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Tomato detection based 
on modified YOLOv3 framework
Mubashiru Olarewaju Lawal

Fruit detection forms a vital part of the robotic harvesting platform. However, uneven environment 
conditions, such as branch and leaf occlusion, illumination variation, clusters of tomatoes, 
shading, and so on, have made fruit detection very challenging. In order to solve these problems, a 
modified YOLOv3 model called YOLO-Tomato models were adopted to detect tomatoes in complex 
environmental conditions. With the application of label what you see approach, densely architecture 
incorporation, spatial pyramid pooling and Mish function activation to the modified YOLOv3 model, 
the YOLO-Tomato models: YOLO-Tomato-A at AP 98.3% with detection time 48 ms, YOLO-Tomato-B 
at AP 99.3% with detection time 44 ms, and YOLO-Tomato-C at AP 99.5% with detection time 52 ms, 
performed better than other state-of-the-art methods.

�e application of arti�cial intelligence to agriculture has pulled in increasingly more consideration around the 
world particularly in harvesting robots’ development. �is harvesting robot was introduced to replace manual 
picking of fruits that is very tedious, time-consuming, expensive, and relatively high in human error. Meanwhile, 
the autonomous detection of fruits or other agricultural products is the �rst important step for harvesting 
robots. Based on the detection accuracy results, a manipulator is usually guided to pick the fruits. However, the 
development of a computer vision system that is intelligent as humans for fruit and vegetable detection is very 
di�cult. �is is because of numerous reasons, for example, occlusion, uneven illumination, nonstructural �elds, 
and other unpredictable  factors1.

Over the years, serious endeavors have been made in fruit detection for the harvesting robots. Yin et al.2 
employed the L * a * b* color space to extract ripe tomatoes, and Wei et al.3 used segmentation based on color to 
extract fruits from its background. However, it is very hard to choose the best color model in real life  situation3, 
because the color features extraction for fruit detection intensely depend on the e�ectiveness of used color space. 
�e analysis of shape technique for mature apples’ localization reported by Kelman et al.4 noted an in�uenced of 
illumination and leaves on the performance. Zhao et al.5 recorded 93% accuracy on segmented mature tomatoes 
from background using an optimal threshold on fusion image features. Due to the adoption of only features, 
their obtained results were a�ected by the illumination.

�e quest for arti�cial intelligence improvement led to machine learning research for computer vision tasks 
in agriculture. Lu et al.6 detailed an accuracy of 92.4% for branch and fruit identi�cation in natural scenes based 
on only RGB trained with support vector machine (SVM). �e obtained results outperformed threshold-based 
methods. Nevertheless, the outcomes were prone to be in�uenced by illumination. For mature tomato detection, 
Liu et al.7 applied false color removal technique and SVM on coarse-to-�ne framework. Despite the fact that the 
reported Recall and Precision individually accomplished 90.00% and 94.41%, the technique is not satisfactory 
for occluded and overlapped tomatoes. According to Liu et al.8, majority of the methods in machine learning 
depends on handcra�ed features. Handcra�ed features are complex to design, can only adjust to some particular 
conditions, and have low-level abstraction. �is resulted into a weak �exibility and its possess transfer of methods 
di�culty from one kind of fruit to several others. �e drawbacks of traditional machine learning were conquered 
a�er the introduction of deep learning on computer  vision9.

�e computer based statistical model created by deep learning with convolutional neural networks can 
attain state-of-the-art accuracy, sometimes exceeding human-level performance with proven outstanding in 
image  classi�cation10, segmentation, and object  detection11. �e model is trained with a large set of labeled data 
and neural network architectures that contain many  layers10. A successful high precision has been reported on 
technologies to agriculture compared to the traditional machine-learning  approaches9,12. Sa et al.13 combined 
multi-modal color (RGB) and Near-Infrared (NIR) information to experiment on Faster R-CNN14 detector for 
fruit detection. Although relatively small number of images were used for training and testing, this method 
obtained better results  (F1 score = 80.7% to 83.8%) than previous methods. However, it is di�cult for the method 
to detect small fruits, and its speed still requires improvement for real-time in-�eld operation of harvesting robot. 
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�e modi�ed Inception-ResNet  architecture15 applied by Rahnemoonfar et al.16 for fruit counting achieved an 
average accuracy of 91% with real images. Nevertheless, the method did not implement detection, only counted 
fruit. �e fruit detection model in orchards proposed by Bargoti et al.17 based on the Faster R-CNN reported 
more than 90% of  F1 score as most of the missing fruits came from the case where fruits appear in tight clusters.

