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Abstract—Network tomography is a discipline that aims to
infer the internal network characteristics from end-to-end cor-
related measurements performed at the network edge. This work
presents a new tomography approach for link metrics inference
in an SDN/NFV environment (even if it can be exported outside
this field) that we called TOM (Tomography for Overlay net-
works Monitoring). In such an environment, we are particularly
interested in supervising network slicing, a recent tool enabling
to create multiple virtual networks for different applications
and QoS constraints on a Telco infrastructure. The goal is
to infer the underlay resources states from the measurements
performed in the overlay structure. We model the inference
task as a regression problem that we solve following a Neural
Network approach. Since getting labeled data for the training
phase can be costly, our procedure generates artificial data for
the training phase. By creating a large set of random training
examples, the Neural Network learns the relations between the
measures done at path and link levels. This approach takes
advantage of efficient Machine Learning solutions to solve a
classic inference problem. Simulations with a public dataset show
very promising results compared to statistical-based methods. We
explored mainly additive metrics such as delays or logs of loss
rates, but the approach can also be used for non-additive ones
such as bandwidth.

I. INTRODUCTION

Software Defined Networking (SDN) [1] [2] and Network

Function Virtualization (NFV) [3] are new paradigms that en-

able operators to manage their network resources and handle

the increasing demands driven by the new 5G introduction.

Operators will therefore have effective tools to better manage

their infrastructures and offer scalable and on-demand services

to their clients. The NFV concept aims to decouple network

functions from the hardware infrastructure by deploying virtu-

alized entities on Custom Off The Shelf servers. This enables

creating customized virtual networks to support the varied

services. Multiple virtual networks, also called slices [4], can

be deployed over a common infrastructure. Therefore, network

slicing will enable operators to partition their infrastructure to

multiple slices to fulfill the customized requirements of the

different clients and devices.

In the slicing concept, there are different levels of resource

abstraction. Each layer has an abstracted view of the cor-

responding resources (for example: physical infrastructure,

virtual infrastructure, and multi-domain environment). To ease

incident diagnosis, the monitoring system must be able to infer

the state of the underlying layer from the information collected

in the overlay networks.

Network tomography [5] [6] studies the inference of in-

ternal network characteristics from end-to-end measurements.

Typical targets are delays, loss rates, or bandwidth. Some

approaches allow the discovery of networks topologies [7].

One of the interesting applications is to reduce the complexity

of monitoring and diagnostic tool and protocols spread out all

over the infrastructure.

Although these solutions provide accurate estimation and

try to minimize the computational complexity, they require

a holistic view of the network state. In fact, the monitoring

strategy should be dynamically adjusted according to network

changes which occurs frequently in virtualized architectures.

Network tomography solutions fit well with the SDN and NFV

paradigm. Indeed, one of the inherent features of the SDN

architecture is the global overview of the network. In addition,

the virtualized technologies allow deploying scalable and

extensible solutions for storing and processing the collected

data.

This work proposes a flexible monitoring solution for the

inference of additive metrics (delay or loss rate at logarith-

mic scale) in the underlying infrastructure from end-to-end

measurements performed on the exposed abstracted resources

inside an NFV-SDN networking architecture. We cross the

collected end-to-end measurements to compute the metrics

on the shared resources using a trained Neural Network. Our

solution can be easily deployed in an SDN-NFV environment

and guarantees the scalability and the flexibility of the mon-

itoring system. The proposed architecture is based on virtual

resources for data collection and processing. Thus, the update

of the monitoring strategy is flexible and not costly.

The remainder of this paper is organized as follows. Sec-

tion II summarizes the main related works for the monitoring

of overlay networks and on network tomography issues.

Section III describes the context of network slicing where

our solution can be deployed. Section IV gives an overview

about the approach we follow based on Neural Networks. The

testing environment and the results analysis are presented in

Section V. Finally, Section VI concludes this paper and gives

an overview of our future work.

