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Accurately detecting and counting fruits during plant growth using imaging and computer

vision is of importance not only from the point of view of reducing labor intensive

manual measurements of phenotypic information, but also because it is a critical step

toward automating processes such as harvesting. Deep learning based methods have

emerged as the state-of-the-art techniques in many problems in image segmentation

and classification, and have a lot of promise in challenging domains such as agriculture,

where they can deal with the large variability in data better than classical computer vision

methods. This paper reports results on the detection of tomatoes in images taken in a

greenhouse, using the MaskRCNN algorithm, which detects objects and also the pixels

corresponding to each object. Our experimental results on the detection of tomatoes

from images taken in greenhouses using a RealSense camera are comparable to or better

than the metrics reported by earlier work, even though those were obtained in laboratory

conditions or using higher resolution images. Our results also show that MaskRCNN can

implicitly learn object depth, which is necessary for background elimination.

Keywords: deep learning, phenotyping, agriculture, tomato, greenhouse

1. INTRODUCTION

Tomatoes are an economically important horticultural crop and the subject of research in seed
development to improve yield. As with many other crops, harvesting is a labor intensive task, and
so is the manual measurement of phenotypic information. In recent years there has been great and
increasing interest in automating agricultural processes like harvesting (Bac et al., 2014), pruning
(Paulin et al., 2015), or localized spraying (Oberti et al., 2016). This has stimulated the development
of image analysis and computer vision methods for the detection of fruits and vegetables. Since
imaging is a quick and non-destructive way of measurement, detection of fruits, both ripe and
unripe, and other plant traits using computer vision is also useful for phenotyping (Minervini et al.,
2015; Das Choudhury et al., 2019) and yield prediction. The number of fruits during plant growth
is an important trait not only because it is an indicator of the expected yield, but is also necessary
for certain crops such as apple, where yield must be controlled to avoid biennial tree stress.

Compared to laboratory settings, greenhouses can be challenging environments for image
analysis, as they are often optimized to maximize crop production thereby imposing restrictions
on the possible placement of a camera and thereby its field of view. Further, variation in the colors
or brightness of the fruits can be encountered over different plants of the same crop, over time for
the same plant, over images of the same plant from different camera positions, etc (Bac, 2015; Barth,
2018). Repeated measurements are difficult because of ongoing work, changing circumstances such
as lighting conditions, and a generally unfriendly atmosphere for electronic equipment.
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Most methods for detecting and counting fruits, including
tomatoes, have used colorspace transformations in which the
objects of interest stand out, and extraction of features such as
shape and texture (Gomes and Leta, 2012; Gongal et al., 2015). In
most of these works, the discriminative features were defined by
the developers, rather than learnt by algorithms. Computer vision
solutions based on hand crafted features may not be able to cope
with the level of variability commonly present in greenhouses
(Kapach et al., 2012; Zhao et al., 2016a). Deep Convolutional
Neural Networks (CNNs) are being used increasingly for image
segmentation and classification due to their ability to learn robust
discriminative features and deal with large variation (LeCun
et al., 2015). They however require large annotated datasets
for training.

The various flavors of deep learning in computer vision
include (i) image classification, in which an image is assigned
one label (Krizhevsky et al., 2012), (ii) semantic segmentation,
in which each pixel is assigned a label (Long et al., 2015; Chen
et al., 2018), and (iii) object detection, which assigns a label to
a detected object, thereby providing the location of individual
objects (Girshick, 2015; Ren et al., 2015; Girshick et al., 2016).
Deep learning is being increasingly used in the domain of
agriculture and plant phenotyping (Kamilaris and Prenafeta-
Boldú, 2018; Jiang and Li, 2020). Classification at the level of the
entire image has been used for detecting diseases (Mohanty et al.,
2016; Ramcharan et al., 2019; Toda and Okura, 2019; Xie et al.,
2020) or for identifying flowers (Nilsback and Zisserman, 2006).
Semantic segmentation and object detection are more relevant
for our problem of detecting fruits, and their use in agriculture
will be briefly reviewed in the following sub-section.

1.1. Related Work
Object detection is the most informative instance of deep
learning for the detection of fruits, but also requires more
complex training data. Region based convolutional neural
networks (R-CNNs) combine the selective search method
(Uijlings et al., 2013) to detect region proposals (Girshick et al.,
2016), and were the basis for the Fast-RCNN (Girshick, 2015),
and Faster-RCNN (Ren et al., 2015) methods. The You Only Look
Once (YOLO) (Redmon et al., 2016) detector applies a single
neural network to the full image, dividing the image into regions
and predicts bounding boxes and probabilities for each region,
and is faster than Fast-RCNN which applies the model to an
image at multiple locations and scales. These methods provide
bounding-box segmentations of objects of interest, which does
not directly convey which pixels belong to which object instance,
especially when there are overlapping or occluding objects of the
same class.

