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TomoTwin: generalized 3D localization 
of macromolecules in cryo-electron 
tomograms with structural data mining
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Cryogenic-electron tomography enables the visualization of cellular 
environments in extreme detail, however, tools to analyze the full amount 
of information contained within these densely packed volumes are still 
needed. Detailed analysis of macromolecules through subtomogram 
averaging requires particles to first be localized within the tomogram 
volume, a task complicated by several factors including a low signal to 
noise ratio and crowding of the cellular space. Available methods for this 
task suffer either from being error prone or requiring manual annotation 
of training data. To assist in this crucial particle picking step, we present 
TomoTwin: an open source general picking model for cryogenic-electron 
tomograms based on deep metric learning. By embedding tomograms in an 
information-rich, high-dimensional space that separates macromolecules 
according to their three-dimensional structure, TomoTwin allows users to 
identify proteins in tomograms de novo without manually creating training 
data or retraining the network to locate new proteins.

Cryogenic-electron tomography (cryo-ET) has emerged as a landmark 
technique for the visualization of macromolecules within their native 
cellular environment1–7. Advances in high-pressure freezing and focused 
ion beam milling at cryogenic temperatures now allow for the routine 
preparation of thin (less than 200 nm) lamellae from cells or even small 
organisms8–10. Cryo-ET offers a unique opportunity to capture cellular 
processes in three dimensions and in unprecedented detail, and subse-
quent analysis of specific macromolecules from tomograms through 
subtomogram averaging (STA) allows for in-depth structural determina-
tion of macromolecular complexes in situ11–14. Particularly when comple-
mented by recent advances in structure prediction such as alphafold2, 
STA forms a powerful crossbridge between protein biochemistry and 
cellular proteomics15–17. To perform STA, however, particles of a mac-
romolecule of interest must first be located within the tomograms, a 
task complicated by the three-dimensional (3D) nature of these data.

The accurate localization of macromolecules inside cryo-electron 
tomograms is a well-recognized barrier for studying cellular life at the 

mesoscopic level18. This has led to the development of several deep 
learning-based tools often leveraging popular 3D-Unet convolutional 
neural network (CNN) architectures19–21. None of these approaches, 
however, have been able to demonstrate generalization, meaning 
that for each protein of interest, users must first manually annotate 
hundreds to thousands of particles in tomograms and train the neural 
network to identify that protein. Not only is this incompatible with the 
future directions of automated tomogram reconstruction and STA, 
but for most of the proteome, manually annotating sufficient train-
ing data from experimental tomograms to train the network is not 
possible. As a result, these deep learning tools cannot currently assist 
in answering many of the outstanding biological questions for which 
cryo-ET presents vast potential. Owing to this issue of usability, tem-
plate matching22,23 is still highly used in cryo-ET processing workflows, 
especially those that place an emphasis on throughput24, although this 
technique suffers notably by comparison in terms of picking accuracy, 
often limiting the overall effectiveness of STA.
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embedding for that macromolecule in the embedding space (Fig. 1d 
and Extended Data Fig. 1a).

Two workflows to locate macromolecules in 
tomograms
TomoTwin embeds tomograms in a high-dimensional space where 
subvolumes of each macromolecule are located in a distinct region of 

To date, no methods have demonstrated the accuracy of deep 
learning-based picking with an unexceptionable level of usability for 
cryo-ET. One method to retain this accuracy while circumventing the 
requirement of manually annotating training data for each protein of 
interest is to train a model to learn a generalized representation of a 
3D molecular shape that then can differentiate between macromol-
ecules based on their structure. Such general models have seen a high 
uptake in two-dimensional (2D) particle picking for single particle 
cryo-electron microscopy (cryo-EM) analysis25–28 although the transla-
tion of these methods to tomograms is still lacking due to the additional 
challenges posed by 3D tomography data.

Particularly well suited to this challenging case of generalization is 
deep metric learning in which data are encoded as a high-dimensional 
representation, called an embedding29,30. During training, the model is 
penalized for placing data from different classes near to one another 
and rewarded for placing data from the same class close together in 
the embedding space31. Therefore, over the training process the model 
learns to cluster each class in a distinct region of the embedding space 
where similar classes are placed closer together and dissimilar ones fur-
ther apart. In some cases, the embeddings of a dataset are sufficiently 
ordered to allow for de novo identification of classes in the embedding 
space31. By understanding similarity relationships, deep metric learn-
ing models have demonstrated an acute generalizability, being able 
to place new classes of data in the embedding space according to their 
similarity to known classes without requiring retraining31–33.

