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Conventional 2D mammography was the most effective approach to detecting early

stage breast cancer in the past decades of years. Tomosynthetic breast imaging is a po-

tentially more valuable 3D technique for breast cancer detection. The limitations of

current tomosynthesis systems include a longer scanning time than a conventional dig-

ital X-ray modality and a low spatial resolution due to the movement of the single X-

ray source. Dr. Otto Zhou’s group proposed the concept of stationary digital breast to-

mosynthesis (s-DBT) using a Carbon Nano-Tube (CNT) based X-ray source array. In-

stead of mechanically moving a single X-ray tube, s-DBT applies a stationary X-ray

source array, which generates X-ray beams from different view angles by electronically

activating the individual source prepositioned at the corresponding view angle, therefore

eliminating the focal spot motion blurring from sources. The scanning speed is deter-

mined only by the detector readout time and the number of sources regardless of the an-

gular coverage spans, such that the blur from patient’s motion can be reduced due to the

quick scan. S-DBT is potentially a promising modality to improve the early breast cancer

detection by providing decent image quality with fast scan and low radiation dose.

DBT system acquires a limited number of noisy 2D projections over a limited angu-

lar range and then mathematically reconstructs a 3D breast. 3D reconstruction is faced

with the challenges of cone-beam and flat-panel geometry, highly incomplete sampling
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and huge reconstructed volume. In this research, we investigated several representative

reconstruction methods such as Filtered backprojection method (FBP), Simultaneous al-

gebraic reconstruction technique (SART) and Maximum likelihood (ML). We also com-

pared our proposed statistical iterative reconstruction (IR) with particular prior and

computational technique to these representative methods. Of all available reconstruc-

tion methods in this research, our proposed statistical IR appears particularly promising

since it provides the flexibility of accurate physical noise modeling and geometric system

description. In the following chapters, we present multiple key techniques of statistical

IR to tomosynthesis imaging data to demonstrate significant image quality improvement

over conventional techniques. These techniques include the physical modeling with a lo-

cal voxel-pair based prior with the flexibility in its parameters to fine-tune image quality,

the pre-computed parameter κ incorporated with the prior to remove the data depen-

dence and to achieve a predictable resolution property, an effective ray-driven technique

to compute the forward and backprojection and an over-sampled ray-driven method to

perform high resolution reconstruction with a practical region of interest (ROI) tech-

nique. In addition, to solve the estimation problem with a fast computation, we also

present a semi-quantitative method to optimize the relaxation parameter in a relaxed

order-subsets framework and an optimization transfer based algorithm framework which

potentially allows less iterations to achieve an acceptable convergence.

The phantom data is acquired with the s-DBT prototype system to assess the per-

formance of these particular techniques and compare our proposed method to those rep-

resentatives. The value of IR is demonstrated in improving the detectability of low con-

trast and tiny micro-calcification, in reducing cross plane artifacts, in improving reso-

lution and lowering noise in reconstructed images. In particular, noise power spectrum

analysis (NPS) indicates a superior noise spectral property of our proposed statistical

IR, especially in the high frequency range. With the decent noise property, statistical IR

also provides a remarkable reconstruction MTF in general and in different areas within
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a focus plane. Although computational load remains a significant challenge for practi-

cal development, combined with the advancing computational techniques such as graphic

computing, the superior image quality provided by statistical IR will be realized to bene-

fit the diagnostics in real clinical applications.
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CHAPTER 1

INTRODUCTION

1.1 CLINICAL MOTIVATION

Breast cancer is the second most common type of cancer in women and the second

leading cause of cancer-related deaths among women [76]. One in eight women in the

United States will develop breast cancer during her lifetime [16]. Approximately 200,000

women in the United States are diagnosed with breast cancer each year, and the disease

causes about 40,000 deaths annually [16]. X-ray mammography is currently the most ef-

fective method of detecting early stage breast cancer, and has played an important role

in reducing the breast cancer rate. It has been shown that the use of screening mammog-

raphy has reduced mortality from breast cancer by 20%− 40% [30, 31].

Breast cancer is the result of DNA damage or mutation that leads to uncontrolled

cell proliferation. However, the actual etiology remains poorly understood and it is im-

possible to foresee who will develop breast cancer [49]. Based on the severity, breast can-

cer is ranged from 0 to IV [13]. How well the patients could be cured after being treated

for breast cancer depends on many factors. Generally, the more advanced stage the can-

cer is, the poorer healed the patients could be. For women with stage I, II, or III breast

cancer, the main goal is to heal the cancer and keep it from returning. For women with

stage IV cancer, the goal is to improve symptoms and help them live longer. In most

cases, stage IV breast cancer cannot be cured. The 5-year survival rate refers to the

number of patients who live at least 5 years after their cancer is found in report [76].

According to it, the 5-year survival rates for persons with breast cancer who are appro-

priately healed are as follows: (1) 93% for Stage 0; (2) 88% for Stage I; (3) 81% for Stage

IIA; (4) 74% for Stage IIB; (5) 67% for Stage IIIA; (6) 41% for Stage IIIB; (7) 49% for

Stage IIIC; (7) 15% for Stage IV.

Therefore, early detection is viewed as the best hope to decrease breast cancer mor-
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tality by allowing intervention at earlier stage of cancer progression [6, 98, 64]. Improving

breast technologies may permit breast cancer to be detected at a smaller size and earlier

stage, hence reducing the number of women who die each year from the cancer. Thus,

tremendous efforts have been made in the incremental improvements in imaging tech-

nologies in the field of breast cancer detection.

1.2 CONVENTIONAL MAMMOGRAPHY AND LIMITATIONS

Conventional mammography is a two-dimensional (2D) breast imaging method re-

lying on a pair of 2D x-ray images of the breast, which are obtained from two different

directions: top-to-bottom and side-to-side. The breast is pulled away from the body, and

compressed between two plastic plates. In regular screen film mammography, two x-ray

views for each breast are recorded on film. It is suggested that screen-film mammogra-

phy is and will continue to be a valuable tool for detection and diagnosis of breast cancer

[98]. However, screen-film mammography has some limitations on displaying the finest

features due to inadequate contrast, therefore resulting in a limited sensitivity for the

detection of breast cancer with dense breast [64]. Film does not have a linear sensitiv-

ity to photon-flux [73], there is a narrow range over which it can detect small difference

in contrast. Also film requires processing time and storage space. Another limitation is

the effect of structural noise due to film granularity, degrading the visibility of micro-

calcifications and other fine breast structures [98]. These limitations can be effectively

overcome with a digital mammography system.

In digital mammography these two views of images (from top to bottom and from

side to side) are recorded on a high-resolution digital detector whose size is about the

same as a film-screen cassette (18cm 24cm or 24cm 30cm). With digital mammogra-

phy, a electronic x-ray detector is used to record the breast image and to convert the im-

age into a digital picture. After the digital mammogram is stored on a computer, it can

be processed and displayed on a soft copy or hard copy device. One advantage of digi-
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tal mammography is that its digital form allows the radiologist to alter the range and

contrast of the image while viewing. Also, digital mammograms lend themselves to pro-

cessing by Computer Aided Detection (CAD) systems that act to assist the radiologist

in making diagnosis. The studies by Pisano et al. [64] suggested that the overall diag-

nostic accuracy of digital and film mammography for breast cancer was similar, but dig-

ital mammography is more accurate in a sub-population of women with dense breasts.

The improved performance in a digital mammography system is mainly associated with

the x-ray detector and the display device. Therefore, despite the convenience of digital

images obtained with digital mammography, and despite the superior performance of a

digital detector, its clinical diagnostic efficacy is only a slight improvement on that ob-

tained with conventional screen-film systems. Mammographic features characteristic of

breast cancer are masses, particularly ones with irregular margins [14], clusters of micro-

calcifications, and architectural distortions of breast structures. In conventional 2D mam-

mography using either screen film or digital detectors, the cancer lesions present in one

plane of the three-dimensional (3D) breast are sometimes difficult to visualize because of

confounding anatomical structures in planes of above and below the one of interest. A

major limitation in conventional mammographic technique is that superimposed normal

breast tissues generate a structure noise that obscures the breast cancer, especially in a

dense breast, increasing the false-negative rate. Even without other sources of radiation

or instrumentation noise, a cancer can be hidden by the anatomical background. It is

this structure noise also termed anatomical variability that accounts for the only slight

advantage of digital mammography over screen-film in spite of the superior detector per-

formance of digital mammography. It has been shown that 30% of breast cancer may be

missed by conventional (digital and screen-film) mammography [60]. On the other hand,

the overlapped tissue structures may look like a cancerous tumor on a mammogram, and

can be mistaken for abnormalities, causing false-positive callbacks for further diagnosis or

even biopsy. In 2004, National Cancer Institute reported that up to 12% normal breasts
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were mistakenly read as having breast cancer.

1.3 DIGITAL BREAST TOMOSYNTHESIS

Compared with traditional 2D mammography, three-dimensional (3D) digital breast

tomosynthesis (DBT) imaging system [23, 22, 17, 102] have the potential to improve con-

spicuity of structures by removing the visual clutter associated with overlying anatomy.

The mammographic tomosynthesis reconstruction methods make it possible to distin-

guish the cancer from its overlying breast tissues, even for the problematic dense breast

cases. This may prove to be greatly helpful in enabling better detection of breast cancer.

Attempts to developing 3D imaging methods to separate objects from overlying

anatomical structure go back to the early 20th century [23]. In 1917, Radon introduced

the famous Radon transformation of tomography, describing the mathematics of generat-

ing internal object planes from twodimensional projection data [67]. In 1932, Ziedses des

Plantes led the pioneering effort in conventional linear tomography and Ernest Twining

contributed to its clinical prominence [23]. Early tomography systems utilized a linear,

opposing motion of the xray tube and the film receptor to generate a focal plane. The

procedure had to be repeated if more than one focal plane was needed. This led to high

dose to the patients. Secondly, the modality was not capable of sufficiently suppressing

outofplane blur [23]. In 1969, Garrison et al. developed a prototype “three dimensional

roentgenography” device [23, 39] which was the first full implementation of Ziedses des

Plantess concepts. Two years later, Miller et al. published their own discrete tomography

results, which they called “photographic laminography” [57]. In 1972, D.G. Grant re-

ported a prototype three-dimensional image projector based on circular image acquisition

geometry [40]. Grant also named the new circular backprojection device “tomosynthesis,”

referring to the capability to retroactively create an infinite number of arbitrary tomo-

grams [23]. More improvements were achieved after Grant and Millers work to speed up

the filmbased tomosynthesis procedure time, including coded-aperture imaging [48, 41],
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also known as “short time tomosynthesis”, ”flashing tomosynthesis (FTS)” [59, 79], and

“tomoscopy” [72]. In the late 1960s, fluoroscopic tomography was implemented success-

fully [52]. Researchers began to use fluoroscopic devices to acquire discrete projection im-

ages and stored them in individual video channels for postacquisition electronic tomosyn-

thesis reconstruction [5]. Finally, in the late 1990s, the advent of digital xray acquisition

technology made it possible to acquire a series of lowdose projection images from differ-

ent locations of an xray source to provide the depth information for tomosynthesis recon-

struction [23, 18, 79].

Recently, many healthcare manufacturers are actively developing digital breast to-

mosynthesis devices. Most of current DBT prototype system designs re-utilize the con-

ventional mammography design with associated mechanical, electrical and sensor tech-

niques [62]. The X-ray tube typically rotates along an a prescribed path above a fixed

flat-panel detector to acquire projection images at specified positions with limited view

angle and limited view number. This kind of design is called as partial iso-centric. The

typical total angular range of breast tomosynthesis imaging is less than 50o, and the

number of projection images is limited under 49 for a low total dosage of radiation. Be-

cause the sampling is highly incomplete, the depth resolution is limited. Therefore, to-

mosynthesis does not produce the isotropic spatial resolution achievable with Computed

Tomography (CT). However, due to the usage of cone-beam X-ray and flat panel detec-

tor, the resolution of a transversely reconstructed plane is often superior to CT [22]. In

addition to DBT, tomosynthesis has been applied to a wide variety of clinical applica-

tions over the years, which includes dental imaging, angiography, and imaging of the

chest and bones. In February 2011, the USA FDA approved Hologic, Inc. to market its

Selenia Dimensions 2D Full Field Digital Mammography (FFDM) and Digital Breast To-

mosynthesis (DBT) system. This DBT system has been the first commercially available

mammography system that provides 3D images of the breast for breast cancer screening

and diagnosis.
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In 2014, a comparison study [38] using Tomosynthesis in Combination with Digi-

tal Mammography was led by Sarah M. Friedewald, MD of the Caldwell Breast Center,

Advocate Lutheran General Hospital in Park Ridge, Illinois . A total of 454,850 exam-

inations (281,187 conventional mammograms compared to 173,663 3D Tomosynthesis

exams) were included in the study. Significant findings include: (1) 41% increase in the

detection of invasive breast cancers. (p < .001) (2) 29% increase in the detection of all

breast cancers. (p < .001) (3) 15% decrease in women recalled for additional imaging.

(p < .001) (4) 49% increase in Positive Predictive Value (PPV) for a recall (The PPV for

a recall increased from 4.3 to 6.4%). (p < .001) (5) 21% increase in PPV for biopsy (The

PPV for a breast biopsy increased from 24.2 to 29.2%). (p < .001) (6) No significant

change in the detection of ductal carcinoma in situ (DCIS).

1.4 STATE-OF-ART STATIONARY DIGITAL BREAST TOMOSYNTHE-

SIS

The limitations of current tomosynthesis systems include a longer scanning time

than a conventional digital X-ray modality and a low spatial resolution. Both result

from the limitations of the current X-ray tube technology where a single X-ray tube is

mounted on a rotating gantry and moves along an arc above objects over a certain angu-

lar range. Image blur due to both source movement and patient motion is a major factor

degrading the spatial resolution. For a continuous tube motion design, the higher the

scanning speed, the larger the distance the X-ray tube travels during a fixed exposure

time and the larger the X-ray focal spot blurring. In addition, longer time scanning will

increase the probability of motion blur from patients. The amount of blur which can be

tolerated limits the scanning speed and angular coverage.

To conquer the limitations, literature [65, 82] proposed the concept of stationary

digital breast tomosynthesis (s-DBT) using a Carbon Nano-Tube (CNT) based X-ray

source array. Instead of mechanically moving a single X-ray tube, s-DBT applies a sta-
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Figure 1.1. A typical geometric configuration of the s-DBT system.

tionary X-ray source array, which generates X-ray beams from different view angles by

electronically activating the individual source prepositioned at the corresponding view

angle, therefore eliminating the focal spot motion blurring from sources. The scanning

speed is determined only by the detector readout time and the number of sources re-

gardless of the angular coverage spans, such that the blur from patient’s motion can be

reduced due to the quick scan. More importantly, the spatially distributed multi-beam

X-ray sources also enable the potentials to improve image qualities by wide varieties of

flexible distributions of the multi-beam sources [5].

Fig. 1.1 illustrates the geometric configuration of s-DBT. Multiple X-ray sources are

distributed at the locations where view angles are equal to each other corresponding to

Axis A. The whole source array appears in a straight line parallel to the detector. Trig-

ger signals are used to activate each X-ray source one by one to acquire the whole projec-

tion dataset. Thereby no X-ray tubes motion is required. Source to image distance (SID)

denotes the perpendicular distance between X-ray source and detector surface. Source to

object distance (SOD) indicates the perpendicular distance between the X-ray source and

7



the center of the breast which stays compressed between the compression board and the

air gap above the detector. The transversal planes are reconstructed to represent the 3D

breast volume.

1.5 IMAGE RECONSTRUCTION AND COMPUTATION

Among current reconstruction techniques in tomographic imaging, both analytical

reconstructions and iterative reconstruction (IR) are being studied and applied. One

classical analytical reconstruction is Filtered Back Projection (FBP)[83] based on Fourier

theorem, which guarantees a precise signal reconstruction at a sampling rate satisfying

Nyquist-Shannon Theorem, but it will introduce reconstruction error from highly incom-

plete frequency information [15]. To mitigate the reconstruction error, several revised

versions of FBP such as FBP with post-processing and FBP with modified ramp filter

[101] were proposed. One of the IRs in tomographic reconstruction is Simultaneous Al-

gebraic Reconstruction Technique (SART) [4, 3] which applies a Ordered Subsets (OS)

method to solve a unweighted least square model, which may lead to over-fitting to the

noisy data and artifacts from low dose measurement and non-convergence to the global

optimal. Signal statistics in X-ray Computed Tomography (CT) follows Poisson dis-

tribution for mono-energetic CT and compound Poisson for polyenergetic CT [84, 25].

Statistical IR such as Maximum Likelihood (ML) was proposed. The problem of ML re-

construction is usually ill posed [10]. The likelihood alone rarely determines a satisfac-

tory solution and the image reconstructed from ML is very noisy. Thus, it is necessary

to regularize the solution by imposing a prior or regularization, such as Maximum a pos-

terior (MAP) or Penalized Weighted Least Squares (PWLS) [50, 51, 63, 29, 36, 25, 26].

One simple regularization method supposes that images are global smooth, and en-

forces a roughness penalty on the solution by adding a quadratic function to the negative

log-likelihood. But this assumption is often unsatisfactory, since many images are not

globally smooth. They have region boundaries across which the image values can vary
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rapidly. The quadratic regularization causes edges to become blurred. In many images,

small differences between neighboring pixels are often with noise, while large differences

are due to the presence of edges. This assumption has formed the basis for many edge-

preserving regularization. Most edge-preserving regularization methods rely on informa-

tion from a local neighborhood to determine the presence of edges, i.e., the penalty as-

signed to each pixel or clique of pixels depends solely on pixel values within a small fixed

neighborhood, such as the Huber function [35, 33] and q-generalized Gaussian Markov

random field (q-GGMRF) [80] which increase less rapidly than the quadratic function

for sufficiently large arguments. Recently total variation as a local regularization has re-

ceived much attention because of the introduction of compressed sensing, which allows

images to be reconstructed from small amounts of data [81]. Equipped with these ad-

vanced techniques, statistical IR exhibits particularly promising. Recent commercial IR

technique applied in computed tomography (CT), Model based iterative reconstruction

(MBIR) [80, 100], significantly improves image quality (IQ) compared with conventional

analytical techniques. It offers the potential of combined noise reduction, high spatial

resolution, contrast enhancement and artifact reduction for low-dose imaging or enhanced

image clarity for improved diagnostic confidence, which would expand CT applications.