Mask-RCNN (He et al., 2017) provides a segmentation of
both, the bounding box and pixel mask for each object. It uses
a CNN architecture such as ResNet (He et al., 2016) as the
backbone, which extracts feature maps, over which a region
proposal network (RPN) sliding window is applied to calculate
region proposals, which are then pooled with the feature maps.
Finally, a classifier is applied over each pooled feature map
resulting in a bounding box prediction corresponding to an
instance of the particular class. The scheme until this point is the

same as FasterRCNN. Mask-RCNN applies an additional CNN
on the aligned region and feature map to obtain a mask for each
bounding box.

In the domain of agriculture, earlier work on detecting fruits
of various crops used “classical" machine vision techniques,
involving detection and classification based on hand-crafted
features (Song et al., 2014). In Brewer et al. (2006), post-harvest
images of tomatoes were analyzed for phenotypic variation in
fruit shape. The individual tomatoes were placed on a dark
background which made the segmentation simple, and the fruit
perimeters were then extracted.

A Support Vector Machine (SVM) binary classifier applied on
different regions of an image, followed by fusing the decisions
was proposed for detecting tomatoes in Schillaci et al. (2012), but
this method suffers from toomany false positives (low precision).
In Zhao et al. (2016b), a pixel level segmentation method for ripe
tomatoes was presented, based on fusing information from the
Lab and YIQ colorspaces which emphasize the ripe tomatoes,
followed by an adaptive threshold. In Zhang and Xu (2018),
a pixel level fruit segmentation method was proposed, which
assigns initial labels using conditional random fields and Latent
Dirichlet Allocation, and then relates the labels for the image at
different resolutions. Haar features from a colorspace transform
followed by adaboost classification was used in Zhao et al.
(2016c) for detecting ripe tomatoes. However, this method tried
to fit circles, and did not try to accurately detect individual
object masks.

A method for counting individual tomato fruits from images
of a plant growing in a lab setting was presented in Yamamoto
et al. (2014). This method used decision trees on color features
to obtain a pixel wise segmentation, and further blob-level
processing on the pixels corresponding to fruits to obtain and
count individual fruit centroids. This method reported an overall
detection precision of 0.88 and recall of 0.80.

In Hannan et al. (2009), oranges were counted from images
in an orchard using adaptive thresholding on colorspace
transforms, followed by sliding windows applied on the
segmented blob perimeters to fit circles, with voting based on
the fitted centroids and radii. A method for ripe sweet pepper
detection and harvesting was proposed in Bac et al. (2017), that
used detection of red blobs from the normalized difference of the
red and green components, followed by a threshold number of
pixels per fruit.

More recent works use deep learning, in its various flavors
(Tang et al., 2020). A 10 layer convolutional neural network was
used in Muresan and Oltean (2018) for classifying images of
individual fruits including tomatoes, in a post-harvest setting.
In Barth et al. (2017, 2018) a pixel wise segmentation of sweet
pepper fruits and other plant parts was presented based on
training the VGG network (Simonyan and Zisserman, 2014)
on synthetic but realistic data. Deepfruits (Sa et al., 2016) is a
detection method for fruits such as apples, mangoes, and sweet
peppers, which adapts FasterRCNN to fuse information from
RGB and Near-Infrared (NIR) images.

Another work on tomato plant part detection (Zhou et al.,
2017) used a convolutional neural network with an architecture
similar to VGG16 (Simonyan and Zisserman, 2014) and a region
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TABLE 1 | Summary of metrics reported in related work on fruit detection.

Work Crop/plant Method Reported metrics (maximum/best value is 1.0)

Hannan et al. (2009) Orange Adaptive thresholding + circle fitting recall: 0.90, false detection rate: 0.04

Schillaci et al. (2012) Tomato Support Vector Machine based classifier Precision: 0.44

Yamamoto et al. (2014) Tomato Decision tree + color, shape, texture classifier recall: 0.80, precision: 0.88

Zhao et al. (2016b) Tomato Colorspace fusion + adaptive threshold Recall (ripe only): 0.93

Sa et al. (2016) Sweet pepper Variant of FasterRCNN F1: 0.84

Zhou et al. (2017) Tomato Variant of FasterRCNN Avg Precision for fruits: 0.82, flowers: 0.85, stems: 0.54

Rahnemoonfar and Sheppard (2017) Tomato CNN trained on synthetic data prediction accuracy: 0.91

Zhang and Xu (2018) Tomato Multi resolution Conditional Random Field pixel level segmentation accuracy: 0.99