You Only Look Once (YOLO) models was proposed by Redmon et al.18–20 for object detection. Its com-
bines the region proposal network (RPN) branch and classi�cation stage into a single network, leading to more 
concise architecture, state of the art performance in object detection with high computation speed and better 
computational e�ciency, making them the true sense of real-time detectors. YOLO models directly predict the 
bounding boxes and their corresponding classes with a single feed forward network compared with previous 
region proposal based  detectors14,21 that perform detection in a two-stage pipeline.  YOLOv219 is the second ver-
sion of  YOLO18 that was proposed with the objective of improving the accuracy signi�cantly, while making it 
faster. �e idea of anchors for detection introduced into YOLOv2 was inspired by Faster R-CNN. �e anchors 
improve detection accuracy, simplify problem and ease the learning process of the network. Meanwhile, batch 
 normalization22 was added to the convolution layers to push mAP to 2% and also skip  connection23. YOLOv2 
signi�cantly improves localization and Recall compared to YOLO.  YOLOv320 became one of the state-of-the-art 
for object detection as a build on YOLO and YOLOv2. YOLOv3 uses multi-label classi�cation, binary cross-
entropy loss for each label instead of using mean square error in calculating the classi�cation loss. YOLOv3 
predicts objects in three di�erent scales (similar to feature pyramid network(FPN)24) as shown in Fig. 1 and the 
score for each bounding box using logistic regression. DarkNet-53 (YOLOv3 backbone) is used to replace the 
DarkNet-19 as a new feature extractor. �e whole DarkNet-53 network is a chain of multiple blocks with some 
strides 2 convolution layers in between to reduce dimension. Each of the block contains bottleneck structure of 
1 × 1, followed by 3 × 3 �lters with skip connections similar to ResNet. DarkNet-53 possesses less billion �oating 
point operations (BFLOP) compared to ResNet-152, but achieves 2 × faster with the same classi�cation accuracy. 
YOLOv3 shows signi�cant improvement for small objects detection and performs very well with speed involve-
ment. YOLOv4 next version to YOLOv3 was introduced recently by Alexey et al.25. Its runs twice faster than 
E�cientDet with comparable performance. YOLOv3’s AP and FPS was improved by 10% and 12%, respectively 
in YOLOv4. YOLOv4′s framework is composed of CSPDarkNet53 as a backbone, spatial pyramid pooling (SPP)26 
additional block, path aggregation network (PANet) as  neck27 and YOLOv3 head. CSPDarkNet53 enhance the 
learning capacity of CNN with  Mish28. �e SPP is added over the CSPDarkNet53 to signi�cantly increase the 
receptive �eld, separates out the most important context features and causes almost no reduction of the network 
operation speed. PANet is used for the collect of feature maps from di�erent stages in YOLOv4 instead of the 

Figure 1.  YOLOv3 architecture.
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FPN used in YOLOv3. YOLOv4 enables widespread adoption of conventional GPU with an improve accuracy 
of the classi�er and detector.

Real-time mango detection in orchard reported by Koirala et al.29 obtained  F1 score of 96.8%. Furthermore, 
Liu et al.8 proposed a new circular bounding box (C-Bbox) for tomato detection by replacing the rectangular 
bounding box (R-Bbox) which was tested on YOLOv3 framework. An improved result of 93.91% and 96.4% were 
respectively reported for AP and  F1 score for YOLO-tomato. It was also proven in the report that illumination and 
occlusion factors are solvable with YOLOv3 algorithm. However, there are few literatures on tomato detection 
based on modi�ed YOLOv3 with densely architecture and SPP incorporation, and most published papers uses 
large dataset that are later preprocessed. �is requires great amount of time, labor costs and better hardware in 
image data collection, labeling, and training. For a computer vision system to be as intelligent as humans, then 
it must be treated as human.

�is study adopts a modi�ed YOLOv3 model called YOLO-Tomato models to detect tomatoes in complex 
environment conditions by using label what you see (LWYS) technique. �e ideas proposed to limit the draw-
backs in deep learning and to make detector as intelligent as humans, include the use of small dataset obtained 
from complex environment condition, label what you see approach, the incorporation of densely  architecture30 
into YOLOv3 to facilitate reuse of features for well generalize tomato detection and SPP application to reduce 
missed detections and inaccuracies. �e main purpose is to increase the variability of the input images, so that 
the designed tomato detection model has higher robustness to the images obtained from di�erent environments. 
�e experiments demonstrated that the proposed method can achieve a high detection accuracy including real-
time detection speed under uneven environment.

