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Entanglement, one of the central mysteries of quantum mechanics, plays an essential role in numerous appli-

cations of quantum information theory. A natural question of both theoretical and experimental importance is

whether universal entanglement detection is possible without full state tomography. In this work, we prove a no-

go theorem that rules out this possibility for any non-adaptive schemes that employ single-copy measurements

only. We also examine in detail a previously implemented experiment, which claimed to detect entanglement of

two-qubit states via adaptive single-copy measurements without full state tomography. By performing the ex-

periment and analyzing the data, we demonstrate that the information gathered is indeed sufficient to reconstruct

the state. These results reveal a fundamental limit for single-copy measurements in entanglement detection, and

provides a general framework to study the detection of other interesting properties of quantum states, such as

the positivity of partial transpose and the k-symmetric extendibility.

INTRODUCTION

Entanglement is one of the central mysteries of quantum

mechanics—two or more parties can be correlated in some

way that is much stronger than they can be in any classical

way. Famous thought experiments questioning the essence

of quantum entanglement include the EPR paradox [1] and

the Schrodinger’s cat [2], which ask the fundamental question

whether quantum mechanics is incomplete and there are hid-

den variables not described in the theory. These debates about

the weirdness of quantum mechanics were later put into a the-

orem by Bell [3], which draws a clear line between predictions

of quantum mechanics and those of local hidden variable theo-

ries. Bell’s theorem was tested extensively in experiments [4–

12] and quantum mechanics stands still to date.

More concretely, a bipartite quantum state ρAB of systems

A and B is separable if it can be written as a mixture of prod-

uct states ρAB =
∑

i piρ
i
A ⊗ ρiB with pi ≥ 0 and

∑

i pi = 1,

for some states ρiA of system A and ρiB of system B; other-

wise, ρAB is entangled [13]. However, not every entangled

state ρAB violates Bell inequalities—some entangled states

do allow local hidden variable descriptions [13].

In practice, entanglement may also be detected by measur-

ing the ‘entanglement witnesses’, physical observables with

certain values that prove the existence of quantum entangle-

ment in a given state ρAB [14]. However, none of these en-

tanglement witnesses could be universal. That is, the value

of an entanglement witness cannot tell with certainty whether

an arbitrary state is entangled or not. On the other hand, the
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‘entanglement’ measures do play such a universal role. By

commonly accepted axioms, the quantum state ρAB is entan-

gled if and only if it has a nonzero value of any entanglement

measure [15]. Unfortunately, entanglement measures are not

physical observables.

These commonly-known restrictions on Bell inequalities,

entanglement witnesses and entanglement measures raise a

fundamental question: how do we universally detect entangle-

ment through physical observables? The traditional approach

to this problem is to completely characterize the quantum state

by means of state tomography [16–18], a method that provides

complete information of the state including, of course, entan-

glement measures of the state. However, performing quantum

state tomography requires a large number of measurements, a

daunting task for growing system sizes.

A natural idea is to find a way to obtain the value of an en-

tanglement measure without FST. In fact, there have been a lot

of efforts along this line over the past decade [19–32]. How-

ever, common techniques to achieve this purpose rely heavily

on collective measurements on many identical copies of the

state ρAB . That is, joint measurement on more than one copy

of the state (ρ⊗r
AB for some integer r > 1) is needed. This

is bad news for experimentalists, as collective measurements

are usually much more difficult to implement than measuring

single-copy observables. It is then highly desirable to find a

method that detects entanglement without FST by measuring

only single-copy observables. The seeking of such a method

has been pursued in recent years with both theoretical simula-

tions and experimental realizations, leading to positive signs

of realizing such an appealing task [33, 34].

In this work, we examine the possibility of detecting en-

tanglement without FST by measuring only single-copy ob-

servables. Surprisingly, despite the previous signs, we find
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that this appealing task is unfortunately impossible, if only

single-copy observables are measured. That is, there is no

way to determine with certainty of any entanglement measure,

or even to determine whether the value is zero or not, with-

out FST. To be more precise, this means that for any set of

informationally-incomplete measurements, there always ex-

ists two different states, an entangled ρAB and a separable

σAB , giving the same measurement results under this mea-

surement. This sounds very counter-intuitive at the first sight,

as entanglement is just a single value, while quantum state

tomography requires measuring a set of observables that are

informationally-complete, scaling as the squared dimension

of the Hilbert space of the system.

Our observation is that universal detection of any property

without FST enforces strong geometrical structural conditions

on the set of states having that property. The set of separa-

ble states does not satisfy such conditions due to its nonlin-

ear nature and, therefore, universal detection of entanglement

without FST using single-copy measurements is not possible.

There is a nice geometric picture of this fact: unless the shape

of the separable states is ‘cylinder-like’, it is not possible to

find a projection of the state space to a lower dimensional hy-

perplane with non-overlapping image for the set of separable

states and entangled states.

If one allows adaptive measurements (the observable to

be measured can depend on previous measurement results),

a protocol was implemented in [33], claiming to have de-

tected entanglement of a two-qubit state ρAB via single-copy

measurements without FST. The protocol involves local fil-

ters that require repeated tomography on each single qubit,

which leads to a bound on the entanglement measure concur-

rence [35] of ρAB , in case the single-qubit reduced density

matrices ρA and ρB are not maximally mixed.

We design an experiment to implement this adaptive proto-

col as proposed in [33], and show that for certain ρAB , given

the experimental data collected, the state ρAB is already com-

pletely determined. In other words, once the concurrence of

ρAB is determined, the protocol already leads to a FST of

ρAB , i.e. the protocol does not lead to the universal detection

of entanglement without FST. This supplements our no-go re-

sult with non-adaptive measurements.

Additionally, it is worthy emphasizing that to our best

knowledge this is the first experimental realization of quan-

tum filters (or equivalently, the amplitude-damping channel)

via the ancilla-assisted approach. Compared to the optical

platform which does not demand extra ancilla qubits to real-

ize an amplitude damping channel [33, 36, 37], our approach

is more general and can be extended to other systems straight-

forwardly.

We further show that, however, if one allows joint measure-

ments on r-copies (i.e. ρ⊗r
AB) even for r = 2, one can indeed

find protocols that detects the entanglement of ρAB without

FST. Therefore our no-go result reveals a fundamental limit

for single-copy measurements, and provides a general frame-

work to study the detection of other interesting quantities for a

bipartite quantum state, such as the positivity of partial trans-

pose [38] and k-symmetric extendibility [39].

