaling, may provide a critical initiating trigger for continuous
NLRP3 inflammasome activation (13, 67).

TLR4/OPIOID RECEPTOR PATHWAY
CROSSTALK AND THE IMMUNE
RESPONSE

Opioid administration has been shown to inhibit the innate
and adaptive immune systems at different stages, increasing
the risk of opportunistic infection (16, 17, 88). Opioid-
induced immunosuppression can be mediated directly via
inhibition of immune cells and/or through indirect interaction
with the hypothalamic–pituitary–adrenal (HPA) axis and the
sympathetic nervous system (16, 17, 88). However, the precise
cellular mechanisms underlying the immunosuppressive effects
of opioids are largely unknown.

In 1998, Gavériaux-Ruff et al. observed that in wildtype
mice, but not MOR-deficient mice, morphine treatment
led to compromised immune responses (lymphoid organ
atrophy, a diminished ratio of CD4+/CD8+ cells in the
thymus, and reduced natural killer activity) (19). Research
using pharmacological antagonists and MOR-knockout
mice confirmed that MOR participated in opioid-induced
immunosuppression (18). TLR4 and opioid receptors are
co-expressed in immune cells, and TLR4 has a key role in the
innate immune response, so TLR4 may also be linked to opioid-
induced immunosuppression. In this section, we summarize the

opioid modulation of the immune system involving the TLR4
signaling pathway. As LPS acts solely through TLR4, research on
LPS-activated immune cells is also included.

As shown in Table 1, MOR activation inhibited LPS-induced
NF-κB DNA-binding in a NO-dependent mechanism in human
neutrophils and monocytes (99). Additionally, MOR stimulation
suppressed the LPS-induced p38 and ERK1/2 pathways in
neutrophils (37). MOR agonists also inhibited the LPS-induced
production of NO (13, 92) and prostaglandin E2 (PGE2) (94)
and secretion of the pro-inflammatory cytokines IFN-α (94),
TNF-α (92), and IL-8 (37, 98). Moreover, MOR agonists reduced
LPS-induced macrophage viability (92), inhibited the capacity
of macrophages and monocytes to respond to LPS (89, 94),
and suppressed NK cell cytotoxicity (100) in both in vitro and
in vivo studies. There have been some controversial studies on
the MOR-induced expression of TLR4 mRNA and protein in
macrophages (89, 90) and IL-6 production in neutrophils and
NK cells (37, 100), as some studies indicated increases and
other studies indicated decreases. Morphine, in the presence of
LPS, has been shown to prevent macrophage and neutrophil
recruitment to wound sites, which decreased wound closure
and wound integrity and increased bacterial sepsis (93). In a
study by Wan et al., although morphine facilitated macrophage
autophagy initiation through the TLR4/p38 pathway, it also
inhibited autophagolysosomal fusion, which decreased the
bacterial clearance and increased the bacterial load (91).

In 2009, Li et al. showed that morphine-induced apoptosis
was mediated via the TLR2 signaling pathway in HEK293 cells
(110). Moreover, inhibition of MyD88 or overexpression of
β-arrestin-2 attenuated morphine-induced apoptosis in TLR2-
overexpressing HEK293 cells (110). The findings demonstrated
that β-arrestin-2 negatively regulated morphine-induced TLR2-
mediated apoptosis (110). However, the possible molecular
mechanism was not explored in the study by Li et al.
As previously mentioned, Madera-Salcedo et al. found that
morphine-induced inhibition of LPS-induced TNF-α production
was associated with the formation of β-arrestin-2/TRAF6
complex in bone marrow-derived mast cells (34). As a
negative regulator of the TLR pathway (39–41), the findings
indicated that β-arrestins also contribute to opioid-induced
immunosuppression (34, 110). In the study by Madera-Salcedo
et al., LPS stimulation led to the formation of the β-arrestin-
2/TRAF6 complex, which was amplified by co-treatment with
morphine (34). Furthermore, to some extent, this conclusion is
consistent with a study published in 2006 showing that activation
of the TLR/IL receptor increased β-arrestin-2/TRAF6 formation,
but stimulation of the β2-adrenergic receptor (a type of GPCR)
did not, indicating that β-arrestins act as the intrinsic signaling
molecules of the TLR/IL pathway (40). Therefore, β-arrestins,
operating as a functional component of the TLR4 pathway,
initiate the formation of the β-arrestin-2/TRAF6 complex;
subsequently, the formation is amplified by opioid receptor
signaling, which is thus implicated in the LPS-induced TLR4
signaling pathway.