Barth (2018) Sweet pepper Semantic segmentation using VGG pixel level IOU: 0.52

Bresilla et al. (2019) Apple, pear Grid search based single shot detection F1 for apple: 0.9, pear: 0.87

Santos et al. (2020) Grape MaskRCNN + structure from motion bunch level F1: 0.91

proposal networkmethod similar to Fast-RCNN (Girshick, 2015)
and obtained a mean average precision of 0.82 for fruits. It must
be noted that (Zhou et al., 2017) is written in Mandarin, with
an abstract in English. FasterRCNN object detection was also
used in Fuentes et al. (2018) to detect diseased and damaged
parts of a tomato plant. A single shot detection architecture
based on a grid search was proposed in Bresilla et al. (2019) to
detect bounding boxes of apples and pears from images of their
trees. In Rahnemoonfar and Sheppard (2017), a modified version
of the Inception-ResNet architecture was proposed and trained
with a synthetic dataset of red circular blobs, and was able to
detect tomato fruits with a prediction accuracy of 91 % on a
dataset of images obtained from Google images mainly of cherry
tomato plants.

Finally, MaskRCNN has been applied for the segmentation
of Brassica oleracea (e.g., Broccoli, Caulifower) (Jiang et al.,
2018) and leaves (Ward et al., 2018). In Santos et al. (2020), a
method was presented for detecting and tracking grape clusters
in images taken in vineyards, based on MaskRCNN for the
detection of individual grape bunches and structure frommotion
for 3D alignment of images thereby enabling their mapping
across images.

For quick reference, the above referenced methods are
summarized in Table 1.

1.2. Contributions
In this work, we apply MaskRCNN for the detection of tomato
fruits from images taken in a production greenhouse, using
Intel RealSense cameras. We report results on the detection of
tomatoes from these images, using MaskRCNN trained with
images in which foreground fruits are annotated. After inference,
we apply a post-processing step on the segmentation results, to
further get rid of background fruit that may have been detected
as foreground.

In summary, in this paper, we try to answer the
following questions

1. Can we detect tomato fruits in real life practical settings?
2. Can state-of-the-art results be achieved for detecting tomato

fruits using MaskRCNN?

It must be noted that we deal with images taken in a greenhouse,
which are more difficult than laboratory (Yamamoto et al.,
2014) or post-harvest (Muresan and Oltean, 2018) settings and
we use RealSense cameras which are less expensive than the
point and shoot camera used in Yamamoto et al. (2014), and
have a lower resolution than the High Definition one used in
Zhou et al. (2017).

2. MATERIALS AND METHODS

2.1. Dataset
The robot and vision system were tested in Enza Zaden’s
production greenhouse in Enkhuizen, The Netherlands. The
images were acquired with 4 Intel Realsense D435 cameras,
mounted on a trolley that moves along the heating pipes of the
greenhouse. The cameras are placed at heights of 930, 1,630,
2,300, and 3,000 mm from the ground, and are in landscape
mode. They are roughly at a distance of 0.5 m from the plants.
This setup is shown in Figure 1. With 4 cameras, an entire plant
can be covered in one image acquisition event. Previously a robot
equipped with a moving camera was used, but that took much
more time for image acquisition and was much less practical, and
the relative positions of the cameras was unstable.

The RealSense cameras were configured to produce pixel
aligned RGB and depth images, of size 720 × 1280. The images
were acquired at night, to minimize variability in lighting
conditions due to direct sunlight or cloud cover, on 3 different
dates at the end of May, and the first half of June 2019. In this
work, we focus on fruit detection at the level of each individual
image, and therefore, registration of the images at different
camera heights and over nearby positions is not addressed in
this paper.

A total of 123 images were manually annotated by a group of
volunteers using the labelme annotation tool1. This tool allows
polygons to be drawn around visible fruit, or even a circle in case
the fruit is almost spherical. Due to occlusions, the same fruit
may have multiple polygons, corresponding to disjoint segments.
Thus, we obtain not just the bounding box, but also the pixels

1https://github.com/wkentaro/labelme
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FIGURE 1 | Imaging system consisting of four RealSense D435 cameras,

mounted on the autonomous robot.

corresponding to each fruit. Only the tomatoes which belong
to the plant in the row being imaged, i.e., the foreground, are
annotated. The annotations were visually inspected and corrected
firmissing foreground fruit, or incorrectly annotated background
fruit. A Matlab script was used to merge the annotations saved
from labelme into a JSON file according to the Microsoft
COCO format2.