Here we present TomoTwin, a generalized particle picking 
model and deep metric learning toolkit for structural data mining of 
cryo-electron tomograms. We supply two workflows for macromo-
lecular localization with TomoTwin, a reference-based workflow in 
which a single molecule is picked for each protein of interest and used 
as a target, and a de novo clustering workflow where macromolecular 
structures of interest are identified on a 2D manifold. Trained on a 
diverse set of simulated tomograms, the picking model of TomoTwin 
can locate new proteins with high accuracy in not only simulated data, 
but in experimental tomograms as well. By removing the steps of anno-
tating training data and retraining a picking model for each protein, 
TomoTwin combines the accuracy of deep learning-based particle 
picking with a high degree of usability and allows for the simultaneous 
picking of several proteins of interest in each tomogram.

Overview of functions, build and philosophy 
behind TomoTwin
The machine learning backbone of TomoTwin is built on the principle 
of learning generalized representations of 3D shapes in tomograms 
(Extended Data Fig. 1b,c). Trained with deep metric learning, the 3D 
CNN is able to locate not only macromolecules from the training set, 
but generalize to new macromolecules as well, allowing TomoTwin to 
retain the high fidelity of deep learning-based picking while avoiding 
the burden of requiring retraining for each protein of interest. The gen-
eral model embeds tomograms by sampling overlapping subvolumes 
and embedding them according to the similarity of their macromolecu-
lar contents (Extended Data Fig. 1d). Once a tomogram is embedded, 
particles of each macromolecule can be picked by identifying their 
associated region in the embedding space. This can be done either by 
identifying a single example of each protein of interest in a tomogram 
and using them to mark the region of the space where they are embed-
ded (reference-based workflow), or by approximating the tomogram 
embeddings onto a 2D manifold where clusters for each macromol-
ecule can be identified by eye (clustering workflow) (Fig. 1a,b). Once 
the embeddings containing a protein of interest are identified, they 
must be mapped back to the tomogram where overlapping picks of 
the same molecule can be consolidated into one centralized pick per 
molecule (Fig. 1c). Finally, TomoTwin allows users to interactively filter 
the picked particles for each macromolecule of interest based on the 
particle size and the distance between each particle and the target 
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Fig. 1 | TomoTwin identifies and localizes particles by a clustering or a 
reference-based workflow. a, The first step in using TomoTwin is to embed the 
tomogram with the pretrained model. Optionally, references can be selected and 
embedded as well to create target embeddings. b, For the clustering workflow 
the tomogram embeddings are projected on a 2D manifold and an interactive 
lasso tool is used to select clusters of interest to generate target embeddings. 
c, The distance matrix between each target embedding and the embeddings 
of the tomogram is calculated. d, All local maxima are located with TomoTwin 
Locate and are used to pick final coordinates for each protein of interest using 
TomoTwin Pick with confidence and size thresholding.
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the space. To identify the location of a macromolecule in the embedding 
space, we provide the user with two workflows: a reference-based work-
flow and a clustering workflow. Each workflow picks particles with high 
accuracy, but the reference-based approach begins with identifying an 
example of the protein of interest in the tomogram and mapping this 
to the embedding space whereas the clustering workflow begins with 
identifying a region of the embedding space and mapping this to the 
tomogram. Which workflow is most suitable for any given application 
depends on how easily the protein(s) of interest can be identified in the 
tomogram versus the embeddings. If an example particle of a protein 
can be identified in a tomogram, the reference-based workflow offers 
a streamlined picking approach. Conversely, the clustering workflow 
offers advantages for exploring the macromolecular contents of a 
tomogram without requiring a priori knowledge. Both workflows share 
the common first step of using the embedding function of TomoTwin 
to generate a high-dimensional embedding of the entire volume of 
the tomogram (Fig. 1a).

