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Tolman-Ehrenfest’s criterion of thermal equilibrium extended to conformally static

spacetimes

Valerio Faraoni1, ∗ and Robert Vanderwee1, †
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2600 College Street, Sherbrooke, Québec, Canada J1M 1Z7

With insight from examples and physical arguments, the Tolman-Ehrenfest criterion of thermal
equilibrium for test fluids in static spacetimes is extended to local thermal equilibrium in conformally
static geometries. The temperature of the conformally rescaled fluid scales with the inverse of the
conformal factor, reproducing the evolution of the cosmic microwave background in Friedmann
universes, the Hawking temperature of the Sultana-Dyer cosmological black hole, and a heuristic
argument by Dicke.

I. INTRODUCTION

Thermal physics in relativity and in curved spacetime
is more intriguing, and notoriously more difficult, than
in non-relativistic situations and several results neces-
sarily have limited validity. An example is the Tolman-
Ehrenfest criterion for the thermal equilibrium of a fluid
in a static spacetime [1–3]. In a coordinate system
adapted to the time symmetry, in which the line element
reads1

ds2 = g00
(

xk
)

dt2 + gij
(

xk
)

dxidxj (i, j, k = 1, 2, 3),
(1.1)

the temperature T of a test fluid at rest with respect to
the static observers (i.e., those with four-velocity parallel
to the timelike Killing vector ka) obeys [1–3]

T
√
−g00 = T0 , (1.2)

where T0 is a constant. Equation (1.2) is referred to as
the Tolman-Ehrenfest criterion of thermal equilibrium.
It expresses the fact that, since heat is mass-energy, it
will sink in a gravitational field and regions of stronger
gravity will be hotter. As a result, a fluid at rest in
a static gravitational field and in thermal equilibrium
has a non-vanishing temperature gradient, a counterin-
tuitive result. Klein formulated the analogous condition
for the equilibrium of particles with respect to diffusion
in a static spacetime by replacing temperature T with
chemical potential µ [5]. Caveats on the standard pre-
sentations of the Tolman-Ehrenfest criterion have been
discussed exhaustively in the recent works [6–8], in par-
ticular the generalization of this law to stationary (but
non-static) geometries. The criterion has inspired also
a connection between gravitational fields and thermal
transport in materials: thermal transport, understood as
the linear response of a material to a temperature gra-
dient, was mimicked by Luttinger as a counter-balancing
weak gravitational field restoring thermal equilibrium in

∗ vfaraoni@ubishops.ca
† rvanderwee20@ubishops.ca
1 We follow the notation of Ref. [4].

the presence of this gradient [9]. The Tolman-Ehrenfest
criterion (1.2) is applied to neutron stars [10–12]; equilib-
rium with respect to simultaneous heat conduction and
particle diffusion has been discussed in [13, 15], together
with the corresponding criterion in Weyl-integrable ge-
ometries [14].
The Tolman-Ehrenfest criterion can be derived from

Eckart’s generalization of the Fourier law for heat con-
duction, a constitutive relation assumed in Eckart’s first-
order thermodynamics of dissipative fluids [16]. An im-
perfect fluid with four-velocity ua is described by the
energy-momentum tensor

Tab = ρuaub + Phab + πab + qaub + qbua , (1.3)

where ρ is the energy density, P is the isotropic pressure,
πab is the anisotropic stress tensor, qa is the heat flux
density, and hab ≡ gab + uaub is the Riemannian metric
on the 3-space orthogonal to ua. πab and qa are purely
spatial with respect to ua and πab is trace-free:

πabu
a = πabu

b = qaua = 0 , πa
a = 0 . (1.4)

Eckart’s theory assumes the three constitutive relations
for this fluid [16]

qa = −Khab

(

∇bT + T u̇b
)

, (1.5)

P = Pnon−viscous + Pviscous

= Pnon−viscous − ζ Θ , (1.6)

πab = −2η σab , (1.7)

where T is the temperature, K is the thermal conduc-
tivity, Θ = ∇cu

c is the expansion scalar, the shear ten-
sor σab is the symmetric, trace-free part of ha

chb
d∇duc

[17], while ζ and η are the bulk and shear viscosity co-
efficients, respectively. u̇c ≡ ac ≡ ub∇bu

c is the fluid’s
four-acceleration, which contributes an inertial term to
the heat flux (1.5) [16].
The derivation of the Tolman-Ehrenfest criterion from

Eq. (1.5), which generalizes the usual non-relativistic
Fourier law of heat conduction, appears in [18, Exer-
cise 22.7, p. 567] and, more recently, in Ref. [7]. For
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the reader’s convenience, we reproduce this derivation in
Appendix A.
We define thermal equilibrium in a static spacetime