II. BACKGROUND AND RELATED WORKS

Overlay network monitoring [8] [9] presents an interesting

opportunity for the inference solutions proposed in network

tomography. Two main families of approaches can be dis-

tinguished: in one of them, exact solutions are the goal,

Rubino
In CCNC’2020�



and the method consists in adding multiple conditions on

the traffic collection points and the supervised paths. The

related tools are mainly based on algebraic procedures. The

other approaches are statistical in nature, and the goal is

the estimation of the unknown metrics. This paper can be

classified in the second category, even if it is based on

Machine Learning instead of statistical techniques.

In [10], the authors propose an algebraic solution to select

the necessary paths in an overlay network to fully describe an

additive metric on the rest of the available paths. Paper [11]

proposes a heuristic algorithm for the placement of overlay

networks dedicated to the diagnosis of the underlying network.

Other approaches have been published for the inference of

additive metrics from end-to-end measurements. These solu-

tions are suitable for the slice monitoring use case. In [12],

the authors proposed an algorithm to identify the minimal

number of nodes and their placement in a given topology to

collect monitoring traffic and to guarantee the identifiability

of all the links. The selected points exchange traffic in order

to collect end-to-end measurements that will be used to infer

the link metrics. Paper [13] deals with the same issue, but

the idea is to adapt the monitoring strategy to the network

topology changes. These types of solutions usually impose

a set of rules for traffic collection points and probing paths.

These constraints have to be satisfied in order to ensure proper

operations of the monitoring system.

Concerning the methods relying on parametric statistical

techniques, the unknown network parameters are considered

random variables that follow a specific predefined probabilis-

tic model. The model is then adjusted to fit the collected data.

In [14], the authors use multicast probing for loss rate infer-

ence. The network topology is fully covered with overlapping

multicast trees and unicast paths to collect the end-to-end

loss measurements. Then, a Maximum Likelihood Estimator

is applied to infer the internal loss rates. In [15], the authors

mix unicast and multicast probing to propose the Flexicast

framework for delay inference in a tree topology. The problem

is formulated around a likelihood function where the link

delay metrics are latent discrete variables. The likelihood

is then maximized with the Expectation-Maximization [16]

algorithm. Observe that this procedure is characterized by a

slow convergence time that is a drawback when dealing with

large-scale networks.

In some recent works, Machine Learning solutions have

been proposed for network monitoring and troubleshooting.

For instance, [17] uses Supervised Learning to identify link

failures. They mix classification techniques with a regression

model to locate the failed links. The training is done with

multiple features like traffic flow information, Round-Trip

Times and loss rates. In this work, we also use Supervised

Learning but with automatically generated labeled data. That

is, we build a self-trained Neural Network as an inference

solution tool for additive link metrics.
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III. CONTEXT: SLICING MONITORING USE CASE

Network slicing allows creating multiple virtual networks

on top of a shared infrastructure. Hence, a failed node in the

shared resources impacts the slices that share it. The customer

who manages the slice makes regular checks on his deployed

services in the virtual infrastructure to verify if the slice

provider respects the Service Level Agreement (SLA). The

monitoring agent in the slice periodically reports about the

measurement performed at the virtual layer to a centralized

monitoring unit. This entity can detect the SLA violations and

transfer this information to the WAN Infrastructure Manager

(WIM). The WIM manages the infrastructure where the slices

are deployed. It aggregates the information transferred from

the different clients and looks for the root causes of the

reported incidents thanks to the tomography algorithm.

Fig. 1 illustrates the steps and the call flow between the

monitoring units in the different layers to find the potential

causes of an observed SLA violation on different slices:

1. A monitoring agent in each slice performs regular obser-

vations on the deployed virtual links.

2. Based on the load and performance measurements of data

collected from each agent and its resources verification

rules, the orchestrator detects the potential shortages

of the virtualized resources and reports them to the

WAN Infrastructure Manager (WIM). In the example of

Fig. 1, the monitoring system notices an SLA violation

in slices 1 and 2.

3. The WIM maps the virtual resources with their cor-

responding representation in the shared infrastructure.

Thanks to the tomography algorithm, the WIM infers

the possible root causes to the reported incidents and

consequently, it performs remediation actions such as

relocation of existing paths.