RESULTS

We discuss a no-go result stating that it is impossible to de-

termine universally whether a state is entangled or not without

FST, with only single-copy measurements. We first prove a

no-go theorem for non-adaptive measurements, and then ex-

amine the protocol with adaptive measurements as proposed

in [33] in detail. We design an experiment to implement this

adaptive protocol, and demonstrate that the information gath-

ered is indeed sufficient to reconstruct the state.

Non-adaptive measurement. For any given bipartite state

ρAB , one is only allowed to measure physical observables on

one copy of this given state. That is, we can only measure

Hermitian operators Sk that are acting on HA⊗HB . For sim-

plicity, we consider the case where both A, B are qubits. Our

method naturally extends to the general case of any bipartite

systems (see the Supplementary Information for details).

Now we consider a two-qubit state ρAB . In order to ob-

tain some information about ρ, we measure a set S of physi-

cal observables S = {S1, S2, · · · , Sk}. An informationally-

complete set of observables contains k = 15 linearly inde-

pendent Si’s. A simple choice of S is the set of all two-qubit

Pauli matrices other than the identity, i.e. S = {σi⊗σj} with

i, j = 0, 1, 2, 3, where σ0 = I, σ1 = X,σ2 = Y, σ3 = Z and

(i, j) 6= (0, 0).
Assume that we can decide universally whether an ar-

bitrary ρAB is entangled or not, without measuring an

informationally-complete set of observables. That is, there

exists a set S of at most k = 14 physical observables such

that, by measuring S , we can tell for sure whether ρAB is en-

tangled or not. For our purpose, it suffices to assume k = 14.

The set of all two-qubit state ρAB , denoted as A, is char-

acterized by 15 real parameters, forming a convex set in R
15.

The separable two-qubit states S form a convex subset of A.

It is well-known that S has a non-vanishing volume [40]. De-

note the set of entangled states by E , i.e., E = A \ S .

The set of measurements S with k = 14 can be visualized

as the definition of projections of A (hence also S) onto a 14-

dimensional hyperplane. If the measurement of observables in

S can tell for sure whether ρAB is entangled or not, the images

on the hyperplane of the separable states S and the entangled

states E must have no overlap. We illustrate this geometric

idea in Fig. 1.

In fact, the only possibility to separate any set from the rest

of the states without FST is that the set is an intersection of

the set of all states (i.e. set A as in Fig. 1) with a generalized

cylinder (i.e. a set of the form Ω× (−∞,+∞), where Ω is a

convex set of dimension 14), In this sense, we call these sets

‘cylinder-like’, where the corresponding states can be sepa-

rated from the rest of states from some 14 (or lower) dimen-

sional projection.

Hence, to show that entanglement detection without tomog-

raphy is impossible, it suffices to prove that S is not ‘cylinder-

like’ (in R
15). To do this, we show that for any projection

onto a 14-dimensional hyperplane with normal direction R,

there always exists a two-qubit state ρ that is on the boundary

of the set S , such that ρ + tR is entangled for some t (see

Supplementary Information for details). That is, ρ and ρ+ tR
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a b

Figure 1. Geometry of separable and entangled states. The top pink oval

represents the set of all states, denoted by A. Figure (b) shows a set (indicated

by blue) that is an intersection of a generalized cylinder with A (i.e. ‘cylinder-

like’). The projection onto the plane that is orthogonal to the boundary lines

of the cylinder separates this set with the rest of the states. Figure (a) has a

set (indicated by blue) inside A which is not ‘cylinder-like’. Hence in fact no

projection onto any plane exists that can separable the set with the rest states.

The bottom ovals are the images of the top sets onto a plane, which clear show

a separation of the images of the blue set from the pink set in Figure (b), but

an overlap of images in Figure (a).

have the same image on the 14-dimensional hyperplane.

This geometric picture leads to a general framework to

study the detection of other interesting quantities for a bipar-

tite quantum state with single-copy measurements. Indeed,

our proof also showed that the sets of states with positive

partial transpose (PPT) is not ‘cylinder-like’, hence cannot

be universally detected by single-copy measurements without

full state tomography. With a similar method, we can show

that the sets of states allowing k-symmetric extension are also

not ‘cylinder like’, even for two-qubit system. This reveals

a fundament limit of single-copy measurements, that is, full

state tomography is essentially needed to universally detect

many non-trivial properties of quantum states (e.g., separabil-

ity, PPT, k-symmetric extendability, see Supplementary Infor-

mation for details).

Adaptive measurement. In case of adaptive protocols, the

observable to be measured in each step can depend on pre-

vious measurement results. This kind of measurement pro-

tocol can be formulated as follows. First an observable H1

is chosen, and tr(H1ρ) is measured. Suppose the measure-

ment result is α1. Based on α1, observable H2,α1
is chosen,

and tr(H2,α1
ρ) is measured. Suppose the measurement re-

sult is α2. Based on α1, α2, observable H3,α1,α2
is chosen,

tr(H3,α1,α2
ρ) is measured and so on.

The protocol in [33] to determine the concurrence [35] of

a two-qubit state without FST falls into the category of adap-

tive measurements. We implement this protocol and show that

given the experimental data collected for certain state ρAB ,

this protocol in fact leads to FST of ρAB . That is, this protocol

does not lead to universal detection of entanglement without

FST.

First let us briefly introduce the idea of entanglement dis-

tillation via an iteratively filtering procedure [33] depicted

in Fig. 2a. For an unknown two-qubit state ρ0AB , we mea-

sure the local reduced density matrices ρ0A = trB(ρ
0
AB) and

ρ0B = trA(ρ
0
AB) for both qubits. In case ρ0A and ρ0B are not

fully mixed, we design the first filter F0
A = 1/

√

2ρ0A based

on the information of ρ0A, and evolve ρ0AB to ρ1AB by apply-

ing F0
A. Similarly, the same procedure is repeated for qubit B.

The iterative applications of filters are kept on going, and at

step k, the reduced density matrices of the qubits will be ρkA
and ρkB .

In case both ρ0A and ρ0B are not identity, the iterative pro-

cedure described above leads to a ‘distillation’ of the den-

sity matrices ρkA and ρkB and it is guaranteed that they both

converge to identity eventually [41]. All of the reduced den-

sity matrices ρiA and ρiB (i = 0, 1, . . . , k) are recorded dur-

ing the iterative procedure. At step k, when ρkA and ρkB are

sufficient close to identity, they can be used to reconstruct a

bound on the value of entanglement in ρ0AB through the op-

timal witness W (ρ0AB) that is only dependent on ρiA and ρiB
(i = 0, 1, . . . , k) (up to local unitary transformations), whose

value hence tells whether ρ0AB is entangled or not [33].

