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Abstract—Layover is frequent in imaging and monitoring with
synthetic aperture radar (SAR) areas characterized by a high
density of scatterers with steep topography, e.g., in urban environ-
ment. Using medium-resolution SAR data tomographic techniques
has been proven to be capable of separating multiple scatterers
interfering (in layover) in the same pixel. With the advent of the
new generation of high-resolution sensors, the layover effect on
buildings becomes more evident. In this letter, we exploit the po-
tential of the 4-D imaging applied to a set of TerraSAR-X spotlight
acquisitions. Results show that the combination of high-resolution
data and advanced coherent processing techniques can lead to
impressive reconstruction and monitoring capabilities of the whole
3-D structure of buildings.

Index Terms—Differential interferometric synthetic aperture
radar (DInSAR), multidimensional SAR processing, SAR tomog-
raphy, synthetic aperture radar (SAR), TerraSAR-X (TSX), 4-D
SAR imaging.

I. INTRODUCTION

INTERFEROMETRIC synthetic aperture radar (SAR)

(InSAR) and differential InSAR (DInSAR), particularly

multitemporal DInSAR, have been proven to be effective for

accurate scatterer localization and monitoring of displacements

[1], [2]. The high accuracy and spatial density of the mea-

surements make these techniques cost effective compared to

classical geodetic techniques, typically used in environmental

risk monitoring.

The increase of the spatial resolution provides a tangible

improvement in the monitoring capabilities: Most of the in-

ternational space agencies have hence hugely invested in the

launch of large bandwidth spaceborne SAR systems. The hard-

ware improvement must be complemented by the development

of processing techniques that are able to extract the highest

possible information content from the data. In this sense, SAR
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tomography, also known as multidimensional (3-D and 4-D)

imaging SAR (MDI-SAR), is recognized as a powerful tech-

nique that extends interferometry.

DInSAR and persistent scatterer interferometry (PSI) assume

the presence of only a single (dominant) scattering center in

each pixel. However, SAR images of complex scenarios are

affected by the interference between the responses of scat-

terers located at different elevations (slant heights). Standard

multipass interferometric techniques “look” for the matching

between the received signal and the “multipass signature” of

a scatterer: The interference of responses may hence lead to

misdetection of persistent scatterers and to height, velocity, and

time-series measurement inaccuracies.

The layover effect causes interference between the responses

of different scatterers. Layover is particularly critical in urban

areas which are characterized by a high density of scatterers

distributed on vertical structures.

As briefly explained next, MDI-SAR allows the overcoming

of the single scatterer assumption and has opened a new sce-

nario in the 3-D target reconstruction and monitoring with SAR

systems [3], [4]. On medium-resolution systems, MDI-SAR

imaging has already been proven to be effective in separating

and monitoring scatterers in layover [5], [6].

The new generation of high-resolution SAR sensors, such

as TerraSAR-X (TSX) and the COSMO-SkyMed constellation,

allows the systematic acquisition of data with spatial resolution

reaching metric/submetric values. The preliminary analysis of

these images in dense urban areas has indicated that the reso-

lution improvement brings layover of vertical structures to be

more pronounced. On high-resolution SAR data, the interfer-

ence between scatterers on the ground and on buildings is more

frequent, and it is distributed on more pixels than on data ac-

quired by medium-resolution satellites (e.g., European Remote

Sensing (ERS) satellite or ENVISAT): The tomographic ap-

proach is a tool that allows mitigating this problem [7]. More-

over, the higher the resolution, the higher are the expectations

for 3-D reconstruction on vertical structures.

In this letter, we investigate the application of SAR tomogra-

phy to a real data set of TSX spotlight images over the city of

Las Vegas, NV. The characteristics of this data set allow clear

demonstration of the potential and the advantages offered by

the SAR tomography technique.

II. LAYOVER AND TOMOGRAPHY

The imaging mechanism of radar is measuring the distances

(range) of the scatterers from the sensor. If two scatterers are
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Fig. 1. Temporal multilook image of the spotlight TSX data set over the city
of Las Vegas. The layover induced by the buildings is well recognizable.

located at different positions but share the same range, they are

imaged into the same pixel: This effect is known as layover.

In the presence of a vertical structure, such as a building,

the radar signal is affected by layover between the ground, the

façade, and possibly the roof. To have an idea of the effects of

layover, a data set of 25 TSX spotlight images from ascending

orbits over the city of Las Vegas, NV, has been considered.