(and, later, local thermal equilibrium in time-dependent
ones) as the absence of heat fluxes, qa = 0. It is clear
that, if a fluid is in thermal equilibrium in a certain frame,
any observer moving relatively to it will detect a heat
flux (which lies at the origin of some of the subtleties
in generalizing Eq. (1.2) to stationary geometries [6–8]).
To make this observation quantitative, consider a perfect
fluid seen from a non-comoving frame, in which it ap-
pears “tilted”. Denote (momentarily) with a star quan-
tities associated with the comoving frame, for example
u∗a is the fluid four-velocity. The stress-energy tensor
Tab of the perfect fluid (an observer-independent object)
can be decomposed according to this frame as

Tab = ρ∗u∗
au

∗
b + P ∗ h∗

ab , (1.8)

where h∗
ab ≡ gab + u∗

au
∗
b is the Riemannian three-metric

on the 3-space seen by the observers u∗
a comoving with

the fluid.
The frame of an observer moving with respect to this

fluid (in which the fluid appears to be moving) is char-
acterized by a different four-velocity ua related to u∗a by
[17]

u∗a = γ (ua + va) , (1.9)

where va is a purely spatial vector according to u∗
a,

vau
∗a = 0, with 0 ≤ v2 ≡ vav

a < 1 and

γ =
1√

1− v2
(1.10)

is the corresponding Lorentz factor. The fluid stress-
energy tensor can be decomposed according to the ob-
servers2 ua as

Tab = ρ uaub + Phab + πab + qaub + qbua , (1.11)

where hab ≡ uaub + gab and [17]

ρ = ρ∗ + γ2v2 (ρ∗ + P ∗) = γ2
(

ρ∗ + v2P ∗
)

, (1.12)

P = P ∗ +
γ2v2

3
(ρ∗ + P ∗) , (1.13)

qa =
(

1 + γ2v2
)

(ρ∗ + P ∗) va = γ2 (ρ∗ + P ∗) va ,

(1.14)

πab = γ2 (ρ∗ + P ∗)

(

vavb − v2

3
hab

)

. (1.15)

In the frame ua, the fluid cannot be in equilibrium since
qa 6= 0: indeed, qa = 0 implies vc = 0 and ua = u∗a.

2 There is only one stress-energy tensor Tab but it can be decom-
posed in infinitely many ways according to the possible timelike
observers ua.

A perfect fluid is in thermal equilibrium in its comoving
frame (i.e., q∗a = 0), but any other frame moving with
respect to it (v2 > 0) will experience a (purely convec-
tive) heat flux with density qa 6= 0 given by Eq. (1.14)
and there cannot be thermal equilibrium.

Before proceeding, let us be clear on the motivations of
this work: the most interesting applications of the new
generalized Tolman-Ehrenfest criterion that we present
are about conformally invariant systems (the cosmic mi-
crowave background in cosmology, a blackbody gas of
Hawking radiation or a massless conformally coupled
scalar field). It is possible that useful applications of
the new criterion will be limited to conformally invariant
systems, although this is not, by all means, established.
However, even if this potential limitation turns out to
be real, the generalized Tolman-Ehrenfest criterion of lo-
cal thermal equilibrium presented here is very interest-
ing because 1) it still allows one to discuss interesting
(and varied) physics and 2) it deepens our understand-
ing of thermal physics in relativity. The first point will
be elaborated in the following sections. As for the second
point, one should keep in mind that the original Tolman-
Ehrenfest criterion, which has not been applied widely
to theoretical physics and astrophysics, is still a valuable
contribution to the understanding of thermal physics in
relativity. The latter is definitely incomplete, on par with
the understanding of general non-equilibrium thermody-
namics. In this sense, generalizing the Tolman-Ehrenfest
criterion as done here seems valuable for the understand-
ing of local thermal equilibrium in non-static spacetimes.

The rest of this article proceeds as follows. Sec-
tion II discusses two examples showing how to general-
ize the Tolman-Ehrenfest criterion to conformally static
spacetimes. Section III derives the generalized formula
T̃ = T /Ω for conformally static geometries g̃ab = Ω2 gab
in two independent ways, while Sec. IV discusses an ap-
plication to geometries conformal to the Schwarzschild
black hole and Sec. V contains a discussion and the con-
clusions.

II. EXAMPLES

In this section we examine examples leading to a way
of generalizing the Tolman-Ehrenfest criterion to con-
formally static spacetimes characterized by the metric
g̃ab = Ω2 gab, where the conformal factor Ω (xα) is a reg-
ular and nowhere-vanishing function of the spacetime co-
ordinates.