In the reference-based workflow, a single molecule of each protein 
of interest in a tomogram is embedded to generate a target embedding 
for that protein. In the clustering workflow, the tomogram embed-
dings are approximated onto a 2D manifold. This 2D manifold can 
then be directly used to outline one or more clusters of interest using 
an interactive tool. The mean embedding of the enclosed subvolumes 
of each cluster is then used as a target embedding in lieu of a reference 
(Fig. 1b). The Map function of TomoTwin takes as input the tomogram 
embeddings and target embedding(s) and calculates the distance 
between the target(s) and each subvolume in the embeddings. These 
distances are mapped to the subvolume positions, constructing a map 
of proposed particle locations within the tomogram for each protein 
of interest (Fig. 1c). The Locate function uses this map to localize peaks 
of high similarity and generate candidate particle positions. Finally, 
the Pick function of TomoTwin in tandem with the graphical user 
interface uses these candidate positions along with adjustable size 
and similarity thresholds to pick particles in the tomogram producing 
a coordinate file for each protein of interest suitable for STA or other 
analysis (Fig. 1d).

Training of the general picking model
TomoTwin is trained using deep metric learning on triplets of sub-
volumes from simulated tomograms. The triplets are constructed as 
sets of three subvolumes each containing a particle, two containing 
the same protein and one a different protein, called the anchor, posi-
tive, and negative respectively. A set of 120 structurally dissimilar pro-
teins procured from the Protein Data Bank (PDB) ranging in size from 
30 kDa to 2.7 mDa were used to simulate 84 tomograms containing 
a total of 120,000 particles (Extended Data Fig. 2). During training, 
batches of subvolumes are embedded by the 3D CNN that transforms 
each 37 × 37 × 37 subvolume to a 32-length feature vector located on a 
high-dimensional embedding manifold molded to the surface of a 32D 
hypersphere (Extended Data Fig. 1b). These feature vectors are then 
used for metric learning.

Through training, TomoTwin learns to place each macromol-
ecule within a distinct region of the embedding space, where more 
structurally similar macromolecules are placed closer together and 
dissimilar ones further apart (Extended Data Fig. 1d). By training on a 
large, diverse set of 3D macromolecular shapes and sizes, TomoTwin 
learned a generalized representation of 3D macromolecular shapes 
that it leverages to place new macromolecules in the embedding space 
relative to their structural similarity to known proteins without requir-
ing retraining.

The picking model generalizes across protein 
shape and size
Because a priori information on the ground-truth locations of all mol-
ecules in a tomogram is not possible to obtain for experimental data, 
we first assessed the picking performance of the trained model on 
simulated tomograms containing proteins from the training set.

The median F1 picking score across all validation tomograms was 
0.88 with a range from 0.76 to 0.98 (Extended Data Fig. 3a). Across all 
proteins in the training set ranging from 30 kDa to 2.7 mDa, the median 
validation F1 picking score is 0.92 (Extended Data Fig. 3b). In rare cases, 
outlier scores were observed where specific proteins could not be 
picked across a range of sizes (Extended Data Fig. 3c). Closer inspection 
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Fig. 2 | The generalized model of TomoTwin locates novel proteins accurately. 
a, True-positive selected particles (white) and false negative (black) of the 
largest protein (PDB ID 2DF7) (896 kDa) in the generalization tomogram. b, The 
smallest protein (PDB ID 1FZG) (142 kDa) in the generalization tomogram. The F1 
scores are 0.99 and 0.88 for largest and smallest protein, respectively. c, When 
increasing the number of proteins used during training, the mean F1 score for 
each protein (n = 7) in the generalization tomogram increased as well. The mean 

F1 scores are 0.49, 0.73 and 0.82 for a model trained on 20, 50 and 100 proteins, 
respectively. d, The model trained on the full training set of 120 proteins reached 
a mean F1 score of 0.82 but has the highest median F1 score of 0.85. Each box 
in c and d extends from the first (Q1) to the third quartile (Q3). The median is 
marked by a line inside the box. Whisker lines correspond to box edges ±1.5 times 
interquartile range. White scale bars, 100 nm; black scale bars, 5 nm.
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of these outliers revealed that in the simulated tomograms, each of 
these proteins display a particularly weak signal when compared to 
proteins of similar size (Extended Data Fig. 3d). In these cases, the 
proteins display a shape that is not recovered well during tomogram 
reconstruction by weighted back projection. Despite this, picking on 
the validation tomograms demonstrated high accuracy for proteins 
across a wide array of shapes and sizes.