At the first sight, the above procedure seems feasible to de-

termine the value of entanglement without FST, since only

single-qubit density matrices ρiA and ρiB (i = 0, 1, . . . , k)

are repeatedly measured and only local unitary transforma-

tions are used in constructing the optimal witness. That is, it

seems that the two-qubit correlations in ρ0AB are never mea-

sured, which hence not lead to FST. However, a detailed look

shows it is not the case. The key observation here is that, ‘lo-

cal filters’ are in fact ‘weak’ measurements that do record the

correlations in ρ0AB . This is because that the filters cannot be

implemented with probability one, so the correlation in ρ0AB
is ‘encoded’ in the information that all the filters are imple-

mented successfully. In other words, what these local filters

and local tomography on each single qubit does, is in fact an

FST of ρ0AB .

In order to demonstrate the relationship between the lo-

cal filters and FST, we simulate the local filter procedure by

choosing different number of applied filters as depicted in

Fig. 2a. It turns out, in many case k = 4 (five filters) is

enough to uniquely determine ρ0AB based on the data of ρiA
and ρiB (i = 0, 1, . . . , k). Thus, the information of ρiA and ρiB
lead to an FST of ρ0AB .

As an example, we illustrate the simulation with the input

state chosen as equation (5) with λ = 0.2, and the result is

shown in Fig. 2b. Initially, we have 15 real parameters (i.e. de-

grees of freedom, DOF for short) to determine ρ0AB (ignoring

the identity part due to the normalization condition). When

more and more filters are applied, DOF is decreasing eventu-

ally since we are acquiring more and more knowledge about

the original input state. For example, the initial local reduced

density matrices ρ0A and ρ0B before applying any filter can al-

ready reduce DOF to 9; ρ1B after the first filter provides three

more constraints so DOF lowers to 6, and so on. It is found

that with 5 filters, the input state ρ0AB can be uniquely de-

termined via the collected information of the reduced density

matrices. And this procedure works similarly for many other

two-qubit state ρ0AB , where 5 filters are found to be enough to

reconstruct ρ0AB , as we will show in our experiment results.

Experimental protocol in NMR setup. To experimentally

implement the protocol as presented in Fig. 2a, we first dis-

cuss how to realize the local filters in NMR system. Without



4

. . . . .

a

b

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Number  of  Applied   Filters

C
o

n
cu

rr
e

n
ce

/F
id

e
li

ty

Concurrence

Fidelity

Figure 2. Circuit and simulation results of the theoretical protocol.

(a) Schematic circuit for implementing the filter-based entanglement distil-

lation proposal for an unknown two-qubit state ρ0AB . F i
A,B = 1/

√

2ρi
A,B

(i ≥ 0) is the ith local filter applied on A or B, where ρiA = trB(ρiAB)

and ρiB = trA(ρiAB) are the local reduced density matrices of the current

two-qubit state ρiAB . The gray dots mean a single-qubit tomography is im-

plemented at that place. (b) Simulated variation of concurrence and fidelity

as the increase number 1 ≤ m ≤ 5 of applied filters. The simulated state

is chosen as equation (5) with λ = 0.2. For any given m, we collected

all the available reduced density matrices at this stage and reconstructed 100

possible input state. When m ≤ 4, the reconstructed state is not unique due

to the lack of constraints, so both the concurrence and fidelity have some dis-

tributions. When m = 5, the input state can be uniquely determined, and the

concurrence and fidelity converges to a single point. The dashed blue and red

curves show the envelopes of the variations of concurrence and fidelity along

with m, respectively.

loss of generality, we can consider a local filter FA applied on

qubit A as an example. For any FA, it can always be decom-

posed into the form of UAΛAVA via singular value decompo-

sition, where UA and VA are single-qubit unitaries and ΛA is

a diagonal Kraus operator

ΛA =





1 0

0
√
1− γA



 . (1)

γA ∈ [0, 1] relies on FA and indicates the probability that the

excited state |1〉 decays to the ground state |0〉 when a system

undergoes ΛA. Although non-unitary, ΛA can be expanded to

a two-qubit unitary with the aid of an ancilla qubit 1. Basi-

cally, if a two-qubit unitary can transform

|0〉1|0〉A → |0〉1|0〉A,
|0〉1|1〉A →

√

1− γA|0〉1|1〉A +
√
γA|1〉1|1〉A,

(2)

the quantum channel on the system qubit A would be ΛA by

post-selecting the subspace in which the ancilla qubit 1 is |0〉.
One possible unitary transformation that satisfies equation (2)

is

U1A =















1 0 0 0

0
√
1− γA 0

√
γA

0 0 1 0

0 −√
γA 0

√
1− γA















. (3)

The operation U1A is thus a controlled rotation: when the

system qubit A is |0〉, the ancilla remains invariant; when A
is |1〉, the ancilla undergoes a rotation R−y(θA) = eiθAσy/2

where θA = 2arccos
√
1− γA. Therefore, in an ancilla-

assisted system with the ancilla initialized to |0〉, the local fil-

ter FA can be accomplished through a two-qubit unitary gate

(I⊗UA)U1A(I⊗VA) followed by post-selecting the subspace

in which ancilla is |0〉.
NMR implementation. To implement the aforementioned

filter-based entanglement distillation protocol as presented in

Fig. 2a in NMR, we need a 4-qubit quantum processor con-

sisting of two system qubits A and B, and two ancilla qubits

1 and 2. Our 4-qubit sample is 13C-labeled trans-crotonic

acid dissolved in d6-acetone. The structure of the molecule

is shown in Fig. 3, where C1 to C4 denote the four qubits. The

methyl group M, H1 and H2 were decoupled throughout all

experiments. The internal Hamiltonian of this system can be

described as

Hint =

4
∑

j=1

πνjσ
j
z +

4
∑

j<k,=1

π

2
Jjkσ

j
zσ

k
z , (4)

where νj is the chemical shift of the jth spin and Jjk is the

J-coupling strength between spins j and k. We assigned C3

and C2 as system qubits A and B, and C4 and C1 as ancilla

qubits 1 and 2 to assist in mimicking the filters, respectively.