A. Example 1: static conformal factor

The first example is almost trivial but points to the
way to proceed in more interesting situations. Assume
that the metric g̃ab is also static, then there is a timelike
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Killing3 vector k̃a and, in coordinates adapted to this
time symmetry,

∂t g̃µν = 0 , g̃0i = 0 (i = 1, 2, 3). (2.1)

The conformal factor is static, Ω = Ω(xi), hence ∂tΩ = 0
and

∂t g̃00 = ∂t
[

Ω2
(

xi
)

g00
(

xi
)]

= 0 , g̃0i = Ω2g0i = 0
(2.2)

and, applying the Tolman-Ehrenfest criterion directly to
the static geometry g̃ab, one obtains

T̃
√

−g̃00 = Ω T̃ √−g00 = const. (2.3)

Since in the geometry gab we have T √−g00 = const., it

follows that Ω T̃ /T = const. One can redefine the time
coordinate to absorb the constant (or simply note that
Ω = 1 must reproduce the identity), obtaining

T̃ =
T
Ω

. (2.4)

As we will see in the following, Eq. (2.4) relates the tem-
perature between conformally related spacetimes also in
more physically significant situations.

B. Example 2: cosmic microwave background in
FLRW universes

All Friedmann-Lemâıtre-Robertson-Walker (FLRW)
universes are conformally flat [4], hence conformally
static. Consider, for simplicity, a spatially flat FLRW
universe with line element

ds2 = −dt2 + a2(t)
(

dx2 + dy2 + dz2
)

= a2(η)
(

−dη2 + dx2 + dy2 + dz2
)

(2.5)

in comoving coordinates (t, x, y, z), or using the confor-
mal time η defined by dt = a(η)dη. Consider a radiation
fluid (the cosmic microwave background) in local ther-
mal equilibrium4 in an expanding, spatially flat, FLRW
universe. After decoupling from baryons, the cosmic mi-
crowave background evolves as a radiation fluid indepen-
dent of the other fluids present in the universe. It is
well-known that, in order to maintain the blackbody dis-
tribution and thermal equilibrium, the temperature of

3 If the conformal factor Ω is not static, there is only a conformal
Killing vector k̃

a in the conformally rescaled spacetime [4].
4 Of course, a conformal transformation is just a mathematical op-
eration and does not guarantee local thermal equilibrium, which
must be assumed and depends on the microphysics (reaction
rates must be faster than the Hubble rate to maintain equilib-
rium [19].

the cosmic microwave background must scale according
to T ∼ 1/a [4], that is, in accordance with Eq. (2.4):

T (t) =
T0
a(t)

, (2.6)

where T0 = T (a(t0) = 1) = T (t0) is constant and the
instant t0 is defined by a(t0) = 1. In fact, the Planck dis-
tribution for the spectral energy density of a blackbody
is

u (ν, T ) =
8πhν3

c3
1

e
hν

KBT − 1
, (2.7)

where ν is the photon frequency, T the absolute temper-
ature, and h, c, and KB are the Planck constant, speed
of light, and Boltzmann constant, respectively. Since in
a FLRW universe frequencies redshift with the cosmic
expansion according to ν ∼ 1/a (equivalently, the proper
wavelength scales as λa, where λ is the comoving wave-
length), it must be KBT ∼ 1/a, or else the Planck dis-
tribution would be distorted by the cosmic expansion:

T ∼ 1

a
∼ 1

Ω
(2.8)

where Ω = a(η) is the conformal factor of the FLRW line
element (2.5).
This result can be obtained in another way which high-

lights formulas useful in the following. Assuming the
number of photons to be conserved (which is true after
decoupling), the first law of thermodynamics for the ra-
diation fluid reads

T dS = dU + PdV (2.9)

where U is the internal energy, P is the radiation pres-
sure, and V is the volume. The entropy density is

s ≡ dS

dV
=

ρ+ P

T
(2.10)

where ρ = dU/dV is the energy density, while the entropy
is (e.g., [20])

S =
32π5KB

45

(

KBT
hc

)3

V , (2.11)

implying that

ρ+ P =
32π5K4

B

45 (hc)
3 T 4 . (2.12)

For conformal transformations of perfect fluids in FLRW
cosmology, the pressure and energy density transform as
[21]

ρ̃ = Ω−4 ρ , P̃ = Ω−4 P , (2.13)

then

ρ̃+ P̃ = Ω−4 (ρ+ P ) = Ω4
32π5K4

B

45 (hc)
3 T 4

=
32π5K4

B

45 (hc)3
T̃ 4 , (2.14)
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leading again to

T̃ =
T
Ω

(2.15)

where

T =

[

45 (hc)
3

32π5K4
B

]1/4

(2.16)

and where ρ and P = ρ/3 are constant for blackbody
radiation at rest in Minkowski spacetime.

In other words, one notes that for blackbody radiation

ρ =
U

V
= AT 4 , A =

8π5K4
B

15h3c3
, (2.17)

s =
4ρ

3T ∼ T 3 . (2.18)

Then, comparing the expressions of the rescaled energy
density

ρ̃ = AT̃ 4 , (2.19)

ρ̃ = Ω−4 ρ , (2.20)

one obtains Eq. (2.4) with T = (ρ/A)1/4. These cal-
culations are appropriate to the physics at hand: in
Minkowski spacetime a radiation fluid has T = const.
while in FLRW spacetime

T √−g00 =
T
Ω

Ω
√−g00 =

T √−g̃00
Ω

= T̃
√

−g̃00 (2.21)

implies that T̃ = T /Ω. The reasoning works in coordi-
nates in which g̃ab is explicitly conformally static, that
is, comoving frame and conformal time are needed.