TomoTwin generalizes to unseen proteins
To assess the generalization of the general picking model to particles that 
were not in the training dataset, we measured the picking performance 
on a simulated tomogram, called the generalization tomogram that con-
tains proteins not included in the training set, with the reference-based 
workflow. When trained on a set of 120 dissimilar proteins (Extended 
Data Fig. 2), the resulting model was able to locate all seven proteins 
accurately with a median F1 score of 0.82 despite a lack of previous train-
ing on these proteins (Fig. 2d). To measure the effect of training set 
size on generalization accuracy we performed this analysis on picking 
models trained on 20, 50, 100 and 120 proteins where we observed a 
logarithmic increase in generalization accuracy with the number of 
proteins in the training set (Fig. 2c). This high accuracy in locating novel 
proteins indicates a high generalization capability of TomoTwin, a feat 
no other deep learning picking method for cryo-ET has reported so far.

To quantitatively measure the effect of increased particle density 
on picking quality, we simulated an additional generalization tomo-
gram in which the number of particles per protein in the tomogram 
is increased by fivefold to replicate a highly crowded environment 
(Extended Data Fig. 4a). In this densely packed tomogram, we observe 
an overall mean F1 picking score of 0.82 indicating that while particle 
picking in dense environments containing many proteins poses an 
additional challenge, the picking performance of the TomoTwin gen-
eral model remains unequivocal.

TomoTwin picks proteins accurately in 
experimental tomograms
As TomoTwin is trained entirely on simulated data, it is paramount to 
investigate its ability to pick proteins of interest in experimental tomo-
grams. To evaluate this, we tested the picking accuracy of TomoTwin 
on several experimental datasets.

First, cryo-ET was performed on a sample containing a mixture of 
three proteins, apoferritin34, the Type VI secretion effector RhsA from 
Pseudomonas protegens35 and the Tc toxin A component TcdA1 from Pho-
torhabdus luminescens36 as well as liposomes (DOPC/POPC) (Fig. 3a).  
This mixture was chosen to create a complex, crowded environment 
in vitro that may confound picking accuracy. Ten reconstructed tomo-
grams were picked for apoferritin, RhsA and TcdA1 using the general 
model. In each case, the reference-based workflow was used in which 
a target embedding was created by picking a single example of each 
protein in one tomogram. The target embedding of each protein was 
then applied for picking across all tomograms in the dataset. Direct 
visualization of the similarity maps and picks reveals that TomoTwin 
identified each protein in the mixture with minimal confounding from 
the crowded environment, contaminants, degraded particles or non-
target proteins to achieve high-fidelity picking (Fig. 3b). Additionally, 
the percentage of particles in good 2D classes was measured as a rela-
tive indicator of the precision (Fig. 3c and Extended Data Fig. 5c–e). This 
is further confirmed by manual calculation of recall and precision for 
TcdA1 (recall 0.81, precision 1.0) and apoferritin (recall 0.91, precision 
1.0) by counting picked and missed particles (Extended Data Fig. 5a,b).

This picking result affirms several aspects of the generalizabil-
ity of TomoTwin for particle picking in tomograms. Foremost, that 
TomoTwin generalizes to new proteins without requiring retraining as 
none of these proteins were included in the training set. Of equal impor-
tance, the high-fidelity picking indicates that TomoTwin, trained on 
simulated tomograms, can also be applied to experimental tomograms.
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Fig. 3 | TomoTwin accurately localizes multiple proteins simultaneously 
in crowded tomograms. a, Representative slice of a tomogram containing a 
mixture of apoferritin, RhsA and TcdA1. Scale bar, 100 nm. b, Cosine similarity 
heatmap and representative picking for apoferritin (red), RhsA (green) and  
TcdA1 (blue), respectively. Total subvolumes picked were: apoferritin, 848;  

RhsA, 2196; and TcdA1, 122. Scale bar, 50 nm. c, Protein structures of apoferritin 
(PDB ID 1DAT), RhsA (PDB ID 7Q97) and TcdA1 (PDB ID 6L7E) and the ratio of 
picked subvolumes contained in selected good and bad 2D classes. Scale bar, 
100 nm. Supplementary Video 1 is a video going through the tomogram in the z 
direction with the individual picks for TcdA1, apoferritin and RhsA highlighted.
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One of the principal advantages of cryo-ET is the ability to directly 
visualize proteins in their native cellular environments. Owing to 
crowding of the cellular space and the poor contrast caused by thick 
specimens however, particle localization within a cellular environ-
ment presents a substantial challenge. To assess its ability to locate 
particles in cellular tomograms, we applied TomoTwin to a dataset of 
tomograms containing Mycoplasma pneumoniae37 (EMPIAR 10499) 
(Extended Data Fig. 6a). Using the TomoTwin general model, we picked 
70S ribosomes in 65 tomograms with the reference-based workflow 
in which a single ribosome was identified in a tomogram and used to 
generate a target embedding that was then applied to pick the entire 
dataset (Extended Data Fig. 6b,c). To visualize the results, we extracted 
pseudo-subtomograms38 and performed 3D classification using a 70S 
ribosome cryo-EM structure (EMD-11650), lowpass filtered to 30 Å as 
a reference. As all 3D classes resemble ribosomes refined to roughly 
15 Å, it clearly indicates that TomoTwin also picks highly accurately in 
cellular tomograms (Extended Data Fig. 6d).