This set of images was randomly split into a training set
(two thirds, 82 images) and a test set (one third, 41 images).
It was ensured that annotations for images at different camera
heights were included in both the training and test sets. Since the
annotators only labeled fruits without specifying ripeness, to be
able to work with two classes–ripe/red fruits and unripe/green
fruits, we apply a post-processing step in Matlab to generate
ground truth annotations with two classes ripe and unripe. The
chromaticity map of the color image was calculated, and the
chromaticity channel values over the respective fruit’s pixels are
compared. If the red channel exceeds 1.4 times the green channel
of the chromaticity mapping for a majority of the fruit’s pixels, it
was assigned the label ripe, and if not, unripe. This cutoff factor
was determined empirically.

2http://cocodataset.org/#format-data

A breakdown of the numbers of images and fruits by camera
position and training/test set is presented in Table 2. Figure 2
shows an example of an RGB image from the RealSense camera,
its corresponding depth, and the RGB image with the ground
truth for the single fruit class and two ripeness classes overlaid.

2.2. Software and Setup
The MaskRCNN algorithm (He et al., 2017) has different
implementations available, the best known being Detectron,
Facebook AI Research’s implementation (Girshick et al., 2018)
and the Matterport implementation. Detectron is built on
the Caffe2/PyTorch deep learning framework, whereas the
Matterport version is built on Tensorflow. We opted for
Detectron because it uses a format for annotated data, which
is easier for dealing with occlusions and disjoint sections of
an object.

It was installed on a workstation with an NVIDIA GeForce
GTX 1080 Ti 11GB GPU, 12 core Intel Xenon E5-1650 processor
and 64GB DDR4 RAM, running Linux Mint 18.3, supported by
CUDA 9.0.

2.3. Architectures
The ResNet architecture (He et al., 2016) (50 and 101 layer
versions) and ResNext (Xie et al., 2017) (101 layers, cardinality
64, bottleneck width 4) were used in our experiments. These
architectures were pre-trained on the ImageNet-1K dataset
(Russakovsky et al., 2015), with pre-trained models available
from the Detectron model zoo.

2.4. Training Settings
MaskRCNN uses a loss function which is of the sum of the
classification, bounding box, and mask losses. The Stochastic
Gradient Descent (SGD) optimizer is used by default, and this
was not changed. ℓ2 regularization was used on the weights,
with a weight decay factor of 0.001. A batch size of 1 image was
used throughout to avoid memory issues since only 1 GPU was
used. No data augmentation was used. The optimal values of
the learning rates were empirically determined to be 0.0025 for
ResNet50, 0.001 for ResNet101, and 0.01 for ResNext101. The
training was run for 2,00,000 iterations.

2.5. Post-processing of Segmentation
Results
The segmentations produced by MaskRCNN were post-
processed to discard fruits from the background that may have
been picked up as foreground. A Matlab script reads an image,
its corresponding depth image, and its segmented objects. For
each segmented object, the median depth value over the pixels
corresponding to its mask is computed. Since the depth encoding
in the RealSense acquisition software uses higher depth values for
objects closer to the camera, a detected fruit is considered to be
in the foreground if its median depth exceeds a certain threshold.
Since the perspectives of the cameras are different and the fact
that the fruit trusses are often closer to the middle two cameras,
the depth threshold up to which a pixel is considered to be in the
foreground differs by camera. The empirically selected threshold
values as a function of camera height are summarized in Table 3.
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TABLE 2 | Breakdown of ground truth annotations by camera height.

Camera Training set Test set

Height Images Fruits Red Green Images Fruits Red Green

Overall 83 1,074 365 709 40 538 176 362

930 mm 20 73 58 15 9 14 9 5

1,630 mm 27 308 177 131 13 166 101 65

2,300 mm 28 555 129 426 14 284 62 222

3,000 mm 8 138 1 137 4 74 4 70

FIGURE 2 | RealSense camera images example: (A) RGB image, (B) depth image, (C) RGB image overlaid with one class ground truth, (D) RGB image overlaid with

2 class ground truth.

TABLE 3 | Depth intensity foreground limits. Pixels with depth values above these

cutoffs are considered foreground.

Camera Cut-off depth intensity

930 mm 110

1,630 mm 120

2,300 mm 120

3,000 mm 50

The depth value is encoded in 8 bits, and therefore ranges from 0
to 255.

2.6. Performance Evaluation
We evaluate the results of MaskRCNN on our validation set.
A detected instance is considered a true positive if it has a

Jaccard Index similarity coefficient also known as intersection-
over-union (IOU) (He and Garcia, 2009; Csurka et al., 2013)
of 0.5 or more with a ground truth instance. We also vary this
threshold overlap with values of 0.25 (low overlap) and 0.75 (high
overlap). The IOU is defined as the ratio of the number of pixels
in the intersection to the number of pixels in the union. Those
ground truth instances which did not overlap with any detected
instance are considered false negatives. From these measures, the
precision, recall, and F1 score were calculated,

Precision =
TP

TP+FP
(1)

Recall =
TP

TP+FN
(2)

F1 =
2Precision× Recall

Precision+ Recall
(3)
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TABLE 4 | Summary of detection results on the test set using a model trained for a single fruit class.