III. TEST FLUIDS IN CONFORMALLY STATIC
SPACETIMES

We now generalize the Tolman-Ehrenfest criterion for
thermal equilibrium to the local thermal equilibrium of
fluids in conformally static spacetimes. That this is pos-
sible is suggested by the previous example of the cosmic
microwave background in FLRW universes. Conformally
static spacetimes are non-trivial because they can be dy-
namical (like the FLRW geometry), which is a significant
deviation from the situation of a static fluid at rest in a
static spacetime, to which the Tolman-Ehrenfest criterion
has been confined since its inception [1–3] (only recently
a proper description of stationary spacetimes has been
given [6–8]). We provide two different derivations of the
generalized Tolman-Ehrenfest criterion.

A. Derivation using perfect fluids

Consider a conformally static metric g̃ab = Ω2 gab,
where gab is static, and use coordinates

(

t, xi
)

adapted
to the time symmetry, in which ∂gµν/∂t = 0 and g0i = 0.
The normalization of the four-velocity in the conformally
rescaled world −1 = ũcũc = Ω2 gabũ

aũb, in conjunction
with gabu

aub = −1, gives

ũc =
uc

Ω
, ũc = Ωuc . (3.1)

In the comoving frame of the fluid, assumed to coincide
with the frame of the static observers, the components
of the fluid’s four-velocity are uµ =

(

u0, 0, 0, 0
)

and the
conformal image of this frame is the comoving frame of
the conformally transformed fluid because

ũµ =

(

u0

Ω
, 0, 0, 0

)

. (3.2)

Denoting with g̃(3) the determinant of the spatial 3-
metric induced by g̃ab, the three-dimensional volume of
a region of the rescaled 3-space is

Ṽ =

∫

d3~x
√

g̃(3) =

∫

d3~x
√

Ω6g(3) =

∫

d3~xΩ3
√

g(3)

(3.3)

thus, if Ω = Ω(t) then Ṽ = Ω3V , but this is not
true if Ω(xµ) depends on the spatial coordinates. How-
ever, it is always true that for infinitesimal volumes

dṼ =
√

g̃(3) d3x = Ω3
√

g(3) d3x = Ω3dV . The rela-

tions ρ̃ = Ω−4ρ and P̃ = Ω−4P valid for perfect fluids in
FLRW spacetimes [21] can be generalized to test fluids
in any conformally static spacetime. In fact, equivalent
Lagrangian densities for a perfect fluid are −ρ and P
[22–25]. We can relate these equivalent actions for a per-
fect fluid to those of the conformally transformed fluid as
follows:

J ≡
∫

d4x
√
−gL(m)

(1) = −
∫

d4x
√
−g ρ

= −
∫

d4x
√

−g̃ ρ̃ =

∫

d4x
√

−g̃ L̃(m)
(1) , (3.4)

where ρ̃ = Ω−4 ρ and g̃ = Ω8 g. Similarly, for the equiv-
alent perfect fluid Lagrangian,

J ≡
∫

d4x
√−gL(m)

(2) =

∫

d4x
√−g P

=

∫

d4x
√

−g̃ P̃ =

∫

d4x
√

−g̃ L̃(m)
(2) , (3.5)

where P̃ = Ω−4 P . The perfect fluid remains a perfect
fluid if we add the information that ũa = Ωua. In fact,

T̃ab = ρ̃ ũaũb + P̃ h̃ab = Ω−4ρΩuaΩub +Ω−4 PΩ2hab

= Ω−2 (ρuaub + Phab) = Ω−2 Tab : (3.6)
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the conformal transformation does not generate dissipa-
tive terms in the stress-energy tensor of a test perfect
fluid. However, if Tab sources the Einstein equations,
then g̃ab is not a solution of the Einstein equations with
the same source because these change to

G̃ab = 8π(T̃ab + T
(Ω)
ab ) , (3.7)

where

8πT
(Ω)
ab = − 2

Ω
(∇a∇bΩ− gab�Ω)

+
1

Ω2
(4∇aΩ∇bΩ− gab∇cΩ∇cΩ) (3.8)

is generated by Ω and its first and second covariant
derivatives. This fact is immaterial for our discussion, in
which Tab describes a test fluid and the Tolman-Ehrenfest
criterion is purely kinematic [7], hence we do not worry
about the field equations.
Let us proceed with our reasoning. For a conformally

static spacetime, the proper 3-volume element is dṼ =
Ω3 dV ≡ Ω3 dṼcomoving. For a perfect fluid the entropy is
constant along the fluid lines, which means that there is
no entropy generation (because there is no dissipation)
in the comoving frame, or the entropy remains constant
in time in the comoving frame and, in this frame, also
the entropy density

s̃comoving ≡ dS̃

dṼcomoving

= const. (3.9)

Then

s̃comoving =
dS̃

dṼcomoving

=
dS̃

Ω−3 dṼ

= Ω3 s̃ = Ω3

(

ρ̃+ P̃

T̃

)

= const. (3.10)

Using the fact just proven that ρ̃ = Ω−4 ρ, P̃ = Ω−4 P ,
we can write

Ω−1

(

ρ+ P

T̃

)

= const. (3.11)

which implies that

T̃ = const.