The main obstacle for statistical IR applied in clinical applications is the fact that

to solve the objective function is computationally intensive compared to analytical re-

construction methods due to multiple iterations needed for convergence and each iter-

ation involves forward/back-projections using a complex geometric system model. Op-

timization transfer (OT) [29] is a typical framework to find out the optimal of the ob-

jective function, which converts a high dimensional optimization to a parallel 1-D up-

date by transferring the target optimization to a set of ‘bounded’ and separable surro-

gate functions. Compared to the iterative coordinate descent (ICD) algorithm [12], OT

based methods, such as expectation maximization (EM) and separable parabolic surro-

gate (SPS) allow a naturally parallel computation, but suffer the low convergence rate
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which leads to more iterations. Literature [29] proposed non-separable parabolic surro-

gates with optimal curvatures, which produces a faster convergence yet requires a huge

matrix operation. Literature [1, 77] reported ordered subsets SPS (OS-SPS), which gains

an initial acceleration but induces a divergence in a limited circle. Even a relaxed OS

can not guarantee the global optimal. A exponential power based larger step size was

applied to Maximum likelihood expectation maximization (ML-EM) reconstruction in

Literature [44]. However without monotonicity, this algorithm has potential problem with

stability. In addition, the particular technique is not applied in MAP framework which is

more general in tomographic reconstruction. The idea of over-relaxation was mentioned

in literature[100] for the model based iterative reconstruction (MBIR) within ICD al-

gorithm, where a relaxation within [1, 2] was to enlarge the step size, however a larger

step does not guarantee to produce a faster convergence and might take the risk of di-

vergence. In literature [9], we proposed a successive increasing over-relaxation algorithm

based on the knowledge of a convergence rate matrix. This algorithm exhibits tremen-

dous properties of parallel computation, monotonic and global convergence with fast rate.

In tomosynthesis, 3D image reconstruction is more challenged by the cone beam (CB) ge-

ometry, the highly incomplete and non-symmetric sampling and the huge reconstructed

volume. Analytical tomosynthesis reconstruction for this particular geometry still needs

to be fully understood. As an attempt to provide more flexibility in the reconstruction

choices, ML method has been introduced and compared with conventional reconstruc-

tions [102, 85]. MAP based statistical iterative reconstruction (IR) technique was also

studied with DBT system [1, 2, 3], where a modified penalty function was proposed for

the data independent resolution. An edge-preserved regularizer was introduced as well as

adjustable parameters for a non-linearly tunable trade-off between resolution and noise

[6]. The introduction of statistical IR methods to tomosynthesis, much of the effort has

been devoted to demonstrating the feasibility of the proposed techniques and illustrating

some of its benefits in the general case [102, 85, 1, 2, 3, ?].
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The dissertation presents the implementation, optimization and comparison of sev-

eral representative reconstruction algorithms and the proposed statistical iterative re-

construction (IR) method for DBT 3D image reconstruction. Multiple key techniques in

statistical IR are proposed and further optimized for the particular application. the su-

perior IQ provided by these promising techniques is going to be realized to benefit the

diagnostic in real clinical applications.

This dissertation is organized as follows. Chapter 2 provides the theoretical reviews

and implementations of several representative tomosynthesis reconstruction methods in-

cluding FBP, SART and OS-MLEM. Chapter 3 addresses a general Maximum a posterior

(MAP) modeling for statistical IR. The edge preserved prior is introduced with the de-

sign of the influence functions flexible enough to provide sufficient control over desired

IQ. The implementation of the statistical model relies on the technique of forward and

backprojection upon the imaging system. A practical implementation of it is demon-

strated based on an efficient ray-driven method. ROI reconstruction with high resolu-

tion with an oversampled ray-driven technique is proposed to leverage the benefit of the

proposed statistical IR. In Chapter 4, I shall introduce a modified prior model by insert-

ing a precomputed parameter κ. Such a technique allows a predictable IQ and uniform

resolution. Simulation results illustrates the effectiveness of it and provide a look-up

table for further usage. Chapter 5 provides a method to optimize the flexibility of the

edge preserved prior model upon IQ assessment tools. Visual comparisons are presented

with different parameters choices and those representative methods. Both Chapter 6 and

Chapter 7 discuss efficiently computational methods to solve the statistical IR. Chapter

6 introduces a semi-quantitative method to optimize the diminishing relaxation param-

eter for a convergent ordered-subsets computational framework with fast rate. But the

convergent solution is not guaranteed the exact global optimal solution due to the usage

of partial dataset. Thereby chapter 7 further develops the convergence theorem for op-

timization transfer (OT) with full dataset each iteration. Moreover, based on these the-
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orems, the successively increasing over-relaxation OT (sir-OT) algorithm is summarized

and demonstrated with a superior and monotonic convergence. Phantom study indicates

that the hybrid of sir-OT and ordered-subsets present a great potential to be a paralleliz-

able algorithm with fast and monotonic convergence rate. In Chapter 8, comprehensive

evaluations are performed on reconstruction results of breast phantom, noise power spec-

trum phantom and simulated phantom, to assess the IQ improvement of the proposed

statistical IR compared to those representative ones. Assessment tools with both spatial

domain and frequency domain are involved. In the last chapter, we summarize our con-

tributions and discuss the future work and directions.

12



CHAPTER 2

IMPLEMENTATION OF REPRESENTATIVE RECONSTRUCTION

METHODS IN DIGITAL BREAST TOMOSYNTHESIS

The goal of transmission tomography, including tomosynthesis breast imaging, is to

obtain an estimate of the 3D attenuation coefficients µ of the imaged object (patient).

Given the measured noisy projection data y, a reconstruction step is needed to compute

this estimate.

There are many reconstruction methods available, and they can be classified into

two categories: deterministic reconstruction and statistical reconstruction. The image

model includes Poisson photon noise, electronic noise (detector noise), scatter and a

polyenergetic x-ray source. Different reconstruction methods handle these differently.

The deterministic reconstruction methods ignore Poisson photon noise and detec-

tor noise since they do not use a noise model. Various deterministic methods are avail-

able. They can be divided into two categories: analytical and linear algebraic. Analytical

methods such as the filtered backprojection (FBP) algorithm try to invert the imaging

operator in the continuous domain based on simplified imaging models. Linear algebraic

methods such as the algebraic reconstruction technique (ART) and simultaneous alge-

braic reconstruction technique (SART) can incorporate sophisticated imaging models

via the A matrix. In tomosynthetic mammography, the necessities of a short-scan and

low-dose result in noisy projection data due to a low number of collected counts. Pois-

son noise is a concern, therefore the reconstruction problem naturally becomes a statis-

tical problem. The statistical reconstruction methods incorporate the Poisson noise into

its model and can also incorporate detector noise. Statistical methods (methods using a

noise model) of image reconstruction often outperform deterministic algorithms in terms

of image quality [61, 80]. The major impediment to their implementation transmission

tomographic systems has been their heavy computational burden. We shall discuss the
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mathematical formulations for some popular image reconstruction algorithms in the two

categories of deterministic and statistical algorithms and emphasize their applications

and problems in breast tomosysnthesis.

2.1 DETERMINISTIC RECONSTRUCTION METHODS

Deterministic approaches to transmission tomography begins with estimating the

line integrals from the ideal model Equation 4.1 and then applies algorithms to the col-

lection of line-integral estimates:

pi =

∫

Li

µ(r)dl, i = 1, ...,M (2.1)

where pi denotes the line integral of attenuation coefficients of the voxels along the

i-th ray path. One obtains the estimate gi of pi by log-transform as follows:

gi = log
bi

yi − ri
, (2.2)

where yi are noisy measurement data. According to Bear’s law, gi are identical to pi if

there is no noise present. Since Poisson photon noise is ignored in deterministic methods,

ideally we have

gi = pi. (2.3)

One then reconstructs estimates µ from gi using some deterministic algorithm. For

the discrete case, we rewrite Eq. 2.3:

gi = [Aµ]i =
N
∑

j=1

aijµj, i = 1, ...,M, j = 1, ..., N, (2.4)

which could also be represented as

Aµ = g, (2.5)

where g is a line integral vector with M elements. This linear system model is the ba-

sis for deterministic methods. The reconstruction is a inverse problem and its goal is to

solve this linear system, where A and g are known and is unknown. In tomosynthesis,

Eq. 2.5 is Atomoµ = g.
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2.1.1 Filtered backprojection reconstruction

In the simple Backprojection method, one takes the line integral at each pixel in the

projection and smears it back along the path of the incident ray. If this process is per-

formed for each pixel in a projection and for all projection views, one can obtain a simple

backprojected estimate of the object. Consider a 2D object with parallel-beam projec-

tions. If we had a delta function object, the backprojected reconstruction appear as a

spoke pattern and its Fourier transform falls off linearly as the radial spatial frequency

increases. Filtering the 2D spoke pattern image by a 2D ramp filter will restore the back-

projection to the true object. By the central slice theorem [7], one could equivalently do

this filtering in the projection domain. Filtering the projection image by multiplying its

Fourier transform by a ramp function (proportional to radial spatial frequency) and then

backprojecting them, one can reconstruct the point, and by linearity, an entire object.

This process is referred to as filtered backprojection (FBP). The 2D FBP algorithm for

complete parallel-beam angular sampling is well known and described in many textbooks

[7, 47] and we will not give the mathematical description here.

The 2D FBP methods for parallel and fan-beam projections are frequently used

in transmission and emission CT [72], in which a large number of projection images ac-

quired over 360o / 180o are used to reconstruct cross-sectional images. With a large num-

ber of projections, the information in the object is well sampled and the corresponding

spatial frequency domain is well sampled, so the object can be restored by combing the

information from all projections. In 2D FBP methods, the Fourier central slice theorem

[7] is a fundamental key. With a parallel-beam approximation, the Fourier transform of a

projection yields a plane through the 2D Fourier space of the object along the direction

perpendicular to the x-ray beam [7]. As the x-ray source and the detector are rotated

around the object, a set of data is swept out in 2D Fourier space. The central slice theo-

rem holds for a projection at any angle. For limited angle acquisitions, the theorem tells

us which parts of Fourier space are not being sampled.
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Figure 2.1. Sampling density calculation in spatial frequency domain.

FBP methods also exist for 3D data, and these can be applied to the tomosynthe-

sis problems. As in 2D, 3D FBP reconstructions obey a form of central slice theorem. In

tomosynthetic reconstruction, only a limited angular range is swept during acquisition,

not all of the volume of 3D Fourier space is sampled. The main limitation for tomosyn-

thesis is the incomplete angular sampling of the object. The cone-beam geometry is used

in breast tomosynthesis. The relation between the cone-beam projections and the Radon

transform was presented by Smith [74], and the solution to the general cone-beam re-

construction was also provided. For 3D cone-beam breast tomosynthesis, the Feldkamp

method [32], an approximation of the cone-beam FBP algorithm, was explored by Wu et

al. [86] but their reconstruction results were very noisy, along with artifacts. The result

of the Feldkamp algorithm indicates that the low-frequency contrast restoration should

be considered. A prototype digital tomosynthesis mammography system using a modified

FBP method was reported in [68], but no details were given.

In our implementation, a specific 2D ramp filter was designed based on the sampling

density, which is calculated as the inverse of the shortest distance from a sampled point

in Fourier space to sampled points from another view [78, 53, 32] as shown as Fig. 2.1.

Briefly speaking, the developed FBP algorithm involved the following steps: 1) Apply 1-

D Fourier transformation on each column (along tube alignment direction) of the original
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projection images into frequency space. 2) Multiply the inverse sampling density ramp

filters with the corresponding Fourier Transformed projection column by column. 3) Ap-

ply a Hanning filter to reduce high frequency noise and ring effect along each column. 4)

Inverse Fourier transform the filtered projection. 5) Backproject the filtered projection in

spatial space for reconstruction.

A Hanning filter was applied to reduce the amplification of high frequency noise [86,

18, 55]. The applied Hanning filter was:

w(i) = a+ (1− a)cos(
2πi

N
), (2.6)

where i is the individual frequency bin in the total points of N in frequency space. a =

0.6 was chosen as a good compromise of resolution and noise.

2.1.2 Algebraic reconstruction technique

As another example of deterministic reconstruction methods, algebraic methods

with the system model Eq. 2.5 are often used. In algebraic reconstruction techniques,

the tomographic inverse problem is to solve the large-scale system of linear equations of

Eq. 2.5 with N variables and M equations. Under ideal conditions, such simultaneous

equations could be solved exactly by matrix inversion:

µ = (ATA)−1AT g. (2.7)

However, the inverse of (ATA) does not usually exist. N >> M leads to an ill-

posted problem which has no unique solution. As we discussed in section 2.1.1, FBP

method solves the inverse problem of Eq. 2.1 by central slice theorem, which is mathe-

matically accurate upon a continuous form of µ. However, the accuracy can not be held

when the expression of Eq. 2.1 is discretized by Eq. 2.5. In fact, this discretization can

not be avoided since the finite representative of µ. The discrete form of FBP reconstruc-

tion could be presented as

µ = AT (AAT )−1g, (2.8)
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where the linear operator (AAT )−1 on projection g is equivalent to a convolution between

a ramp filter kernel and the projection data. This equivalence is not quite accurate since

the operator is never a strictly circulant matrix. The convolved results are then pro-

jected back to the attenuation coefficient vector µ by operator AT . To accurately solve

the discrete model represented by Eq. 2.5, iterative methods are applied. To implement

such a method, one can first make the initial guess at the solution represented as vector

µ(0) in the M -dimensional space. In most cases, one can simply set all the initial to be

zero. This initial guess is projected on the hyperplane represented by the first equation

in Eq. 2.5 giving µ(1). Then µ(1) is projected on the hyperplane represented by the second

equation in Eq. 2.5 to yield µ(2) and so on. When µ(n−1) is projected on the hyperplane

represented by the i-th equation in Eq. 2.5 to yield µ(n) , the process can be mathemati-

cally described by

µ
(n)
j = µ

(n−1)
j −

qi − gi
< ai, ai >

aij, (2.9)

where

qi =< µ(n−1), ai >, (2.10)

and µj is the j-th component of µ. The new value of the j-th component is obtained by

correcting its current value µ
(n−1)
j by ∆µj(n), which is

∆µ
(n)
j =

< µ(n−1), ai > −gi
< ai, ai >

aij, (2.11)

While gi is the measured line-integral along the ith ray, < µ(n−1), ai > can be un-

derstood to be the computed line-integral for the same ray based on the (n − 1)-th so-

lution. The correction ∆µ
(n)
j to the j-th voxel is obtained by first calculating the differ-

ence between the measured line-integral and the computed line-integral, normalizing this

difference by < ai, ai > and then assigning this value to all voxels in the ith ray, each

assignment being weighted by the corresponding aij [19].

The linear attenuation coefficients are updated at each ray, therefore ART converges

fast to a least squares solution which can be very noisy for severely ill-posed inverse
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problem such as limited-angle tomosynthetic reconstruction [102]. There are some vari-

ations on its computer implementation. ART has been modified to other methods such

as simultaneous algebraic reconstruction technique (SART) [47] and simultaneous itera-

tive reconstruction technique (SIRT) [47]. In SART, the correction terms are simultane-

ously applied for all the rays in one projection, and the linear attenuation coefficient of

each voxel is updated after all rays passing through this voxel at one projection view are

processed; while in SIRT, all projection rays are calculated and applied to a correction

factor, and the update is performed after all rays in all projection views are processed.

SIRT converges slowly because its update is averaged over all projection rays and the re-

construction could be overly smoothed. We shall describe the SART method in detail.

As mentioned above, for SART, the value update of each voxel is performed after all rays

at one projection view are processed. The number of updates in one full iteration is equal

to the number of projection views K, and also is called as the number of sub-iterations.

Let µn,k
j denote the estimated linear attenuation coefficient of the jth voxel at the end of

the k sub-iteration of the nth iteration. The initial and final update values at one itera-

tion are assigned as follows:

µn,1
j = µn−1

j , µn
j = µn,K

j , (2.12)

where µn
j is the estimate at the end of the n-th iteration, which is equal to the estimate

after all K projection views are processed. Let Gj denote the index set of the measured

line integrals passing through the j-th voxel at the k-th projection angle. The update of

the linear attenuation coefficient at the j-th voxel is defined as follows:

µn,k+1
j = µn,k

j − λ

∑

i∈Gj
aij

<µn,k>−gi
Li

∑

i∈Gj
aij

, (2.13)

where λ is a relaxation factor ranged over (0, 1]. The relaxation factor is used to reduce

the noise during reconstruction. In some cases, this parameter is chosen as a function of

the iteration number. That is, λ decreases as the number of iterations increases. Li could
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be represented as

Li =
N
∑

j=1

aij. (2.14)

The choice of the initial guess is very important. This is a general problem for iter-

ative reconstruction methods. A good choice of initial condition can speed up the con-

vergence. An initial condition chosen to the final solution will speed up convergence. In

some cases, a simple BP reconstruction serves as a good initial condition. Another prob-

lem associated with iterative reconstruction approaches is the choice of a stopping point.

An appropriate stopping point determines the image quality of reconstruction. Earlier

termination results in a low-contrast reconstruction, while more iterations yields more

noisy estimates. Given this compromise, the optimal number of iterations is often prede-

termined based on visual comparison and image quality analysis. Because iterations are

terminated before convergence, the iterative methods do not exactly invert Eq. 2.5.