TomoTwin establishes new standards of accuracy 
and usability
To establish how TomoTwin compares with available methods for par-
ticle picking in cryo-ET, we directly measured the picking performance 
first against template matching and subsequently against nongeneral-
izing machine learning workflows.

Several software are available for template matching in cryo-ET 
including EMAN2 (ref. 39), Dynamo40 and PyTom41, from which we 
selected EMAN2 as a representative case. When applied to the valida-
tion dataset of 120 proteins ranging in size from 30 kDa to 2.7 mDa, 
TomoTwin demonstrated superior picking performance compared to 
EMAN2 as measured by the F1 accuracy score as well as a greater consist-
ency in picking accuracy across the entire range of proteins (Extended 
Data Fig. 7a). Moreover, this advantage was carried over to picking 
performance on the generalization tomogram (Extended Data Fig. 7b).

Directly comparing TomoTwin against nongeneralizing machine 
learning picking workflows is more challenging as the main distinction 
comes at the level of usability rather than statistical picking accu-
racy. The advantage of nongeneralizing deep learning approaches, 
such as DeepFinder19, over template matching has been previously 
demonstrated in the ability to achieve a low-resolution reconstruc-
tion of the enzyme ribulose-1,5-biphosphase carboxylase-oxygenase 
(RuBisCO) with fewer particles than were needed when picking 
with template matching19. To achieve this, however, first template 
matching was used to pick RuBisCO in tomograms, then manual 
curation of the picks to reach more than 175,000 annotated par-
ticles to train and validate a model for picking the enzyme in the 
remaining tomograms. While producing a high accuracy overall, a 
combination of template matching and manual picking was used to 
generate training data and the training step alone in this workflow 
required 35 hours. This sample is particularly suitable for assessing 
the performance of particle picking in a crowded cellular environ-
ment due to the unconventional phenomenon of RuBisCO pack-
ing into a densely packed protein matrix inside the pyrenoid. When 
applied to a tomogram from the same dataset (EMPIAR 10694), 
TomoTwin was able to localize RuBisCO with a recall of 0.8 (Extended 
Data Fig. 8) based on a single reference. These picks proved suffi-
cient for direct analysis by STA surpassing the previously reported 
resolution while maintaining a highly efficient workflow (Fig. 4).  
Comparing the map of RuBisCO from TomoTwin raw picked particles 
with the original (EMD-3694)42 shows that the reconstruction from 
TomoTwin picked particles is of a comparable if not superior quality 
and thus TomoTwin picking did not limit the resolution that can be 
achieved by STA (Extended Data Fig. 9e). Furthermore, as a result of 
not requiring the user to manually annotate training data or retrain 
the network to pick these particles, TomoTwin was able to generate 
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Fig. 4 | TomoTwin matches the quality of supervised deep learning 
approaches without any training required. a, Slice of a tomogram containing 
a C. reinhardtii pyrenoid. Scale bar, 200 nm. b, Picking and processing pipeline. 
Picking scale bar, 100 nm; 3D refinement scale bar, 4 nm.
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these accurate picking coordinates with a total working time of under 
1 hour. When applied to the same tomogram, the clustering workflow 
achieved similar picking results (Extended Data Fig. 8).

TomoTwin generalizes across a variety of 
experimental setups
In addition to generalizing to pick new proteins, a highly usable picking 
tool must also generalize across a variety of common experimental 
practices in cryo-ET.

While trained solely on simulated tomograms with a total dose 
of 150 e/Å2, collected from tilt series ranging from −60° to 60° in 2° 
increments, the aforementioned picking examples on experimental 
tomograms demonstrate several additional degrees of generaliza-
tion including tilt range, tilt step, total dose and detector (Extended 
Data Fig. 7e).

