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SUMMARY 
We examine the problem of reconstructing a 2-D vector field v(x, y)  throughout a bounded 
region D from the line integrals of v(x, y)  through D. This problem arises in the 2-D mapping 
of fluid-flow in a region D from acoustic travel-time measurements through D. For an 
arbitrary vector field, the reconstruction problem is in general underdetermined since v(x, y ) 
has two independent components, v,(x, y) and v,(x, y). However, under the constraint that v 
is divergenceless (V-v=O)  in D,  we show that the vector reconstruction problem can be 
solved uniquely. For incompressible fluid flow, a divergenceless velocity field follows under 
the assumption of no sources or sinks in D. 

A vector central-slice theorem is derived, which is a generalization of the well-known 
‘scalar’ central-slice theorem that plays a fundamental role in conventional tomography. The 
key to the solution to the vector tomography problem is the decomposition of the field v(x, y) 
into its irrotational and solenoidal components: v = V@ + V x I, where @(x,  y)  and Y(x, y)  
are scalar and vector potentials. We show that the solenoidal component V X  Y can be 
uniquely reconstructed from the line integrals of v through D ,  whereas the irrotational 
component V@ cannot. However, when the field is divergenceless in D ,  the scalar potential @ 
solves Laplace’s equation in D and can be determined by the values of v on the boundary of 
D. An explicit formula €or @ from the boundary values of v is derived. Consequently, v(x, y )  
can be uniquely recovered throughout the region of reconstruction from the following 
information: line-integral measurements of v through this region and v measured on the 
boundary of this region. 

Key words: acoustic tomography, central-slice theorem, flow imaging, ocean acoustic tomog- 
raphy, tomography, vector-field tomography. 

1 INTRODUCTION 

Consider the problem of reconstructing a 2-D .vector field 
v(x, y)  from line-integral measurements of the form 

r b  

in which dl = dl, where s is a unit vector along the line 
joining the points a and b and dl is an element of path 
length. Equation (1) is thus the line integral of the, 
component of v(x, y)  along the line joining a and b. We also 
assume that the vector field v(x, y)  is defined on a bounded, 
convex domain D in the x-y plane with boundary dD, and 
that a and b lie on dD, as illustrated in Fig. 1. (The 
restriction to a convex domain guarantees that the 
integration path joining a and b lies entirely in D for any a 
and b on the boundary.) 

We show below that the problem of reconstructing a 2 - 0  
fluid velocity field, v(x, y ) ,  in a bounded region D from 
acoustic travel-time measurements through D reduces to the 
above reconstruction problem under the assumption of 

straight-line propagation of the acoustic signals (i.e. 
neglecting refraction). Applications of fluid-flow imaging 
exist in a variety of scientific and engineering disciplines (see 
e.g. Johnson et al. 1977a, 1977b). One potentially important 
application of flow imaging is the reconstruction of ocean 
current distributions from reciprocal acoustic travel-time 
measurements. This idea was first proposed by Munk & 
Wunsch (1979) and later elaborated on by these and other 
authors (see e.g. Munk & Wunsch 1982; Eisler ef al. 1984; 
Munk 1986; Howe et al. 1987). The present two- 
dimensional theory is applicable to the latter problem 
under conditions when the vertical component of current 
flow is negligible compared to the horizontal flow 
component and when the domain of reconstruction is 
sufficiently limited so that the propagation paths may be 
regarded as straight. In the next section, we show that 
acoustic travel-time measurements through a region of fluid 
flow can be cast in the form of equation (1). Before this, 
however, we summarize the steps employed in solving the 
vector tomography problem defined by equation (1). 