All experiments were conducted on a Bruker DRX 700MHz

spectrometer at room temperature.

Our target input state was chosen as a mixed state involving

one Bell-state portion and two product-state portions, with the

weight of Bell-state portion tunable. The state is written as

ρ0AB = λ|φB〉〈φB|+ (1− λ) (|φ1〉〈φ1|+ |φ2〉〈φ2|) /2, (5)

where

|φB〉 = (|00〉+ |11〉) /
√
2, (6)

|φ1〉 = (|0〉 − i|1〉) (|0〉+ |1〉) /2,
|φ2〉 = (|0〉+ |1〉) (|0〉 − 2i|1〉) /

√
10

have concurrences 1, 0 and 0, respectively. The parameter λ
in [0, 1] is thus proportional to the value of entanglement of

ρ0AB . In experiment, we varied λ from 0.2 to 0.7 with step

size 0.1 for every point, and implemented the proposal cor-

respondingly. Considering the two ancilla, the overall input

state for our 4-qubit system is thus |0〉〈0| ⊗ ρ0AB ⊗ |0〉〈0|.
As shown in Fig. 4, we prepared a pseudo-pure state from

the thermal equilibrium via spatial average technique [42–44]

and then created three components |φB〉, |φ1〉 and |φ2〉 on the
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C1 C2 C3 C4

C1 ‐2989

C2 41.62 ‐25459

C3 1.46 69.66 ‐21592

C4 7.02 1.18 72.16 ‐29342

T1 1.02 0.92 0.87 0.94

T2 5.7 5.3 5.6 10.2

	

Figure 3. Molecular structure and Hamiltonian parameters of 13C-labeled trans-crotonic acid. C1, C2, C3 and C4 are used as four qubits in the

experiment, and M, H1 and H2 are decoupled throughout the experiment. In the table, the chemical shifts with respect to the Larmor frequency 176.05MHz and

J-coupling constants (in Hz) are listed by the diagonal and off-diagonal numbers, respectively. The relaxation time scales T1 and T2 (in Seconds) are shown at

bottom.
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Figure 4. NMR sequence to realize the filter-based proposal of entanglement distillation. In particular, this sequence displays how to realize the first two

filters F0

A and F1

B in terms of NMR pulses. All other sequences can be obtained analogously. A (marked by C3) and B (marked by C2) are system qubits to

implement the proposal, while qubit 1 (marked by C4) and 2 (marked by C1) are ancilla qubits to assist in mimicking the filters. First the 4-qubit system is

prepared to the PPS by spatial average technique which is shown before the initialization step. Then the system qubits are initialized to |φB〉, |φ1〉 and |φ2〉 via

three independent experiments illustrated in the lower-right inset, respectively. The part after the initialization step is the sequence for realizing filters. VA, VB ,

UA, UB , θ1 and θ2 all depend on the measured results of reduced density matrices. Refer to the main text for detailed information of the parameters.

system qubits, respectively (see Methods for detailed descrip-

tions). Subsequently, each component undergoes the whole

filtering and single-qubit readout stage, with the final result

obtained by summarizing over all three experiments.

A two-qubit state tomography was implemented on the sys-

tem qubits after creating ρ0AB . ρe0 was reconstructed in exper-

iment and its fidelity compared with the expected ρ0AB is over

98.2% for any λ (Supplementary Table S1). This two-qubit

state tomography is not required in the original proposal [33]

in which only single-qubit measurements are necessary. How-

ever, since we claim that the filter-based proposal has already

provided sufficient information to reconstruct the initial two-

qubit state ρe0, we need to compare it with ρef which is re-

constructed after running the entire proposal. To support our

viewpoint, we have to show that ρe0 and ρef are the same up to

minor experimental errors. This comparison is the only pur-

pose of doing a two-qubit state tomography here.

Now we show how to realize local filtering operations in

NMR. By measuring the local reduced density matrix ρ0A of

the input state ρ0AB , the first filter in Fig. 2a was calculated

via F0
A = 1/

√

2ρ0A and decomposed into U0
AΛ

0
AV

0
A. Since

U0
A and V 0

A are merely local unitaries on qubit A, they can

be realized by local radio-frequency (RF) pulses straightfor-

wardly. Λ0
A, which can be expanded to a 2-qubit controlled

rotation U1A (see equation (3)) in a larger Hilbert space, was

performed by a combination of local RF pulses and J-coupling
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evolutions[45]

U1A = R1
−x(π/2)U(θA/2πJ1A)R

1
x(π/2)R

1
−y(θA/2), (7)

where U(θA/2πJ1A) represents the J-coupling evolu-

tion e−iθAσ1

zσ
A
z /4 between qubit 1 and A, and θA =

2arccos
√
1− γA depends on Λ0

A. After this filter, the sys-

tem evolved to ρ1AB and a single-qubit tomography on qubit

B was implemented, as shown by the gray dots in Fig. 2a. The

same procedure was repeated for qubit B to realize the second

filter F1
B = 1/

√

2ρ1B . In experiment, these two filters F0
A and

F1
B were carried out simultaneously using the partial decou-

pling technique as shown in Fig. 4, with additional Z rotations

in the tail to compensate the unwanted phases induced by the

chemical shift evolutions. In Fig. 4, θ1 and θ2 pulses are used

to realize R1
−y(θA/2) and R2

−y(θB/2), respectively, and the

free evolution time τ1 and τ2 are defined as

τ1 = θ1/4πJ1A + θ2/4πJB2 (8)

τ2 = θ1/2πJ1A − θ2/2πJB2.

Here we have assumed that τ2 > 0 (θ1/2πJ1A > θ2/2πJB2).

When τ2 < 0, the circuit just needs to be modified slightly by

adjusting the positions of refocusing π pulses. All the other

filters have analogical structures with the one shown in Fig. 4,

and they were always carried out on qubit A and B simultane-

ously since they commute.

Every time after performing one local filter, we imple-

mented a single-qubit tomography on the other qubit rather

than the working qubit on which the filter was applied. The

reason is that the working qubit has evolved to identity due to

the properties of the filter. The tomographic result was used

to design the next filter on the other qubit. In principle, before

applying any filters, it is necessary to reset the two ancilla

qubits to |00〉. As it is difficult to refresh the spins in NMR,

an alternative way was adopted in our experiments. For ex-

ample, to realize F2
A, we packed it together with F0

A and gen-

erated a new operator. It can be regarded as a 2-in-1 filter

and implemented in the same way. Hence, we avoided the

reset operations throughout the experiments and for any indi-

vidual experiment we just started from the original two-qubit

state ρ0AB . This feedback-based filtering operations continued

to be executed till five filters accomplished and seven 1-qubit

tomographies carried out, as shown in Fig. 2a.