2.2 STATISTICAL ITERATIVE RECONSTRUCTION

2.2.1 Maximum likelihood reconstruction

For a photon counting detector or a mono-energetic X-ray device, the Poisson dis-

tribution of incident photon number dominates the physical process. That is the photons

flux along a projection follows Poisson distribution which can be described mathemati-

cally as

Plikelihood(Yi = yi|µ) =
θyii e

−θi

yi!
, (2.15)

where Yi is a random variable counting the observed photons on the detector along i-

th X-ray; yi is one observation of Yi; θi is the expectation value of the random variable

Yi, that is related to the line integral projection by Beer’s law of attenuation [43]. In the

classical physical model, it can be expressed as

θi = die
−<µ,li> + ri, (2.16)
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where di is the intensity of the incident X-ray; µ is a linear attenuation coefficient vec-

tor to be estimated. Each voxel is assigned an attenuation coefficient and the li denotes

the vector of the system coefficient generated by the i-th X-ray and each voxel. The term

ri accounts for the mean number of background events and read-out noise variance [75].

The negative log-likelihood function of all observed photons on the detector can be writ-

ten as [51]

L(µ) =
M
∑

i

{die
−<µ,li> − yi log(die

−<µ,li> + ri)}+ c, (2.17)

under the assumption that {Yi}i∈[1,M ] are i.i.d, where c is a constant and M is the num-

ber of X-ray beams. Through minimizing Eq. 2.17, the optimal µ can be estimated.

To solve the problem directly is intractable. Literature [29] proposed the concept of

optimization transfer, where a series of surrogate functions bounded by the objective one

are conceived and in turn minimizing Eq. 2.17 has been transferred to the minimization

of the surrogate ones.

We demonstrate how to motivate a surrogate for ML case, one can rewrite Eq. 2.17

as

L(µ) =
M
∑

i=1

ℓi(ti), (2.18)

where

ℓi(ti) = die
−ti − yi log(die

−ti + ri), (2.19)

when ri = 0, ℓi(ti) = die
−ti + yiti, where ti =< µ, li >. It’s trivial to check the convexity

of ℓi(ti) with di, yi ≥ 0. By using the equivalent transformation

< µ, li >=
N
∑

j=1

aij(
lij
aij

(µj − µn
j )+ < µn, li >), (2.20)

where

aij =
lij

∑N
j=1 lij

, (2.21)

N
∑

j=1

aij = 1, (2.22)
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and the convex property, one can write

L(µ) ≤
M
∑

i=1

(
N
∑

j=1

aijℓ(
lij
aij

(µj − µn
j )+ < µn, li >))

= G(µ, µn), (2.23)

the induced µ(n) denotes the attenuation coefficients at the n-th iteration. G(µ, µn) is a

surrogate function of the L(µ). Minimizing the L(µ) has been shifted to minimize the

surrogate one and the solution sequence from each surrogate function will be guaranteed

to approach the optimal solution of Eq. 2.17 monotonically. By applying Newton’s itera-

tion on G(µ, µn)

µ
(n+1)
j = µn

j −

∑M
i=1 lij(−die

−<µn,li> + yi)
∑M

i=1(lij
∑N

j=1 lijdie
−<µn,li>)

. (2.24)

One can notice that both Eq. 2.13 and Eq. 2.24 are suitable for parallel computations.

All voxels can be updated simultaneously in each iteration. But the “bounded” condition

of the surrogate function of ML method could produce a conservative step size for each

iteration, especially when the solution approaches to the global optimal. This conserva-

tion leads to a slow convergence [9].

Literature [27] proposed an algorithm formulated using a quadratic approximation

to the Poisson likelihood Eq. 2.17, which leads to a weighted least square algorithm. The

simple form encouraged a faster convergent algorithm which is iterative coordinate de-

scent (ICD) [70, 100]. Applying a second-order Taylor’s expansion to ℓi(ti) in Eq. 2.19

around the estimation t̂i, it yields

ℓi(ti) ≈ ℓi(t̂i) + ℓ′i(t̂i)(ti − t̂i) +
1

2
ℓ′′i (t̂i)(ti − t̂i). (2.25)

We can estimate t̂i with

t̂i = log(
di

yi − ri
). (2.26)

Knowing

ℓ′i(ti) = −die
−ti + yi

die
−ti

die−ti + ri
, (2.27)
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and

ℓ′′i (ti) = die
−ti − yi

die
−ti(die

−ti + ri)− (die
ti)2

(die−ti + ri)2
. (2.28)

Substituting Eq. 2.19, Eq. 2.26, Eq. 2.27 and Eq. 2.28 into Eq. 2.25, we arrive at

ℓi(ti) ∝
(yi − ri)

2

2yi
(ti − t̂i)

2. (2.29)

This resulting in the weighted least square function

Q(µ) =
M
∑

i=1

wi

2
(< µ, li > − log

di
yi − ri

)2, (2.30)

where

wi =
(yi − ri)

2

yi
. (2.31)

This quadratic form encourages a greedy search optimization method ICD [70, 100]. ICD

method transfers the high dimension optimization into a sequential of one dimension

problems. For example, to seek for an optimal µk, a partial derivative on µk is needed,

which is

∂Q(µ)

∂µk

=
M
∑

i=1

wilik(
N
∑

j=1

µjlij − log
di

yi − ri
) = 0. (2.32)

Given µ = µn, to produce µn+1
k , an equivalent transformation is applied:

M
∑

i=1

wilik(
N
∑

j=1

µn
j lij − log

di
yi − ri

+ (µn+1
k − µn

k)lik) = 0. (2.33)

Based on it, we derive µn+1
k as

µn+1
k = µn

k −

∑M
i=1 yilijei

∑M
i=1wil2ik

, (2.34)

where ei denotes the error sinogram after each updating with the form of

ei =< µn, li > − log
di

yi − ri
. (2.35)
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The algorithm can be described as that in every iteration n we sequentially address ev-

ery voxel j in a certain order [100] and compute its attenuation by Eq. 2.35. Each voxel

is calculated upon the error sinogram ei calculated by the relevant voxels with the latest

updated value. Therefore voxels updating within this algorithm is hard to be parallel.

But it yields the best convergence demonstrated in literature [21], which provided prac-

tical comparisons among different algorithms. In our study, to retain the benefits from

the parallel computing, instead of ICD algorithm, an OT based algorithm [9] with faster

convergence rate and flexibility of updating maps will be introduced in the later chapter.
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CHAPTER 3

MODELING OF STATISTICAL ITERATIVE RECONSTRUCTION

3.1 STATISTICAL MODEL FOR IMAGE RECONSTRUCTION

In transmission tomography, Compton scattering, which deflects X-ray photon from

its original path, forms a randomly additional noise on detectors. This noise is more se-

vere in tomosynthesis because of the usage of CB and flat-panel detector. Electronic

noise from devices forms another source of corruption on the data. High variation is in-

duced in the reconstructed volume by the over-fitting of the noisy data. Literature [87]

developed a Bayesian inference method with the prior encouraging the data consistency

of each projection. The posterior distribution of µ is written as

Ppost(µ|Y ) ∝ Plikelihood(Y |µ)π(µ). (3.1)

Most of these priors define a probability density function for voxels to deviate from

their neighbors. The constraint is imposed into the solution by adding the negative log-

transformed prior to the negative log-likelihood. Such PL subjective function has the fol-

lowing form:

Ψ(µ) = L(µ) + λR(µ), (3.2)

where the parameter λ controls the strength of the penalty function R(µ), which is the

negative log-transformed of the prior π(µ). One of the most popular is Gaussian Markov

random field (GMRF) prior, which is generally defined by the following function:

π(µ) ∝
N
∏

j

Nj
∏

k

exp(ρ(∆jk)), (3.3)

where

ρ(∆jk) = −ωjk

∆2
jk

2σ2
µ

, (3.4)

j ∈ N is the index of voxel; k ∈ Nj denotes neighborhood index; σ is the standard devia-

tion of intensity of voxels; ∆jk = µj − µk. The neighborhood mask ωjk is typically defined
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by:

ωjk =
1

((xj − xk)2 + (yj − yk)2)1/2
, (3.5)

The quadratic penalty applies a globally smooth effect on voxels, which usually causes

edges to be blurred. To improve the edge preservation, generalized Gaussian Markov

Random Field (gGMRF) [11] was introduced into Digital tomosynthesis [6], which defines

Eq. 3.4 as follows:

ρ(∆jk) = (
∆jk

c
)p. (3.6)

A 3×3 neighborhood clique in the transverse reconstructed plane is applied, therefore ωjk

can be simplified as 1. The exponent parameter p of the gGMRF allows one to control

the degree of edge preservation in the reconstruction. As long as p > 1, the resulting

regularizer term is strictly convex. The constant c determines the approximate threshold

of transition between low and high contrast regions. When p = 2, the regularizer term is

quadratic and the reconstructed images tend to be softer. As p is reduced, the regularizer

becomes non-quadratic and edge sharpness tends to be preserved. The corresponding

derivative of it is known as the influence function:

ρ′(∆jk) =
p|∆jk|

p−1

cp
sign(∆jk). (3.7)

In Fig. 3.1, we compares the influence function of the quadratic regularizers with

several edge-preserving gGMRF priors. In the quadratic cases (p = 2), the influence func-

tions are linear around the origin, which controls textures in a uniform manner. Reduced

p retains better edge-preserving characteristics, as influence function tends to be constant

for larger argument. The value c controls the inflexion point. Higher c pushes the edge

preserving behavior towards the origin. For example, to maintain the similar influence to

the quadratic with cp = 1 under the difference of 0.01, which is considered as the upper

boundary of noise variation, the cp values for the p = 1.8, p = 1.7, p = 1.61 are set as

2.5, 3.5, 5.3.
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Figure 3.1. Influence function of the gGMRF regularizer with different parameters.

3.2 GEOMETRIC CONFIGURATION AND FORWARD AND BACK-

PROJECTION MODEL

As shown in Fig. 3.2, a typical DBT system acquires 11 ∼ 25 projections by rotating

the X-ray tube around the center of rotation over < 50o angular. The breast and the de-

tector are stationary during the acquisition. The tube usually operated at 20 ∼ 40 kVp

generates cone beam X-ray to cover the whole object. The collimator is shifted during

the acquisition to confine the x-ray illumination area to the detector. The motion of the

collimator is synchronized with the motion of the tube. The x-ray dose for a tomosyn-

thesis exam is comparable to a single mammogram. The flat panel detector with a large

pixel array and small pixel size is used to record the images. The anti-scatter grid is usu-

ally not used. In clinical tomosynthesis imaging, the breast of the patient is compressed

in the same way as in mammography. The total image acquisition time is usually about
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Figure 3.2. DBT imaging system: (a) front view; (b) side view.

5 ∼ 8 s.

The crucial advantage of statistical IRs is that they allow any choice of system co-

efficient which is needed in statistical model described as Eq. 2.17. Any scanning geome-

try such as the cone beam and plat panel detector can be accurately modeled by proper

computation of the vector of system coefficient. The model can be designed to realisti-

cally represent the scanner, although this may come at the cost of great computational

expense. The calculation of system coefficients essentially in the forward and backward

model lies at the core of any efficient implementation of IR and often drive computation

time and reconstruction accuracy. One of the models to calculate the system coefficient is

distance driven (DD) [54] which accurately takes account into the detector response and

the voxel response. This method leads to a fast implementation without degrading the

frequency response and is considered to be the state of art approach. On the other hand,

DD technique is developed along with voxel-based iterative algorithm [100] such as ICD

where voxel calculation in one iteration needs the related error sinograms to be updated

by other voxels. The inherent relevance makes voxel-based algorithm hard to be paral-
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Figure 3.3. Ray-driven model: (a) ray-driven forward model; (b)
ray-driven backprojection model.

lel. Another type of algorithm such as conjugate gradient (CG) [58] or ordered subsets

(OS) [28] requires a full independent forward and backprojection for each iteration. This

kind of method is convergent slower than ICD but easy to be implemented in parallel.

For this particular situation, we applied and optimized ray-driven method to implement

the forward and backprojection. A typical 2-D ray-driven forward model is demonstrated

in Fig. 3.3 (a) where the image space is meshed up into voxel and the ray is modeled by

a line connecting the source and the center of each pixel on detector. The expected pro-

jection data p1 is formulated as

p1 = L1µ1 + L2µ2 + L3µ3, (3.8)

where µj is linear attenuation coefficient of the j-th voxel along the ray path. An effi-

cient ray-driven method is proposed based on the idea of literature [2]. A traversal algo-

rithm to locate the voxels passed by a ray is set upon the ray equation: û + tv̂, where û

is the start point of the ray and v̂ denotes the ray direction. The ray is broken into inter-
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vals of t, each of which spans the whole voxel. To determine the t, the ray length cross-

ing the first vertical voxel boundary and the ray length intersecting the first horizontal

voxel boundary are compared. The minimum of these two will indicate how much the ray

travels and still remain in the current voxel. The intersected length between the ray and

the current voxel is calculated by subtracting last t from the current t. The boundary

through which the ray reaches out the current voxel is recognized to indicate the next

traversal voxel whose index is retrieved by +1 or -1 along with the current voxel index.

A forward projection along a ray is performed by the inner product of intersection length

vector and the corresponding linear attenuation coefficient. The backprojection of a voxel

is typically calculated by averaging the projection values indexed by all the rays passing

through this voxel as shown in 3.3 (b). Specifically, assuming that there are a total of

M rays going through the j-th voxel over all projection views, the backprojection of j-th

voxel bj is formulated as

bj =

∑M
i=1 lijpi/Li
∑M

i=1 lij
, (3.9)

where pi denotes the projection data on the i-th detector element; lij denotes the length

of intersection of the i-th ray model and j-th voxel; Li is the total length of the ray

model intersecting within the whole volume.

3.3 ROI RECONSTRUCTION WITH SUPER RESOLUTION

Statistical IR can recover fine details and small features in the reconstruction more

accurately than conventional algorithms. In order to fully benefit from this higher spa-

tial resolution, IR reconstruction requires a higher spatial sampling rate, or equivalently

smaller voxels, to represent fine details such as micro-calcification and fibrils. In this sec-

tion, we apply ray-driven method on an oversampled detector elements with a higher res-

olution. Intersected ray number and voxel number are significantly increased, such that

extra computational time is required. Region-of-interest (ROI) reconstruction is applied

to reduce the computing time by concentrating the computation only on the small re-
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gions of the image that contain fine details.

In DBT system, the voxel size to be reconstructed within image plane is usually

the same as the size of detector element. To increase the spatial resolution, voxels are

needed to be divided into sub-voxels. The size of sub-voxel becomes smaller than the de-

tector element size. In this case, original ray-driven model, which represents a ray by a

line connecting the source and the center of corresponding detector element, is not ac-

curate enough. It causes the resolution loss and known chess grid effect [56]. Fig. 3.4

demonstrates the reason of the problem and shows a potential solution as well. Fig. 3.4

(a) presents the forward model of a single voxel whose size is equal to the size of detec-

tor element. The dotted lines along the two boundary of the detector element represents

the actual ray coverage along its path per detector element. In this case, the intersection

between the voxel and the line which connecting the source and the center of the detec-

tor is accurate enough to be applied to forward and backprojection. In Fig. 3.4 (b), one

voxel is divided into four sub-voxels in order to quadruple the resolution. According to

the ray-driven model, the forward projection p is written as:

p = ls1µ
s
1 + ls2µ

s
2 + ls4µ

s
4, (3.10)

where lsj denotes the ray intersection with the corresponding sub-voxel j whose attenu-

ation coefficient is µs
j . According to Eq. 3.10, only sub-voxels 1, 2, 4 are taken into ac-

count along the ray path. However the dotted line indicates all of these sub-voxels should

contribute to the intensity reduction of the present ray. In this case, the ray model fails

to present the actual effect of the ray. An over-sampled ray-driven method [103] may

solve the problem. Instead of modeling the ray as one line, double lines, each of which

connects the source and quarters of a detector element shown in Fig. 3.4 (c) , are ap-

plied, where the intensity reduction for the detector element d3 is modeled by the for-

ward projection with the double lines, which is

p =
1

2
(ls11µ

s
1 + ls13µ

s
3 + ls14µ

s
4) +

1

2
(ls22µ

s
2 + ls24µ

s
4). (3.11)
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As to lsij , i ∈ 1, 2, denotes each of the double lines for the current specific detector el-

ement. Compared with Eq. 3.10, Eq. 3.11 presents more accuracy in terms of forward

model.

The disadvantage of this over-sampled ray-driven method is that it can significantly

increase the computational cost of IR, since more rays are required to be considered

and many more voxels are needed to be reconstructed. A full reconstruction with over-

sampled ray-driven method is not very practical in real. Fortunately, the exhausted com-

putation to reconstruct the whole volume is not necessary, since details which are inter-

esting only locates in small region or ROI. Lots of efforts has been done for ROI recon-

struction in CT [42, 99] to gain more details in the target field of view (TFOV) and to

reduce the exhausted computational cost. A typical method needs two-path reconstruc-

tions. The first path is applying a pilot reconstruction of full field of view (FFOV) with

a lower resolution and in the second path, smaller voxels in the TFOV are updated based

on the error sinograms yielded by the pilot reconstruction. The mis-match of voxel size

leads to certain reconstruction error. The amount of it usually depends on the implemen-

tation. Compared with CT, the image slice, which is parallel to the detector plane, is

reconstructed transversely in DBT system. The number of slices is relatively few which

ranges from 30 to 60. The angular range is typically less than 30o. These specific features

allow a direct ROI reconstruction without any reconstruction mis-match. The key of this

technique is to generate a mask on each projection data set in order to reduce the num-

ber of effective rays and the number of related voxels. As demonstrated in Fig. 3.5, ROI

in the plane p is marked by a circle which centers at e (xe, ye, ze) with the radius of re.