Network/ Camera Overlap = 0.25 Overlap = 0.5 Overlap = 0.75

algorithm Precision Recall IoU F1 Precision Recall IoU F1 Precision Recall IoU F1

Classical Overall 0.6 0.8 0.48 0.69 0.45 0.60 0.48 0.58 0.24 0.32 0.48 0.27

Segmentation

Overall 0.93 0.96 0.71 0.95 0.92 0.94 0.71 0.93 0.76 0.78 0.71 0.77

1 0.87 0.93 0.82 0.9 0.87 0.93 0.82 0.9 0.8 0.86 0.82 0.83

R50 2 0.92 0.96 0.54 0.94 0.9 0.95 0.54 0.92 0.74 0.78 0.54 0.76

3 0.97 0.99 0.87 0.98 0.95 0.98 0.87 0.96 0.82 0.84 0.87 0.83

4 0.86 0.84 0.65 0.85 0.82 0.8 0.65 0.81 0.56 0.54 0.65 0.55

Overall 0.95 0.93 0.7 0.94 0.93 0.91 0.7 0.92 0.78 0.77 0.7 0.77

1 1 0.93 0.88 0.96 1 0.93 0.88 0.96 0.92 0.86 0.88 0.89

R50 2 0.94 0.95 0.54 0.95 0.92 0.93 0.54 0.93 0.76 0.77 0.54 0.77

+PP 3 0.98 0.99 0.87 0.98 0.97 0.98 0.87 0.97 0.83 0.84 0.87 0.84

4 0.83 0.65 0.54 0.73 0.78 0.61 0.54 0.68 0.57 0.45 0.54 0.5

Overall 0.9 0.95 0.7 0.92 0.87 0.92 0.69 0.9 0.72 0.76 0.69 0.74

1 0.78 1 0.79 0.88 0.78 1 0.79 0.88 0.67 0.86 0.79 0.75

R101 2 0.88 0.97 0.53 0.92 0.83 0.91 0.53 0.87 0.7 0.78 0.53 0.74

3 0.93 0.97 0.85 0.95 0.92 0.96 0.85 0.94 0.76 0.8 0.85 0.78

4 0.86 0.81 0.64 0.83 0.81 0.77 0.64 0.79 0.6 0.57 0.63 0.58

Overall 0.94 0.92 0.69 0.93 0.91 0.9 0.69 0.9 0.76 0.75 0.69 0.75

1 1 1 0.89 1 1 1 0.89 1 0.86 0.86 0.89 0.86

R101 2 0.95 0.95 0.54 0.95 0.89 0.9 0.54 0.89 0.77 0.77 0.54 0.77

+PP 3 0.95 0.97 0.85 0.96 0.94 0.96 0.85 0.95 0.78 0.8 0.85 0.79

4 0.83 0.65 0.54 0.73 0.79 0.62 0.54 0.7 0.62 0.49 0.54 0.55

Overall 0.96 0.95 0.72 0.95 0.94 0.94 0.72 0.94 0.81 0.8 0.72 0.8

1 0.93 1 0.87 0.97 0.93 1 0.87 0.97 0.87 0.93 0.87 0.9

X101 2 0.92 0.94 0.54 0.93 0.91 0.93 0.54 0.92 0.8 0.81 0.54 0.81

3 0.98 0.98 0.88 0.98 0.98 0.97 0.88 0.97 0.84 0.83 0.87 0.84

4 0.93 0.85 0.68 0.89 0.9 0.82 0.68 0.86 0.68 0.62 0.68 0.65

Overall 0.97 0.92 0.71 0.94 0.96 0.91 0.71 0.93 0.83 0.78 0.71 0.81

1 1 1 0.89 1 1 1 0.89 1 0.93 0.93 0.89 0.93

X101 2 0.95 0.92 0.54 0.94 0.94 0.91 0.54 0.92 0.83 0.81 0.54 0.82

+PP 3 0.99 0.98 0.88 0.98 0.99 0.97 0.88 0.98 0.85 0.83 0.88 0.84

4 0.93 0.68 0.57 0.78 0.89 0.65 0.57 0.75 0.7 0.51 0.57 0.59

Each row corresponds to inference results with one method/architecture. When depth post-processing is used, it is indicated by +PP.

where TP = the number of true positives, FP = the number of
false positives, and FN = the number of false negatives.

For comparison, we also provide the results of our earlier
work on detecting and counting tomatoes on the same dataset,
which uses colorspace transforms and watershed segmentation,
and detects roughly circular regions based on how closely the
perimeters of detected regions can fit circles. This method was
implemented in MVTec Halcon.