A central-slice theorem is first derived for the vector 
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Figure 1. Line-integral measurements of a two-dimensional vector 
field [equation (l)] are made between points on the boundary aD of 
the domain D. 

tomographic-reconstruction problem analogous to the scalar 
central-slice theorem well known in conventional tomog- 
raphy. The vector central-slice theorem relates the 1-D 
Fourier transform of the path-integral measurements given 
by equation (1) to the 2-D Fourier transforms of the x and y 
components, v,(x, y) and vy(x, y), of v(x, y), where 

v(x, Y = u,(x, Y 12 + vy(x, Y 19, (2) 
2 and 9 being unit vectors. We then show that the vector 
central-slice theorem simplifies when the vector field v(x, y ) 
is separated into its irrotational and solenoidal vector 
components. Any ‘well-behaved’ vector field can be 
uniquely decomposed in this way by defining scalar and 
vector potential functions @(x,  y )  and Y ( x ,  y) such that 

v(x, y) = V@(X, y) + v x Y ( x ,  Y 1, (3) 

where V@ and V X Y are, respectively, the irrotational and 
solenoidal parts of v. Equation (3) is called Helmholtz’s 
theorem; conditions for the uniqueness of the Helmholtz 
decomposition are that v is finite, continuous and vanishes 
at infinity (Morse & Feshbach 1953, pp. 52-53). Since v is 
confined to the x-y plane, a single component of the vector 
potential Y in the z-direction is sufficient to define V X Y 
uniquely; i.e. we can write Y ( x ,  y) = Y(x, y ) 2 .  Thus, in two 
dimensions, v(x, y) is entirely determined by the two scalar 
functions @(x, y)  and Y ( x ,  y)  which, as we shall see, is a 
more convenient representation than the component 
representation (2). 

With the decomposition (3), we then show that the 
solenoidal component V X Y can be uniquely reconstructed 
tomographically, i.e. from line integrals of the type (1); in 
fact, the problem can be formulated so that the irrotational 
component V@ gives no contribution to the path-integral 
( l) ,  leaving only the contribution from the solenoidal part 
V X  Y. However, we also show that, if V - v = O  in D, 
then the scalar potential @ can be uniquely reconstructed 
throughout D from measurements of the field v only on the 
boundary dD. The latter result is a consequence of the fact 
that, if v is divergenceless in D, then @ solves Laplace’s 

equation [V2@ = 01 in D, and hence @ is determined by its 
boundary values on dD. This implies that the vector field 
v(x, y ) can be reconstructed from the following information: 
line-integral measurements of v, as defined by equation (l) ,  
between all pairs of points on the boundary dD and 
measurements of the field v on the boundary dD. An 
analytical example which illustrates the procedure for 
reconstructing both V@ and V X Y from line-integral and 
boundary measurements is given in the Appendix. 

A formulation of the vector-field reconstruction problem 
was also given by Johnson et al. (1977, 1977b), but they 
proceed directly to a numerical solution using iterative 
image-reconstructipn algorithms. Johnson et al. also point 
out the possibility of invisible flow, i.e. for which the 
right-hand side of equation (1) gives zero. Invisible flow can 
arise from flow distributions generated by sources or sinks in 
the field v (i.e. when V - v # 0). Johnson et al. suggest that 
the fact that source- or sink-generated flow can result in no 
contribution to the line integral (1) is a consequence of the 
symmetry of a diverging field, which results in equal and 
opposite contributions to the line integral that add to zero. 
However, this statement is generally correct only when the 
integration paths extend from --oo to m; for finite integration 
paths, such fields will not always give a zero line integral 
because the opposite contributions may not be equal. In this 
paper, we show that the constraint of a divergenceless field 
(V - v = 0) in D (i.e. assuming incompressible flow with no 
sources or sinks in D) is sufficient to eliminate invisible flow; 
under these conditions, the 2-D reconstruction problem may 
be uniquely solved. 

2 TOMOGRAPHIC IMAGING OF FLUID 
FLOW 

Let D denote a bounded and convex region of 2-D fluid flow 
with boundary dD,* in which the flow is defined by the 
vector velocity field u(x, y). We examine the problem of 
recovering the vector field u(x, y)  from acoustic travel-time 
measurements through D. Let c ( x , y )  denote the local 
acoustic speed in D. As shown below, the travel-time 
measurements also provide sufficient information to recover 
independently the scalar function c(x ,  y). We assume that 
the magnitude of fluid flow IuI is everywhere much less than 
the acoustic speed c. We also assume that the variations in c 
are sufficiently small and/or the path lengths sufficiently 
short so that the ray paths may be regarded as straight.? 
Then, letting r denote the unit tangent vector along the 
acoustic ray path, the travel-time, t(a, b), of an acoustic 
signal between a and b is 

(4) 

to first order in lul/c, where dl is an element of path length 
along the ray. 