The region within the circle is meshed up into the voxels with required size. The circle is

projected on the projection data set according to the tube position s (xs, ys, zs) to form a

circular mask, which locates at the center of c (xc, yc, zc). zc is 0 in the current coordina-
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Figure 3.4. Ray-driven forward model for voxel and sub-voxel: (a)
ray-driven model for voxel; (b) ray-driven model for sub-voxel; (c)
over-sampled ray-driven model for sub-voxel.

tion system. (xc, yc) could be represented mathematically as:

xc = xe −
(xs − xe)ze
zs − ze

,

yc = ye −
(ys − ye)ze
zs − ze

, (3.12)

with the radius of

rc = re
zs

zs − ze
. (3.13)

The circular mask on the projection indicates the minimum data set required to re-

construct the voxels in ROI. The mask is slightly changed for each projection data set as

the view angle varies. Because only a small region in a projection is activated, the num-

ber of rays to be taken into the forward projection and the number of voxels to be up-

dated in the backprojection are significantly reduced. More importantly, since we apply

a uniform voxel size along each ray path, there is no mis-match of voxel size and no re-

construction error consequently. The ROI reconstruction is introduced together with the

super resolution technique to attack the computational complexity and to obtain high

spatial details.
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Figure 3.5. A circular mask, which is formed by projecting the ROI
boundary along the ray beam, indicates the minimum data set re-
quired to reconstruct the voxels in ROI.
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CHAPTER 4

A PRE-COMPUTED BACKPROJECTION BASED MODIFIED

REGULARIZATION

4.1 METHOD FOR CHARACTERIZING THE SMOOTHING PARAME-

TER λ

In Eq. 3.2, the penalty R(µ) takes a form of

R(µ) =
N
∑

j=1

∑

k∈Nj

ρ(µj − µk), (4.1)

Where Nj is the neighbors of the j-th voxel. The function ρ(t) is defined as Eq. 3.6. For

a quadratic case, ρ can be formulated as follows

ρ(µj − µk) =
1

2
(µj − µk)

2, (4.2)

which results in a consistent smoothing on adjacent voxels. Through minimizing Eq. 3.2,

the optimal estimation of µ can be shown in the following form

u∗ = argmin
µ≥0

Φ(µ). (4.3)

It’s intractable to solve it directly. However, separated parabolic surrogate (SPS) in-

troduced in [29, 28] which leads to an iterative solution, with parallel computation and

monotonic convergence. The basic idea of SPS is by constructing a series of separa-

ble parabolic functions lower bounded by the objective function, the optimal value can

be approached by the solution of the surrogate one at each iteration. By applying SPS

on Eq. 3.2 and the quadratic penalty Eq. 4.1, the approximation of the solution at the

(n+ 1)-th iteration can be written as

µ
(n+1)
j = µ

(n)
j −

∑M
i=1 lij(−die

−<µ(n),li> + yi) + λ
∑

k∈Nj
(µ

(n)
j − µ

(n)
k )

∑M
i=1(lij

∑N
j=1 lijdie

−<µ(n),li>) + 2λ|Nj|
, (4.4)
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where |Nj| is the cardinality of the subset Nj. The solution sequence of the surrogates

converges to the optimal value of the objective function monotonically. A small curvature

of the surrogate function, but still satisfying bounding condition, can yield a faster con-

vergence. by replacing die
−<µ(n),li> in the denominator of Eq. 8.1 as yi. a precomputed

curvature in [29] is conceived, which may lead to a faster convergence, yet ”almost al-

ways” monotonic decreasing.

In practical application, to finding a proper smoothing parameter λ in (8.1) is not

trivial. The main reason is that the impulse response and the noise of the reconstructed

results are data-dependent, such that λ yields unpredictable effects on resolution proper-

ties. To reduce the data dependence, the authors of the paper [37] proposed a modified

penalty function and demonstrated that the impulse response of the reconstructed results

is only dominated by λ, which is written as

Rm(µ) =
N
∑

j=1

κj
∑

k∈Nj

ωjkκkρ(µj − µk), (4.5)

where ω is a weighted coefficient assigned to ψ. κj is formulated for emission tomography

as follows:

κj = sj

√

∑

i=1 g
2
ijqi

∑

i=1 g
2
ij

, (4.6)

In X-ray transmission tomography, si, gij , qi are translated to si = 1, i ∈ [1,M ], gij = lij

and qi = yi. To reduce the computational complexity, we propose a simplified version as

follows:

Rm(µ) =
N
∑

j=1

κ2j
∑

k∈Nj

(µj − µk)
2

2
, (4.7)

where

κ2j =

∑M
i=1 l

2
ijyi

∑M
i=1 l

2
ij

, (4.8)

since the condition of κk ≈ κj is obviously held in the neighbors. κ2 is roughly equivalent

to BackProjection (BP) reconstruction on the data yi. In this chapter, we refer to the

Pre-computed BP based Penalized Likelihood method as PPL applying κ2 to absorb the
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data-related terms in resolution properties, such that the smoothing effect of λ can be

evaluated in advance by studying simulated data. With a selective λ, PPL can produce

image reconstructions with desired image qualities. By applying SPS on PPL method,

the iterative solution of it is formulated by revising (8.1) as follows

µ
(n+1)
j = µ

(n)
j −

∑M
i=1 lij(−die

−<µ(n),li> + yi) + λκ2j
∑

k∈Nj
(µ

(n)
j − µ

(n)
k )

∑M
i=1(lij

∑N
j=1 lijdie

−<µ(n),li>) + 2λκ2j |Nj|
, (4.9)

where κ2 can be calculated before the iteration.

4.1.1 Pixel property

Furthermore, to demonstrate the data independence of the impulse response of PPL,

we study the analytical relationship between the impulse response and the smoothing

parameter λ for PL method, which is derived in the literature [37]

Lj(µ) ≈ [ATD(yi)A+ λR]−1ATD(yi)Ae
j, (4.10)

where Lj(µ) denotes an impulse response yielded from an impulse signal at the j-th

voxel, which has the form of

Lj(µ) ≈
∂µ(yi)

∂µj

,

µ(yi) is an estimator of µ on a noiseless measurement yi. A is a coefficient matrix accord-

ing to the system geometry. If a ray-tracing method is used, A is composed of lij denot-

ing the length of the intersection between the i-th X-ray and the j-th voxel. D(yi) is a

diagonal matrix with the entry yi. R is the Hessian matrix of R(µ). ej is the j-th unit

vector.

From (4.10), one can see that the impulse response Lj(µ) depends not only on the

system geometry and the smoothing parameter λ but also on the datasets associated

with the object and incident X-ray. We substitute Rm in (4.7) to (4.10). By applying an

analogous deduction in the literature [37], Lj(µ) has a data independent approximation
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as follows:

Lj(µ) ≈ [AT IA+ λR]−1AT IAej, (4.11)

where I is identical matrix. One can see that the data D(yi) is degraded to I as Rm, the

Hessian matrix of Rm(µ), is transformed to R, the Hessian matrix of R(µ) with a ba-

sic quadratic penalty. That means the effect of λ in PPL on the impulse response re-

constructed from arbitrary measurements yi is equivalent to the one reconstructed by a

penalized-likelihood method with a basic penalty from a uniform background with yi = 1.

In other words, the data dependence of pixel property has been eliminated by applying

the modified penalty (4.7).

4.1.2 Noise property

Thanks to the studies in literature [37, 34], the noise property is represented as the

covariance on reconstructed voxels

Cov(µ) ≈ [ATD(θi)A+ λR]−1ATCov(yi)A

[ATD(θi)A+ λR]−1, (4.12)

where θi is expressed as (2.16). From the equation, one can see that the covariance de-

pends on the geometric configuration, smoothing parameter λ and the data. In our

model, the Poisson distribution dominates the physical process, hence Cov(yi) = D(θi),

since yi, i ∈ [1,M ] is i.i.d. The variance can be expressed by

V ar(µj) = (ej)TCov(µ)ej. (4.13)

By inducing the modified penalty and applying the similar deduction in the literature

[37], we can obtain the formula as follows:

V ar(µj) ≈ (ej)T [ATD(θi)A+ λRm]
−1ATD(yi)A

[ATD(θi)A+ λRm]
−1(ej)

≈
V j
unit

κ2j
, (4.14)
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where

V j
unit = (ej)T [AT IA+ λR]−1AT IA[AT IA+ λR]−1(ej). (4.15)

From (4.14), one can conclude that the variance of the j-th voxel reconstructed by

PPL method on a measurement with a unknown mean and unknown standard deviation

can be quantified as V j
unit divided by κ2. V j

unit denotes the variance of the j-th voxel re-

constructed by a penalized-likelihood method with a basic penalty from the measurement

yi with a unit mean and unit standard deviation.

According to the discussions above, by applying PPL method, resolution prop-

erties are only dependent on λ in a fixed geometric configuration, such that de-

sired resolution can be obtained by applying a proper λ evaluated in advance by

studying simulated data. In deed, we establish a simulation based two-step pro-

cedure for λ selection and image reconstructions. In STEP 1, projections are sim-

ulated to generate mappings from λ to resolution properties. This procedure is

executed just at the stage of system design when the system geometry is fixed.

39



STEP 1:

1: Set a range of λ.

2: Start from k = 1

3: Tiny balls respectively distributed in nine square regions are used as the ref-

erence phantom. These balls are assembled with the attenuation coefficients of

0.05mm−1. Projections are simulated with the phantom and a uniform incident

value of yi = 1 in the same system configuration with the real one.

4: Run (8.1) with the simulated projections with each λ and record average Modu-

lation Transfer Function (MTF) on the k-th plane in a corresponding table.

5: If k does not go through all planes, then set k = k + 1 and go to 3.

6: Simulate projections from Poisson distribution with θi = 1, i ∈ [1,M ].

7: Run (8.1) with the simulating data with each λ and record standard deviation

on each plane into a corresponding table.

In STEP 2, before image reconstruction, one can choose a desired λ referred to the

tables generated from item 4 and item 7 to meet the resolution requirement. Then, the

reconstruc-

tion is preformed along with the determined λ. This step can be summarized as follows
STEP 2:

1: Find a λ satisfying the pixel precision and noise reduction in the real applica-

tion.

2: Run (4.9) with the imaging projections with chosen λ.

4.2 SIMULATION EXPERIMENTS

To get a practical illustration of the two-step procedure, we set up a virtual system

with the same geometric configuration as a real limited angle X-ray tomography system.
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Figure 4.1. Geometric configuration of Digital Breast Tomosynthesis
with multiple parallel X-ray beams.

Fig. 4.1 demonstrates the geometric configuration of a Digital Breast Tomosynthesis re-

ferred to the literature [65]. The detector size is 286.72mm by 286.72mm with the pixel

size of 0.56mm by 0.56mm. O is the origin of the three dimensional coordinate system

which is located at the center of the detector. The source to image distance (SID) along

Z direction is set as 692.8mm and 25 x-ray beams are positioned in a straight line paral-

lel to the detector plane along the X axis. The middle one of the 25 beams is located on

Z axis and the linear spacing between these beams varies to provide a 2◦ angular spac-

ing around the rotation center T. The system provides θ = 48◦ coverage around T. The

testing phantom has the same structure, but different attenuation coefficient with the ref-

erence one in STEP 1. The focus plane is placed at the plane with 40mm away from the

detector. The testing dataset is generated by using ray-tracing method with non-uniform
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Figure 4.2. Average MTF of the focus plane reconstructed by the PL
method with a basic quadratic penalty from the projections with a
uniform incident value of yi = 1

incident value of yi ≫ 1, i ∈ [1,M ].

After STEP 1, average Modulation Transfer function (MTF) of impulse response re-

constructed with λ ∈ {0, 4, 8, 16, 32, 64, 128, 256} over the reference phantom are drawn

in Fig. 4.2. Fig. 4.4 presents the noise estimation of the system, which is represented as

the standard deviation of voxel reconstructed with the range of λ. According to Fig. 4.2,

table 4.1 is generated by mapping λ to Half Width of two third Magnitude of MTF.

Fig. 4.4 is also represented as table 4.2. By applying STEP 2. MTF of the focus plane

reconstructed by PPL with the same range of λ from the testing phantom is presented in

Fig. 4.3. The testing phantom for noise property is generated from the Poisson distribu-

tion with θi ≫ 1. Fig. 4.5 shows the noise measurement on the focus plane reconstructed

by PPL.
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Figure 4.3. Average MTF of the focus plane reconstructed by PPL
method from the projections with a non-uniform incident value with
yi ≫ 1

From Fig. 4.3, one can see that the MTFs are almost the same as those in Fig. 4.2,

which means the pixel property reconstructed by PPL method is data independent and

exactly identical with the one got from PL method with a basic quadratic penalty on the

uniform measurement. Fig. 4.5 shows that the declining trend of the standard deviation

of noise is consistent with the one shown in Fig. 4.4. The ratio between them is nearly

1.5× 102 which is equal to the mean value of κ2j on the focus plane.

4.3 PHANTOM EXPERIENCE

To perform PPL reconstruction with the breast phantom, we collected the data with

the s-DBT prototype system. The geometric configuration is shown in Fig. 4.1. The ori-

gin O of the 3-D coordinate system is located at the center of the detector. A flat panel
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Figure 4.4. Standard deviation of the focus plane reconstructed by
the PL method with a basic quadratic penalty from the projections
with a expected incident value of θi = 1

detector is used for imaging acquisition. With a 140µm pixel pitch, the total image size

is 2048x1664. In the current study, the multiple X-ray beams are positioned along a

straight line parallel to the detector plane and the middle beam is projected to C on the

detector surface. The source is designed to have 15 X-ray beams spanning a angular cov-

erage of 14.00o. The linear spacing between the X-ray beams varies to provide an even

angular spacing at a source-object distance (SOD) of 64.99cm. A 3-D tissue equivalent

breast phantom was employed. The phantom was placed 2.5cm away from detector sur-

face plane. The images were acquired using: 28KVp, molybdenum filter, molybdenum

target and total dose of 100mAs (6.67mAs per view).

Along with STEP 2, λ = 8 is chosen, which implies that the pixel precision drops
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Figure 4.5. Standard deviation of the focus plane reconstructed by
PPL method from the projections with a expected incident value of
θi ≫ 1

25.53% and the noise is reduced by 50.29% compared to the choice of λ = 0, which makes

PPL degrading to ML-EM method. 40 slices through the phantom are produced from

2.5cm to 6.5cm with 1mm resolution in the coordinate system. The iterative solution of

PPL (4.9) with 20 times iterations is applied to approach the optimal. FBP with Gaus-

sian post-filter, MLEM with 20 iterations and SART methods with 10 iterations are also

employed for the comparisons. All iterative methods are initiated by FBP.

Figs. 4.6-4.9 show 4 groups of Field of View (FOV) on the reconstructed plane at

2cm away from the bottom of the phantom, which are (1) circular mass in a flat back-

ground (CMF), (2) micro-calcifications in a flat background (MCF), (3) multiple micro-

calcifications within a circle (MCC) and (4) circular mass in a complex background
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Figure 4.6. FOVs of PPL

Figure 4.7. FOVs of MLEM

Figure 4.8. FOVs of FBP

Figure 4.9. FOVs of SART
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Table 4.1. Half Width of 2
3
Magnitude of MTF versus λ

λ Half Width Pixel Precision Drop (%)

0 0.635472 0.000000

4 0.525515 17.303263

8 0.478106 26.763620

16 0.397181 37.498289

32 0.330624 47.971842

64 0.275509 56.645008

128 0.223154 64.883809

256 0.176390 72.242692

(CMC). Fig. 4.6 shows the results reconstructed by PPL method. Fig. ?? shows the re-

sults reconstructed by ML-EM method. Fig. 4.8 shows the results reconstructed by FBP

with Gaussian post-filter. Fig. 4.9 shows the results reconstructed by SART method.

From the CMF group, one can see that FBP with Gaussian post-filter leads to

the worst sharpness of edges and the most artificial effects. ML-EM and SART provide

slightly sharper edge than PPL. However, the noise of PPL is much more suppressed

than ML-EM and SART. The higher image contrast and lower noise result in a promi-

nent Contrast Noise Ratio (CNR) for the results from PPL. In the CMC group, detail in

the background is glossed by the high noise in SART and ML-EM, while PPL presents

more detail in the complex background due to the high CNR. In the MCF and MCC

groups, PPL shows a comparable sharpness of micro-calcifications with SART and ML-

EM, which also confirms the normalized PSFs shown in Fig. 4.11 measured across one of

the micro-calcifications. We also compare the Artifacts Spread Functions (ASFs) shown

47



Table 4.2. Standard deviation versus λ

λ Std. Std. Drop (%)

0 44431105.332625 0.000000

4 28404617.148036 36.070424

8 21797860.046811 50.940091

16 15677423.612897 64.715207

32 10786101.586691 75.723985

64 7217356.036651 83.756074

128 4757971.747843 89.291350

256 3176508.576684 92.850710

in Fig. 4.10 to measure the structure removal from the out-of-planes, where the ASF of

PPL outperform the one from SART.

4.4 DISCUSSION

In this study, we proposed PPL method, which is a PL with a simplified version of

the modified penalty [37]. PPL can lead to a data-independent reconstruction in terms of

resolution properties. By an analogous derivation, the data-related terms are eliminated

in both impulse response and standard deviation. Therefore, the effects of λ on resolu-

tion properties can be predicted. A simulation based two-step procedure was proposed

to perform image reconstructions with predictable image quality. The effectiveness and

robustness of the reconstruction strategy are validated by the simulation experiments. we

also compared PPL reconstruction with several representative methods with the current

s-DBT. In the comparison, PPL with a selective parameter provides prominent image

qualities with controllable resolution, high contrast and low noise compared to the others.
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Figure 4.10. Comparison of ASFs reconstructed by SART, MLEM and PPL

49



0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Point Spread Function

Pixel Index (0.14mm/pixel)

P
ix

e
l 
In

te
n

s
it
y

 

 

FBP

SART

MLEM

PPL−λ8

Figure 4.11. Comparison of normalized PSFs reconstructed by SART, MLEM and PPL
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Therefore, the enhanced CNR from PPL method benefits both micro-calcifications and

mass on the breast-equivalent phantom. A thorough IQ evaluation of PPL method will

be given in the later chapter.
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CHAPTER 5

PARAMETER OPTIMIZATION OF GENERALIZED GAUSSIAN

MARKOV RANDOM FIELD REGULARIZATION

5.1 COMPARISON STUDY OF SELECTED PARAMETERS

The form of the gGMRF prior depends on two parameters: p controls the degree

of curvature in the influence function in low and high contrast regions and c determines

the threshold between the two. In order to seek for an optimal parameter combination,

the reconstructed results of a breast phantom with a homogeneous tissue background are

investigated with different parameter combinations, which are p = 2, cp = 1; p = 1.8, cp =

2; p = 1.8, cp = 2.5; p = 1.7, cp = 3.5 and p = 1.61, cp = 5.3. Point spread function (PSF)

and Contrast to noise ratio (CNR) as estimation tools are measured in these results.