(

ρ+ P

Ω

)

= const.
T
Ω

(

ρ+ P

T

)

. (3.12)

Using now the fact that for the Minkowski space per-
fect fluid s = (ρ+ P ) /T is constant, we have T̃ =
const.T /Ω. The multiplicative constant is determined
by the fact that Ω = 1 (or more generally, Ω = const.)
gives the identity, yielding

T̃ =
T
Ω

. (3.13)

As is well known (e.g., [21]), in general the stress-
energy tensor of the conformally transformed fluid is not
covariantly conserved but satisfies

∇̃bT̃
ab = − T̃∇aΩ

Ω3
(3.14)

and is conserved only for a conformally invariant fluid
with T = T̃ = 0 (this is the case for the radiation fluid
in FLRW universes just considered).

B. Derivation from Eckart’s law of heat conduction

In the conformally static geometry g̃ab = Ω2 gab,
Eckart’s law for heat conduction in a dissipative fluid
reads [16]

q̃a = −K̃h̃ab

(

∇̃bT̃ + T̃ ãb
)

. (3.15)

If the generalized Tolman-Ehrenfest criterion T̃ = T /Ω
holds in the conformally rescaled frame, one should be
able to derive it directly from Eckart’s law (1.5) written
in this frame, which we do here. Essentially, we use again
the definition of local thermal equilibrium q̃a = 0 and the
temperature T is not required to be time-independent.
Indeed, even if uc∇cT = 0 in the static spacetime, in the
rescaled world

ũc∇̃cT̃ =
ub

Ω
∇b

(T
Ω

)

=
ub∇bT
Ω2

−T ub∇bΩ

Ω3
= −T Ω̇

Ω3
6= 0

(3.16)
unless the conformal factor Ω is time-independent, which
would bring us back to the rather trivial example 1 of
Sec. II A.
Recall that, to derive the Tolman-Ehrenfest law in a

static spacetime, one uses the Buchdhal identity [26] ac =
∇c ln

√−g00 (Appendix A). While, in general, it is not

true that ãc = ∇̃c ln
√−g̃00, the relation

h̃ab ã
b = h̃ab ∇̃b ln

√

−g̃00 (3.17)

is valid and is all that is needed. This condition differs
from the previous one if the four-acceleration has a com-
ponent parallel to the four-velocity. Instances in which a
four-force is parallel to the four-velocity of a particle and
causes an effective acceleration with the same direction
comprise particles with variable mass [27, 28] (including
rockets and solar sails [29–31]), interacting dark energy
[32–37], timelike geodesic curves mapped to the Einstein
frame of scalar-tensor or dilaton gravity [21, 38–41], the
worldlines of fluid elements in FLRW cosmology as seen
by comoving observers when the cosmic fluid is not a
dust [42], and non-affinely parametrized geodesics [17].
The reason why a four-acceleration is not parallel to the
corresponding four-velocity is simply because, in these
situations, the proper time fails to be an affine parame-
ter along the particle trajectory and does not contradict
standard tenets of special relativity [42].
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To prove Eq. (3.17), first compute

ãa ≡ ũb∇̃bũa =
ub

Ω
∇̃b (Ωua) =

(

ub∇bΩ

Ω

)

ua + ub∇̃bua

=
Ω̇

Ω
ua + ub

(

∂bua − Γ̃c
abuc

)

=
Ω̇

Ω
ua + ub

[

∂bua − Γc
abuc

− 1

Ω
(δcb∂aΩ+ δca∂bΩ− gab ∂

cΩ)

]

uc

=
Ω̇

Ω
ua + ub∇bua −

1

Ω
ucuc∂aΩ

=
Ω̇

Ω
ua + aa +

∇aΩ

Ω

= aa +
1

Ω

(

uaub∇bΩ + gab∇bΩ
)

≡ aa + hab
∇bΩ

Ω
, (3.18)

where we used [4, 21]

Γ̃c
ab = Γc

ab +
1

Ω
(δcb∂aΩ+ δca∂bΩ− gab ∂

cΩ) . (3.19)

The four-acceleration ãc is still orthogonal to the four-
velocity ũc:

g̃ab ã
a ũb = Ω−1 ãa u

a = Ω−1

(

aa + hab
∇bΩ

Ω

)

ua

= Ω−1abu
b = 0 . (3.20)