* aD is not a physical boundary; it is defined by the locus of points 
over which the sources and receivers are distributed. 
?If this is not the case, see, for example, Norton L Linzer (1982) 
for a first-order perturbation correction to the travel-time 
measurements due to refraction. 
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The 2-0 vector fields 163 

Now transmitting the acoustic signal in the opposite 
direction from b to a gives t(b, a) in which z is replaced by 
- r .  Adding this to and subtracting from t(a, b) results in 

Johnson et al. (1977a, 1977b) obtained equations identical 
to equations ( 5 )  and (6), but proceed from here directly to 
a numerical solution; in more recent years the above 
equations have also been independently pointed out by 
other authors particularly in oceanography (see e.g. Munk 
& Wunsch 1982; Munk 1986; Howe et al. 1987, and 
references therein). Note the equation (5) can be used to 
recover the acoustic speed distribution c(x, y )  independently 
of flow using standard time-of-flight tomography (Greenleaf 
et al. 1975). The function c ( x , y )  could then, in turn, be 
substituted into equation (6). For our purposes, the sound 
speed c(x ,  y )  is presumed known. Finally, equation (6) 
reduces to equation (1) by letting 
T(a, b) = t(a, b) - t(b, a), 

3 SOLUTION TO THE VECTOR 
RECONSTRUCTION PROBLEM 

Assuming straight-ray propagation, we parametrize the line 
joining a and b by the polar coordinates (p, $) where the 
line between a and b is now denoted by L(p ,  $), as shown 
in Fig. 2. Equation (1) then becomes 

(7) 

Y 
?' 

sin+ - p] 

Figure 2. The line L is parameterized by its distance from the origin 
p and angle $I from the x-axis. 

Since the line-integral measurements are made along paths 
only through the region of interest D, it is convenient to set 

v(x, y )  = 0 for ( x ,  y )  outside of D ,  (8) 
where v ( x , y )  is equal to the physical field inside D. 
Henceforth in this paper v shall now refer to the 'truncated 
field' defined by equation (8) unless otherwise indicated. 
Note, of course, that defining v equal to zero outside of D is 
justified since we can only reconstruct v within the 
measurements domain D in any case; presumably nothing is 
known about the physical field outside of D. Equation (8) 
has several consequences. First, it is now permissible and 
convenient to extend the integration path along the line 
L(p, $) in equation (7) from --Q) to m. Second, we apply the 
Helmholtz decomposition v = V@ + V X Y to the truncated 
field (v zero outside of D), not the physical field (v non-zero 
outside of D). This satisfies among other things the 
requirement that v vanish at infinity which is needed for the 
uniqueness of the Helmholtz decomposition (Morse & 
Feshbach 1953)*. Finally, all quantities, such as v and the 
potentials @ and Y, are square integrable and thus Fourier 
transformable. 

Now, from Fig. 2, 

dl = dl sin $f - dl cos $9. (9) 

Using equations (2) and (9) in equation (7) then gives 

T,(p) =sin $1 v,(x, y )  dl - cos $ 1 v , ( x , y ) d l  
L ( P , $ )  L ( P . 9 )  

= sin $11 dx dyv,(x, y ) 6 ( x  cos $ + y sin $ - p )  
D 

-cos $1 1 dx dyvy(x,  y ) 6 ( x  cos $ + y sin $ - p) ,  (10) 

where a(.) is the (1-D) Dirac delta function. In equation 
(lo), the argument of thedelta  function,^ cos $ + y sin $ - p, 
is zero for points on the line L(p,  $), as required. Next, the 
Fourier transform of T, (p)  with respect to p is 

D 

m 

T@(k) =I -m T9(p)e-ikpdp. 