The PSF curves presented in Fig. 5.1 (a) are measured by crossing the isolated

micro-calcification demonstrated in Fig. 5.2 (a). These curves are then fitted into the

Gaussian functions to remove the noise. The Fourier transform of the fitted function is

modulation transfer function (MTF) as shown in Fig. 5.1. The resolution frequency at

50% MTF peak is used to describe the in-plane pixel precision. As discussed in section

II, the smaller p tends to introduce more edge-preserving behavior towards high con-

trast region and automatically the inflexion point is pushed towards high contrast which

leads to more smoothing in low contrast region. By increasing c, the inflexion is pulled

to a smaller value in order to improve the low contrast detectability. Among all parame-

ter combinations for SIR-ρ-OT, parameter p = 1.61, c = 5.3 presents the best frequency

response.

CNR is calculated to investigate the contrast sensitivity by subtracting the mean

value in the background marked as region 1 from the mean value of the mass region

marked as 2 and dividing the standard deviation of region 1 as shown in Fig. 5.2 (b).

The half width of 50% MTF and CNR above are summarized in Tab. 5.1 where the
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Figure 5.1. Pixel precision measured along micro-calcification on a
focus plane reconstructed by SIR-ρ-OT with selected parameter combi-
nations. (a) shows PSF curves; (c) shows MTF curves

Table 5.1. CNR and in-plane MTF for SIR-ρ-OT with selected parameter combinations

parameters CNR HWHM of MTF

p = 2, c = 1 6.1601 4.0063

p = 1.8, cp = 2 12.4267 3.9041

p = 1.8, cp = 2.5 6.5769 4.1951

p = 1.7, cp = 3.5 7.3294 4.3324

p = 1.61, cp = 5.3 7.5906 4.6825
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(a) (b)

Figure 5.2. Measurement of PSF and CNR. (a) demonstrates the
micro-calcification which is used to measure PSF; (b) shows a mass
object and its background to calculate CNR

parameter combination of p = 1.61, cp = 5.3 leads to the highest resolution and also pro-

duces the second highest CNR. The parameter combination p = 1.8, cp = 2 produces the

highest CNR but give the worst pixel precision. Upon these observations, it appears that

p = 1.61, cp = 5.3 gives a good compromise between resolution and contrast sensitivity.

These parameter combination potentially providing the optimal IQ will be employed in

the rest experiments.

5.2 IMAGE RECONSTRUCTION WITH BREAST PHANTOM

With the choice of the strictly convex regularizer, the objective function defined in

Eq. 3.2 has a unique global minimum. To estimate voxels at the unique global optimal,

both ICD [100] and relaxed OS-SPS [1] can provide fast algorithms. The former produces

a faster convergence on high frequency voxel with a sequential voxel update and the lat-

ter provides a parallel computation with a decent convergence rate. We choose relax OS-

SPS in our application for a more flexible parallel computing framework. By applying

the idea of optimization transfer [29] on GGMRF regularizer, The iterative solution is
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derived as follows.

µ
(n+1)
j = µ

(n)
j −

∑M
i=1 lij(−die

−<µ(n),li> + yi) + λκ2j
∑

k∈Nj

p|µ
(n)
j −µ

(n)
k

|p−1

cp
sign(∆)

∑M
i=1(lij

∑N
j=1 lijdie

−<µ(n),li>) + 2p(p− 1)λκ2j
∑

k∈Nj

|µ
(n)
j −µ

(n)
k

|p−2

cp

. (5.1)

In the implementation, voxels are able to be processed simultaneously due to the

mutual independence update. One forward projection and one backward projection are

required in one iteration. Ray-driven method is employed in forward model. In addition,

κ is pre-calculated with a backprojection-equivalent computation prior to all iterations.

To study the effects of our proposed regularizer on image quality, we apply statisti-

cal IR with the regularizer with p = 1.8, cp = 2, p = 1.61, cp = 3.5 and p = 2, c = 1 on

tomosynthesis phantom data, and then compare them other representative methods such

as filtered backprojection (FBP) and ordered subsets maximum likelihood expectation

minimization (OSEM). λ in OS-PPL is set as 8 according to our previous study [3]. To

guarantee global convergence, all iterative methods are initialized by three-time iterations

of OS method and followed by a non-OS method for ten-time iterations.

The data was collected with the sDBT prototype system [65, 82]. Scatter correc-

tion technique [45] is applied with the data to improve the high and low contrast. The

origin of the 3-D coordinate system is located at the center of the detector. A flat panel

detector is used for image acquisition. With a 140µm pixel pitch, the total image size

is 2048x1661. The multiple X-ray beams are positioned along a straight line parallel to

the detector plane. The source is designed to have 15 X-ray beams spanning a distance

of 32.38cm from end to end. The linear spacing between the X-ray beams varies to pro-

vide an even 2o angular spacing. A 3-D breast phantom is placed on a stage with a 2.54

cm air gap. The images were acquired using: 28KVp, molybdenum filter, molybdenum

target and 20mAs per projections.

Fig. 5.3 and Fig. 5.4 present mass and micro-calcifications equivalent objects in re-

spective focus plane reconstructed by OS-PPL with our proposed regularizer and other

representative algorithms. In Fig. 5.3, one can see that statistical iterative methods pro-
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(a) (b) (c)

(d) (e) (f)

Figure 5.3. Reconstructed mass between our proposed methods with
various parameter choices and some representative methods. (a)
FBP (b) statistical IR with p = 1.8, cp = 2 (c) statistical IR with
p = 1.61, cp = 3.5 (d) statistical IR with quadratic regularization (e)
OS-EM (f) SART

(a) (b) (c)

(d) (e) (f)

Figure 5.4. Reconstructed micro-calcification between our proposed
methods with various parameter choices and some representative
methods. (a) FBP (b) statistical IR with p = 1.8, cp = 2 (c) sta-
tistical IR with p = 1.61, cp = 3.5 (d) statistical IR with quadratic
regularization (e) OS-EM (f) SART
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vide better artifacts suppression around objects than FBP. In addition, the OS-PPL with

p = 1.8, cp = 2 presents best noise reduction among all investigated methods. In Fig. 5.4,

the micro-calcifications can be clearly seen with statistical iterative methods, while FBP

yields a little blurred sharpness along horizontal direction.

5.3 DISCUSSION

Statistical iterative reconstruction exhibits particular promising since it provides the

flexibility of accurate physical noise modeling and geometric system description in trans-

mission imaging system. In our previous study, OS-PPL reconstruction with a quadratic

penalty was proposed to provide predictable image quality of reconstructed results, where

the trade-off between resolution and noise can be controlled by adjusting the scalar λ

based on a pre-computed look-up table. In this study, to reduce the noise without signif-

icant resolution loss, an edge-preserved regularizer was proposed to our OS-PPL method

with a sDBT system. Two extra parameters are introduced to make tuning image qual-

ity more flexible and achievable. Influence function is presented to visualize the effect of

these parameters on resolution. Experiment results show that by the proposed regular-

izer, resolution can be retained as much as possible while noise is reduced by tuning the

parameter p and c. This benefit may allow to reduce the X-ray dose while maintaining

a comparable image quality. Further experiments are needed to seek an optimal param-

eter combination. In addition, dose reduction experiments could be conducted with the

inspiration of the edge-preserved iterative technique.
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CHAPTER 6

METHOD FOR THE PARAMETER OPTIMIZATION OF ORDERED

SUBSETS (OS) SEPARABLE PARABOLIC SURROGATE ALGORITHM

(SPS)

6.1 ALGORITHM OF OS METHOD

Theoretically speaking, IQ is completely dominated by parameters λ, p, c in statis-

tical IR method. But in practical applications, the optimal solution is almost impossible

to be achieved. As introduced in chapter 2, an iterative method can hardly reach the op-

timum solution in limited iterations. To approach the convergence as much as possible

in limited iterations. Ordered Subsets framework is studied with SPS algorithm in this

chapter. Literature [1] indicated that OS method could speed up EM-type algorithms in

the early iterations by using the sub-gradient to replace the true gradient, but usually ex-

hibits limit-cycle like behavior near the optimal value. Next the authors proposed that

by using a proper diminishing relaxation step-size, OS can yield a global convergence.

The sufficient conditions on a relaxation for global convergence are the following:

∞
∑

n

an = ∞,
∞
∑

n

a2n <∞, (6.1)

where an is a relaxation parameter at the n-th iteration.

Let NS be the number of subsets. Let S1, ..., SNS denote the subsets. Each Si has

MSi
X-ray beams. In each iteration, the relaxation parameter is updated by:

an =
1

rn+ 1
, (6.2)

which meets the sufficient conditions of global convergence. One iteration is completed

when the algorithm goes through all the projections by going through all the subsets.

In our study, we employ the SPS based PPL method described in chapter 4 with

OS framework. In each subset, the iterative solution is similar to (4.9) but gradient and
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scaled terms are calculated using the subset of data and 1/NS penalty. κ2 is precom-

puted before iterations. We refer to the relaxed ordered subsets PPL method as relaxed

OS-PPL. In our implementation, we use linked chain RayPathi to store the sparse ma-

trix A, so that the memory consumption is reduced and accessing lij in A is also expe-

dite. We summarize the main steps of our algorithm as follows:

for each pixel j = 1, ..., N do

update κ2 by (4.8)

end for

for each iteration n = 1, ..., Niter do

update an by (6.2)

for each subset s = 1, ..., NS do

for each X-ray i = 1, ...,Msi do

while RayPathi 6= null do

atti+ = lijµj

leni+ = lij

end while

end for

for each X-ray i = 1, ...,Msi do

while RayPathi 6= null do

upj+ = lij(die
−atti − yi)

downj+ = lijleniyi

end while

end for

µold = µ

for each pixel j = 1, ..., N do

denom = downj + 2λ|Nj|/M

nom = upj + λκ2
∑

k∈Nj
(µold

j − µold
k )/NS
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µj = [µold
j + an ∗ (nom/denom)]+

end for

end for

end for

We can easily parallelize the algorithm by partitions of a projection image or groups of

reconstructed planes.

6.2 SEMI-QUANTITATIVE OPTIMIZATION ON A SIMULATED PHAN-

TOM

The convergence of OS-PPL lead to definite resolution properties based on the dis-

cussions above. However for 3-D reconstruction in a real application, even the relaxed

OS can not guarantee the optimal in limited iterations. Moreover the undetermined pa-

rameters in relaxed OS such as an and subset organization may result in a convergence

deviated from the true one [1]. Hence the resolution properties has a certain bias from

the theoretical inevitably. Finding an optimal parameter combination is necessary for

sufficient image qualities in limited iterations. It is intractable to quantify the impact

of these parameters on image qualities, since they all rely on datasets. However, litera-

ture [69] revealed that the convergence of EM-type methods highly depend on the ratio

of missing information to complete information. The ratio in our application is associated

to the geometric configuration and weakly relevant to dataset. By studying a reasonable

training set in our application, the undetermined parameters in OS are evaluated in ad-

vance and therefore the evaluated combination are ready for further usages.

With respect to the semi-quantitative evaluation, we employ objective function as a

function of iteration, noise as a function of contrast and Artifact Spread Function (ASF)

to represent the impacts of the parameters. To get a practical demonstration, we design

an experiment by using the same system as shown in Fig. 4.1. The training phantom in

the experiment is with a linear attenuation coefficient of 0.005mm−1 and with the side
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length of 20cm and the thickness of 2cm. Two focus planes appear at the thickness of

0.5cm and 1.5cm. On each of the planes, two cubes with the linear attenuation coeffi-

cients of 0.038mm−1 and 0.08mm−1 and with the side length of 6cm and the thickness

of 0.25cm are located symmetrically. Four tiny ball are arranged vertically between the

two cubes on each focus plane with the radii of 2.5mm, 1.5mm, 1.25mm and 0.56mm,

and with the linear attenuation coefficients of 0.02mm−1, 0.025mm−1, 0.05mm−1 and

0.1mm−1. The phantom is placed at 3cm away from the detector surface such that the

focus planes appear at the height of 3.5cm and 4.5cm in the system. The projections

are generated by a incident value under Poisson distribution and an illumination model.

λ = 16 is chosen for the experiment. Through the Tables 4.2 and 4.1, one can predict

that when PPL converges to the optimum, the pixel precision is approximately 0.397

with a drop of 37.5% compared to the method with λ = 0, or a ML-EM method and

the noise is significantly decreased by 64.7%.

In this demonstration, we investigate the relaxation an with r = 1, 4/5, 1/2, 0 and

subsets with NS = 1, 5, 25. All relaxed OS-PPLs run 20 iterations with a FBP initializa-

tion. For comparisons, a name rule is applied. For example, relaxed OS-PPL with λ = 0,

subset of 1 and r = 1/2 is named as OS-PPL-λ0-sub1-r12. The curves of objective func-

tion as a function of iteration, noise as a function of contrast and Artifact Spread Func-

tion (ASF) are plotted to compare the impacts of selective parameter combinations on

the convergence, image contrast and the removal of out-of-plane blur. Some representa-

tive reconstructions are also presented for the comparisons. These methods include BP,

FBP, SART with a relaxation parameter, and OS-ML with subsets of 25 and r = 1/2.

Fig. 6.1 presents the convergence of OS-PPL and PPL. Generally speaking, OS-

PPLs outperform PPL in terms of convergence in 20 iterations. Among OS methods,

they diverge to different objective values in spite of the same λ. OS-PPL-λ16-sub5 has

a larger value than the other two, while both OS-PPL-λ16-sub25-r45 and OS-PPL-λ16-

sub25-r12 approach to a similar one, but the latter yields a faster convergence rate. The
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Figure 6.1. Objective function as a function of iteration with OS-PPL-λ16

observations above justify that (1) the relaxed OS-PPL methods lead to a faster conver-

gence than PPL and (2) the parameters in OS-PPL may result in a divergence from the

true one in spite of the same λ.

Fig. 6.2 shows the noise versus the image contrast as iteration increases. Noise re-

constructed by SART and OS-ML increases dramatically with the incremental iterations.

In a contrary, noise from OS-PPL tends to declination in the role of λ. Among OS meth-

ods, noise at the 20-th iterations approaches to a similar level due to the same λ, but has

a slight deviation to each other, which confirms that the parameters in OS-PPL may lead

to noise within a perturbation from the theoretical. On the other hand, the image con-

trast of OS methods settles in a small range around 0.016, where OS-PPL-λ16-sub25-r12

performs the best.

ASF is also employed to demonstrate the removal of out-of-plane blur of OS-PPL
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Figure 6.2. Comparisons of noise versus contrast with iteration in-
creasing between OS-PPL and representative methods

methods with selective parameters. Figs. 6.3 and 6.4 show ASF at the 15-th and 20-th

iteration respectively. In these figures, OS-ML and SART exhibit the best and similar

performance. OS-PPLs with all selective combinations have no significant difference with

each other. Moreover, OS-PPL with 20 iterations does not improve ASF significantly

compared to the one with 15 iterations.

Based on the evaluations above, for λ = 16, one can choose subsets of 25 and

r = 1/2 as the optimal combination, since they exhibit outstanding convergence and

prominent performance of noise versus contrast. Additionally, because 20 iterations do

not bring more benefits than 15 iterations in terms of noise, contrast and ASF, one can

use OS-PPL with 15 iterations.

For practical applications, we perform the two-step procedure together with the

semi-quantitative evaluation to obtain a desired image quality. The smoothing param-
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Figure 6.3. Comparisons of ASF between OS-PPL with 15 iterations
and representative methods
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Figure 6.4. Comparisons of ASF between OS-PPL with 20 iterations
and representative methods
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eter λ chosen from the look-up tables generated in STEP 1 dominates the noise level

and pixel precision, while the optimal parameter combination in OS evaluated through

a training phantom can make practical results as consistent as possible with the theoreti-

cal one in less computational resources.

6.3 SIMULATION EXPERIMENTS

In this section, we demonstrate how the two-step procedure works with the semi-

quantitative evaluation. The testing phantom used in this section is structurally identical

with the training phantom, but the attenuation coefficients of objects have a 0.005 off-

set. This represents a practical deviation of a real object from training phantom. Visual

comparisons of reconstructed results are reported between relaxed OS-PPL with chosen

parameter combination and other representative methods such as FBP, OS-ML and OS-

SPS [1]. Furthermore, The curve of contrast versus noise is plotted to check the consis-

tence of the parameter impact on image qualities between testing phantom and training

phantom.

In STEP 1, λ = 16 is chosen from the look-up tables 4.1 and 4.2. Based on the

evaluations in Figs. 6.1, 6.2 and 6.3, OS-PPL with NS=25, r = 1/2 and 15 iterations

produces a sufficient convergence, prominent image contrast, yet lower computational

cost.

In STEP 2, OS-PPL with chosen parameter combination is applied. The focus plane

reconstructed by it is shown in Fig. 6.5. For comparisons, the results from FBP, relaxed

OS-SPS with λ = 100000 and a quadratic penalty, and relaxed OS-ML are shown in

Figs. 6.6, 6.7, 6.8 respectively. Firstly, the image contrast between the on-plane cubes

pointed by the arrows of 2 and 3 is much stronger in Figs. 6.5, 6.7, 6.8 than the ones in

Fig. 6.6. Secondly, the edges pointed by the arrow 1 is enhanced clearly but shows ob-

vious artifacts in the FBP result. Among Fig. 6.5, Fig. 6.7 and Fig. 6.8, OS-PPL and

OS-SPS shows less sharp edges due to the smoothing effect of λ. But, the noise recon-
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Figure 6.5. relaxed OS-PPL-λ16-sub25-r12 reconstruction on the
focus plane at the height of 35mm.