On the other hand, NF-κB essential modulator (NEMO),
acting as a regulatory subunit of the NF-κB complex, is
also another important target site for regulating NF-κB
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TABLE 1 | Effect of TLR4/opioid receptor pathway crosstalk in peripheral immune cells.

Opioid receptor Cell type Vivo/vitro Pathway Immunomodulatory effects Inhibitor

MOR Macrophages BMDM, RAW 264.7,

J774.1 cells; C57,

TLR4/MOR knockout

mice

Increase or decrease TLR4 mRNA and

protein expression (89, 90). Potentiate

autophagy initiation through TLR4/p38

pathway, but inhibit autophagosomal

maturation though MOR pathway (91).

Suppress LPS-activated NO and TNF-α

production (92)

Compromise the capacity of

macrophages to respond to LPS (89).

Reduce the cell viability (92) and

bacterial clearance (91). Increased

bacterial load (91) and bacterial sepsis

(93). Prevent macrophage recruitment to

the wound site and decrease the wound

closure and wound integrity (93)

Naltrexone (89),

PTX (89)

Monocytes THP-1 and other cells Suppress LPS-induced IFN-α and

PGE2 production (94). Inhibit

LPS-stimulated IL-10, IL-12 (95), and

arachidonic acid, PGE2, ROI, and NO2

production (96). Potentiate

LPS-stimulated NF-κB DNA binding

(95)

Decrease antiviral defense and inhibit

their response to activating stimuli (94).

Inhibit LPS-stimulated monocyte

activation (95) and instauration of a

hyporesponsive phenotype on DC

development (96)

Mast cells BMMCs cells, C57; MS

deficient/reconstituted

mice

Inhibit LPS-induced TNF-α (34, 38, 97)

but not CCL2 release (38)

Resident mast cells mediate selective

morphine immunosuppression (38)

Neutrophils vitro Inhibit LPS-induced p38, ERK1/2

pathway activation (37) and decrease

TNF-α, IL-6 (37), and IL-8 production

(37, 98). Inhibit LPS-induced NF-κB

binding in a NO-dependent mechanism

(99)

Reduce neutrophils recruitment to the

wound site and decrease the wound

closure and wound integrity and

increase bacterial sepsis (93)

KOR antagonist (37),

naloxone (98)

NK cells vitro Increase IL-6 (naloxone) and granzymes

A and B (TAK-242) production (100)

Decrease NK cell ability to induce

apoptosis in K562 cells and suppress

NK cell cytotoxic activity (100)

Naloxone (100),

TAK-242 (100)

DOR Macrophages RAW 264.7 cells;

sepsis rat model

Increase LPS-induced TNF-α and NO

production (101). Suppress

LPS-induced release of HMGB (102).

DOR2: inhibit p38 MAPK activation and

expression of TNF-α and MIP-2 (103)

Potentiate LPS-stimulated macrophage

functions (101). Suppress LPS-induced

cell death and protect rats from sepsis

(102)

KOR Macrophages J774 and other cells Inhibit LPS-stimulated nitrite (104, 105),

TNF-α (104, 105), IL-10 (104) and iNOS

(104), IL-1 (105) and IL-6 production

(105). Decrease NO release (106)

Moderate anti-inflammatory effects

(104). Inhibit the cytotoxicity of

macrophages (106)

Naloxone (104),

naloxone (partially)

(105), norBNI

(104, 105)

Monocytes P388D1 and THP1

cells

Suppress LPS-stimulated IL-6

production (107). Inhibit LPS-induced

NF-κB/p65 nuclear translocation and

IL-1β, TNF-α release (108)

Anti-inflammatory effect (108) nor-BNI (107),

ML-190 (108)

Neutrophils Ischemia–reperfusion

injured rat heart model

Attenuate the expressions of TLR4,

NF-κB and TNF-α (109)

Inhibit neutrophil accumulation (109).