Substituting equation (10) into (11) and interchanging 
orders of integration gives 

T@(k) = sin $11 dx dyv,(x, y)e-ik(x 'OS @+ sin ') 

D 

- ~ 0 s  $11 & dyvy(x ,  y)e-"(x C o s  @+Y sin 6) . (12) 
D 

Defining the 2-D Fourier transforms of the components 

* Strictly speaking, the uniqueness of the Helmholtz decomposition 
also depends on continuity of v, whereas the truncated field is 
discontinuous on the boundary of D by virtue of equation (8). If, 
however, v is continuous in D, then the nonuniqueness applies only 
to the values of v on the boundary. This is not a problem, since we 
are only concerned with reconstructing v in the interior of D, and 
presumably the physical (non-truncated) field is accessible to 
measurement on the boundary. 
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c c  

theorem (15) results in 

T+(k) = ik sin' @ Y ( k  cos @, k sin @) 
+ ik sin 4 cos @&(k cos @, k sin @) 

+ ik cos' @ Y ( k  cos @, k sin @) 

- ik cos @ sin @&(k cos @, k sin @), 

which reduces to 

T',(k) = i k Y ( k  cos @, k sin @). (20) 

Equation (20) shows that the Fourier transform of the 
solenoidal component, Y ( u ,  u), and hence, V X Y(x,y), is 
determined uniquely from the line-integral data T+ (k ) .  
Note, however, that the contribution from the irrotational 
component, V@, has disappeared in equation (20). This is 
significant, since it allows us to reconstruct the solenoidal 
component separately from the irrotational component. We 
shall later show how the component V@ can be derived from 
the boundary values of v on dD. 

The disappearance of the irrotational component in 
equation (20) could also have been anticipated from a 
well-known theorem from vector calculus that states that the 
line integral of the gradient of a scalar field depends only on 
its end points (i.e. is path independent); specifically, 

(14) 
D 

and comparing equations (13) and (14) to equation (12) 
shows that 

i$(k) = sin @C,(k cos 4, k sin 4) 
-cos @Cy(k cos @, k sin 4). (15) 

This is the central-slice theorem for 2-D vector fields. The 
function F+(k) on the left of equation (15) is known (i.e. f+ 
is the Fourier transform of the line-integral measurements 
(1)) and one desires to determine Cx(u, u )  and fiy(u, v) on 
the right, from which the components v,(x, y) and uy(x, y )  
can then be obtained by inverse Fourier transforming 
equations (13) and (14). As it stands, the formula for T',(k) 
given by equation (15) is underdetermined since v, and vy 
are in general arbitrary and independent functions. This 
suggests that an additional constraint, such as V-v=O,  
might eliminate the ambiguity in equation (15), resulting in 
a unique solution. We later show this to be the case. 

We proceed by decomposing the (truncated) field v(x, y)  
into irrotational and solenoidal components, as in equation 
(3): v =  V @ +  V X  Y. Next, Fourier transform v and 
substitute the result into the right-hand side of equation 
(15). In doing so, we shall see that the contribution from the 
irrotational component, V@, disappears. 

As noted earlier, for a 2-D vector field confined to the 
x-y plane, the vector potential Y may be defined as 
Y = Y.2. Then, 

Also, in two dimensions the irrotational component reads 

a@ a@ 
V@ =f -  + y ^ - .  

ax ay (17) 

On adding equations (16) and (17), the x and y components 
of v are 

av a@ 
v,(x, y)  = - + - 

ay ax 

a~ a@ 
vy(x, y )  = - - + - 1 

ax ay 

Now, let &(u, v) and Y ( u ,  u )  denote, respectively, the 2-D 
Fourier transforms of @(x, y)  and Y(x, y). Upon Fourier 
transforming equations (18), we obtain 

G,X(U, v) = iv#(u, v) + iu&(u, v) 
fiy(u, v) = -iu#(u, u )  + iv&(u, v). 

(19a) 

(196) 

Finally, substituting equations (19) into the central-slice 

[V@. dl = @(b) - @(a). 