67



1

1

2 3

4

5

6

Figure 6.6. FBP reconstruction on the focus plane at the height of 35mm.

68



1

1

2 3

4

5

6

Figure 6.7. relaxed OS-SPS reconstruction with λ = 100000 weighting
a quadratic penalty on the focus plane at the height of 35mm.
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Figure 6.8. relaxed OS-MLEM reconstruction the focus plane at the height of 35mm.
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Figure 6.9. Comparisons of noise versus contrast between OS-PPL
and representative methods on the testing phantom.

structed by them is much lower than the ones reconstructed by OS-ML. Additionally,

although OS-SPS yields comparable resolution properties with OS-PPL, the effect of

λ of OS-SPS is unpredicted. λ = 100000 is chosen by experiments, which is hard to

be decided since its large range and dependence on the incident X-ray energy and ob-

jects. Last, the part pointed by the arrows of 5 and 6 are both out-of-plane blur which

is “shadows” from the objects on the other planes. Although Fig. 6.6 seems to show a

decent ability to remove the out-of-plane blur, the poor contrast leads to the obstacle to

distinguish the objects on focus plane and out of plane.

Fig. 6.9 shows noise versus contrast of OS-PPL with selective parameters on testing

phantom. As expected, OS-PPL on both testing phantom and training phantom achieve

the same noise at the convergence due to the data-independent impact of λ, Moreover,

the image contrast shown in Fig. 6.2 and Fig. 6.9 is quite similar at the convergence.
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This confirms that the effects of relaxation factor and subset are weakly data-dependent.

6.4 DISCUSSION

In this chapter, relaxed OS framework was applied on PPL. Since the undeter-

mined parameters in OS may lead to an image quality deviated from the theoretical,

a semi-quantitative evaluation on a training phantom is proposed. The impacts of pa-

rameters are characterized by curves measured on the reconstructed training phantom.

Experimental results illustrate the effectiveness of the two-step procedure and the semi-

quantitative evaluation. Further work will be conducted to perform experiments on real

phantom data to prove its performance in real application.
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CHAPTER 7

LOCAL CONVERGENCE ANALYSIS OF THE OPTIMIZATION

TRANSFER AND SUCCESSIVELY OVER-RELAXATION

OPTIMIZATION TRANSFER

7.1 OPTIMIZATION TRANSFER

In the last chapter, a semi-quantitative method was proposed to optimize a relaxed

OS method. However, OS based algorithm can not lead to the global convergence, even

though the relaxation is applied since only partial data is used for each update of voxels.

A global optimal method is usually taking up all data sets but leading to a slow conver-

gence and intensive computation. In this chapter, a global method with a faster conver-

gence and comparable computational intensity in each iteration will be discussed.

To motivate the new algorithm we start from minimizing the objective function

(3.2), one can estimate the optimal µ∗, which is formulated as follows:

u∗ = argmin
µ≥0

Ψ(µ). (7.1)

To solve the problem directly is intractable in real applications. Literature [29] pro-

posed the concept of optimization transfer, where a series of surrogate functions bounded

by the objective one are conceived and in turn minimizing (3.2) has been transferred to

the minimization of the surrogate ones. We re-summarize the optimization transfer as a

algorithm scheme for later usage:

for each iteration t = 1, ..., Niter do

Find an surrogate function G(Θ,Φ) satisfying,

(1) G(Θt,Θt) = Ψ(Θt),

(2) Ψ(Θ) ≤ G(Θ,Θt), ∀Θt 6= Θ,

we apply one step of Newton’s method on the surrogate, the optimal approximation
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at (t+ 1)-th iteration is written as

Θt+1 = Θt −∇2
ΘG(Θ

t,Θt)−1∇ΘG(Θ
t,Θt), (7.2)

end for

Literature [29] proposed parabolic surrogates with non-separable variables and op-

timal surrogate curvatures, which yield a faster convergence but non-parallel computa-

tions. Literature [28, 1, 77] reported a separable parabolic surrogate (SPS) with ordered

subsets (OS) accelerations. An optimal curvature, which is the minimum curvature hold-

ing the “bounded” condition, can be estimated in advance. The precomputed curvature

(PC) can be applied in the demonstrated ML case by replacing die
−<µ(n),li> in the de-

nominator by yi in (2.24), which produces an “almost always” monotonically decreasing

algorithm. However even the PC-SPS still undergoes a sub-linear convergence. Is there

a better method to outperform the optimization transfer based methods yet ensure the

monotonicity and parallel computations?

7.2 CONVERGENCE RATE ANALYSIS

To answer the question, a local convergence rate of the optimization transfer is

derived and is associated with quasi-Newton behavior in this section. Before that we

present a simple proof sketch of the global convergence for the optimization transfer by

ignoring the non-negative constraint.

Proof. Let Θt+1 = argminΘG(Θ
t,Θt), then Ψ(Θt+1) = G(Θt+1,Θt+1) ≤ G(Θt+1,Θt) ≤

G(Θt,Θt) = Ψ(Θt). Hence Ψ(Θt) decreases monotonically as t → ∞. Additionally ∃Θ∗ ∈

R
n,Ψ(Θ∗) ≤ Ψ(Θt) for Ψ(Θ) is convex. Therefore limt→∞Ψ(Θt) = inf Ψ(Θt) = Ψ(Θ∗)

by the convergence of a monotonic sequence of real number. In fact, limt→∞ Θt = Θ∗ for

Ψ(Θ) is continuous.

Literature [51] reported that the local convergence of an EM method exhibited a

linear gradient behavior, however no further discussion was involved to improve the per-
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formance. Literature [29] showed that through minimizing the curvature, which still hold

the “bounded” condition for each surrogate function, the iterative solution gain a larger

step for each iteration. Actually parabolic and “bounded” are not necessary and a more

general case should be considered. To develop the idea and provide possible solutions,

a local convergence theorem for the optimization transfer is proposed based on Banach

fixed-point theorem.

Theorem 7.2.1. (Local convergence Theorem) For the optimization transfer, let

(Rn, ‖‖2) be a metric space. Then ∃A ⊆ R
n, (A, ‖‖2) is closed and bounded, such that

∃ T : Θ 7→ Θ′ is a contraction mapping on A. Therefore ∃! Θ∗ = T (Θ∗,Θ∗) ∈ A and

Ψ(Θ∗) ≤ Ψ(Θ).

Proof. We define a mapping according to the iterative solution (7.2) as follows:

T (Θ,Φ) = Θ−∇2
ΘG(Θ,Φ)

−1∇ΘG(Θ,Φ). (7.3)

It is true that Θ∗ = T (Θ∗,Θ∗) by the proof of the global convergence. For ∀Θt−1
1 ,Θt−1

2 ∈

R
n where t is the t-th iteration, we can get

Θt
1 −Θt

2 = T (Θt−1
1 ,Θt−1

1 )− T (Θt−1
2 ,Θt−1

2 )

= T (Θt−1
1 ,Θt−1

1 )− T (Θt−1
1 ,Θt−1

2 )

+T (Θt−1
1 ,Θt−1

2 )− T (Θt−1
2 ,Θt−1

2 )

= (∇ΦT (Θ
t−1
1 , ε1) +∇ΘT (ε2,Θ

t−1
2 ))(Θt−1

1 −Θt−1
2 ), (7.4)

where ε1 = (1− C1)Θ
t−1
1 + C1Θ

t−1
2 and ε2 = (1− C2)Θ

t−1
1 + C2Θ

t−1
2 , C1, C2 ∈ [0, 1]. Then

we calculate ∇ΦT (Θ,Φ) and ∇ΘT (Θ,Φ) and substitute them the equation above.

Θt
1 −Θt

2 = ((−∇2
ΘG(Θ

t−1
1 , ε1)

−1∇2
Θ,ΦG(Θ

t−1
1 , ε1)

+∇2
ΘG(Θ

t−1
1 , ε1)

−2∇3
Θ2,ΦG(Θ

t−1
1 , ε1)∇ΘG(Θ

t−1
1 , ε1))

+(∇2
ΘG(ε2,Θ

t−1
2 )−2∇ΘG(ε2,Θ

t−1
2 )∇3

ΘG(ε2,Θ
t−1
2 )))

(Θt−1
1 −Θt−1

2 ).
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Let Θt
1 = Θ∗ and Θt

2 = Θt. When Θt−1 → Θ∗, ∇ΘG(Θ
∗,Θ∗) = 0. Hence Θ∗ − Θt =

K(ε1, ε2)(Θ
∗ −Θt−1), where

lim
Θt−1→Θ∗

K(ε1, ε2) = −∇2
ΘG(Θ

∗,Θ∗)−1∇2
Θ,ΦG(Θ

∗,Θ∗). (7.5)

We can construct such a G(Θ,Φ) that ||K(Θ∗,Θ∗)||2 ≤ 1 when Θ ∈ A := N(Θ∗) which

is closed and bounded. T is a contraction mapping on A. So ∃!Θ′ which is the fixed point

by Banach fixed-point theorem, such that Θ′ = T (Θ′,Θ′) where Θ′ = Θ∗.

Through the theorem, when Θ is close enough to the optimum Θ∗, there must be

a contraction mapping in the form of (7.2) to guarantee the existence of the fixed point.

The local convergence rate r = limt→∞
||Θ∗−Θt+1||2
||Θ∗−Θt||2

≤ ||K(Θ∗,Θ∗)||2 can be evaluated by

the approximation (7.5), which is the convergence rate matrix. r is boosted as the largest

eigenvalue of the convergence rate matrix K(Θ∗,Θ∗) is approaching to 0.

To find the upper limit of the convergence rate of the optimization transfer, we asso-

ciate it with the convergence behavior of quasi-Newton method by the following corollary

Corollary 7.2.2. When (7.2) is represented as

Θ(t+1) = Θ(t) − S(Θ(t))∇ΘG(Θ
(t),Θ(t)), (7.6)

limΘ(t)→Θ∗ S(Θ(t)) = [I −K(Θ∗,Θ∗)]∇2
ΘL(Θ

∗)−1 where I is an identity matrix.

Proof. Theorem 7.2.1 tells us the contraction mapping

T (Θ,Φ) = Θ−∇2
ΘG(Θ,Φ)

−1∇ΘG(Θ,Φ).

Based on it, we change (7.6) as follows

T (Θ,Θ)−Θ = −S(Θ)∇ΘG(Θ,Θ) = −S(Θ)∇ΘL(Θ),

since ∇ΘG(Θ,Θ) = ∇ΘL(Θ). Then derivatives are performed on both sides

∇ΘT (Θ,Θ)− I = −∇ΘS(Θ)∇ΘL(Θ)− S(Θ)∇2
ΘL(Θ).
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We know ∇ΘT (Θ,Θ) = K(Θ,Θ) and substitute it to the above equation and perform

Θ → Θ∗ on both sides

K(Θ∗,Θ∗)− I = 0− lim
Θ→Θ∗

S(Θ)∇2
ΘL(Θ

∗).

The corollary has been proved

lim
Θ→Θ∗

S(Θ) = [I −K(Θ∗,Θ∗)]∇2
ΘL(Θ

∗)−1. (7.7)

From (7.7) one can see when K(Θ∗,Θ∗) has small eigenvalues, the optimization

transfer shows quasi-Newton-like convergence. In particular, if the largest eigenvalue of

K(Θ∗,Θ∗) approaches to 0, the optimization transfer turns to a quasi-Newton method

which is

Θ(t+1) = Θ(t) −∇2
ΘL(Θ

(t))−1∇ΘL(Θ
(t)).

To apply the local convergence theorem and its corollary on a particular optimiza-

tion transfer based method, an example of ML-EM is given. The surrogate function

G(µ, µn) in (2.23) is reparameterized by:

G(Θ,Φ) =
M
∑

i=1

(
N
∑

j=1

ℓ(
lij
aij

(θj − φj)+ < φ, li >)).

To check the local convergence rate of this method, we calculate K(Θ∗,Θ∗) and estimate

its eigenvalue. After derivative calculations, the form is given as follows:

[K(Θ∗,Θ∗)]mn = −[∇2
ΘG(Θ

∗,Θ∗)−1∇2
Θ,ΦG(Θ

∗,Θ∗)]mn

=



















∑M
i=1 limdie

−<Θ∗,li>(Li−lim)
∑M

i=1 limdie−<Θ∗,li>Li
, if m = n

∑M
i=1 limlindie

−<Θ∗,li>

∑M
i=1 limdie−<Θ∗,li>Li

, if m 6= n
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where Li =
∑N

j lij , which is the length of the intersection between the i-th X-ray and the

object. Obviously Li ≫ lij , therefore the non-diagonal entries of K(Θ∗,Θ∗) is approxi-

mated to 0, whereas the diagonal entries is close to 1. The nature of the matrix, which is

||K(Θ∗,Θ∗)||2 ≈ 1, implies the ML-EM method converges sub-linearly near Θ∗.

For another example, we apply the theorem to study the convergence of OS-EM

method. Let S1, ..., SNS denote each subset, where NS is the number of the subsets.

One iteration is completed when the algorithm goes through all the projections by go-

ing through all the subsets. For each subset, the gradient and scaled terms are calculated

by using the current subset. For the i-th subset, the surrogate function Gi(Θ,Φ) is shown

as follows:

Gi(Θ,Φ) =

MSi
∑

i=1

(
N
∑

i=1

ℓ(
lij
aij

(θj − φj)+ < φ, li >)),

where MSi
is the number of X-ray of the i-th subset. The convergence rate matrix (7.5)

is reparameterized as follows

Ki(Θ
∗,Θ∗) = −∇2

ΘGi(Θ
∗,Θ∗)−1∇2

Θ,ΦGi(Θ
∗,Θ∗).

The convergence rate for one complete iteration is shown as below:

r = lim
t→∞

||Θ∗ −Θt||2
||Θ∗ −Θt−1||2

≤

NS
∏

i=1

||Ki(Θ
∗,Θ∗)||2,

which is far less than 1 and exhibits a super-linear convergence.

The analytical results for both ML-EM and OS-EM methods imply that the conver-

gence rate highly depends on some system-related parameters, such as the incident X-ray

intensity and the ratio between the mesh size and the length of X-ray intersecting with

objects. A careful system design can help to improve the algorithm performance. For ex-

ample, in Digital Breast Tomosynthesis [23], compressed boards can reduce the effective

X-ray length, in turn may lead to a better algorithm performance. The incident energy

level can also be adjusted carefully. However, we expect system-independent strategies
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to improve the convergence, since algorithms should not restrict the system design. In

the next section, we propose an alternative optimization transfer with a new contraction

mapping which breaks the limitations of the original one.

7.3 ALTERNATIVE OPTIMIZATION TRANSFER

Generally speaking, optimization transfer enjoys the strong guarantee “bounded”

and never worsen the objective function, which makes the surrogate functions must be

constructed with very conservative bounds, resulting in extremely slow convergence. In

literature [29], the authors proposed the optimal curvature for a parabolic surrogate,

which is minimum yet still “bounded”. However, “bounded” is much more strict than

“almost always monotonicity”, which is sufficient for a global optimal. In another word,

“bounded” is not necessary. To motivate an alternative optimization transfer which

somewhat weakens the strong condition, we consider the contraction mapping below

R(Θ,Φ) := Θ + ρ(T (Θ,Φ)−Θ) = Θ− ρ∇2
ΘG(Θ,Φ)

−1∇ΘG(Θ,Φ), (7.8)

where R(Θ,Φ) is the new contraction mapping which is coupled with the mapping T of

the original optimization transfer. ρ is a factor re-scaling the iterative step along the gra-

dient direction. If ρ = 1, the T -coupled R is degraded to the T . If ρ > 1, the T -coupled

R gains a larger iterative step than the corresponding T . Does a larger ρ ensure “almost

always monotonicity”? though it may not hold the “bounded”. If so, how does it per-

form? To answer these questions, we need the corollary below

Corollary 7.3.1. If T -coupled R with ρ converge to R(Θ∗,Θ∗), then the convergence rate

r = lim
t→∞

||Θ∗ −Θt+1||2
||Θ∗ −Θt||2

≤ max(|1− ρ(1− λmax)|, |1− ρ(1− λmin)|), (7.9)

where λmax and λmin are the largest and the smallest eigenvalues of K(Θ∗,Θ∗).
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Proof. R(Θ) is a contraction mapping, hence when Θ ∈ N(Θ∗),

(Θ∗ −Θt+1) = H(Θ∗,Θ∗)(Θ∗ −Θt), (7.10)

where H(Θ∗,Θ∗) := ∇R(Θ∗,Θ∗). Then

r = lim
t→∞

||Θ∗ −Θt+1||2
||Θ∗ −Θt||2

≤ ||H(Θ∗,Θ∗)||2

H(Θ∗,Θ∗) can be shown by differentiating both sides of the new contraction mapping

(7.8)

H(Θ∗,Θ∗) = I + ρ(K(Θ∗,Θ∗)− I),

where ||H(Θ∗,Θ∗)||2 = σmax, and

σmax = max(|1− ρ(1− λmax|, |1− ρ(1− λmin)|), (7.11)

which can be proved by the Raleigh quotient

This corollary reveals the relationship between the convergence of T -coupled R and

its counterpart T . For example, if λmax = 0.5, which implies a convergence between the

sub-linearity and the super-linearity, and ρ = 2, then the convergence rate r of the new

mapping is 0, which produces a super-linear convergence. However, does this ρ ensure

the global convergence? Through the corollary below, ρ in certain range is studied.

Corollary 7.3.2. If the contraction mapping T converges to T (Θ∗,Θ∗), then ∃N(Θ∗),

such that its counterpart T -coupled R with 0 ≤ ρ ≤ 2 are guaranteed to converge to

R(Θ∗,Θ∗), Θ ∈ N(Θ∗).