To further analyze the effect of varying experimental parameters 
quantitatively, several congruent simulated generalization tomo-
grams were created wherein the tilt range and total dose were varied to 

account for a range of possible cryo-ET experimental setups (Extended 
Data Fig. 7). To control for possible bias from the reference particle used 
for picking, five reference particles were used for each protein and the 
reference that returned the most consistent picking result across the 
parameters was reported.

Decreasing the tilt range increases the effects of the missing wedge 
artifact on the reconstructed tomogram resulting in a stronger defor-
mation of each reconstructed particle43. This effect is particularly 
pronounced on long, thin particles such as carbon monoxide dehy-
drogenase (PDB 1OAO) making accurate particle picking substantially 
more challenging. Overall, we observe a 5.4 and 10.3% decrease in mean 
F1 picking performance when the tilt range is restricted from −60°60° 
to −50°50° and −40°40°, respectively (Extended Data Fig. 7c).

Similarly, decreasing the total electron dose directly reduces the 
protein signal resulting in a tomogram with a reduced signal to noise 
ratio. We observe a 2.3 and 8.6% decrease in F1 picking performance 
when the total dose is restricted from 150 to 135 and 120 e/Å2, respec-
tively (Extended Data Fig. 7d).
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Fig. 5 | TomoTwin enables structural data mining on the embedding 
manifold. a, Highlighted clusters of all seven proteins on the generalization 
tomogram 2D manifold approximation. b, Respective particle locations from  
cluster 3 (left) and 5 (right) that correspond to the proteins with PDB ID 2DF7  
and 1FZG, respectively. The true-positive picks are white and false negatives 
are black. In both cases there were no false-positive selections. c, 2D manifold 
approximation of the embedding space of a tomogram containing  
M. pneumoniae (EMPIAR 10499). The manual selected cluster is highlighted 

that corresponds to the 70S ribosome. d, Using the cluster center for picking 
identified all ribosomes previously selected by the reference-based picking 
(white) with a few reference-only selections (blue). e, F1 scores for the individual 
clusters in comparison with the F1 scores for reference-based picking. On 
average, the clustering performed slightly better (0.84 versus 0.82 mean  
F1 score). More detailed metrics can be found in Extended Data Fig. 7f,g.  
Scale bar, 100 nm.
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Overall, while a decrease in picking performance with the increase 
in corruption or lack of protein signal in tomograms is expected, 
TomoTwin leverages the high degree of adaptability rooted in its deep 
metric learning backbone to achieve accurate particle picking.

Structural data mining on the embedding 
manifold
The embedding feature of TomoTwin maps tomograms as a series of 
embeddings organized according to their macromolecular contents. 
Such organized embeddings present ideal candidates for structural 
data mining. These embeddings can be directly visualized by approxi-
mation on a 2D manifold (Fig. 5a,c). Typically, these 2D plots contain a 

large elongated mass corresponding to a combination of background 
embeddings and the overall effect of dimensional reduction, as well 
as additional well-defined clusters. These clusters represent common 
structural moieties in the tomogram including prominently expressed 
proteins, but also in the case of experimental data, membranes, fidu-
cials and embeddings containing off centered proteins. The clustering 
workflow of TomoTwin allows users to interactively identify clusters 
of interest and generate targets for particle picking without requiring 
any a priori knowledge of the tomogram contents. However, it does 
require that the abundance of a protein is high enough to form a cluster.

To evaluate the accuracy of clustering-based picking quantita-
tively, we evaluated the F1 picking score when using clustering-based 

3D classification
without alignment

3D refinement

3D classification
without alignment

3D refinement

a b

dc

6,958 subvolumes
at 4.644 Å per pixel

7,039 subvolumes
at 4.644 Å per pixel

3D refinement with
spherical reference

3D refinement with
spherical reference

Fig. 6 | TomoTwin’s clustering workflow locates proteins in cellular 
tomograms de novo. a, Slice through a tomogram containing a Y. entomophaga 
cell. Coordinates picked from two separate clusters highlighted in green and 
purple. Scale bar, 100 nm. b, TomoTwin representation map for the tomogram 
shown in a. Clusters corresponding to picks are highlighted in the same color 

scheme as a. c, STA processing pipeline for identifying proteins picked with  
the clustering workflow. d, 3D refined maps from STA analysis fit with a  
bacterial ribosome (left) (PDB ID 7K00) and a bacterial RNA polymerase (right) 
(PDB ID 1HQM). Scale bar, 10 nm.
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picking for each protein in the generalization tomogram (Fig. 5b,e and 
Extended Data Fig. 7f,g). The clustering-based picking identified each 
protein with high accuracy across a range of sizes, indicating that this 
workflow provides an alternative, but effective, method of particle 
picking. Also notable in the visualized embeddings is the fact that 
individual protein clusters are globally organized by size, indicating 
that the model accurately represents similarities in macromolecular 
shapes as distance in the embedding space (Fig. 5a).