Thus, substituting v = V@ + V X W into equation (1) gives, 
in view of equation (21), 

b b 1 v . dl = @(b) - @(a) + 1 V X Y - dl. 
P 

Now letting la1 and Ibl+m and using the property* that 
@(r) -+ 0 as 1rI+ 00, equation (22) becomes 

where the infinite limits are meant to denote integration 
along the infinite line passing through a and b. Also, note 
that 

[.. d l=  j-:. dl= 1;: x Y .  dl, 

where the first equality follows from equation (8) and the 
second equality is equation (23). This shows again that the 
central-slice theorem (20) holds only for the solenoidal part 
of v, since any contribution from the scalar potential 9 
disappears in the integration to infinity. We emphasize that 
it is the finite path integral on the far left in equation (24) 
that is measured; equation (24) shows, however, that the 
measurement is equal to the infinite path integral of V X Y 
on the far right of equation (24), and the latter is required 
for the central-slice theorem (20) [i.e. the quantity T+(k) in 
equation (20) is the Fourier transform of the right-hand 
integral in equation (24)]. Finally, is is interesting to note 

*This can be shown to follow when v is bounded and has finite 
support; see equation (8). 
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which holds in the interior of D. Thus, since @ solves 
Laplace’s equation in D, @ is uniquely determined by its 
values on the boundary dD. This implies that tomography is 
in fact unnecessary for the special case of a purely 
irrotational field V@ when V * v = 0 in D (i.e. for potential 
flow in the absence of sources and sinks in D), since 
boundary information alone is evidently sufficient to 
determine @, and hence V@, everywhere in D. The latter is 
a special case, however, and our present concern is in 
reconstructing an arbitrary flow field v = V@ + V x Y? We 
have already seen that the solenoidal component V X Y is 
determined by the path-integral measurements (1) through 
the central-slice theorem (20). 

Our remaining task is to derive the scalar potential @ 
when v = V@ + V X Y. We now show that @, and hence the 
irrotational component, V@, can be computed in the 
interior of the domain D from measurements of v on the 
boundary dD. In this computation, V X  Y gives no 
contribution. To show this, we first examine the general 
procedure for deriving the scalar and vector potential @ and 
Y from v defined on the domain D. In particular, it is 
possible to show (Morse & Feshbach 1953, pp. 52-53) 

@ = - V . U  and Y = V X U ,  

where 
(27) 

(28) U ( X ,  Y) -11 dr‘ dY)V(Xt> y‘)G(x, Y I x’, Y’), 
D 

and G(x,y ) x ’ ,  y’)  is the Green’s function tor the 
Laplacian; for example, in two dimensions, G solves 

V%(x, y I x ’ ,  y’) = - S ( x  - X I ,  Y -y’), 

and is given by 

that in general 
m 

since equation (8) does not hold for V X Y, i.e. unlike v, the 
field V X Y alone is not in general zero outside the domain 
D; one must add V@ to V X Y to obtain zero in the region 
outside of D, as required by equation (8). This is illustrated 
in the analytical example given in the Appendix. The above 
inequality is also clear by comparing equations (22) and 

We can view the above argument in another way. It is 
evident from this equation that the irrotational component 
V@ does contribute to the path-integral measurement [the 
left-hand integral in equation (22)] forfinite a and b, as does 
the solenoidal part V X Y. Note that, however, one has the 
freedom to select any integration end points, a and b, as 
long as they lie outside of D, since v vanishes outside of D 
[equation @)I. The crucial point is that the choice lal-,m 
and Ibl- 00 conveniently eliminates any contribution to the 
measurement from the irrotational part, V@, leaving only 
the contribution from V X I, as is shown by equation (23). 
Thus, as noted, the central-slice theorem (20) allows us to 
reconstruct separately (and uniquely) the solenoidal part of 

In computing V x  Y from equation (20), one can 
first perform the 2-D inverse Fourier transform of 
Y(k cos @, k sin @) = T@(k) / ik  and then differentiate Y 
according to equation (16). Alternatively, one can perform 
the differentiation in Fourier space before inverse Fourier 
transforming, as follows. Letting %{-}u,u and F1{ . }x ,y  

denote respectively the 2-D Fourier and inverse Fourier 
transforms, then Fourier transforming equation (16) gives 

~ { V X  Y } ~ , ~  =iiv@(u, v ) - j i u Y ( u ,  v) 

(24) * 

V. 