Methods
Dataset construction. �e tomato datasets used in this research work were collected from Taigu, Jin-
zhong, China. �e best operational distance between the camera and tomato trees in �eld, that is 0.5–1.0 m for 
harvesting robot was used. �e images were taken using a digital commercial camera, with a 3968 × 2976-pixel 
resolution, RGB color space and JPG storage format. All the images were captured under natural daylight condi-
tions, including complexity of the growing environments: illumination variation, occlusion, and  overlap8. �is 
increases signi�cantly the di�culty of tomato detection (ripe and unripe) in the �eld. For deep learning simplic-
ity, a total of 125 tomato images were captured and divided into 80% of training set and 20% test set. Randomly, 
each of the captured images comprised of single object with no occlusion, single object occluded by branches 
and leaves, multiple objects with or without occlusion and so on. Some image samples from the created dataset 
under di�erent environments are shown in Fig. 2.

To investigate tomato detection performance via resizing in�uence, all images were resized to 0.5 and 0.25 
according to the aspect ratio of the original(Raw) images. �is is to maintain the original image aspect ratio. �e 
datasets of tomato were grouped into Raw, 0.5 ratio and 0.25 ratio for training and testing.

Labelled data are required for YOLO detection models training, i.e. the class-label and position (co-ordinates) 
of all ground truth bounding boxes in training  images18–20. While labelling is manual and labor intensive process, 
annotation i.e. the drawing of ground truth bounding boxes was easier, because the number of created dataset 
in each category are small. �is reduces chances of human error. �e graphical image annotation tool labelImg 
(https ://github.com/tzutalin/labelImg) was used to hand label all the ground truth bounding boxes, with anno-
tation �les saved in YOLO  format20.

In each image, all the visible tomatoes for ripe and unripe were labelled with a bounding box based on LWYS 
technique. Notably, for the highly occluded tomatoes, the bounding boxes were drawn by the supposed shape 
depending on the visible part of humans’ intelligence (Fig. 3). A�er that, the annotated images were checked 
three times by di�erent people to ensure that no unannotated class was missing out.

YOLO-tomato model. Based on the YOLOv3 architecture shown in Fig. 1, a densely connected architec-
ture proposed by Huang et al.30 was incorporated for better feature reuse and representation. �is enables more 
compact and accurate models for  detection30. An overview of the modi�ed tomato detection model is shown in 
Fig. 4 for 2 classes (Ripe and Unripe tomato). �e design of YOLO-tomato model replaced the residual block 
8 × 256 and residual block 8 × 512 in YOLOv3 (Fig. 1) with dense architecture  arrangement30 shown in Figs. 4 
and 5 (blue color). �is is to enhance a deeper network within the detection scale outlet. A 1 × 1 bottleneck 
 layer23 and 3 × 3 convolutional layer were stacked together for each dense  layer30. A transition layer was placed 
between the two dense layers in order to make the model more  compact30. �e main rationale behind the modi-
�cations was to enable detection on multiple feature maps from di�erent layers of the network. �is would allow 
accurate detection of smaller tomato under di�erent environment. With all things being same as YOLOv3 model 
in Fig. 1 including its loss  function20, the concatenated features of 26 × 26 × 768 increases to 26 × 26 × 2816 and 
13 × 13 × 384 increases to 13 × 13 × 1408 features in the FPN of YOLO-tomato model. �e increased features of 
YOLO-tomato help to preserve more �ne grained in detecting smaller tomatoes to �t into LWYS method.

Furthermore, the YOLO-tomato model was divided into YOLO-tomato-A, YOLO-Tomato-B, and YOLO-
Tomato-C. �is is to study the e�ects of di�erent activation functions and front detection layer (FDL) reduction 
towards building a YOLO-tomato real-time detection model that is accurate and faster. YOLO-Tomato-A was 
activated with Leaky Recti�ed Linear Unit (ReLU)31 having FDL × 3. �e six layers of YOLOv3 were pruned as 
YOLO-Tomato-B was activated with  Mish28 having FDL × 1, and YOLO-Tomato-C was activated with  Mish28 
having FDL × 2 and  SPP26. Mish de�ned as: f(x) = x⋅tanh(ς(x)), where ς(x) = ln(1 + ex) is the so�plus activation 
 function28 was reported to have outperform ReLU de�ned as: f(x) = max (0, x)31. �is activation function plays 
an important role in the performance of every deep neural network by introducing non-linearity28.
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Figure 2.  Tomato samples under di�erent growing environments: (a) single object with no occlusion, (b) 
multiple objects with occlusion, (c) clusters of tomatoes, (d) illumination variation, (e) shading conditions, and 
(f) multiple objects with or without occlusion.