3. RESULTS

3.1. Detection of Tomato Fruits in General
Table 4 presents the precision and recall metrics on the test set
for single class fruit detection, with different architectures and

with a breakdown of these metrics over images from each of the
4 cameras. For visual comparison, we present these metrics as a
2D scatter plot, with the x-axis corresponding to the recall, and
the y-axis to the precision, in Figure 3. Each color corresponds to
inference results with one method/architecture. For each color,
the symbols +, o, and × represent overlap IoU thresholds of
25, 50, and 75 %, respectively. Since ideally we would like both
metrics to be close to 1, the best method is the one which is
as much as possible to the top right corner. Figure 4 shows the
results of detection using the classical segmentation method and
using MaskRCNN, on the image from Figure 2.

From Table 4 and Figure 3, it can be seen that the results of
MaskRCNN using all the architectures are substantially better
than those obtained using the Halcon based classical computer
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FIGURE 3 | Plot of detection results on the test set using a model trained for a single fruit class. PP indicates depth post-processing. Each color corresponds to one

method/architecture. Symbols +, o, and × represent overlap IoU thresholds of 25, 50, and 75 %, respectively. The results for each method with these IoU thresholds

are linked by dashed lines. The zoomed in version of the scatter plot excluding the classical segmentation is shown in the right side.

FIGURE 4 | Inference with single fruit class: Image from Figure 2 overlaid with fruit detection using (A) Classical segmentation using colorspaces and shape, (B)

MaskRCNN with R50 architecture, (C) MaskRCNN with R101, (D) MaskRCNN with X101.

visionmethod. For all methods, we can notice that both precision
and recall metrics are lower when the overlap threshold is 75 %,
and the highest when this threshold is 25 %. This means that for a
stricter matching criterion (higher IoU threshold), fewer detected
fruit are being matched with an instance from the ground truth,
leading to both metrics being lower. The architectures whose

results are the closest to the top right corner are ResNet50
(R50) and ResNext101 (X101), for overlap threshold of both 25
and 50%.

For more visual results of tomato fruit detection with
examples of images from each of the four cameras, please refer
to the Supplementary Material.
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TABLE 5 | Summary of detection results on the test set using a model trained for a two fruit classes.

Network/ Camera overlap = 0.25 overlap = 0.5 overlap = 0.75

algorithm Red Green Red Green Red Green

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

classical Overall 0.54 0.81 0.65 0.62 0.72 0.67 0.44 0.66 0.53 0.47 0.54 0.50 0.27 0.40 0.32 0.23 0.26 0.24

segmentation

Overall 0.84 0.93 0.88 0.9 0.94 0.92 0.81 0.9 0.85 0.88 0.91 0.89 0.66 0.73 0.69 0.73 0.75 0.74

1 0.7 0.78 0.74 1 1 1 0.7 0.78 0.74 1 1 1 0.7 0.78 0.74 0.8 0.8 0.8

R50 2 0.88 0.93 0.9 0.81 0.97 0.88 0.86 0.91 0.88 0.76 0.91 0.83 0.68 0.72 0.7 0.63 0.75 0.68

3 0.82 0.94 0.88 0.95 0.98 0.96 0.77 0.89 0.83 0.93 0.96 0.94 0.66 0.76 0.71 0.8 0.83 0.81

4 0.67 1 0.8 0.86 0.79 0.82 0.67 1 0.8 0.81 0.74 0.77 0.33 0.5 0.4 0.56 0.51 0.53

Overall 0.88 0.93 0.9 0.92 0.91 0.91 0.85 0.9 0.87 0.89 0.88 0.88 0.7 0.74 0.72 0.74 0.73 0.73

1 1 0.78 0.88 1 1 1 1 0.78 0.88 1 1 1 1 0.78 0.88 0.8 0.8 0.8

R50+PP 2 0.92 0.93 0.92 0.84 0.94 0.89 0.9 0.91 0.9 0.78 0.88 0.83 0.72 0.72 0.72 0.66 0.74 0.7

3 0.82 0.94 0.88 0.96 0.98 0.97 0.77 0.89 0.83 0.95 0.96 0.95 0.66 0.76 0.71 0.82 0.83 0.82

4 0.75 1 0.86 0.85 0.64 0.73 0.75 1 0.86 0.79 0.6 0.68 0.5 0.67 0.57 0.55 0.41 0.47

Overall 0.82 0.91 0.86 0.89 0.95 0.92 0.79 0.89 0.84 0.86 0.91 0.88 0.66 0.74 0.7 0.7 0.75 0.72