= (i sin @ - 9 cos @ ) i k Y ( k  cos @, k sin 4) 
= (2 sin $J - 9 cos @) p+ (k) 

using u = k cos @ and v = k sin @ and substituting equation 
(20). Thus 

v x Y = . ~ ‘ { ( i  sin @ -9 cos G ) T + ( ~ ) } ~ , ~ .  
Writing the 2-D inverse Fourier transform in polar form (in 
which x = r cos O and y = r sin 0), this may be written 

x d @ ( i  sin @ -9  cos @ ) f + ( k )  exp [ikr cos (0 - $)I. 
(25) 

The above considerations show that no central-slice 
theorem exists for the irrotational component V@. This 
component can, however, be recovered from the values of v 
on the boundary of the measurement domain D if v is 
divergenceless in D. (The actual physical field can, of 
course, have nonzero divergence outside of D.) First, note 
that if V - v = 0 in D, then setting the divergence of equation 
(3) to zero [and using V .  V X Y=O] gives Laplace’s 
equation 

V2@ = 0, (26) 

G(x, y I x ’ ,  y’)  = --I 1 n [ ( ~ - x ‘ ) ’ + ( y - y ’ ) ~ ] .  
4n 

One can verify the relations (27) and (28) by noting that U 
is a solution to the vector Poisson equation, 

v2u = I 0  

and using the vector identity (Morse & Feshbach 1953) 

-v ( x ,  y) inside D 
(x ,  y)  outside D, 

v2u = V[V * U] - v x  [ V X  U]. 

@(x, Y) = -v * U ( X ,  Y) 

From equations (27) and (28), 

But V G  = -V’G, where V and V‘ denote the gradient with 
respect to ( x ,  y) and (x’, y‘). Thus, equation (30) can be 
written 

@(x, y)  = 11 dr’ dy’v(x’, y’)  - V’G(x,  y I x ’ ,  y‘). (31) 
D 

Now substituting the identity 

V *  V‘G = V‘ * (Gv) - G(V’ * V) 

into equation (31) and employing the divergence theorem to 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/97/1/161/754869 by U

.S. D
epartm

ent of Justice user on 17 August 2022



166 S. J .  Norton 

write the integral of the first term on the right as a boundary 
integral around dD,  equation (31) becomes 

where n is the unit outward normal on the boundary curve 
dD and ds is an element of arc length along 2D. Now 
assuming that V’ v = 0 in D,  the last integral vanishes and, 
on using equation (29) for G, we finally obtain 

In [(x - x’)’ + ( y  - Y’)~]V(X’,  y’ )  - n ds. 

This integral gives the scalar potential @ at every point in D 
and on d D  in terms of the value of the vector field v(x, y )  
on the boundary dD. Hence, the irrotational component V@ 
can be computed throughout D by differentiating equation 
(32). Taking the gradient of equation (32) and 
differentiating under the integral sign gives 

(33) 

Equations (25) and (33) complete the reconstruction 
problem. For illustration, the Appendix contains a simple 
reconstruction problem for which all steps can be carried out 
analytically. 

The assumption that v is divergenceless deserves some 
discussion. The condition follows from the continuity 
equation V (pv) = 0 for steady flow under the assumptions 
of an incompressible fluid (constant density p )  and no 
sources or sinks in the region under reconstruction. In 2-D 
flow, sources or sinks can be ruled out when there is no 
creation or destruction of fluid in the region of interest. In a 
‘pseudo’ 2-D problem, where one attempts to reconstruct a 
2-D slice from a region of 3-D flow, sources or sinks in the 
plane of interest can arise from upwelling or downwelling of 
fluid from below or above the plane. The preceding theory 
applies, however, if one is willing to assume a negligible 
vertical component of flow compared to horizontal flow. 
More generally, the above theory is still applicable in the 
presence of vertical flow provided this flow leads to no 
horizontal divergence of v. To see this, assume that V(3)-v  
represents the 3-D divergence of a 3-D field v and let V(’) * v 
denote the transverse divergence in, say, the x-y plane. 
Then assuming no 3-D sources or sinks and incompressible 
flow, we have V(3) v = V(’) v + dv,/dz = 0, which implies 
that dv,/3z must vanish to guarantee the condition 
V(’) - v = 0 demanded by the 2-D tomographic problem. 