From the above discussions, we have shown that the

NMR experiments only contain free J-coupling evolutions

and single-qubit unitaries. See the circuit in Fig. 4. For the

J-coupling evolutions, we drove the system to undergo the

free Hamiltonian in equation (4) for some time. For lo-

cal unitaries, we utilized GRadient Ascent Pulse Engineer-

ing (GRAPE) techniques [46, 47] to optimize them. The

GRAPE approach provided 1 ms pulse width and over 99.8%

fidelity for every local unitary, and furthermore all pulses were

rectified via a feedback-control setup in NMR spectrometer

to minimize the discrepancies between the ideal and imple-

mented pulses [48–50].

Experimental results and error analysis. We prepared

six input states by varying λ from 0.2 to 0.7 with 0.1 step

size in the form of equation (5). After the preparations, we

performed two-qubit full state tomography on each state, and

reconstructed them as ρe0 where the superscript emeans exper-

iment. The fidelity between the theoretical state ρ0AB and mea-

sured state ρe0 is over 98.2% for each of the six input states.

The infidelity can be attributed to the imperfections of PPS,

GRAPE pulses and minor decoherence effect. Nevertheless,

this infidelity is merely used to evaluate the precision of our

input state preparation. For the latter experiments, we only

compared the experimental results with ρe0, as ρe0 was the ac-

tual state from which we started the filter-based experiment.

After initial state preparation and each filter, we obtained

the reduced density matrix of qubit A and/or B by single-qubit

tomography in the subspace where the ancilla qubits are |00〉
(see Methods). Refer to Fig. 2a to see the seven gray dots

where single-qubit tomography occurred. The average fidelity

between the measured single-qubit state and the expected state

computed by ρe0 is about 99.5% (Supplementary Table S1),

which demonstrates that our filtering operations and single-

qubit tomographies are accurate.
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Figure 5. Fidelities between ρe
0

and ρe
f

for different λ’s. ρe
0

is obtained

from two-qubit state tomography right after the creation of the input state

ρ0AB , and ρe
f

from the maximum likelihood reproduction of ρ0AB based on

the own seven single-qubit states. The error bar comes from the fitting un-

certainty when extracting the NMR spectra into quantum states. All fidelities

are over 92.0%, which means the initial two-qubit state is able to be well-

reconstructed merely by the seven single-qubit states.

With the seven single-qubit states in hand, we could repro-

duce the initially prepared two-qubit state ρe0. The maximum

likelihood method was adopted here and ρef was found to be

closest to the experimental raw data. Not surprisingly, ρef is

very similar to ρe0, and the fidelity between them for every

λ is over 92.0% as illustrated in Fig. 5. Moreover, the real

parts of the density matrices ρe0 and ρef are shown in Fig. 7.

The experimental results clearly reveal that the information of

the seven single-qubit states collected during the filter-based

entanglement distillation procedure already enables the repro-

duction of the initial two-qubit state. In other words, this filter-

based proposal to universally detect and distill entanglement

is equivalent compared to doing a two-qubit state tomography.

Afterwards, we computed the concurrence for each case

with different input two-qubit state. Concurrence is an entan-

glement monotone defined for a mixed state ρ of two qubits

C(ρ) = max (0, λ1 − λ2 − λ3 − λ4) , (9)

where λ1, λ2, λ3 and λ4 are the eigenvalues of

R =
√√

ρ (σy ⊗ σy) ρ∗ (σy ⊗ σy)
√
ρ (10)
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in decreasing order. Apparently, the concurrence is propor-

tional to λ since λ is the weight of Bell-state which is the

only term contributing to entanglement. In Fig. 6, the brown

curve displays the value of concurrence as a monotonically

increasing function of Bell-state weight λ. The blue squares

represent the concurrence of ρe0, the state obtained from two-

qubit state tomography on the experimentally prepared state.

Recall that the preparation fidelity is always over 98.2% so

the blue squares do not deviate much from the brown curve.

The red circles represent the concurrence of ρef , which ideally

should be the same as blue squares if there are no experimen-

tal errors. However, in experiment we have inevitable errors

from many factors such as the imprecision of the single-qubit

readout stage, the imperfect application of filters and the re-

laxation, and we need to take them into account.

For convenience, we assume the errors originate from three

primary aspects and they are additive. One error is caused

by the imprecision of the single-qubit tomography procedure.

As we used a least-square fitting algorithm to analyze the out-

come spectra and converted the data into quantum states, the

fitting induced about 3.00% uncertainty to the single-qubit

readout result. The second is the error from applying imper-

fect filters in experiment. It mainly comes from the errors of

accumulating GRAPE pulses, which is about 1.59% for each

filter operation. The third error, to the lesser extent, is about

1.20% caused by decoherence. Therefore, in total we esti-

mated at most 5.79% error might occur in the entire process.

We dealt with it as an artificial noise and embedded it into the

theoretical input state ρ0AB . In simulation, we first discretized

λ to 200 values from λ = 0.1 to λ = 0.8. For a given λ,

2500 states were randomly sampled deviated from ρ0AB within

5.79% noise range. For every sampled state, the concurrence

was calculated and projected onto one point in Fig. 6. Hence,

a colored band-region was generated considering the density

of points. All of our experimental results have fallen into this

region, which is consistent with the simulation model.

DISCUSSION

We proved a no-go theorem that there is no way to detect

entanglement for an arbitrary bipartite state ρAB without FST,

if only single-copy non-adaptive measurements are allowed.

Our observation is due to a nice geometric picture: unless the

shape of the separable states is ‘cylinder-like’, it is not pos-

sible to find a projection of the state space to a lower dimen-

sional hyperplane with non-overlapping image for the set of

separable states and entangled states. Our method provides a

general framework to study the detection of other interesting

quantities for a bipartite quantum state, such as positive partial

transpose and k-symmetric extendibility.