Figure 3.  Label what you see (LWYS) technique on Tomato image.
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�e idea of  SPP26 was introduced a�er the last residual block (i.e. residual block 4 × 1024) of the YOLO-
Tomato-C to optimize the network structure. As the convolutional layers deepened, the receptive �eld of a 
single neuron is gradually increasing, the extracted feature capability is enhanced with more abstract during the 
feature extraction  process32 of the YOLO-Tomato-C. Nevertheless, the position information of the small target 
becomes inaccurate or even lost in severe  cases32 if the shape of the tomato’s feature map is blurred. With the 
large number of tomatoes in the images, missed detections and reduced accuracies will happen. �erefore, SPP 
module in Fig. 6 can solve the problem. According to Huang et al.32, it is a feature enhancement module, which 
extracts the main information of the feature map and performs stitching.

Figure 4.  Overview of YOLO-Tomato model.

Figure 5.  DenseNet architecture position in YOLO-Tomato model.
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Experimental platform and evaluation. Model training and testing was implemented on a computer 
with the following speci�cations: i7-8700 CPU 64-bit 3.20 GHz, 16 GB RAM, NVIDIA Quadro M4000 GPU, 
CUDA v10.2, cuDNN v7.6.5, OpenCV v4.2.0. Figure 7 provides a detail �owchart of dataset, training and detec-
tion process of YOLO-Tomato model used in this study.

Figure 6.  Spatial pyramid pooling module.

Figure 7.  YOLO-Tomato model �owchart for dataset, training and detection process.



7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:1447  | https://doi.org/10.1038/s41598-021-81216-5

www.nature.com/scientificreports/

Before training and testing, it is important to �nd the size of the anchor box that is most likely to be counted 
from the constructed dataset, instead of using the default anchor box con�guration provided by YOLOv3 to create 
too specialized predictors. �e K-mean clustering algorithm was used to generate 9 clusters at 416 × 416 pixels 
according to 3 scales of detection layer shown in Fig. 5. �e anchors were arranged and assigned in descending 
order to each scale to improve the YOLO-tomato models. Because the datasets of tomato were categorized into 
Raw, 0.5 ratio and 0.25 ratio, three di�erent 9 clusters were generated. �e obtained results of average IoU show 
that Raw is 77.45%, 0.5 ratio is 78.33% and 0.25 ratio is 78.55%.

�e model receives inputs images of 416 × 416 pixels. �e adjustment of the learning rate reduces training 
 loss20. �e learning rate was chosen to be 0.001 between 0 and 4000 iterations with maximum batches of 4000, 
because the input images contains two classes (ripe and unripe tomato). In order to reduce the memory usage, the 
Batch and Subdivision were respectively set to 64 and 16. �e momentum and weight decay were set to 0.9 and 
0.0005, respectively. Furthermore, random initialization approach was used to initialize the weights for training 
the YOLO-Tomato, while the o�cial pre-trained weights was used for YOLOv3 and YOLOv4.

To verify the e�ectiveness of the conducted experiments on the trained YOLO-tomato, YOLOv3, and YOLOv4 
models, Precision, Recall,  F1-score and AP are used as evaluation parameters. �e calculation method is shown 
in Eqs. (1)–(4).

In these equations, TP, FN, and FP are abbreviations for True Positive (correct detections), False Negative 
(missed detections), and False Positive (incorrect detections).  F1 score was conducted as a trade-o� between 
Recall and Precision to show the comprehensive performance of the trained  models8, de�ned in Eq. (3). Aver-
age Precision–AP33 was adopted to show the overall performance of the models under di�erent con�dence 
thresholds, expressed as follows:

where p(r̃) is the measured Precision at Recall r̃.

(1)Precision =
TP

TP + FP

(2)Recall =
TP

TP + FN

(3)F1=
2 ∗ Precision ∗ Recall

Precision + Recall

(4)AP =
∑

n

(rn+1 − rn) max
r̃:r̃3rn+1

p(r̃)

Table 1.  Model performance evaluation with Raw dataset under 416 × 416 pixels’ resolution.