With the similar spirit in literature [8], we give the following sketch proof:

Proof. From Corollary 7.3.1, we know in a small region around Θ∗

||(Θ∗ −Θt+1)||2 ≤ σmax||(Θ
∗ −Θt)||2,
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where σmax denotes the largest eigenvalue of H(Θ∗,Θ∗), and

σmax = max(|1− ρ(1− λmax)|, |1− ρ(1− λmin)|).

Any 0 ≤ ρ ≤ 2, we have σmax ≤ 1. Therefore, T -coupled R converges to R(Θ∗,Θ∗).

Based on the corollaries above, when |1−ρ(1−λmax)| = |1−ρ(1−λmin)|, a particular

ρ∗ called ”the optimal relaxation” is produced, which yields the fastest convergence rate

around Θ∗, which is

ρ∗ =
2

2− λmax − λmin

. (7.12)

For 0 ≤ λmin ≤ λmax, if λmax is close to 1, the optimum ρ∗ > 2, which means

0 ≤ ρ ≤ 2 is not necessary and an optimal ρ∗ > 2 may boost the convergence, when

the convergence of T is extremely slow. For each iterative step, through the estimation of

ρ∗, T -coupled R will shrink the distance ||Θ∗ − Θt+1|| by a factor of σmax. After M steps,

an exponential gain of (σmax/ λmax)
M is obtained from the T -coupled R. Thus, a sub-

stantial improvement in convergence can be yielded by the T -coupled R with the optimal

ρ∗. Unfortunately, direct estimation of ρ∗ requires knowledge of the convergence rate ma-

trix K(Θ∗,Θ∗). The eigenvalues of it can be evaluated fairly efficiently using techniques

similar to those used in literature [20]. However, without the optimal ρ∗, 1 ≤ ρ ≤ 2

already ensures a faster convergence with a global optimal when the original mapping

fells in extremely slow rate. Without exhausted computational cost on the evaluation of

K(Θ∗,Θ∗), several acceleration strategies are proposed in the next subsection.

7.3.1 Adaptive successively over-relaxation

We summarize the main steps of the algorithm scheme with an adaptive ρ as fol-

lows:

ρ = 1 and a = δ (δ can be adjusted in a specific case)

for each iteration t = 1, ..., Niter do
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Θt+1
T = Θt −∇2

ΘG(Θ
t,Θt)−1∇ΘG(Θ

t,Θt)

Θt+1
TCR = Θt + ρ(Θt+1

T −Θt)

Calculate Ψ(Θt+1
T ) and Ψ(Θt+1

TCR)

if Ψ(Θt+1
TCR) ≤ Ψ(Θt+1

T ) then

ρ∗ = a and Θt+1 = Θt+1
TCR

else

ρ = 1 and Θt+1 = Θt+1
T

end if

end for

In the algorithm framework, ΘTCR by the contraction mapping T -coupled R can be

solved along with ΘT by the mapping T . The objective functions Ψ(ΘT ) and Ψ(ΘTCR)

can be evaluated easily and partially free from computing ΘT and ΘTCR. Therefore few

extra computations are incorporated into an original optimization transfer. The real so-

lution Θt+1 for the next iteration is determined by a update rule where if the objective

value with ΘTCR is less than the one with ΘT . Θ is updated by ΘTCR and ρ increases

by multiplying the factor a. Otherwise ΘT replaces Θ for the next iteration, whereas ρ

is set as 1. In this way, an optimal performance is always gained in each iteration when

the adaptive factor based T -coupled R method (AF-TCR) is used, so that the total ac-

celeration ratio is significant after all the iterations. In particular, if non-negativeness is

considered, the monotonicity may not be held due to the noisy data. However in prac-

tice, “almost monotonicity” is sufficient.

7.3.2 Constant successively over-relaxation

If the computational cost is critical, an alternative strategy with a free estimation

can be applied. By a successive and constant step of ρ, the acceleration can also be ob-

tained in each iteration without any extra estimation. However, it will be the slightly

slow compared to adaptive one. The main steps of the conservative method is summa-

82



rized as follows:

ρ = 1 and a = δ (δ can be adjusted in a specific case)

for each iteration t = 1, ..., Niter do

if ρ >= 2 then

Θt+1
T = Θt −∇2

ΘG(Θ
t,Θt)−1∇ΘG(Θ

t,Θt)

ρ = 1 and Θt+1 = Θt+1
T

else

Θt+1
TCR = Θt − ρ∇2

ΘG(Θ
t,Θt)−1∇ΘG(Θ

t,Θt)

ρ∗ = a and Θt+1 = Θt+1
TCR

end if

end for

From the framework, the estimation of objective functions for the update rule is replaced

by a successive and constant step of ρ, ρ ∈ [1, 2]. As the Corollary 7.3.2, ρ ∈ [1, 2] is

sufficient for a global optimal, when Θ ∈ N(Θ∗). Therefore ρ ∈ [1, 2] forces an superior

rate through the contraction mapping T -coupled R in each iteration. Most importantly,

the benefits from the constant factor based T -coupled R (CF-TCR) is almost free.

7.4 SIMULATION EXPERIMENTS

To assess the performance of the proposed algorithms, we perform 3-D reconstruc-

tion on a simulated dataset. A virtual system is set up to simulate a real limited angle

X-ray tomography system. Fig. 7.1 demonstrates the geometric configuration of the sys-

tem. The detector size is 28.672cm by 28.672cm with a 2.24mm pixel pitch. O is the

origin of the 3-D coordinate system which is located at the center of the detector. The

source to image distance (SID) along Z direction is set as 69.28cm and the distance be-

tween source to object (SOD) is 66.78cm. 25 x-ray beams are positioned in a straight

line parallel to the detector plane along the X axis. The middle one of the 25 beams is

located on Z axis and the linear spacing between these beams varies to provide a 2◦ an-
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Figure 7.1. Geometry configuration of Digital Breast Tomosynthesis
with multiple parallel X-ray beams.

gular spacing around the rotation center T. The system provides θ = 48◦ coverage around

T.

The experimental phantom is with a linear attenuation coefficient of 0.005mm−1

and with the side length of 20cm and the thickness of 2cm. Two focus planes appear at

the thickness of 0.5cm and 1.5cm. On each of the planes, two cubes with the linear at-

tenuation coefficients of 0.038mm−1 and 0.08mm−1 and with the side length of 6cm and

the thickness of 0.25cm are located symmetrically. Four tiny balls are arranged vertically

between the two cubes on each focus plane with the radius of 2.5mm, 1.5mm, 1.25mm

and 0.56mm, and with the linear attenuation coefficients of 0.02mm−1, 0.025mm−1,

0.05mm−1 and 0.1mm−1. The phantom is placed at 3cm away from the detector such

that the focus planes appear at the height of 3.5cm and 4.5cm in the system. The projec-
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Figure 7.2. Comparisons of the objective functions of PC-SPS and proposed TCR.

tions are simulated by a ray-tracing method with additive Poisson noise. An illumination

model is employed to simulate the nonuniform background.

In the first test case, images are reconstructed by PL reconstructions with PC-SPS

method, AF-TCR and CF-TCR. All algorithms start from uniform initializations, and

in turns iterate for 100 times. Both a = 1.1 and a = 1.2 are applied in AF-TCR and

CF-TCR.

Fig. 7.2 presents the objective function for each algorithm. PC-SPS shows the slow-

est convergence among all. For constant factor based methods, both of them can exhibit

local super-linear convergences in certain iterations. As well a = 1.2 produces slightly a

better result than a = 1.1. In particular, CF-TCR-12 with 12 iterations outperforms PC-

SPS with 18 iterations which produces an acceleration ratio of 1.5. For adaptive factor

based methods, they produce a comparable performance with each other after 12 itera-
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Figure 7.3. Comparisons of the objective functions of OS-blended
PC-SPS and OS-blended TCR.

tions. In particular, the performance of AF-TCR-11 at 11 iterations is better than the

one of PC-SPS at 18 iterations, which results in a 1.6-fold acceleration. In all, AF-TCR

shows a slightly better performance than CF-ACR and with a smaller scaled factor, AF-

TCR tends to gain a consistent performance, whereas CF-TCR with a larger scaled fac-

tor may yield a superior performance than the one with a smaller scaled factor.

In the second test case, OS framework is applied and is followed by each algorithm.

Fig. 7.3 demonstrates the objective function of each OS initialized algorithm. Both OS-

AF-TCR and OS-CF-TCR produce significant accelerations compared to OS-SPS. For

OS-CF-TCR methods, a = 1.2 gets a better performance than a = 1.1. For OS-AF-TCR

methods, both a = 1.1 and a = 1.2 exhibit similar results and slightly better than OS-

CF-TCR methods. In particular, OS-AF-TCR-12 at the 11-th iteration produces a re-

sult which is equivalent to the one reconstructed by OS-SPS at the 18-th iteration, which
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presents a 1.6-fold increase.

The demonstrations above show both constant factor based methods and adaptive

factor based methods can provide a superior local convergence rate. A useful strategy is

summarized to chose a proper scaled factor: (1) If only few iterations are allowed, and

computational cost is critical, CF-TCR with an aggressive scaled factor can be consid-

ered. (2) if the computational accuracy is critical, adaptive factor based methods with a

conservative scaled factor is applicable.

7.5 PHANTOM STUDY

To demonstrate the performance of the algorithm, we compare our proposed algo-

rithm to PC-SPS [1, 77]. Both algorithms are started by one-step OS-SPS to gain an

initial speed-up. The data was collected with the sDBT prototype system [65, 82]. The

origin of the 3-D coordinate system is located at the center of the detector. A flat panel

detector is used for imaging acquisition. With a 140µm pixel pitch, the total image size

is 2048x1661. The multiple X-ray beams are positioned along a straight line parallel to

the detector plane. The source is designed to have 15 X-ray beams spanning a distance

of 32.38cm from end to end. The linear spacing between the X-ray beams varies to pro-

vide an even 2o angular spacing. A 3-D breast phantom is placed on a stage with a 2.54

cm air gap. The images were acquired using: 28KVp, molybdenum filter, molybdenum

target and 20mAs per projections.

Fig. 7.4 presents four sets of ROI reconstructed by ρ-OT with 5 iterations. Fig. 7.5

shows co-located ROIs reconstructed by PC-SPS with 8 iterations. One can see that our

proposed algorithm with 5 iterations can produce comparable reconstructed results with

PC-SPS. Although the time cost highly relies on the implementation of the algorithms, a

30% computing time was saved by our proposed method according to our current imple-

mentation.
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Figure 7.4. ROIs with ρ-OT with 5 iterations

Figure 7.5. ROIs with PC-SPS with 8 iterations

7.6 DISCUSSION

A local convergence theorem was proposed with an analytical convergence rate

matrix, by which the relationship between quasi-Newton method and the optimization

transfer was established. Theoretical convergence analysis on MLEM method and OS-

EM method were provided by applying the theory. According to the analytical results,

some system-related strategies were discussed for a convergence boosting. However, sys-

tem dependence is somewhat impractical. We presented a new contraction mapping

with an undetermined factor instead of the original mapping of the optimization trans-

fer. Theoretical studies showed that a careful estimation on the factor can result in the

global optimal yet improved convergence. Instead of an exhausted evaluation, we pro-

posed adaptive factor based method AF-TCR and constant factor based method CF-

TCR. Both of them ensure “almost always monotonicity” instead of “bounded”, which

produces a locally super-linear convergence compared to the sub-linearity of the original

optimization transfer. Simulated experiments showed that both two methods outperform

PC-SPS. As well, these methods can be blended with an OS framework for a boosted

start. As a result, both of OS-TCRs gain superior convergence compared to OS-SPS,
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which implies that the hybrid methods have a tremendous potential to be an iterative

method with a parallel computation, a fast convergence (sometimes locally sup-linear

convergence) and comparable computational cost in each iteration.

89



CHAPTER 8

IMAGE QUALITY ASSESSMENT

8.1 SYSTEM DESCRIPTION

We acquire data on the stationary DBT prototype system [65, 82] to assess the per-

formance of the proposed method. The origin of the 3-D coordinate system is located

at the center of the detector. The geometry corresponds to 690 mm source to detector

distance. A flat panel detector is used for imaging acquisition. With a 140µm detector

element pitch, the total projection size is 2048x1661. The multiple X-ray beams are posi-

tioned along a straight line parallel to the detector plane. The source is designed to have

15 X-ray beams spanning a distance of 32.38cm from end to end. The linear spacing be-

tween the X-ray beams varies to provide an even 2o angular step size. The testing breast

phantoms are placed on a stage with a 2.54 cm air gap. The projections were acquired

using: 28KVp, molybdenum filter, molybdenum target and 20mAs per projections.

8.2 RECONSTRUCTIONS FOR COMPARISON STUDY

In the comparison study, we compare FBP, SART and OS MLEM (OS-EM) with

the proposed statistical IR. We refer to the successively increasing over-relaxation (ρ)

based OT (ρ-OT) algorithm to solve the estimation problem posed by the statistical IR

(SIR) as ‘SIR-ρ-OT’ in the remainder of this paper. FBP based reconstruction is widely

used in current commercial DBT product. Since FBP enjoys a linear response, by tun-

ing the filter kernel a desired trade-off of resolution and noise is achievable. As a stan-

dard reference method, the filter composes of a sampling density based ramp filter [78]

and a Hanning filter to remove the ring effect and the high frequency noise. The kernel

is then applied on each row of projection data in the path direction of X-ray tube, then

the 3D volume is reconstructed by a pixel-driven based backprojection. Iterative algo-

rithms such as SART and OS-EM perform the reconstruction in a recursive fashion un-
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like the one-step operation in the FBP algorithm. During the iterative reconstruction, a

3D ray-driven model is employed for forward and backprojection and multiple iterations

are needed to be convergent to the optimal solution. SART as a reference algorithm is

initiated by a backprojection and turns to eight iterations, each of which is completed

by going through all projections sequentially. For OS based method, it usually converges

fast at the early iterations but oscillates around the global optimal solution. To gain the

initial acceleration and avoid the oscillation, OS-EM is initiated by three iterations of or-

dered subsets in advance. Each subset composes of an individual projection. Sequentially

eight iterations with full data sets are proceeding.

Our proposed statistical IR is solved by the successively increasing over-relaxation

OT framework described in chapter 7, where G(Θ,Θt) is the surrogate function of Ψ(Θ)

in Eq. 3.2 with the gGMRF prior model. ΘT is resolved by a OT based algorithm given

in literature [6] which was derived as below:

µ
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j = µ

(n)
j −

∑M
i=1 lij(−die

−<µ(n),li> + yi)
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i=1(lij
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(n)
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(n)
k

|p−2

cp

,

where κ is pre-calculated before all iterations by the backprojection operation as shown

in Eq. 4.8. The p and c as important parameter to control the trade-offs between the

edge-preserving behavior and noise reduction have been studied in the chapter 5. λ is

preset as 8 according to the discussions in the literature [3]. Three iterations with or-

dered subsets, each of which composes of an individual projection, is used to start up

and in turn five iterations with full data sets are performed with the ρ-OT framework.

One trick is noticeable in our implementation, where instead of scaling up step size for

all voxels in the same manner, we only enlarge the step size of those presenting high

frequency features. Therefore, the voxel update in the most changeable regions such

as edges between high and low contrast and details within a complex background con-

tributes more to the decrease of objective function value, which helps to a faster conver-

gence in these region. Figs. 8.1 8.2, 8.3, and 8.4 illustrates focus planes with mass and

91



Figure 8.1. A focus plane reconstructed by FBP

micro-calcifications reconstructed by FBP, OS-EM, SIR-ρ-OT and SART with the origi-

nal voxel size of 0.14 mm.
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Figure 8.2. A focus plane reconstructed by OS-EM

8.3 IMPROVEMENT IN DETECTABILITY

In this section, experiments for visual detectability are conducted with the breast

phantom composing of a tissue equivalent, complex, heterogeneous background, which
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Figure 8.3. A focus plane reconstructed by SIR-ρ-OT

contains an assortment of micro-calcifications, fibrils and masses. SIR-ρ-OT reconstruc-

tion with the optimized parameters are compared against the reference methods at the
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Figure 8.4. A focus plane reconstructed by SART

equal resolution. Furthermore, In order to fully demonstrate the advantage of SIR-ρ-OT,

ROI reconstruction with super resolution is deployed as well. The voxel size in ROI is
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(a) (b) (c) (d)

Figure 8.5. Comparison of micro-calcification in mass reconstructed
by different methods. (a) shows results reconstructed by FBP; (b)
shows results reconstructed by SIR-ρ-OT; (c) shows results recon-
structed by OS-EM; (d) shows results reconstructed by SART;

reduced to 0.07 mm, which is half of the original voxel size which is 0.14 mm. The recon-

structed results is then compared with those with the original voxel size.
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Fig. 8.5 presents the comparison of micro-calcifications in circular mass recon-

structed by each method. In the first row, the six micro-calcifications in the lesion re-

constructed by SIR-ρ-OT in (b) are able to be seen clearly, while they are not easily de-

tected in the result of FBP in (a). This undetectability is caused by the limited pixel

precision. Although OS-EM in (c) and SART in (d) produce the the resolution as high

as the proposed method, these micro-calcifications are hidden in the noisy background.

Similar situations can be observed in the second and third rows. The micro-calcifications

in the forth and fifth rows are large enough to be detected among all methods.

Fig. 8.6 presents the comparison of fibrils in circular mass reconstructed by each

method. All fibrils in these results are detectable. Compared with the results of FBP

reconstruction in (a), SIR-ρ-OT produces clear boundary and enhanced contrast for each

lesion. The results by OS-EM in (c) and SART in (d) reconstructions present relatively

high noise which makes the boundaries of lesion more obscure.