We now compute

h̃ab ã
b = Ω2hab

(

ab + hbc ∇cΩ

Ω

)

= Ω2hab

(

∇b ln
√−g00 +∇b lnΩ

)

= Ω2 hab∇b ln
(

Ω
√
−g00

)

= Ω2hab∇b ln
√

−g̃00

= h̃ab∇̃b ln
√

−g̃00 , (3.21)

which completes the proof5 of Eq. (3.17). One then has

q̃a = −K̃ h̃ab

(

∇̃bT̃ + T̃ ãb
)

= −K̃ h̃abT̃
(

∇̃b ln T̃ + ∇̃b ln
√

−g̃00

)

= −K̃ h̃abT̃ ∇̃b ln
(

T̃
√

−g̃00

)

(3.22)

and thermal equilibrium q̃a = 0 implies that

∇̃b ln
(

T̃ √−g̃00

)

is parallel to ũb. Then T̃ √−g̃00 must

depend only on time,

T̃
√

−g̃00 = f(t) (3.23)

where f(t) is an integration function, or

T̃ =
f(t)

Ω
√−g00

=
f(t)T

Ω (T √−g00)
= const.

f(t)T
Ω

. (3.24)

The product const. × f(t) is fixed by the fact that, if
Ω ≡ 1, the conformal transformation must reduce to the
identity with T̃ = T and const. × f(t) = 1. We are left
with Eq. (3.13) again.

IV. CONFORMALLY SCHWARZSCHILD
GEOMETRIES

It is interesting to compare the generalized Tolman-
Ehrenfest criterion (2.4) with spacetimes designed inten-
tionally to be conformal to the (exterior) Schwarzschild
black hole geometry

ds2(0) = −
(

1− 2m

r

)

dt2 +
dr2

1− 2m/r
+ r2dΩ2

(2) , (4.1)

where dΩ2
(2) ≡ dϑ2+sin2 ϑ dϕ2 is the line element on the

unit two-sphere and the parameter m is the (constant)
black hole mass.
The first such spacetime described here is the Sultana-

Dyer solution of the Einstein equations, which is a
Petrov type D, time-dependent, and spherically symmet-
ric spacetime sourced by two non-interacting fluids, a null
dust and an ordinary (timelike) dust [43]. It is inter-
preted as a describing a black hole embedded in a spa-
tially flat FLRW universe.
Since we need a test fluid at rest in the static seed

spacetime to apply the criterion (2.4), we consider the
region around the Schwarzschild event horizon, in which
Hawking radiation creates a static blackbody radiation

5 Contrary to the proof of the analogous relation for static space-
times (Appendix A), the Killing equation has not been used. In-
deed, the conformally rescaled world, in general, has no timelike
Killing vector, but only a conformal Killing vector [4].
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fluid at the Hawking temperature T = 1
8πm (in ge-

ometrized units). The Tolman-Ehrenfest criterion clearly
fails at horizons since, for the Schwarzschild black hole
it would give T = T0

1−2m/r , which diverges as r → 2m+.

However, the cause is not that the criterion is inherently
bad but it is restricted to static coordinates, and the lat-
ter fail at the Schwarschild event horizon. Hawking radi-
ation is a quantum phenomenon and the proper calcula-
tion of the Hawking temperature requires quantum field
theory in curved space, including a careful consieration
of the vacuum state. Once this is done and the tempera-
ture appearing in the Tolman-Ehrenfest criterion is cured
producing the Hawking result T = 1

8πm , one can consider
the Schwarzschild geometry as a seed for constructing the
Sultana-Dyer spacetime by a conformal transformation.
The Sultana-Dyer line element is [43]

ds2 = a2 (η, r)

[

−
(

1− 2m

r

)

dη2 +
dr2

1− 2m/r
+ r2dΩ2

(2)

]

= a2 (η, r) ds2(0) , (4.2)

where

a (η, r) =

(

η + 2m ln

∣

∣

∣

∣

∣

r

2m
− 1

∣

∣

∣

∣

∣

)2

. (4.3)

If m = 0 the line element reduces to the FLRW one
written in conformal time. The coordinate change

τ (η, r) = η + 2m ln

∣

∣

∣

∣

∣

r

2m
− 1

∣

∣

∣

∣

∣

(4.4)

turns the line element into the original Sultana-Dyer form
[43]

ds2 = a2(τ)

[

−dτ2 + dr2 + r2dΩ2
(2) −

2m

r
(dτ + dr)2

]

,

(4.5)
with a(τ) = τ2 [43]. The Tolman criterion applied to the
Sultana-Dyer geometry yields the temperature