Methods Activation FDL Precision (%) Recall (%) F1 (%) AP (%)

YOLOv3 Leaky  × 3 97.4 96.2 96.8 97.8

YOLOv4 Mish + SPP  × 3 97.4 100.0 98.7 99.5

YOLO-Tomato-A Leaky  × 3 96.1 99.3 97.7 98.2

YOLO-Tomato-B Mish  × 1 96.2 99.4 97.8 99.3

YOLO-Tomato-C Mish + SPP  × 2 97.0 99.3 98.1 99.5

Table 2.  Model performance evaluation with 0.5 dataset under 416 × 416 pixels’ resolution.

Methods Activation FDL Precision (%) Recall (%) F1 (%) AP (%)

YOLOv3 Leaky  × 3 94.4 98.0 96.2 97.3

YOLOv4 Mish + SPP  × 3 98.0 99.9 99.0 99.5

YOLO-Tomato-A Leaky  × 3 95.7 99.5 97.6 98.5

YOLO-Tomato-B Mish  × 1 94.5 99.1 96.7 99.3

YOLO-Tomato-C Mish + SPP  × 2 95.8 99.9 97.8 99.5
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Results and discussion
Model performance. �e trained models were tested using the image resolution of 416 × 416 pixels set 
at batch size 1 in order to maintain consistency with the training image resolution. �e YOLO-tomato models 
detect number of tomatoes in the test dataset achieving good detection results. �e Precision, Recall,  F1-score 
and AP of the detected tomatoes were calculated and compared with YOLOv3 and YOLOv4 model. �e experi-
mental results are shown in Tables 1 for Raw, Table 2 for 0.5 ratio and Table 3 for 0.25 ratio.

From the results in Tables 1, 2 and 3, under the presupposition, we found that the performance of all methods 
is very high due to the use of small datasets. �is requires future investigation. Meanwhile, it is no doubt that the 
applied LWYS technique contributed to the excellent performance of the models.

�ere are variations in the evaluated performance between the methods. �e compared results of AP within 
the tables show that YOLO-Tomato-A increased by 0.4% in Table 1, 1.2% in Table 2, and 1.2% in Table 3 from 
YOLOv3 model. �is is due to features enhancement provided by DenseNet that make the model better at detect-
ing small tomatoes. �e activation of Mish in the models showed an increase in Precision, Recall,  F1-score and 
AP. Taking it all from YOLOv3, the AP of YOLO-Tomato-B increased by 1.5% and YOLO-Tomato-C increased 
by 1.7% in Table 1, YOLO-Tomato-B increased by 2.1% and YOLO-Tomato-C increased by 2.3% in Table 2, and 
YOLO-Tomato-B increased by 2.2% and YOLO-Tomato-C increased by 2.4% in Table 3. YOLOv4 and YOLO-
Tomato-C model in Tables 1 and 2 showed little or signi�cant di�erence. However, Table 3 showed that the AP 
of YOLO-Tomato-C was slightly increased by 0.4% with 1.1% decrease in  F1 score compared to YOLOv4. AP is 
more accurate than the  F1 scores, because it considers the Precision-Recall relation globally. �is is an indication 
that YOLO-Tomato-C is more accurate than YOLOv4 model in Table 3. �e obtained model performance of 
Table 1 with respect to AP is more than Tables 2 and 3 due to high image quality.

We noticed little or no signi�cant di�erence between the detection time of Raw, 0.5 ratio and 0.25 ratio, 
because they possess the same con�guration �le. With this, the detection time of YOLO-Tomato model per image 
on average were calculated as displayed in Table 4. �e test results show that it takes an average of 45.3 ms for 
YOLOv3 model to count the both ripe and unripe tomatoes per frame image compared to YOLO-Tomato-A with 
48.1 ms. �is is an indication of tradeo� between accuracy and speed, because the incorporation of DenseNet 
into the network constituted an increase in accuracy with a decrease in detection speed. �e same tradeo� was 
also found with YOLO-Tomato-B at 44.4 ms, YOLO-Tomato-C at 52.4 compared to YOLOv4 at 43.6 ms. SPP 
inclusion to YOLO-Tomato-C contributed to an increase in detection time. Meanwhile, the drastic detection 
time reduction experienced with YOLO-Tomato-B compared to YOLOv3 is due to the reduced FDL.