Fig. 8.7 shows an image including multiple micro-calcifications embedded in a mass

of a homogeneous breast phantom in a 8.4 mm ROI region. Fig. 8.7 (a) shows the SIR-

ρ-OT with the voxel size of 0.14 mm. Compared with FBP reconstruction shown in

Fig. 8.7 (c), it significantly reduces the noise in the soft tissue area. The image recon-

structed by SIR-ρ-OT with half of the voxel size, which is 0.07 mm, is shown in Fig. 8.7

(b). Compared (b) to (a) and (c), we notice that the slowly varying area in the image

presents a little higher noise than (a) but still lower than (c). The most significant differ-

ence is the reconstruction of the micro-calcifications. (b) shows sharpest edge and clear-

est boundary for each micro-calcifications among all competitors.

The high spatial resolution reconstruction is also applied onto the ROI with the

small objects which are barely visible. Fig. 8.8 presents reconstructed image where six

smaller micro-calcifications essentially locate in a circular mass in a 14 mm ROI region.

Parts of these small objects are hardly observed in the results of both FBP shown in (a)

and low resolution IR shown in (c). The non-visibility is mainly caused by the limited
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(a) (b) (c) (d)

Figure 8.6. Comparison of fibrils in mass reconstructed by different
methods. (a) shows results reconstructed by FBP; (b) shows results
reconstructed by SIR-ρ-OT; (c) shows results reconstructed by OS-
EM; (d) shows results reconstructed by SART;

pixel precision. As shown in (b), SIR-ρ-OT with super resolution produces superior re-

sults against the other two. All of these small objects become visible. In addition, high

resolution reconstruction also provides sharper and clearer boundary of the lesion.
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(a) (b) (c)

Figure 8.7. Zoomed focus plane with a mass and several granular
micro-calcifications. (a) shows results reconstructed by SIR-ρ-OT
with low resolution; (b) shows results reconstructed by SIR-ρ-OT
with high resolution; (c) shows results reconstructed by FBP;

(a) (b) (c)

Figure 8.8. Zoomed focus plane with a circular mass and six tiny
micro-calcifications. (a) shows results reconstructed by SIR-ρ-OT
with low resolution; (b) shows results reconstructed by SIR-ρ-OT
with high resolution; (c) shows results reconstructed by FBP;

8.4 PERFORMANCE FOR IN-PLANE RESOLUTION/NOISE TRADE-

OFFS

For a comparison of in-plane properties at equal resolution between the reference

methods and the proposed method, we reconstructed the image shown in Fig. 5.2 (a).

In-plane Modulation Transfer Function (MTF) is calculated. The standard deviation of

noise is measured in a homogeneous region shown in Fig. 5.2 (b). The CNR is evaluated

upon the regions in Fig. 5.2 (b). Results are presented in Fig. 8.9 and Table. 8.1. The
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Figure 8.9. In-plane MTF measured along micro-calcification on a
focus plane reconstructed by SIR-ρ-OT, FBP, SART and OS-EM

measured in-plane MTF for SIR-ρ-OT is comparable to those of the SART and OS-EM

images and better than FBP image. SIR-ρ-OT present a 60 ∼ 70% noise reduction com-

pared with the SART and OS-EM. For CNR comparison, one can notice that SART and

OS-EM produces a similar CNR performance which is 1.7 times as much as FBP does

since IR has been proven to provide a superior contrast. Overall, SIR-ρ-OT can produce

the best CNR performance significantly among all methods, which is close to 1.7 times

as high as the performance of SART and OS-EM and as three times as the property of

FBP.

8.5 REDUCTION OF CROSS-PLANE ARTIFACTS

we calculate artifact spread function (ASF) [102] to evaluate image blur in the Z

direction which perpendicular to the X-Y detector plane. ASF is defined as the ratio of
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Table 8.1. Comparison of noise, CNR and in-plane MTF for SIR-ρ-
OT and the reference methods

FBP SIR-ρ-OT SART OSEM

50% MTF 4.1344 4.6825 4.7655 4.7655

10% MTF 6.8362 7.8070 7.9882 7.9882

Std. Dev. (10−4) 7.747 6.644 18.713 17.532

CNR 2.6633 7.5906 4.5502 4.4981

the CNR values between the off-plane layer and the in-plane layer. The measurement was

performed on the breast phantom with a uniform background.

Fig. 8.10 and Fig. 8.11 show the ASF curves of the selected mass and micro-

calcification shown in Fig. 5.2. The layers with negative distance denote the image slices

below the feature layer and vice versa. It is seen that the FBP results have strong inter-

plane blurring effect for the mass object, represented by a slowly decreasing ASF curve.

SIR-ρ-OT, OS-EM and SART were superior in suppressing inter-plane blurring. The cor-

responding ASF curves dropped quickly as the distance from the feature increased. One

can notice that SIR-ρ-OT shows slightly less cross-plane artifacts than the other IRs. For

micro-calcifications, all four methods have comparable ASF behaviors at the off-plane

close to the in-plane layer. But the curve from FBP reconstruction tends to decrease

slowly at the off-planes away from the in-plane layer, whereas the other three methods

are mitigating the cross-plane artifacts quickly.

8.6 NOISE POWER SPECTRUM ANALYSIS

The Noise power spectrum analysis (NPS) is one of the most common metrics char-

acterizing the noise property of imaging systems. The frequency-dependent NPS(f) is de-

fined as the variance per frequency bin of a stochastic signal in the spatial frequency do-

101



−15 −10 −5 0 5 10 15
0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

fbp

sir−ρ−ot

osem

sart

Figure 8.10. Comparison of ASF curves of the
selected mass in the results reconstructed by FBP,
SIR-ρ-OT, OS-EM and SART.
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Figure 8.11. Comparison of ASF curves of the
selected micro-calcifications in the results recon-
structed by FBP, SIR-ρ-OT, OS-EM and SART.
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main [24]. It can be directly computed from the squared Fourier amplitude of 2D imag-

ing data as follows:

NPS(wx, wy) = lim
M,N,K→+∞

MN∆X∆Y

K

K
∑

k=1

|FT (I(x, y)− Î)|2, (8.1)

where, I(x, y) is the image intensity at the pixel location (x, y). Î denotes the global

mean intensity. Operator FT means applying a discrete Fourier transformation on the

difference. wx and wy are the spatial frequencies conjugate to x and y axes. M and N are

the numbers of pixels in the x and y directions of the digital image.∆X and ∆Y are the

pixel spacings in the x and y directions. And K is the number of ROIs used for analysis.

According to this equation, it is easy to implement a mean-subtracted NPS(f) mea-

surement method. It has formed a methodology to assess the noise response of the sys-

tem. In this methodology, noise propagation was evaluated by investigating the recon-

structed slice images of a breast tissue equivalent phantom with the prototype system.

In our experiments, a NPS measurement phantom, with the thickness of 40 mm, was

placed above the surface of the detector. For each reconstruction algorithm, all the slice

images with 1 mm slice thickness were reconstructed to cover the entire breast phantom.

Fig. 8.12 illustrated a reconstructed plane for NPS measurement.

In NPS calculation, regions of interest (ROIs) with the size of 1024 by 1024 pixels

were cut from the reconstructed planes with the same height above the detector. Each

ROI was evenly divided into 8 blocks with a size of 128 by 128 pixels. For each block,

a line curve fitting through the ensemble-averaged NPS estimate was used to obtain an

approximation to the greatest slope of the true NPS. Finally, we extracted the frequency

components from each block and formed the smoothed NPS curves.

In Fig. 8.13, the mean-subtracted NPS(f) curves for all the reconstruction algo-

rithms are presented. We can observe that:

(1) FBP performs the best within the low-frequency noise, which is consistent to our
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Figure 8.12. A reconstructed plane for NPS measurement

recognition that the ramp filter suppresses the low frequency and encourages the high

frequency. But in our implementation, a 40% hanning low pass filter is combined with

the ramp filter resulting in an acceptable noise pattern in high frequency part. (2) OS-

EM and SART present a similar noise pattern in all frequency bands. The results are

sensitive to iteration times, since more iterations lead to more over-fitting to the noisy

data, which will present higher noise in the reconstructed results. (3) Our proposed sta-
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Figure 8.13. Mean-subtracted NPS analysis for different reconstruction methods

tistical IR (sir-rho-ot) demonstrates a slightly lower noise in low frequency than SART

and OS-EM, but a prominent noise suppression in high frequency part compared to all

other methods due to the effectiveness of the regularization.

8.7 MODULATION TRANSFER FUNCTION (MTF)

The Modulation Transfer Function (MTF) is used to analyze the resolution of imag-

ing system in frequency domain. Technically, the resolution of a system is the minimum

distance that two objects can be distinguished. In practice, an impulse function can be

simulated to evaluate the response of the system or algorithm to be investigated [24].

The MTF is a handy descriptor of system spatial response because the stages of sys-

tem response and reconstruction can be considered as the procedures of image degrad-

ing. Furthermore, the composite MTF of a tomosynthesis imaging system is the prod-
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Figure 8.14. Projection MTF of the stationary Digital Breast Tomosynthesis

uct of the MTFs coming from all individual stages including both image acquisition and

image reconstruction. In this section, we call the MTF from image acquisition as sys-

tem MTF MTFsys(f) and the MTF from image reconstruction as reconstruction MTF

MTFrecon(f).

8.7.1 System MTF

In system MTF measurement, two methods, slit method and edge method, are rec-

ommended [24]. The system MTF of our stationary breast tomosynthesis prototype sys-

tem was tested with a slit method. Fig. 8.14 shows the system MTF curve measured

from the central projection[66].
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Figure 8.15. Regions of simulated impulses for relative reconstruction MTF

8.7.2 Relative reconstruction MTF

The relative reconstruction MTF describes the calculated relative MTF associated

with specific algorithm and acquisition parameters. A simulated delta function was used

as a standard signal input, and was projected in the proper locations on a series of sim-

ulated projection images, based on a given set of tomosynthesis acquisition parameters.

A raytracing simulation method was used to project the single delta function onto the

detector to simulate the tomosynthesis sequence of projection images [17]. Since the re-

sponse of tomosysthesis system and reconstruction method are location-invariant, in our

experiments the impulse responses at multiple locations in a reconstructed focus-plane

were investigated.

Given the system geometry and image acquisition parameters described in section

8.1, datasets of projection images without background were simulated according to the

delta functions with all X-ray views. Three different areas were considered and shown in
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Fig. 8.15: 1) at the height of 45 mm above the detector, three impulses were located in

the area close to the chest wall and individually distributed into three different regions

which are top region, middle region and bottom region; 2) three impulses were located

at the top, middle and bottom in the area of the central column with the height of 45

mm above the detector; 3) three impulses were located far away to the chest wall and 45

mm above the detector. During impulse simulations, if the impulse was projected onto

a noninteger location on the projection, a linear interpolation among neighboring four

pixels was performed to model the detector response. The simulated projection datasets

were reconstructed by the representative reconstruction algorithms described in section

8.2 and the proposed statistical IR for comparison.

The 2-D Fourier transformation is then applied on each impulse region with the size

of 128 ∗ 128. The relative reconstruction MTF along tube alignment (V) direction for

the entire focus plane is calculated by averaging 1-D frequency responses along V in all

regions. The relative reconstruction MTFs along V direction for each area (chest wall,

central column and far-away chest wall) are respectively calculated by averaging the

frequency responses of the three impulse regions in each area. The reconstructed MTF

along the U direction which is perpendicular to tube alignment direction could be evalu-

ated in a same manner. Fig. 8.16 and Fig. 8.17 demonstrate the normalized reconstruc-

tion MTF for the entire focus-plane along V direction and U direction respectively. In

Fig. 8.16, one can see that most power of the frequency response for FBP reconstruction

are concentrating in the frequency range of 2 4 pp/mm, and the power is low at low fre-

quency range since the effectiveness of the ramp filter and reduced dramatically quickly

at high frequency range due to the hanning filter. For the IR methods, MLEM and SIR-

ρ-OT presents a similar monotonic decreasing frequency response. In the high frequency

range, both MLEM and SIR-ρ-OT demonstrate superior performance than SART and

FBP. Fig. 8.17 shows that along U direction, MLEM and SIR-ρ-OT still perform the best

among all selective reconstruction methods. SART shows better frequency response than
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Figure 8.16. Normalized reconstruction MTF for the entire focus-plane along V direction

FBP. Because of the absence of ramp filter and hanning filter along U direction, the fre-

quency response of FBP shows a monotonic decreasing trend. Fig. 8.18, Fig. 8.19 and

Fig. 8.20 show the relative reconstruction MTFs in the area of chest wall, central column

and far-away chest wall along V direction. Consistently, in all three areas, MLEM and

SIR-ρ-OT demonstrate excellent frequency response, especially for the high frequency

part.
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Figure 8.17. Normalized reconstruction MTF for the entire focus-plane along U direction
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Figure 8.18. Normalized reconstruction MTF for the chest wall area along V direction
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Figure 8.19. Normalized reconstruction MTF for the central column
area along V direction
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Figure 8.20. Normalized reconstruction MTF for the far-away chest
wall area along V direction
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CHAPTER 9

CONCLUSIONS AND DISCUSSIONS

The dissertation has focused on the theoretical studies and multiple key techniques

of statistical IR for Digital Breast Tomosynthesis (DBT) image reconstruction. Several

representative DBT image reconstruction algorithms were also derived, implemented

and optimized. Meanwhile a comprehensive tools of image quality (IQ) assessment have

been implemented and applied on the results reconstructed by different reconstruction

methods. Both of these reconstruction algorithms and the IQ tools have established

a thorough comparable study platform to demonstrate the pros and cons of each al-

gorithm in DBT system. Part of these works have been documented in the literatures

[9, 1, 5, 3, 2, 4, 6, 7, 8, 11, 10]. Filtered backprojection method (FBP) as a traditional

deterministic reconstruction algorithm is mathematically precise upon central slice theo-

rem in a continuous system, when the sampling rate is high enough to satisfy the Shan-

non Nyquist theorem. However, in DBT system, the geometric configuration has already

determined that this system is with a highly incomplete sampling. FBP reconstruction

with such a system could lead to serious out-of-plane artifacts, high noise and mean value

shift which yields poor capability of low contrast detection. A least square method with

a simple X-ray attenuation model confirming to the observed dataset is well known as

Simultaneous algebraic reconstruction technique (SART). SART reconstruction applies

a discrete system descriptor to model the X-ray interaction with objects, which provides

the flexibility to model and improve the physical imaging process. Maximum likelihood

(ML) further incorporates the photon statistics into the discrete system descriptor. Def-

initely both SART and ML method could improve the accuracy of reconstruction re-

sults with better low contrast detection and pixel precision. However, since X-ray system

is a typical high noise modality. Noise from scattering and electric circus corrupts the

datasets. Without any de-noise and correction techniques, SART and ML could lead to
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over-fitting to the noise data.

Statistical IR exhibits particularly promising. Recent commercial IR technique

applied in computed tomography (CT), Model based iterative reconstruction (MBIR)

[80, 100], significantly improves image quality (IQ) compared with conventional analyti-

cal techniques. It offers the potential of combined noise reduction, high spatial resolution,

contrast enhancement and artifact reduction for low-dose imaging or enhanced image

clarity for improved diagnostic confidence. These techniques are also able to be trans-

lated into statistical IR with DBT system. In particular, the likelihood part models the

X-ray imaging process by confirming to the photon statistics, formalizing the interaction

between X-ray and objects as well as describing the photon response of the detector. A

prior model plays a very important role to provide the capability to control IQ. The gen-

eralized Gaussian Markov Random Field (gGMRF) analytical prior we introduced in our

study provides necessary flexibility in its parameters to control the behavior both around

the origin and at the tails of the distribution. Its parameterization through p and c is un-

derstood well enough to produce promising preliminary results. The parameter λ which

controls the trade-off between the likelihood part and prior was also fully investigated

based on a quadratic prior in our works where a pre-computed backprojection based reg-

ularization with the parameter κ was introduced to remove the data-dependence for a

linearized impulse response. This κ was also extended to incorporate with the proposed

gGMRF. The system coefficients which model the interaction between X-ray and ob-

jects were calculated by an efficient ray-driven method. The efficiency of it benefits to

the computations of forward and backprojection, which are the most computational in-

tensive parts in IR methods. Through over-sampling the detector element, the accuracy

of ray-driven model for smaller voxel could be improved, which leads to the high spatial

resolution reconstruction to fully develop the benefits of statistical IR. A practical solu-

tion for ROI reconstruction was applied into the high resolution technique to reduce the

number of rays and the number of reconstructed voxels. This solution profoundly lowers
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the computational complexity and the used memory. Since IR based method still needs

multiple iterations to be convergent, thereby, a relaxed order subsets (OS) framework

was proposed in order to accelerate the algorithm. The relaxation used in this framework

were fully studied in our study and a semi-quantitative method was presented as well to

optimize the relaxation. The OS based method can not guarantee a global optimal solu-

tion even the relaxation is used. Most practical applications employ an OS based method

with partial dataset followed by an optimization transfer (OT) based algorithm with full

datasets in order to make sure the convergence. Thereby the convergence rate remains a

particular challenge for OT based method with monotonic convergence. An efficient OT

framework with a successively increasing over-relaxation was proposed according to the

convergence analysis. This method potentially allows less iterations to achieve a decent

IQ and an acceptable convergence.

The proposed statistical IR with these important techniques provide significant ad-

vantages over other representative methods in DBT system in terms of noise, resolution,

CNR and inter-plane artifacts. In particular, noise power spectrum analysis (NPS) indi-

cates a superior noise spectral property of our proposed statistical IR, especially in the

high frequency range. With the decent noise property, statistical IR also provides a re-

markable reconstruction MTF in general and in different areas in a focus plane.

Recent progress of hardware and parallel computing allows the realization of the

computationally expensive statistical IR in clinical applications [9, 71, 46]. Literature [9]

investigated the feasibility and efficiency of applying graphic processor unit (GPU) tech-

nique on the ML-EM image reconstruction for Positron Emission Tomography. It shows

that by using the proposed parallel architecture, the computing time is significantly re-

duced by the factor of 40∼50. Future works will be conducted to involve the hardware

acceleration for the proposed statistical IR. Combined with these computationally effi-

cient techniques, the superior IQ provided by the proposed statistical IR will be realized

to benefit the diagnostics in real clinical applications.
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