This celebrated city, located over a flat area, includes a high

number of tall structures. The multitemporal averaged ampli-

tude image is shown in Fig. 1: Tall buildings are well visible,

although “folded” onto the ground toward the sensor; hence,

their responses interfere with those of the targets located below

the structures.

The tomography principle is simple: By using SAR data

acquired from different elevations, an antenna along the slant

height direction can be synthesized. The synthesized array

brings resolving capabilities on the backscattering distribution

along the elevation direction, orthogonal to the radar line of

sight, and hence, it leads to the possibility to separate contri-

butions coming from scatterers with different elevations and

interfering in the same pixel [5]. The tomographic technique

(3-D imaging) has been extended also to the time direction:

The differential-tomography technique (also known as 4-D, i.e.,

space-velocity imaging) allows the separation of interfering

scatterers and the measurement of their (possibly) different

velocities [3] and time series [4].

MDI-SAR exploits both amplitude and phase information

to reconstruct, for each pixel in the spatial (i.e., azimuth/

range) domain, the backscattering distribution along the slant

height/mean deformation velocity plane. This fact already al-

lows the improvement of performance in terms of dominant

persistent scatterer detection with respect to classical PSI that

uses only phase information [8]. In this letter, we limited the to-

mographic analysis to single (dominant) and double scatterers.

Fig. 2. Distribution of the acquisitions in the spatial/temporal baseline
domain.

To search for single and double scatterers, we used the detection

approach discussed in [9] and [10] based on the generalized

likelihood ratio test. It exploits the detector for single scatterers

in [9] in a sequential way and tests the energy contribution

of the (possible) second scatterer after the cancellation of the

dominant contribution: If this test declares the absence of the

second scatterer, a second test on the presence of only one

scatterer is carried out; see [10] for more details.

III. EXPERIMENTAL RESULTS

The TSX spotlight acquisition mode provides resolutions of

1.1 m in azimuth and 0.6 m in slant range. We applied the MDI

technique to the area of Boulevard South, also known as “The

Strip,” where many of the largest hotels, casinos, and resorts are

located. Almost all the images are acquired with the minimum

repeat cycle of 11 days, from February 2008 to April 2009:

Fig. 2 shows the baseline distribution. We note that, except for

two acquisitions, the orbital tube is rather strict: The baseline

span (B) is only approximately 207 m. This fact results in

a poor slant height resolution of about δs = λr/2B ∼= 47 m,

corresponding to a height resolution of δz = δs sin(ϑ) ∼= 27 m,

where λ, r, and ϑ are the wavelength, the distance from the

scene center, and the look angle, respectively. Superresolution

SAR tomography techniques could limit the effects of this poor

resolution [7], [12]: In this letter, however, we limited our

analysis to the classical linear tomographic approach [6].

The data set was calibrated for atmospheric phase com-

ponents estimated via the low-resolution multipass DInSAR

approach in [13] before the tomographic processing.

We focused our analysis on the block of the Mirage Hotel and

Casino. It presents a tall (about 100 m) building surrounded by

a lower flat structure (entertainment attractions) about 15–20 m

over the street level.

Many features can be pointed out by comparing, in Fig. 3,

the amplitude image of the area with an orthophotograph:
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Fig. 3. (Top) Mirage Hotel image taken from Bing maps. (Bottom) TSX
amplitude image.

1) the folding of the building toward the sensor due to the

layover (the base of the Mirage hotel is almost vertically aligned

in the Bing and TSX images); 2) the high range resolution

distributes the response of the building over a large number

of pixels; 3) the extremely high resolving capabilities of the

TSX spotlight imaging that allows distinguishing floors on the

southern façade.

A. Single-Scatterer Analysis

In Fig. 4 (top), we show the residual topography (i.e., the

topography estimated after the subtraction of the external dig-

ital elevation model—in our case, Shuttle Radar Topography

Mission) resulting from the MDI, followed by the single scat-

terer detection algorithm in [9], which tests the presence of a

persistent scatterer based on energy content along the direction

of the peak of the tomographic reconstruction. The building

rising toward the sensor is well recognizable in the detected

scatterers. As for previous analyses of TSX data [8], the density

of the detected points is also impressive.

Some considerations are now in order: First, on the southern

façade, many blue points corresponding to the ground are

detected and are mixed to scatterers colored from green to red,

corresponding to the vertical structure of the hotel. This fact

testifies that the interference in the façade and ground is very

likely. Second, in the upper right part of the image, two straight

black strips (almost aligned to the azimuth) appear clearly.

These areas correspond to two shadowing areas caused by small

Fig. 4. (Top) Residual topography and (bottom) mean deformation velocity
estimated by means of SAR tomography for the single-scatterer analysis.