Cardioprotective and anti-inflammatory

effects (109)

nor-BNI (109)

MOR, µ opioid receptor; DOR, δ opioid receptor; KOR, κ opioid receptor; BMDM, bone marrow-derived macrophages; RAW264.7 cells, mouse leukemic monocyte macrophage cell line;

BMMC, bone marrow–derived mast cells; K562 cells, a chronic myelogenous leukemia-derived; P388D1 cells, a mouse monocyte-like cell line; THP-1, human monocytic cell line; NK,

natural killer cells, MOR agonists, morphine, fentanyl, remifentanil, DAMGO, and endomorphin 1/2; DOR agonists, DADLE, SNC 80, and Deltorphin-dvariant; KOR agonists, Salvinorin

A, U50488H, and dynorphin 1–17; norBNI, nor-binaltorphimine (a KOR-selective antagonist); ML-190, a selective KOP receptor antagonist; TAK-242 (TLR4 signaling antagonist).

activity. Tripartite interaction motif 29 (TRIM29) is a key
negative regulator of NF-κB activity, which functions via direct
ubiquitination and proteolytic degradation of NEMO, which
negatively regulates the production of type I interferons as
well as pro-inflammatory cytokines in alveolar macrophages
after infection (111). TRIM29 has been reported to inhibit the
activation of the innate immune system (111, 112). Further
studies are required to explore whether TRIM29 is involved
in the opioid-induced inhibition of the LPS-induced TLR4
signaling pathway.

TLR4/OPIOID RECEPTOR PATHWAY
CROSSTALK AND INTESTINAL FUNCTION

Constipation is the most common gastrointestinal side effect of
opioids, occurring in 40–95% of patients (113). For 30 years,
the opioid receptor was considered to exclusively mediate the
morphine-induced inhibition of gastrointestinal transit. The
supporting evidence was that MOR antagonist (naloxone) and
MOR-knockout technology could abolish morphine-induced
inhibition of gastrointestinal transit (114, 115). However,
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TLR4 is widely expressed within the gastrointestinal tract
and is associated with irritable bowel syndrome (116) and
inflammatory bowel disease (117, 118), which are characterized
by gut dysmotility. In 2015, using TAK-242 (a selective TLR4
antagonist), Farzi et al. demonstrated that TLR4was also involved
in morphine-induced depression of peristalsis in isolated guinea
pig colons in vitro and it was also involved in inhibition of
colorectal propulsion in mice in vivo (119).

However, the effects of TLR4 regarding opioid-induced
inhibition of gastrointestinal transit are complicated. Farzi et al.
found that TLR4 antagonism using TAK-242 failed to prevent
morphine-induced inhibition of peristalsis in gastrointestinal
regions besides the colorectum in vivo and in vitro (119).
These findings indicated that TLR4/opioid receptor pathway
crosstalk varies along the gastrointestinal tract. To some
extent, the study by Farzi et al. was consistent with a study
by Beckett et al. Using knockout technology, Beckett et al.
showed that TLRs (TLR2 and TLR4) and the adaptor protein
MyD88 participated in morphine-induced slowed movement
of ingested content in mice, while in vitro results based on
isolated colons did not support the involvement of TLRs
(120); they hypothesized that TLR signaling pathways extrinsic
to the colon may explain the differential involvement of
TLRs (in intact animals vs. isolated colon segments) regarding
the morphine-induced inhibition of the transit of ingested
content (120). However, this hypothesis seems inconsistent
with the well-accepted paradigm that the peripheral MOR
expressed on intrinsic enteric neurons predominantly explains
the phenomenon of opioid-induced constipation (121, 122),
although there is still evidence supporting a central mechanism
(123). Further studies are required to explore whether a
peripheral mechanism vs. a central mechanism, or a combination
of both, mediate the differential effects of morphine without TLR
receptor signaling.

It is not an easy task to elucidate the mechanism underlying
the inhibition of gastrointestinal transit. In the CNS, opioids
have been demonstrated to directly bind to TLR4 and non-
stereoselectively activate the TLR4 signaling pathway, which
subsequently activates glial cells and initiates the immune
response (13). Unfortunately, to date, not enough evidence has
confirmed that non-stereoselective activation of TLR4 by opioids
is also involved in gastrointestinal transit (119). Likewise, it is not
wise to reject this possibility (119). Another explanation is that
TLRs might be important functional components of the opioid
receptor signaling pathway, and the two signaling events could
interact with each other without direct binding of opioids to TLRs
in the digestive system (119, 120, 124). The supporting evidence
is that the opioid receptor pathway has been shown to synergize
with the TLR4 pathway to impair the intestinal barrier function
and increase bacterial translocation (124). In contrast, blocking
the TLR pathway (either pharmacologically or using a genetic
approach) elicits upon the actions of opioid agonists (119, 120).
Further studies are needed to examine these hypotheses.
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