4 EXTENSION TO THREE DIMENSIONS 

The generalization of the basic two-dimensional central-slice 
theorem given by equation (15) to three dimensions can be 
easily derived. Moreover, under the assumption of no 
sources and sinks in a bounded 3-D domain D, the 3-D 

analogue of equation (32) for computing the 3-D scalar 
potential @ can also be derived. However, the three- 
dimensional analogue of the central-slice theorem (20) for 
the solenoidal component V X I does not exist since the 
3-D vector potential Y is uniquely specified by a minimum 
of two independent components [ Y actually has three 
components, but one of these can be effectively eliminated 
by the choice of gauge V - I = 0 (Jackson 1962)l. Because 
of the latter fact, the two-dimensional solution developed in 
this paper does not appear to generalize directly to three 
dimensions. That is, a complete set of path integral 
measurements (i.e. from all directions in 3-D space) through 
a 3-D domain D together with the boundary measurements 
of v on D and the 3-D constraint V - v = 0 in D are evidently 
insufficient to determine the three-dimensional problem 
uniquely. 

To state this another way, the reason that the above 
approach succeeds in two dimensions is that, in 2-D, there 
are two unknown functions to reconstruct, i.e. the 
components v,(x,y) and uy(x,y), but we have one 
central-slice theorem [equation (15)] and one constraint 
(V - v = 0). This constraint equation together with the 
central slice theorem are sufficient to determine the two 
functions v, and u,, uniquely. In three dimensions there are 
three unknown component functions, but one (3-D) 
central-slice theorem and one (3-D) constraint equation, 
which together are insufficient to determine the three 
functions u,, vy and v, uniquely. One additional constraint 
is needed. For example, the added constraint v, = constant 
would suffice. Other physically-motivated constraints might 
also be useful in uniquely determining the solution to the 
three-dimensional problem. 

5 CONCLUSION 

In this paper, we examine the problem of reconstructing a 
2-D vector field from its line integrals over a bounded 
domain D. A vector central-slice theorem is derived, which 
is a generalization of the well-known central-slice theorem 
from conventional ‘scalar’ tomography. Of key importance 
in the analysis, however, is the decomposition of the vector 
field into its irrotational and solenoidal components: 
v = V @ + V X  I, where @ and I are scalar and vector 
potentials. In particular, we show that the solenoidal 
component V X I can be uniquely reconstructed from the 
line integrals of v, whereas the irrotational component V@ 
cannot be recovered in this way. The latter component can, 
however, be reconstructed if the field v is divergenceless 
within the measurement domain D. A divergenceless 
velocity field is implied if the fluid is incompressible and no 
sources or sinks are assumed to exist in D. In the latter case, 
the scalar potential @ solves Laplace’s equation in the 
interior of D and is determined by its values on the 
boundary of D. We derive an explicit formula that gives @, 
and hence V@, throughout D in terms of v on the boundary 
of D. As a result, both components of v can be recovered 
uniquely from the line integrals of v through the 
measurement region and the values of v on the boundary of 
this region. 

An important application of the above theory is the 
reconstruction of 2-D fluid flow fields from reciprocal 
acoustic travel-time measurements. 
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problem is axially symmetric (i.e. T,(p) would not depend 

From equation (A2)  we can obtain the solenoidal 
component of v through equations (11) and (20). As 
additional data, we shall also assume that v is measured on 
the boundary r = R. From the boundary measurements of v 
the irrotational component of v may be derived by means of 
equation (32). 

To obtain the vector-potential function Y, Fourier 
transform equation (A2)  with respect to p as in equation 

on @). 

(111, giving 
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APPENDIX 

For illustration, we consider below a vector reconstruction 
problem that can be solved analytically. Consider a constant 
flow field v in the x-direction given by 

v(x, y )  = v&, v o  = constant, 641) 
where the domain of reconstruction D is the interior of a 
circle of diameter R centered at the origin. The above field 
satisfies V . v = O  in D, as we require. Inserting this 
distribution into equation (7) [or equation (lo)] gives 
the line-integral measurements T , ( p ) .  Using v dl = 
vo sin @ dl, equation (7) becomes, in view of equation (8), 

T , ( p )  = v o  sin @ I circ ( r / R )  dl, 
L ( P . + )  

where 

1 for r s  1 
0 otherwise, 

circ (r) = 

and r = V x T .  Performing the above integration gives 

Equation (A2)  constitutes our line-integral data. Note that 
in the scalar version of this problem, the directionally- 
dependent factor sin @ would not appear, since the scalar 