TABLE I: List of main used variables

variable description

G = (V,L) network graph topology, node set V , link set L

P path set, P paths

Y end-to-end metrics, vector, size P

X link metrics, vector, size L

IV. NEURAL NETWORK-BASED TOMOGRAPHY

A. Network model and notation

Tab. I summarizes the main notation adopted in this paper.

Consider the network topology (graph) G = (V,L) that

hosts multiple virtual infrastructures, with the set of nodes

V , the set of edges or links L, and denote |V|= V and

|L|= L. Each of these virtual infrastructures is composed of

virtual machines connected by virtual links. These virtual links

represent an abstraction of paths in the underlying network.

Let P denote the set of paths selected. A path p is represented

by a Boolean vector of size L. If link i belongs to this

path, p(i) is equal to 1, and to 0 otherwise. Let A be the

Boolean matrix whose rows correspond to the paths vectors.

Thus, A(i, j) is equal to 1 if j belongs to path pi, and to 0
otherwise. We denote by Y the vector of size P representing

the observed metrics on the virtual paths; Y (i) represents the

metric measured or observed on path pi. X denotes the vector

of size L representing the unknown link metrics on the shared

infrastructure; X(i) represents the metric on link i. Finally,

we assume known an upper bound of those link metrics,

denoted by B. Using this notation, the end-to-end metrics

can be computed by (1):

AX = Y. (1)

The objective here is to evaluate X knowing Y and A,

that is, to find an appropriate solution to this linear system.

The typical situation here is that of an undetermined system

(in practice, the number of equations P and the number of

unknowns L satisfy, in general, P < L). In this paper we

focus on this undetermined situation.

B. Additive metrics inference with Neural Networks

Our proposal is to transform the inference inverse problem

described by (1) into a regression problem and to solve it

using a Neural Network. For this purpose, since we know the

architecture of the network, we can simulate the distribution

of traffic through the network in many configurations, and

observe many pairs (X,Y ). This can then be used to learn

the connection between the two vectors, in the sense Y → X ,

following a Machine Learning approach. Figure 2 resumes this

process.

We will consider a classic Neural Network architecture of

the Feed Forward type, and for our tests here, with only one

hidden layer. Each of our layers is fully connected to the next

one (or to outside for the third layer), that is, both the neurons

in the hidden and the output layers receive input from each of

the neurons in the previous layer. The dimension of the input

traffic
τ (1), . . . , τ (K)

simulated

network

X(1), . . . , X(K)

Y (1), . . . , Y (K)

Fig. 2: We inject K different traffic configurations

τ (1), . . . , τ (K) into a simulated network and we measure

both path metrics Y and link metrics X , obtaining K

pairs (X(k), Y (k)), which constitute our training database. Of

course, we can measure only X and deduce Y using (1).

layer is equal to the number of paths P while L, the number

of links, is the number of outcomes from the output layer.

The dimension of the hidden layer is a variable parameter

that we adjust for optimizing the performance. This happens,

as expected, for a number of hidden units much larger than

the dimension of the input.

C. Simulated traffic for the training phase

The training of the Neural Network requires a large volume

of labeled data. In our problem, the features are the end-to-

end measurements and the labels are the link metrics. Hence,

constructing the dataset requires collecting exhaustive link

level metrics in a small time window for each input example.

This process should be repeated in different network condi-

tions to avoid the over-fitting of the model. Thus, collecting

real data for the training introduces an important overhead

in the process. This scenario seems to be unrealistic since

the objective of the monitoring operation is to afford useful

information about the network state without disturbing the

network functioning. To avoid this issue, we train our Machine

Learning tool using simulated data.

The Neural Network has to learn how to approximate the

link metrics from the path measurements. In other words, it

must capture the spatial correlations created by the topology

that enable to find relations between the end-to-end measure-

ments and the link metrics. In addition, the Neural Network

should not be over-fitted to some specific values and should

take into consideration the temporal variability of the link

metrics. We propose to generate exhaustive random samples

of link metrics denoted X ′. In fact, with each link metric,

we associate a random value between 0 and B to construct

one example of X ′. Its associated simulated end-to-end mea-

surement Y ′ is computed using Y ′ = AX ′. This procedure is

repeated multiple times to construct an important number of

couples (X ′, Y ′). The computed end-to-end metrics Y ′ will

be the features of the training, while the labels will be the

generated link metrics examples X ′.