We additionally compared the clustering-based picking against 
the reference-based approach for the cellular tomograms containing 
M. pneumoniae (Fig. 5c). Visualizing the embeddings of these tomo-
grams, several clusters are visible. One of which, when picked, produces 
accurate particle locations for 70S ribosomes nearly identical to those 
produced by the reference-based approach further underlining the 
robustness of both workflows (Fig. 5d).

Finally, one outstanding question for the study of macromolecules 
in situ by cryo-ET is how much of the proteome can be feasibly studied 
by STA. While undoubtably improvements in overall tomogram con-
trast by denoising44, missing wedge inpainting45 or other methods will 
have a large impact, the clustering workflow of TomoTwin for de novo 
protein localization represents one method of probing regions of the 
proteome hitherto uncharted by cryo-ET. To explore the reach of the 
clustering workflow in situ, we applied it to tomograms containing Yers-
inia entomophaga undergoing controlled cell lysis. After embedding 
the tomograms, performing the clustering workflow on one tomogram 
revealed several clusters, two of which corresponded to identifiable 
biomolecules in the tomograms (Fig. 6a,b). The picked coordinates for 
each cluster were extracted and used for STA using a spherical reference 
to assess which biomolecules they contained (Fig. 6c). Refinement of 
the first cluster (15.5 Å) readily revealed that the cluster contains the 
70S bacterial ribosome (Fig. 6d). The second cluster contains a consid-
erably smaller biomolecule. Refinement of these picks by STA with a 
spherical reference resulted in a low-resolution (18.6 Å) reconstruction 
of a protein previously undescribed by STA with the approximate shape 
of a bacterial RNA polymerase (Fig. 6d). RNA polymerase is known to be 
expressed in high abundance, although at this resolution direct iden-
tification of the protein from the refinement is not absolute. Notably, 
TomoTwin clustered particles of the same protein together regardless 
of whether they remained contained within the cell or adjacent to it as a 
result of lysis, demonstrating that the embedding of proteins remains 
consistent across various surrounding environments.

Discussion
Despite offering the potential to study proteins in their native, cellular 
environment, it remains that presently only a select few proteins have 
been successfully studied by cryo-ET with STA. In part, this is because 
with increased cellular context, the formation of macromolecular com-
plexes, and poorer contrast caused by thicker specimens, comes the 
challenge of picking individual proteins for subsequent STA. To assist 
in this crucial particle picking step, we developed TomoTwin, a robust 
general picking model for cryo-electron tomograms based on deep 
metric learning. TomoTwin allows users to identify proteins in tomo-
grams de novo without manually creating training data or retraining 
the network each time a new protein is to be located.

TomoTwin offers two complementary workflows for picking par-
ticles. The reference-based workflow for picking readily observable 
macromolecules in tomograms, and the clustering workflow that offers 
a unique opportunity to explore tomogram contents interactively 
without a priori knowledge. While currently limited in its picking utility 
by the overall contrast achievable during tomogram reconstruction, 
the clustering workflow used in conjunction with future advances in 
tomogram reconstruction presents a potential method of extending 
the proportion of the proteome that is accessible for STA.

The missing wedge of information in cryo-ETs contributes to 
the deformation of reconstructed particles particularly along the xz 

plane43. However, in some biological contexts the ability to accurately 
locate proteins of interest in this view becomes extremely relevant. 
As opposed to the typical view of a tomogram as a series of xy views, 
TomoTwin picks particles directly in 3D resulting in accurate picking 
not only in xy, but along the z axis as well. This allows users to confi-
dently view their picks along their preferred axes of choosing and pick 
particles that may be difficult to spot when only viewed from the xy 
plane (Extended Data Fig. 4b–f).

Additionally, the need for increased data throughput necessi-
tates the development of algorithms for automated processing in 
cryo-ET26,46–49. TomoTwin can be readily integrated with high through-
put tomogram reconstruction and STA workflows and, when combined 
with unsupervised clustering algorithms50, TomoTwin paves the way 
for unsupervised STA analysis on a whole-tomogram level (Extended 
Data Fig. 9).