1 0.64 1 0.78 0.71 1 0.83 0.57 0.89 0.69 0.71 1 0.83 0.57 0.89 0.69 0.71 1 0.83

R101 2 0.84 0.9 0.87 0.79 0.97 0.87 0.83 0.89 0.86 0.74 0.91 0.82 0.67 0.71 0.69 0.6 0.74 0.66

3 0.83 0.92 0.87 0.94 0.98 0.96 0.78 0.87 0.82 0.92 0.96 0.94 0.7 0.77 0.73 0.78 0.82 0.8

4 0.67 1 0.8 0.85 0.81 0.83 0.67 1 0.8 0.79 0.76 0.77 0.5 0.75 0.6 0.52 0.5 0.51

Overall 0.88 0.91 0.89 0.91 0.91 0.91 0.86 0.89 0.87 0.88 0.88 0.88 0.73 0.75 0.74 0.72 0.73 0.72

1 1 1 1 1 1 1 0.89 0.89 0.89 1 1 1 0.89 0.89 0.89 1 1 1

R101+PP 2 0.91 0.89 0.9 0.81 0.92 0.86 0.91 0.89 0.9 0.77 0.88 0.82 0.73 0.71 0.72 0.64 0.72 0.68

3 0.84 0.92 0.88 0.96 0.98 0.97 0.79 0.87 0.83 0.94 0.96 0.95 0.71 0.77 0.74 0.8 0.82 0.81

4 0.75 1 0.86 0.82 0.66 0.73 0.75 1 0.86 0.77 0.61 0.68 0.75 1 0.86 0.52 0.41 0.46

Overall 0.94 0.93 0.93 0.93 0.95 0.94 0.93 0.93 0.93 0.91 0.93 0.92 0.82 0.82 0.82 0.75 0.77 0.76

1 1 0.89 0.94 0.83 1 0.91 1 0.89 0.94 0.83 1 0.91 1 0.89 0.94 0.83 1 0.91

X101 2 0.94 0.91 0.92 0.85 0.97 0.91 0.93 0.9 0.91 0.81 0.92 0.86 0.84 0.81 0.82 0.62 0.71 0.66

3 0.92 0.97 0.94 0.96 0.98 0.97 0.92 0.97 0.94 0.94 0.96 0.95 0.8 0.84 0.82 0.82 0.84 0.83

4 1 1 1 0.92 0.83 0.87 1 1 1 0.89 0.8 0.84 0.5 0.5 0.5 0.65 0.59 0.62

Overall 0.95 0.93 0.94 0.94 0.91 0.92 0.94 0.92 0.93 0.91 0.89 0.9 0.84 0.82 0.83 0.77 0.75 0.76

1 1 0.89 0.94 1 1 1 1 0.89 0.94 1 1 1 1 0.89 0.94 1 1 1

X101+PP 2 0.96 0.9 0.93 0.86 0.94 0.9 0.95 0.89 0.92 0.82 0.89 0.85 0.86 0.81 0.83 0.63 0.69 0.66

3 0.92 0.97 0.94 0.97 0.98 0.97 0.92 0.97 0.94 0.95 0.96 0.95 0.8 0.84 0.82 0.83 0.84 0.83

4 1 1 1 0.92 0.67 0.78 1 1 1 0.88 0.64 0.74 0.67 0.67 0.67 0.67 0.49 0.57

Each row corresponds to inference results with one method/architecture. When depth post-processing is used, it is indicated by +PP.

3.2. Detection of Ripe and Unripe Fruits
Separately
The precision and recall metrics for the two class case, obtained
using the different architectures are presented in Table 5, along
with the breakdown by camera, and shown as scatter plots in
Figures 5, 6, for the red/ripe and green/unripe fruits, respectively.
The color and symbol notations are the same as those in Figure 3.
Figure 7 shows the detection results obtained for the same image
from Figure 4.

As before for the single class case, we can see in Figures 5,
6 that the MaskRCNN metrics are noticeably higher than those

obtained using the classical segmentation, for both the ripe and

unripe fruit classes. However, unlike the single class case, for the

ripe fruits, themetrics obtained with an IoU threshold of 50 % are

higher than those with 75 %, but the precision is lower when the

threshold is 25 %. This means that for the ripe fruits, lowering the
overlap threshold causes more detections to be considered false

positives, which can be explained by ambiguity in defining the
color cutoff to define the ground truth class. For the both ripe
and unripe fruits, the metrics closest to the top right corner are
those obtained using the ResNext101 (X101) architecture, while
ResNet101 (R101) achieves a comparable recall for the ripe fruits.
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FIGURE 5 | Plots of detection metrics for the two class case. Each color corresponds to one method/architecture. Symbols +, o, and × represent overlap IoU

thresholds of 25, 50, and 75 %, respectively. The results for each method with these IoU thresholds are linked by dashed lines. The zoomed in version of the scatter

plot excluding the classical segmentation is shown in the right side.