D. Training step

The inference of link metrics from path measurements

can be considered as a regression problem. The input is the

path-level measurements and the expected output is the link-

level metrics estimation. We train the Neural Network using

the iterations of forward and backward propagation with the



artificially created data. In our experiments, we use the classic

Adam optimizer algorithm [18] for backward propagation. It

is possible to pass all the training examples multiple times

through the forward and backward process. An epoch in the

learning process represents one forward and one backward

propagation.

E. Testing step

After training the neural network with artificial data, we use

it to estimate the link metrics from the path measurements.

Observe that if there is a change in the network topology or

the used paths, we have to repeat the training step taking into

consideration the new updates. Observe also that this is a one-

shot step, done only once. Using the trained Neural Network

in the operational phase is then a quick procedure.

V. MODEL EVALUATION AND RESULT ANALYSIS

A. Singular Value Decomposition-based reference method

To illustrate the performances reached of our proposal, we

compare it with a basic reference solution [10] based on

Singular Value Decomposition (SVD) [19]: basically, every

matrix A of dimension m×n can be written as A = USU ′T

where U is an m×m unitary matrix (that is, U UT = I), S

is an m× n diagonal matrix whose diagonal is composed of

the singular values of A (the square roots of the eigenvalues

of matrix ATA) and U ′ is an n × n unitary matrix. The

pseudo-inverse of matrix A, denoted A+, is A+ = U ′S+UT,

where S+, the pseudo-inverse of matrix S, is the transpose of

the matrix obtained by replacing the non zero singular values

of A in S by their corresponding inverses. The link metrics

can then be computed by multiplying the pseudo-inverse A+

by the end-to-end measurement vector Y :

X = A+Y. (2)

We use this method to compare it with our proposal to

show the efficiency of Machine Learning solutions to solve

a classic statistical problem. Comparing the performances of

the different Machine Learning models in this inference task

is in the scope of our future work.

B. Simulation environment

0 2

3

4

11

2

3

4

5

6

7

8

Paths:

0-3-1

0-2-1

0-4-1

0-4-2-3-1

0-2-3-1

0-2-4-1

Fig. 3: Topology A

In order to evaluate the performances of our proce-

dure TOM, we tested it using two different topologies taken

from [20]. For each topology, we selected two nodes to ex-

change the monitoring traffic and we considered a predefined

list of paths. Thus, these points correspond to the data centers

where the virtual machines are deployed as described in Fig. 1.

The used paths represent the mapping between the virtual

links and their corresponding representations in the shared

infrastructure. The two topologies are provided with a dataset

of multiple samples of delay measurements performed on the

different links. The traffic was simulated with the Omnet++4

network emulator. For each topology, we computed the end-

to-end delay on each path, that is, the sum of the delays on

the links composing them, and we estimated the link metrics.

The error is evaluated using (3):

Error (in %) = 100
|V estimated − V real|

B
, (3)

where V real is the exact value of the metric V we are interested

in, V estimated is the estimation, and B is an upper-bound of V .

The first topology, shown in Fig. 3, has five nodes and eight

edges. The second, depicted in Fig. 4, is composed of nine

nodes and twenty-two edges.
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Fig. 4: Topology B

We made multiple tests to compare the results of our ap-

proach with the method described in Subsection V-A. We also

evaluate the accuracy of the estimations and the computing

time as a function of different criteria like the number of

layers and their sizes, the size of the training data-set, the

activation function chosen and the number of epochs in the

learning process. After these experiments, we concluded, for

instance, that a single hidden layer was enough to obtain a

good performance (see V.C.2 below).

C. Results

We evaluate the performances of our solution regarding

different parameters. The variation of the activation function

and the number of epochs does not have a significant impact

on the results. In the next tests, we use the Rectifier Linear



Unit (ReLU) activation function and three epochs for the

training phase. The errors indicated in the different figures

are given in relative terms and in % as described by (3).
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Fig. 5: Topology A: error vs # of paths

1) Used paths: In these illustrations, we use only one

hidden layer, as previously stated, and we fix the number of

examples in the training data set to 5 · 105.