We also have investigated the case of adaptive measure-

ments. It is proposed in [33] that the entanglement measure

concurrence for two-qubit states can be determined without

FST, via only single-copy measurements. To implement this

protocol, we developed an ancilla-assisted approach to realize

the filters. Practically, our technique can be extend to other

quantum systems other than optics to implement an amplitude
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Figure 6. Concurrence of ρ0AB , ρe
0

, and ρe
f

as a function of the Bell-

state weight λ. The brown curve shows the concurrence computed by the

theoretical state ρ0AB , and exhibits the value of concurrence as a monotoni-

cally increasing function of λ. The blue squares represent the concurrence of

ρe
0

, the state obtained from two-qubit state tomography right after the input

state preparation. Generally we can roughly assume this state is the truly pre-

pared state, and the following filtering operations are always applied this state

as long as we neglect the measurement error of reconstructing ρe
0

. The red

circles represent the concurrence of ρe
f

, the state reproduced from the seven

single-qubit states. Ideally ρe
0

and ρe
f

should be the same if there are no ex-

perimental errors. The colored band-region accounts for an artificial noise of

the strength 5.79%, which is roughly estimated from the fitting error 3.00%,

GRAPE imperfection error 1.59%, and decoherence error 1.20%. We added

this noise on the theoretical state ρ0AB , and randomly sampled 2500 states

within the noise range for every λ (200 values in [0.1, 0.8]). The colored

band-region is thus plotted based on the density of projected points out of

2500.

damping channel, which is of great importance in quantum in-

formation. By implementing this protocol, we show that given

the experimental data collected for certain state ρAB , this pro-

tocol in fact leads to FST of ρAB . Therefore, this protocol

does not lead to universal detection of entanglement of ρAB

without FST.

Our study thus reveals a fundamental relationship between

entanglement detection and quantum state tomography. That

is, universal detection of entanglement without FST is impos-

sible with only single-copy measurements. A natural question

is what if joint measurements on r copies of the state ρAB (i.e.

ρ⊗r
AB) for r > 1 are allowed. In this case, one indeed can detect

entanglement universally for any ρAB without reconstructing

the state, and one example for determining the concurrence of

a two-qubit ρAB is given in [22–24]. However, the protocol

of [23] involves joint measurements on 4 copies of ρAB (i.e.

ρ⊗4
AB), which makes the protocol hard to be implemented in

practice. It will be interesting to find a smaller r such that

joint measurements on c are enough to universally detect the

entanglement in ρAB without full state tomography.

In fact, there are cases that this is possible even for r =
2. For instance we have found such a scheme that detects

the entanglement of an arbitrary two-qubit state ρAB without

FST, if we allow joint measurements on 2-copies. The idea

is that ρAB is entangled if and only if [23] Det(ρTA

AB) < 0,
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Figure 7. Density matrices between ρe
0

and ρe
f

for different λ’s. Only the real parts are displayed. The upper row shows the density matrices of ρe
0

, which

are obtained directly after the input state preparation via two-qubit state tomography. The lower row shows the density matrices of ρe
f

, which are reconstructed

through the single-qubit information after implementing the entire circuit in Fig. 2a. For any λ, the fidelity between ρe
0

and ρe
f

is always above 92%.

where ρTA

AB is the partial transpose of ρAB on system A. So

we only need to design a scheme with measurements on ρ⊗r
AB

which can give the value of Det(ρTA

AB). This can indeed be

done without FST (see supplemental materials for details).

Furthermore, if only single-copy measurements are al-

lowed, one cannot determine the value of Det(ρTA

AB), even

with adaptive measurements. Assume such adaptive measure-

ments exist. Now, we let the input state is maximal mixed

state I/4, after the measurement, one can compute the deter-

minant. Notice that there exists at least one nonzero trace-

less R not measured, which means that this measurements

can not distinguish between I/4 and I/4 + tR. Therefore,

Det(I/4 + tRΓ) = Det(I/4) for sufficient small t. This then

leads to R = 0.

This strongly supports our no-go results, which indicates

that even with adaptive measurements, universal detection of

entanglement with single-copy measurements is impossible

without FST.

METHODS

Initialization in NMR. We first create the PPS from the

thermal equilibrium state, which is a highly mixed state and

not yet ready for quantum computation tasks. Since our sam-

ple consisting of four 13C’s is a homonuclear system, we sim-

ply set the gyromagnetic ratio of 13C to 1 and write the ther-

mal equilibrium state as

ρthermal =
I

2N
+ ǫ

N
∑

i=1

σi
z, (11)

where N = 4 is the number of qubits, I is the 2N × 2N unity

matrix, and ǫ ≈ 10−5 represents the polarization at room tem-

perature. This initialization step was realized by the spatial

average technique [42–44], and the related pulse sequence is

depicted in Fig. 4. In particular, the gradient pulses repre-

sented by Gz crush all coherence in the instantaneous state.

The final state after the entire PPS preparation sequence is

ρ0000 =
1− ǫ

16
I + ǫ|0000〉〈0000|. (12)

It is worthy stressing that the large identity does not evolve

under any unitary propagator, and it cannot be observed in

NMR. Thus we only need to focus on the deviation part |0000〉
as the entire system behaves exactly the same as it does.

Our aim input state is ρ0AB in equation (5). This mixed

state consists of three components: |φB〉, |φ1〉 and |φ2〉 with

a weight for each. Typically we repeated every experiment

by three times, and created one component in each round as

the input. The sequences to prepare all three components are

shown in the lower-right inset of Fig. 4, with all gates ap-

plied only on system qubits A and B. (i) For |φB〉, we ap-

plied a Hadamard gate on qubit A, and then a controlled-

NOT between A and B; (ii) for |φ1〉, we appliedRA
x (π/2) and

RB
y (π/2); (iii) for |φ2〉, we applied RA

y (π/2) and RB
x (0.7π).

Subsequently, each component undergoes the whole filtering

and measurement procedure respectively, with the final result

obtained by summarizing over all three experiments.

Single-qubit tomography after each filter. The entan-

glement distillation procedure described in Ref. [33] involves

iterative local filter operations, meaning that every filter de-

pends on the single qubit measurement result before. In ex-

periment we performed single-qubit tomography on system

qubit C2 or C3 correspondingly. It requires the measure-

ment of the expectation values of σx, σy and σz , respec-

tively. In our 4-qubit system, this single-qubit tomography

(assuming the measurement of C3) is equivalent to measuring

|0〉〈0|⊗σx,y,z⊗ I⊗|0〉〈0|, since we only need to focus in the

subspace where the ancilla qubits are |00〉. To get the expec-

tation values of the observables, a spectrum fitting procedure
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was utilized to extract these results from NMR spectra. Sup-

plementary Table S1 summarizes all of the single-qubit state

fidelities and two-qubit state fidelities for every λ, and as an

example Supplementary Fig. S1 shows the NMR spectra af-

ter each filter to measure <σx> and <σy> of the current single

qubit (C2 or C3) when λ = 0.5.
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Supplementary information: Tomography is necessary for universal entanglement detection with single-copy

observables

Appendix A: A general method to show that the set of separable states is not ‘cylinder-like’.