FIGURE 6 | Plots of detection metrics for the two class case. Each color corresponds to one method/architecture. Symbols +, o, and × represent overlap IoU

thresholds of 25, 50, and 75 %, respectively. The results for each method with these IoU thresholds are linked by dashed lines. The zoomed in version of the scatter

plot excluding the classical segmentation is shown in the right side.

4. DISCUSSION

Comparing the visual results in Figures 4, 7 obtained using

classical segmentation (hand-crafted features), the results of

MaskRCNN have much fewer false positives and false negatives.

It can also be seen in Figures 3, 5, 6 that MaskRCNN obtains

considerably higher values of the precision and recall. Thus,
MaskRCNN can better deal with the variability in the dataset than
classical computer vision based on color and geometry.

Using MaskRCNN for detecting tomatoes on our data exceeds
the metrics reported in previous work. The precision and recall
values for MaskRCNN from Tables 4, 5, and Figures 3, 5, 6
exceed the values of precision 0.88 and recall 0.8 reported
in Yamamoto et al. (2014), and the average precision of

0.82 reported in Zhou et al. (2017). Our recall values also
consistently exceed the prediction accuracy of 0.91 reported in
Rahnemoonfar and Sheppard (2017).

The ResNext 101 (X101) architecture is consistently better
than the ResNet 50 and 101 layer architectures, as can be verified
in Figures 3, 5, 6. It can be seen that the points corresponding to
ResNext101 are the closest to the top right corner of the plot, and
considering both precision and recall are always better than the
other architectures.

With regards to the difference in detection performance
over the four cameras, it can be seen from Tables 4, 5, that
the metrics for the top most camera (number 4) are not
as good as those of the other 3. This can be explained
by there being more leaves toward the top of the plants,
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FIGURE 7 | Inference with two ripeness classes: Image from Figure 2 overlaid with fruit detection using (A) classical segmentation based on colorspaces and

circularity, (B) MaskRCNN with R50 architecture, (C) MaskRCNN with R101, (D) MaskRCNN with X101.

which make the detection of green fruits more difficult and
also affect the depth thresholding. More illustrative examples
can be found in the Supplementary Material, specifically
Supplementary Figures 7–10 show images from the top most
camera. Since there are very few ripe fruits at the height of
camera 4, the metrics for the single class case are dominated
by the unripe fruits. The ResNext 101 architecture again deals
with this difference better than the other networks. In Table 4,
without depth post-processing, the architecture obtains precision
and recall values which are still comparable to or greater than
those reported in Yamamoto et al. (2014) and Zhou et al. (2017).
In practice the lowest camera is the most important one, since
that is the height at which fruits are harvested. The top camera
is used for forecasting and therefore does not necessarily need
the same precision as the best camera. In addition, since the
acquisition robot is automated, runs can be done every single
night so that the chance of missing a fruit through obstruction
is decreased quite significantly.

It can be seen from the results for both single and two class
detection in Figures 3, 5, 6 that post-processing using depth to
discard background false positives improves the precision but
lowers the recall. This can be explained by the fact that the
depth values from the RealSense depth image may have some
errors, leading to some foreground fruit not being included
when post-processing. Refer to Supplementary Figures 11–14

for some examples of these situations. But even without resorting
to depth post-processing, the networks still learn the foreground

well, since we are training with accurate foreground tomatoes
through annotation by experts.

For ripeness, the metrics in Figure 5 are slightly worse for
the red tomatoes. The ambiguity in defining the cut-off between
the ripe and unripe classes along with the fact that our dataset
contains almost twice asmany unripe tomatoes as ripe ones, leads
to more false positives for the ripe class than the unripe. It may
therefore better to detect a single class fruits and then score a scale
of ripeness.

On the basis of the results we report, we find that it is
possible to robustly detect tomatoes from images taken in
practical settings, without using complex and expensive imaging
equipment. This can open the door to automating phenotypic
data collection on a large scale, and can eventually be applied in
automatic harvesting.

5. CONCLUSIONS AND FUTURE WORK

In this work, deep learning instance detection using MaskRCNN
was applied to the problem of detecting tomato fruits.
Experimental results show that this approach works well for the
detection of tomatoes in a challenging experimental setup and
using a set of simple inexpensive cameras, which is of interest to
practical applications such as harvesting and yield estimation.

In future work, we will address the integration of the results
of fruit detection from individual images to the level of plots, to
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perform a comparison with harvested yield. Including the depth
as an additional input layer to MaskRCNNmay also be a possible
way to try and improve the detection results. This would require
some method of improving the depth image quality, such as
Godard et al. (2017). Finally, the use of deep learning for the
detection of other plant parts such as stems and peduncles, will
also be addressed.
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