YOLO-Tomato visualization. �e YOLO-Tomato visualization results in Figs. 8 and 9 were carried out 
to view the detected tomatoes with their percentages. �e improvement in the model performance can be seen 
as the missed tomatoes detections in YOLOv3 (Fig.  8(a)) before modi�cation is found in YOLO-Tomato-A 
(Fig. 8(b)) with an increased in percentage detection. Compared to YOLO-Tomato-A and YOLO-Tomato-B, the 
missed tomatoes detections in both were discovered by YOLO-Tomato-C in Fig. 8(d). �is con�rmed the impor-
tance of SPP to YOLO-Tomato-C in the reduction of missed detection and inaccuracies. Figure 9 showed little 
di�erent between YOLOv4 and YOLO-Tomato-C, particularly with their percentage detections variation and 
spread of detections. In some cases, the percentage detections of YOLOv4 is a little higher than YOLO-Tomato-
C, but the detected tomatoes spread of YOLO-Tomato-C is more than YOLOv4 model. �is further proof the 
feature enhancement provided by SPP to YOLO-Tomato-C. It can be explained that the YOLO-Tomato-C model 
can be used to detect tomatoes with small and large targets.

Table 3.  Model performance evaluation with 0.25 dataset under 416 × 416 pixels’ resolution.

Methods Activation FDL Precision (%) Recall (%) F1 (%) AP (%)

YOLOv3 Leaky  × 3 96.3 95.9 96.1 97.1

YOLOv4 Mish + SPP  × 3 98.0 100.0 99.0 99.0

YOLO-Tomato-A Leaky  × 3 96.1 98.5 97.3 98.3

YOLO-Tomato-B Mish  × 1 95.6 98.9 97.2 99.2

YOLO-Tomato-C Mish + SPP  × 2 96.4 99.5 97.9 99.4

Table 4.  Detection time di�erence between YOLO-Tomato models.

Methods Activation FDL Time (ms)

YOLOv3 Leaky  × 3 45.3

YOLOv4 Mish + SPP  × 3 43.6

YOLO-Tomato-A Leaky  × 3 48.1

YOLO-Tomato-B Mish  × 1 44.2

YOLO-Tomato-C Mish + SPP  × 2 52.4
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Different algorithms comparison. �e average results of YOLO-Tomato model taken from Tables 1, 2 
and 3 were compared with other state-of-the-art detection methods—YOLOv219,  YOLOv320, Faster R-CNN14, 
and YOLO-Tomato8 for performance validation. �e Precision, Recall,  F1 score, AP, and Time of detections 
shown in Table 5 are applied for the comparison.

�e YOLO-Tomato models—YOLO-Tomato-A with AP 98.3%, YOLO-Tomato-B with AP 99.2%, and 
YOLO-Tomato-C with AP 99.4% shows the best detection performance among all the methods. �ese methods 
achieved the highest Recall, Precision, and  F1 score compared to  YOLOv219,  YOLOv320, YOLO-Tomato8 and 
Faster R-CNN14, indicating the superiority of the proposed methods. �e detection time of YOLO-Tomato-C 
is 52 ms per image on average, which is about 179 ms less than Faster R-CNN and the lowest among the three 
YOLO-Tomato models. �is is an indication that our YOLO-Tomato models could perform tomato detection 
in real time with better generalization, which is important for harvesting robots.

Conclusions
�is research work proposed the use of YOLO-Tomato models for tomato detection, based on modi�ed YOLOv3 
model. �e use of small tomato datasets obtained from complex environment condition to limit deep learning 
drawbacks, label what you see (LWYS) approach, densely architecture incorporated into YOLOv3 to facilitate 
reuse of features for well generalize tomato detection, Mish activation and spatial pyramid pooling (SPP) to 
reduce missed detections and inaccuracies are all adopted to make the detector as intelligent as humans. �e 
experimental results show that the proposed methods performed better than other state-of-the-art methods with 
reference to average precision (AP) in particular. �e level of YOLO-Tomato models’ performance increases as 
YOLO-Tomato-C > YOLO-Tomato-B > YOLO-Tomato-A with reference to average precision (AP), while the 
detection speed of YOLO-Tomato-B > YOLO-Tomato-A > YOLO-Tomato-C. In all, the YOLO-Tomato models 
show better generalization and real-time tomatoes’ detection, which is applicable for harvesting robots.

Figure 8.  Comparison of YOLO-tomato models for (a) YOLOv3 (b) YOLO-tomato A (c) YOLO-tomato B, and 
(d) YOLO-tomato C detection results.
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