We use two-qubit states as an example, however our method generalized naturally to the case of any bipartite systems (see

supplemental materials for details).

Without loss of generality, we assume there is a set of Si, where 1 ≤ i ≤ 14, such that there is a function

g(tr(S1ρAB), tr(S2ρAB), · · · , tr(S14ρAB)) = 1 for entangled ρAB , and 0 otherwise. One can hence view g as an analogue

of an entanglement measure which is nonzero if and only if ρAB is entangled. Then one can find another observable R such that

trR = 0 and tr(R†Si) = 0 for any 0 ≤ i ≤ 14.

Our key observation is that for any non zero traceless R there exists some ρAB and real t such that ρAB + tR is non-negative

(hence is a quantum state), and ρAB is separable, ρAB + tR is entangled. That is, g(ρAB) cannot exist.

To show this, we consider some state on the boundary of separable states, i.e., the two-qubit isotropic states ρiso(α) =
(1− α)I/4 + α|Φ〉〈Φ| with |Φ〉 = 1√

2
(|00〉+ |11〉) being the Bell state. It is known that the isotropic state ρiso(α) is separable

if and only if α ≥ 1/3 [1, 2].

Now we let ρAB = ρiso( 13 ) =
1
6I+

1
3 |Φ〉〈Φ|, so ρAB is separable. For anyR, for sufficient small t, ρAB+ tR is non-negative

since ρAB is positive(full rank). Choose t > 0 such that ρAB + tR and ρAB − tR are both non-negative. Therefore, ρAB + tR
and ρAB − tR are separable. Notice that tr(σ|Φ〉〈Φ|) ≤ 1/2 holds for any separable state σ [3], we have

1/2 ≥ tr[(ρAB + tR)|Φ〉〈Φ|] =⇒ 0 ≥ tr[R|Φ〉〈Φ|],
1/2 ≥ tr[(ρAB − tR)|Φ〉〈Φ|] =⇒ 0 ≤ tr[R|Φ〉〈Φ|].

Thus, tr[R|Ψ〉〈Ψ|] = 0 holds for arbitrary maximally entangled state |Ψ〉 = (U ⊗ I)|Φ〉. In other words,

R = I ⊗M +N ⊗ I,

with tr(M) = tr(N) = 0.

Notice that for any non-singular matrix SA such that SANS
†
A is traceless, R′ = (SA ⊗ I)R(SA ⊗ I)† also satisfies the

property that ρAB + tR′ is separable if and only if ρAB is separable and ρAB + tR′ is non-negative. According to the previous

arguments, we know that R′ can be written as I ⊗M ′ +N ′ ⊗ I . Directly, one can conclude that M = 0. By choosing SB such

that SBNS
†
B being traceless, we can obtain that N = 0. Therefore, R must be 0. In other words, tomography is required for

detecting two-qubit entanglement by using the one copy non-adaptive measurement.

Appendix B: k-symmetric extension

In this section, we will show that the sets of states allowing k-symmetric extension are not ‘cylinder like’ for k ≥ 2, even

for two-qubit system, where a state ρAB is called k-symmetric extendable if and only if there exists σAB1B2···Bk
such that

σABi
= ρAB for all 1 ≤ i ≤ k.

We first recall that: A two-qudit Werner state is a state invariant under the U ⊗ U operator for all unitary U and has the

following form

ρW (ψ−) =
1 + ψ−

2
ρ+ +

1− ψ−

2
ρ−,

where ψ− ∈ [−1, 1] is the parameter, ρ+ and ρ− are the states proportional to the projection of the symmetric subspace and

anti-symmetric subspace respectively. ρW (ψ−) is k-symmetric extendable iff ψ− ≥ −(d− 1)/k proved in [4].

Assume that the set of states allowing k-symmetric extension is cylinder like. In other words there exists some traceless

Hermitian operator R such that ρ + tR is k-symmetric extendable if ρ is k-symmetric extendable and ρ + tR is positive

semidefinite.

Choose ρ0 = ρW (−(d− 1)/k), then ρ0 > 0 and for any R, there exists small t such that ρ0 + tR and ρ0 − tR are all positive

semidefinite. Therefore, they are both k-symmetric extendable. As a direct consequence, we have Werner states σ1 and σ2 are
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both k-symmetric extendable,

σ1 =

∫

U

(U ⊗ U)(ρ0 + tR)(U ⊗ U)†dU

= ρ0 + ttr(RP+)(ρ+ − ρ−),

σ2 =

∫

U

(U ⊗ U)(ρ0 − tR)(U ⊗ U)†dU,

= ρ0 − ttr(RP+)(ρ+ − ρ−),

where P+ and P− are the projection onto the symmetric subspace and anti-symmetric subspace respectively.

By using condition of [4], one can conclude that

1− (d− 1)/k

2
+ ttr(RP+) ≥ 1− (d− 1)/k

2
,

1− (d− 1)/k

2
− ttr(RP+) ≥ 1− (d− 1)/k

2
.

Therefore,

tr(RP+) = tr(Rρ+) = tr(RP−) = 0.

Similar technique can be applied for (V ⊗ I)ρ(V ⊗ I)† with unitary V . That leads us to

tr(R(V ⊗ I)ρ+(V ⊗ I)†) = 0.

That is, RΓ, the partial transpose of R, is orthogonal to all maximally entangled state (V ⊗ I)|Φ〉,

tr(RΓ(V ⊗ I)|Φ〉〈Φ|(V ⊗ I)†)

= tr(R(V ⊗ I)(P+ − P−)(V ⊗ I)†)

= 0.

Now we write R as follows,

RΓ
AB = I ⊗M +N ⊗ I +XAB ,

with tr(M) = tr(N) = 0, and XA = XB = 0. This can be done by simply choosing M =
(RΓ

AB)B
d , N =

(RΓ

AB)A
d and

XAB = RΓ
AB − I ⊗ (RΓ

AB)B
d − (RΓ

AB)A
d ⊗ I .