= 2 v o s i n @ [  nRJ (kR)  1, 
where J1(.) is the Bessel function of order one. Now using 
equation (20) to solve for Y, we obtain 

f ( k )  J l ( W  Y ( k  cos 4, k sin @) = = -2niv0R sin @ - 
rk kZ  ' 

Next take the 2-D inverse Fourier transform of Y. Writing 
the 2-D inverse transform in polar form [in which 
(x,  y) = ( r  cos 8, r sin 0)] for convenience, we have 

Y ( r  cos 0, r sin 0) 
1 "  =-I k d k  (W2 0 

x r d @ Y ( k  cos 6, k sin @) exp [ikr cos (0 - @)] 

iv R J,(kR) 2n = -LPT I, d@ sin @ exp [ikr cos (0 - @)I. 
2n 

(A4) 

With the aid of integral tables (Gradshteyn & Ryzhik 1965) 
and after some manipulation, we find 

r d @  sin c#) exp [ikr cos (0 - @)] = 2ni sin 8Jl(kr). 

Equation (A4)  then becomes 

Y ( r  cos 8, r sin 0) = v,R sin 8 (A5) 

Using the Bessel function identity Jl(kr) = kr[Jo(kr) + 
J2(kr)]/2 in equation (AS) and the relation [Gradshteyn & 
Ryzhik 1965, p. 6671 

equation (AS) reduces to 

(vor sin e 

Y ( r  cos 0, r sin 8) = 

for b s a  
for b > a, 

for r l R  

for r > R ,  
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or, in rectangular coordinates, 

where r = v x v .  
We next compute the scalar potential @ from the values 

of v on the boundary of D using formula (32). In evaluating 
equation (32) for this problem, polar coordinates are again 
convenient. The Green's function in equation (32) may be 
expressed in polar form as follows (Morse & Feshbach 1953, 
p. 1188): 

G ( r ,  8 I r', 8 ' )  

= - -In [R' + r' - 2rR cos (8  - Of)] 
1 

4n 
1 l " 1  R "  

= - - l n r 2 + -  -(-) cos[n(e-e')], r > R  
4n 2 ~ , = ~ n  r 

cos[n(8-8')], R > r .  
4n 

(A71 
Then, noting that v(x', y')  n = uo cos O' ,  equation (32) 
becomes 

@(r cos 8, r sin 8 )  = G ( r ,  8 I R,  8')vo cos 8 ' R  d8' .  (A8) 

Finally, on substituting equation (A7) into (A8) and 
performing the 8' integration from 0 to 2n, only the term in 
the sums in equation (A7) for which n = 1 survives; we then 
have after a little algebra 

6" 

vor cos 8 
for r l R  

for r > R ,  
@(r cos 8, r sin 8)  = 

or, in rectangular coordinates, 

Now compute the total field v = V @ + V X  I by 
differentiating the potential functions @ and Y. From 
equation (A6), 

for r < R  

[$ [ i ( x 2  - y') + 2j?(xy)] for r > R ,  

and from equation (A9), 

a@ a@ 
V@=,f-+j?- 

ax ay 

for r < R  

[ i (y '  - x 2 )  - 2j(xy)] for r > R .  

Adding then gives 

for r <  R 
for r > R ,  

v = V @ + V X Y =  

which agrees with equation (Al)  inside D and is zero 
outside D. Note that, although v is identically zero outside 
D, the individual components V@ and V X  Y are nonzero 
there, since the potentials @ and Y a r e  nonzero outside D. 
Also note that @ solves Laplace's equation (26) in D, as 
required, but not outside of D. This behavior is a 
consequence of truncating the original vector field v outside 
D, as indicated by equation (8). In general, the potentials @ 
and Y have no physical meaning outside D. 

To check the above results, one can substitute equation 
(Al) for v directly into equation (28) and compute U(x, y). 
Each component of U(x, y) can then be evaluated 
analytically using Gauss's theorem (Jackson 1962). The 
potential functions @ and Y then follow on differentiating U 
as defined in equations (27). The results are found to agree 
with equations (A6) and (A9), as expected. 
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