Fig. 5. (Upper left image) Daily averaged temperature of the area. (Lower left
image) Residual phases after topography calibration for pixel A. (Right image)
Scatter plot.

steps (a few meters high) on the roof of the surrounding struc-

ture. One of these shadow strips falls in the radar image areas

under the layover of the north façade of the hotel. It is interest-

ing to notice in this area the presence of a high density of scat-

terers (green pixels) on the part of the façade that falls over the

shadowed strips (see the white box in Fig. 4): This high density

is the result of the absence of any interference with the ground.

The deformation map presented at the bottom of Fig. 4 also

shows an interesting phenomenon: While all the rest is stable,

the roof appears moving toward the sensor at about 2 cm/year.

For one of these apparently inflating scatterer (A in Fig. 4),

the phase signal obtained after the compensation of the topo-

graphic signature is shown in the lower left image in Fig. 5: This

plot highlights the presence of a seasonal motion, and hence, the

mean velocity is only in part able to explain this movement. The

average daily temperatures of the area, provided by the Univer-

sity of Dayton database [14], are shown in the upper left image

in Fig. 5. The high degree of correlation with the deformation

is evident; see also the scatter plot in the image on the right. As



664 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 8, NO. 4, JULY 2011

Fig. 6. (Upper row) Residual topography and (bottom row) mean deformation velocity estimated by means of the SAR tomography for (left column) single
scatterers, (middle column) lower layer of double scatterers, and (right column) the upper layer of double scatterers.

Fig. 7. Three-dimensional visualization of the single and double scatterers reconstructed with SAR tomography on Google Earth. The color is associated to the
estimated height.
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can be seen, thermal dilation provides contributions leading to a

mismatch with the linear displacement model that is commonly

adopted in the detection of scatterers [15]. This aspect is the

subject of future investigations.

B. Double-Scatterer Analysis

The assumption, made by the classical interferometric tech-

niques, of a single scatterer per pixel neglects the interference of

scatterers. We therefore applied the detection scheme described

in [10] which is able to test the presence of single and double

scatterers. In Fig. 6, the results of this detection algorithm are

presented with the colors coded accordingly to (upper row)

the estimated topography and (bottom row) mean deformation

velocity. These figures show the capability of the tomographic

approach to “separate” the interfering layers associated with

the ground and the façade of the building. The images on the

left column show the detected single scatterers, whereas in

the middle and right columns, the images are associated with

the ground and top layer extracted from double-scatter results,

respectively. The effectiveness of tomography in scatterer pair

separation on this layover (distributed over several range pixels)

is particularly evident in the topography reconstruction; see the

homogeneity of blue color of the ground scatterer layer and the

gradation of colors on the layer corresponding to the façade.

The high density of detected double scatterers that fills the lack

of the single scatterers analysis should be noticed.

A further confirmation of the results is provided by the

shadow stripe highlighted by the white box in Fig. 4: As

expected, no double scatterers were detected in this area.

For what concerns the deformation maps shown in the right

column in Fig. 6, by analyzing both the estimated mean de-

formation velocity and the previously estimated topography, it

is interesting to note the presence of few pixels showing an

estimated velocity that is fully congruent with that of the single

scatterers affected by strong thermal dilation.

Finally, the 3-D view of the building is shown in Fig. 7

to demonstrate the impressive potential of the new (high-

resolution) sensor generation and the potential of SAR tomog-

raphy for urban area analysis. It shows a 3-D view of the Mirage

Hotel in Google Earth obtained with the identified single and

double scatterers and without the use of the optical Google 3-D

model of the building as background: The different floors are

well visible in the left façade. The results show that these SAR

sensors orbiting hundreds of kilometers from the Earth can

provide accurate 3-D reconstruction and monitoring of single

buildings.

IV. CONCLUSION

High-resolution SAR systems, such as TSX and Cosmo-

SkyMed, provide an obvious improvement in the imaging

capabilities. However, specific problems associated with the

geometry of SAR become more evident: Layover is among

them, and it affects particularly the images of urban areas. By

processing spotlight TSX data, in this letter, we have shown that

SAR tomography can solve this problem and allow accurate

3-D reconstruction and monitoring. Layover associated to tall

buildings and distributed over several pixels was successfully

resolved.

Whereas layover is solvable by using, as shown, SAR to-

mography, no solutions are available for shadowing. Hence,

small incidence angles are preferred for imaging urban areas

to “pierce” areas with high density of buildings and reduce

shadowing.
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