For sufficient small s, IAB/d + sXAB is a choi matrix of some unital quantum channel. According to Theorem 1 of [5], we

know that IAB/d+ sXAB is a linear combination of the density matrix of maximally entangled states, so is XAB . Thus,

0 = tr(RΓ
ABX

†
AB) = tr(XABX

†
AB),

where we use the fact that I⊗M +N ⊗ I is orthogonal to all maximally entangled states. Thus, XAB = 0 and R can be written

as

RΓ
AB = I ⊗M +N ⊗ I.

Now, notice that for any non-singular matrix SA such that SANS
†
A is traceless, R′ = (SA ⊗ I)R(SA ⊗ I)† also satisfies that

ρAB + tR′ is k-symmetric extendable if and only if ρAB is k-symmetric extendable and ρAB + tR′ is non-negative. Then we

know that R′ can be written as I ⊗M ′ +N ′ ⊗ I , too. Directly, one can conclude that M = 0. Thus, we only need to deal with

R = NΓ ⊗ I.

In the following, we deal with the two-qubit case. Note that there exists local unitary which transforms R into diagonal version

R = Z ⊗ I = diag{1, 1,−1,−1}.



13

We only construct some state ρ which is not 2-symmetric extendable [6] and ρ + R is separable. Then such ρ + R is

k-symmetric extendable for all k while ρ is not 2-symmetric extendable.

ρ : =















x 0 0
√
xw

0 y
√
yz 0

0
√
yz z 0

√
xw 0 0 w















, (B1)

ρ+R : =















x+ 1 0 0
√
xw

0 y + 1
√
yz 0

0
√
yz z − 1 0

√
xw 0 0 w − 1















(B2)

By using the condition of [6], ρ is not 2-symmetric extendable iff

(x+ z)2 + (y + w)2 < x2 + y2 + z2 + w2 + 2xw + 2yz,

⇔ (x− y)(w − z) > 0.

ρ+R is separable iff

(x+ 1)(w − 1) ≥ xw, yz,

(y + 1)(z − 1) ≥ xw, yz.

It is direct to see that one can choose some w > z > x > y > 0 such that

(x+ 1)(w − 1) ≥ xw ≥ yz,

(y + 1)(z − 1) ≥ xw ≥ yz.

Actually, we can choose ǫ to be sufficient small, and

x = y + ǫ,

z = y + 2,

w = y + 2 + ǫ.

Therefore, for all nonzero R, one can always find ρ and ρ+R such that ρ+R is separable and ρ is not 2-symmetric extendable.

This shows that the set of states allowing k-symmetric extension is also not ‘cylinder-like’, even for two-qubit system.

Appendix C: The case of joint measurements

We discuss the case of joint measurements on r copies of ρAB (i.e. ρ⊗r
AB) with r > 1. We take the two-qubit case as an

example. In this case, it is known that ρAB is entangled if and only if [7]

Det(ρTA

AB) < 0, (C1)

where ρTA

AB is the partial transpose of ρAB on system A.

Notice that the determinant of ρTA

AB is a polynomial of degree 4 in terms of the matrix entries of ρAB , so it can be detected by

measuring only a single observable on 4 copies of ρAB (i.e. ρ⊗4
AB) [7].

For the case of joint measurements with r = 2, however, one cannot measure only a single observable to get Det(ρTA

AB).

Nevertheless, we show that the value of Det(ρTA

AB) can be get without full state tomography with only a single joint measurement

on ρ⊗2
AB .

To see how this works, we rewrite ρTA

AB as

ρTA

AB =





R S

S† T



 ,
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with R is a 3× 3 matrix, S is 3× 1, and T is 1× 1.

We can first determine R by single-copy measurements on ρTA

AB , where 9 independent observables need to be measured. After

that, T is known by the normalization condition trρTA

AB = 1 This does not lead to a full state tomography on ρAB , since S is

undetermined, with 6 free real parameters.

However, after knowing R and T , Det(ρTA

AB) is a polynomial of degree 2 in terms of the matrix entries of ρAB , so it can be

detected by measuring only a single observable on 2 copies of ρAB (i.e. ρ⊗2
AB). Together with the measurements on R and S, we

have total 10 measurement outcomes that determine universally whether ρAB is entangled or not. And this does not lead to full

state tomography of ρAB , since ρAB needs 15 real parameters to determine.

In this way, we determine whether ρAB is entangled or not without full state tomography, by measuring a single observable

on ρ⊗2
AB together with single copy measurements. This indicates that our no-go results for single copy measurements fail in the

case if joint measurements are allowed, even for r = 2.

Appendix D: Experimental results of single-qubit tomography after each filter

Table S1 summarizes all of the single-qubit state fidelities and two-qubit state fidelities for every λ, and as an example Fig.

S1 shows the NMR spectra after each filter to measure <σx> and <σy> of the current single qubit (C2 or C3) when λ = 0.5.

Two‐qubit Fidelity Single‐qubit Fidelityλ , Filter 1 Filter 2 Filter 3 Filter 4 Filter 5

0.2 0.9827  0.9987 0.9754 0.9691 0.9910 0.9698

0.3 0.9841  0.9994 0.9808 0.9984 0.9999 0.9916

0.4 0.9916 0.9995 0.9961 0.9942 0.9906 0.9865

0.5 0.9902 0.9989 0.9960 0.9960 0.9966 0.9969

0.6 0.9886 0.9996 0.9982 0.9982 0.9972 0.9965

0.7 0.9830 0.9983 0.9910 0.9997 0.9953 0.9955

Table S1. Fidelities of the experimental results compared with the theoretical ones for every λ. F (ρ0AB , ρe
0
) is the fidelity between the theoretical 2-qubit state

ρ0AB and ρe
0

which is the truly prepared 2-qubit state. Meanwhile, the fidelities of the five single-qubit states after each filter are also shown.
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Figure S1. NMR spectra of measuring <σx> and <σy> of single qubit after each filter for λ = 0.5. (a-e) are produced after filter 1-5, respectively. (a, c,

e) show spectra of C2, and (b, d) show C3. The red curve is the simulation result assuming the input state is |0〉〈0| ⊗ ρe
0
⊗ |0〉〈0|, and the blue curve is the

experimental result which can be used to extract <σx> and <σy> of the current qubit. The black curve shows the fitting spectrum to obtain <σx> and <σy>.

To measure <σz>, we rotated it to σx with a π/2 pulse around y-axis and then measured. It can be seen that the fitting matches extremely well with the

experimental result, which means our readout values are very accurate.
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