T =
T0

a
√

1− 2m/r
(4.6)

which, as usual, diverges at the event horizon where the
static coordinates fail, and needs to be regularized. This
has been done by Saida, Harada, and Maeda [44], who
studied the Hawking radiation of a massless, conformally
coupled scalar field φ in this geometry and computed the
renormalized stress-energy tensor 〈Tab [φ]〉 taking into ac-
count the conformal anomaly and particle creation. The
calculation, analogous to Hawking’s calculation in the
fixed Schwarschild geometry with constant mass m (that
is, neglecting backreaction), is feasible only in an adia-
batic approximation in which the black hole mass evolves
very slowly, which is necessary to guarantee thermal equi-
librium. (This condition is analogous to the condition
that reaction rates exceed the Hubble expansion rate

in a FLRW universe to maintain local thermal equilib-
rium.) The generalized Tolman-Ehrenfest criterion (2.4)
then predicts that the temperature of the Sultana-Dyer
black hole is T = T0/Ω = T0/a, where T0 is the Hawking
temperature. The calculation of [44] produces the result

T =
1

8πma
+ ... (4.7)

where the corrections omitted are negligible in the adia-
batic approximation of a slowly evolving black hole [44].
An independent calculation using the method of chiral

anomaly confirms the temperature (4.7) of the Sultana-
Dyer black hole [45, 46], which is supported also by pre-
vious heuristic dimensional reasoning [47]. The general-
ized Tolman-Ehrenfest criterion makes a definite predic-
tion about the temperature of cosmological black holes
conformal to Schwarzschild, and the conformal transfor-
mation is a popular technique to generate exact solutons
of general relativity [48] and of alternative theories of
gravity [49].

V. CONCLUSIONS

The applicability of the Tolman-Ehrenfest crite-
rion (1.2) for the thermal equilibrium of a fluid is quite
restricted. It requires a static spacetime and a fluid at
rest with respect to the static observers of the latter, who
have four-velocity parallel to the timelike Killing vector.
Extending the Tolman-Ehrenfest criterion to more gen-
eral geometries is, therefore, not an insignificant task.
Here we have presented its generalization to conformally
static spacetimes with metric g̃ab = Ω2 gab, where gab is
static and the test fluid of temperature T is at rest in the
frame associated with the static observers of gab. Then,
assuming local thermal equilibrium, the generalization of
the Tolman-Ehrenfest criterion is T̃ = T /Ω. The most
obvious application of this generalized criterion is to the
cosmic microwave background in FLRW universes, which
reproduces the well known scaling of its blackbody tem-
perature T ∼ 1/a.

The temperature scaling T̃ = T /Ω found is compat-
ible with Dicke’s heuristic argument on the scaling of
physical quantities under conformal transformations [38]
(cf. Ref. [47]) and is confirmed by precise calculations
[45, 46] in the particular case of the Sultana-Dyer black
hole, as discussed in the previous section. With this argu-
ment, physical quantities themselves do not carry phys-
ical meaning, which is instead attributed to the ratios
of physical quantities to their units, the only outcome of
measurements. Usually the units are taken to be con-
stant in spacetime, but a conformal rescaling amounts to
a rescaling of physical units that depends on the space-
time point: lengths and times scale as Ω, masses scale
as 1/Ω, and derived quantities scale accordingly to their
dimensions [38]. Then, since KBT is an energy, or a
mass, and KB remains constant, T should scale as 1/Ω,
which is what we found. Dicke’s argument, however, is
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rather heuristic and is known to become imprecise in the
conformal transformation from Jordan to Einstein frame
in scalar-tensor gravity. One must be precise in the dis-
cussion of what kind of fluid is considered, according to
which observers, the definition of local thermal equilib-
rium, and the vanishing of qa and q̃a. It is interesting,
however, that our finding agrees with Dicke’s heuristic
reasoning.

Already the generalization of the Tolman-Ehrenfest
criterion to stationary, but non-static, spacetimes re-
quires much care [6–8]. The extension of our general-
ization to conformally stationary spacetimes is problem-
atic because, under conformal transformations, the non-
unique timelike Killing vector of the stationary spacetime
gab does not map into another timelike Killing vector of
g̃ab, but only into a conformal Killing vector [4]. In any
case, the problems encountered in stationary but non-
static spacetimes [6–8] are not going to be cured in con-
formally stationary ones.

The most interesting applications of the generalized
Tolman-Ehrenfest criterion (2.4) uncovered here (the cos-
mic microwave background in FLRW universes and the
Hawking temperature of the Sultana-Dyer black hole) are
about conformally invariant systems (a blackbody gas
of Hawking radiation or a massless conformally coupled
scalar field, which is conformally invariant [4]). We sus-
pect that the most useful applications of this criterion
will involve conformally invariant systems, but other ap-
plications are not excluded at this stage. Even with this
potential restriction, however, it appears that interest-
ing physics can be tackled with the new criterion (2.4).
Indeed, the phenomena discussed here are already quite
varied, ranging from cosmology to time-dependent black
holes. In any case, even the original Tolman-Ehrenfest
criterion of thermal equilibrium now reported in text-
books [18] has not found widespread applications to the-
oretical physics and astrophysics, but it has intellectual
value in itself as a contribution to the understanding of
thermal physics in relativity, which is still fairly incom-
plete (as is the understanding of non-equilibrium thermo-
dynamics in general), and its generalization to non-static
situations appears to be valuable.