For a fixed number of paths in one test, we select the first

ones from the predefined list. We evaluate the performances of

our proposal with two topologies and we compare it with the

SVD-based solution. Fig. 5 and Fig. 6 illustrate the dispersion

of the percentage error of the two solutions with the two

studied topologies A and B.

Increasing the number of paths obviously enhances the

accuracy of the solutions. The TOM technique has always a

better estimation accuracy. The difference is more visible with

topology B. In fact, with topology A and 6 paths, the median

of the absolute error with our Neural Network is 4.8%, while

it is 5.2% with the SVD-based solution. With topology B,

when we use for example 19 paths, the median is 5.9% for

the TOM method, while it is 22.7% when using the SVD.
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Fig. 6: Topology B: error vs # of paths

Using only 6 paths with topology A gives an under-

determined linear equation system. Thus, multiple solutions

are possible. However, there are some links that are suffi-

ciently covered by the set of paths so that the link metric

can be computed exactly. Both the Neural Network and the

SVD solutions compute these metrics with good accuracy.

The difference is significant on the other links. In fact, the

SVD-based approach gives one possible solution that satisfies

the linear equation system, but not necessarily one close to

the optimal one. The Neural Network is trained to choose the

best solution that minimizes the absolute error. The difference

between the two solutions is more evident when using topol-

ogy B, because of the larger dimensions. The implicit covering

of the correlations between the observed path metrics, given

the topology of the network and the set of paths selected, done

by Machine Learning technology manifests more clearly in

these situations, when networks approach more realistic sizes.
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2) Hidden layers: In this section, we study the impact of

the number of hidden layers on the estimation accuracy and

the computing time.

In these tests, we use topology B with 19 paths and the

number of examples in the training data set is fixed to 5 ·105.

The main conclusions of this set of experiments are as

follows. Firstly, varying the number of the hidden layer does

not impact significantly the accuracy of the estimations. That

is why we used only one large middle layer in our final

evaluations. This doesn’t preclude future tests with deeper

architectures (see the Conclusions), but our goal here is to

illustrate the approach. Secondly, we study the effect of

the hidden layer size. Fig. 7 shows the variation of the

absolute error regarding the hidden layer size. Increasing the

hidden layer size enhances accuracy until reaching about 40
neurons. From this value, the error stagnates. The training

time increases more or less linearly with the hidden layer size

(see Fig. 8), increasing slightly at the end of the considered

range. All these observations fit with the usual behavior of

these technologies.
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Fig. 8: Topology B: training time vs hidden layer size



3) Training data-set: The size of the generated data-set for

the training is another important parameter for the accuracy

and the training time. In these tests, we use topology B with

19 paths and only one hidden layer. We study the effect of

the number of training examples with three datasets of sizes

104, 105 and 106 respectively as described in Fig. 9.
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Fig. 9: Topology B: error vs dataset size

The training data size has a similar impact as the hid-

den layer size. Increasing the number of training examples

enhances the accuracy of the estimations until reaching the

best performance. Then, adding additional examples for the

training does not impact the accuracy as shown in Fig. 9, it

increases only the training time (see Fig. 10).
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Fig. 10: Topology B: training time vs dataset size

VI. CONCLUSIONS

In this paper, we propose a Neural Network solution called

TOM for the inference of metrics in networks. The described

work has been done in the context of SDNs, but it can be

exported to other environments. We used additive metrics

such as delays or logarithms of loss rates, leading to a linear

algebraic context, but the approach can be used for other

metrics such as bandwidth. One of the main features of our

proposal is the use of simulated data in the training step.

In addition, the learning phase can be carried out in a very

short time period, which allows to easily manage changes in

topologies. We used an emulated network traffic to evaluate

the performances of our procedure. The results show that our

Machine Learning approach gives better estimations than the

pseudo-inverse statistical method.

Many points remain to be explored. Choosing an appropri-

ate set of paths is one of the main open issues in this type of

approach. The exploration of the learning tools used was just

initiated in our work; a deeper exploration of the techniques

available and their possibilities for our problem is one of our

possible future tasks.
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