Finally, in our derivation we used the fact that the fluid
is a test fluid. Although the original Tolman-Ehrenfest
temperature gradient is a kinematic effect, relating so-
lutions of the Einstein equations (or of the field equa-
tions of alternative theories of gravity) through confor-
mal transformations spoils the reasoning of Sec. III (an
exception is the radiation fluid which, due to its confor-
mal invariance and the fact that photons are massless, is
conserved after the conformal transformation). Further
generalization of the Tolman-Ehrenfest criterion beyond
conformally static spacetimes and test fluids seems diffi-
cult to achieve.
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Appendix A: Derivation of the Tolman-Ehrenfest
criterion from Eckart’s law (1.5)

Here we derive the Tolman-Ehrenfest criterion from
Eckart’s generalization of the Fourier law for heat con-
duction in imperfect fluids [16], using modern notation.
We follow Ref. [7] step-by-step.

Consider a static test fluid at rest in a static space-
time and let gµν be the metric components in coordinates
adapted to the time symmetry. The timelike Killing vec-
tor ka satisfies the Killing equation

∇(akb) =
1

2
(∇akb +∇bka) = 0 (A.1)

and has components kµ = (1, 0, 0, 0) in these coordinates,
while g00 = kck

c.

The first step consists of a relation, due to Buchdahl
[26], between the four-acceleration of a test particle at
rest with respect to the static observers and g00,

ac ≡ u̇c ≡ ub∇buc = ∇c ln
(√−g00

)

. (A.2)

To prove this relation, note that a fluid element has nor-
malized four-velocity

ua =
ka

√

−kbkb
(A.3)

and four-acceleration

dub

dτ
≡ uc∇cub = uc∇c

(

kb
√

−kdkd

)

= uc

[

∇ckb
√

−kdkd
+ kb

(−1

2

1

(−kdkd)3/2

)

∇c(−kdkd)

]

= uc

[

∇ckb
√

−kdkd
− kb∇c

(

−kdkd
)

2 (−kdkd)
3/2

]

(A.4)

(where τ is the proper time along the fluid lines). The
second term in the last line vanishes since ka∇a

(

kbk
b
)

=
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0 because

ka∇a

(

kbk
b
)

= ka∇a

(

gbck
bkc
)

= kagbc
(

kc∇ak
b + kb∇ak

c
)

= kakc (∇akc) + kakc (∇akc)

= 2kakc∇akc

= 2kakc∇(akc) = 0

where, in the second to last step, we used the fact that
since kakb is symmetric only the symmetric part of ∇akb
contributes, while the last step follows from the Killing
equation. Then the fluid’s four-acceleration is

ab =
uc∇ckb
√

−kdkd
=

kc
√

−kdkd

∇ckb
√

−kdkd

=
kc∇ckb
−kdkd

=
−kc∇bkc
−kdkd

, (A.5)

where we used again the Killing equation (A.1). Since
∇b(k

ckc) = 2kc∇bkc,

kc∇bkc =
1

2
∇b (k

ckc) (A.6)

and the above identity yields

ab =
∇c

(

−kdkd
)

−2kdkd
=

∇b ln
(

−kdkd
)

2
= ∇b ln

(

√

−kdkd

)

.

(A.7)
In the adapted coordinates kaka = g00, hence

ab = ∇b ln
√−g00 . (A.8)

Eckart’s generalization of the Fourier law for heat con-
duction in dissipative fluids is then used to complete the
derivation. The Tolman-Ehrenfest criterion refers to per-

fect fluids, described by the simpler stress-energy tensor

Tab = ρuaub + Phab , (A.9)

but in Eckart’s first-order thermodynamics an imperfect
fluid at rest coincides with that of a perfect fluid be-
cause the imperfect fluid dissipative quantities are as-
sumed to be linear in the gradient of the four-velocity
(cf. Eqs. (1.5)-(1.7) [16].

For a fluid at rest in a static spacetime, Θ and σab van-
ish and qa = 0 in thermal equilibrium, hence the stress-
energy tensor (1.3) takes the perfect fluid form (A.9).
The temperature of such a fluid is time-independent,

dT
dτ

≡ ua∇aT = 0 (A.10)

then,

hab∇bT ≡ (uaub + gab)∇bT = ∇aT . (A.11)

By definition there is no heat flow in thermal equilibrium,
qa = 0, and Eckart’s law (1.5) gives

∇aT + T ∇a

(

ln
√−g00

)

= 0 ,

∇a ln T +∇a ln
√−g00 = const. ,

and finally

T √−g00 = const. (A.12)
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