While TomoTwin particle picking presents advantages over cur-
rent workflows in terms of accuracy and usability, it is not without its 
limitations. Currently, the model is not designed to pick membrane 
proteins or filaments. Additionally, the appearance of protein clusters 
in the clustering workflow largely depends on the copy number of the 
protein in the tomogram. For example, in the Y. entomophaga cells, 
only seven Tc toxin molecules were observed in the tomogram mak-
ing this protein indiscernible with the clustering workflow, although 
it is readily and accurately picked with the reference-based workflow. 
Further, because TomoTwin is trained with a pixel size of 10 Å, the 
current model is not designed to differentiate between multiple con-
formations of the same protein at the particle picking level. Finally, 
although the training data included proteins as small as 30 kDa, dur-
ing generalization the expected lower limit of accurate picking is 
approximately 150 kDa on account of TomoTwin picking on down-
scaled tomograms (roughly 10 Å per pixel). While particles smaller 
than this size can potentially be located in experimental tomograms, 
evaluating the accuracy of such picks through STA is, so far, beyond 
the limitations of the field.

TomoTwin is a robust, open-source tool for particle localization in 
cryo-electron tomograms that applies the advantages of deep learning 
while retaining a high degree of usability priming it to assist in a wide 
range of cryo-ET experiments. The code used to develop and train 
TomoTwin as well as the general picking model are available at https://
github.com/MPI-Dortmund/tomotwin-cryoet.
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Methods
Training data generation
TomoTwin was trained on 123 data classes composed of subvolumes of 
120 different proteins, membranes, noise and fiducials from simulated 
tomograms. To ensure that TomoTwin is trained on the most diverse set 
of proteins possible, 108 proteins were selected from the PDB with sizes 
ranging from 30 kDa to 2.7 mDa and the cross-correlation between pairs 
of 10 Å lowpass filtered maps of each protein was calculated (Extended 
Data Fig. 2). Any protein with a high similarity (greater than 0.6) to 
another protein in the training set was marked for replacement. Addition-
ally included were the data from the 2021 SHREC competition18 including 
12 proteins to yield a total of 120 proteins for training. A training/valida-
tion split was achieved with 800 subvolumes for each data class in the 
training set and 200 in the validation set, yielding a total training set size 
of 98,400 subvolumes and a validation set size of 24,600 subvolumes.

Tomogram simulation
Tomogram simulation was done using TEM Simulator51 that calculates 
the scattering potential of individual proteins and places them in defin-
able positions within the volume. The output of the simulation is a tilt 
series, which is then reconstructed using IMOD52. A configuration file 
was generated with properties for the electron beam, optics of the 
microscope, the detector, the tilt geometry and the sample volume. 
The default detector was adjusted to reflect the MTF curve of a modern 
Gatan K3 Camera with a quantum efficiency of 0.9. The detector size 
was set to 1,024 × 1,024 with a pixel size of 5 µm. The magnification was 
set to 9,800, the spherical aberration and chromatic aberration were 
adjusted to 2.7 and 2 mm, respectively, to mimic popular modern TEMs. 
A condenser aperture size of 80 µm was chosen. For each tomogram the 
defocus value was randomly chosen between −2.5 and −5 µm. A tilting 
scheme of −60° to +60° with a step size of 2° was used. To simplify and 
streamline the simulation we wrote a set of open-source programs 
called ‘tem-simulator-scripts’ (https://github.com/MPI-Dortmund/
tem-simulator-scripts). They contain scripts that require as input the 
PDB files to be simulated and the number of particles to simulate per 
PDB. The program then generates reconstructed tomograms as they 
were used for this study using the following pipeline:

 (1) Generation of densely packed random particle positions within 
the volume where individual particles do not overlap

 (2) Generation of an occupancy map: a volume where each voxel is 
labeled according the protein identity

 (3) Generation of fiducial maps
 (4) Generation of vesicle maps
 (5) Generation of the configuration file for TEM-simulator
 (6) Simulation of the tilt series using TEM-simulator
 (7) Alignment and reconstruction using IMOD.

However, all steps can also be carried out individually to have full 
control over all parameters.

Using this procedure, we simulated 11 sets of proteins. The sets 
contain in total 108 different proteins with each set covering proteins 
of various sizes. For each set we simulated eight tomograms of size 
512 × 512 × 200 voxels with a pixel size of 1.02 nm and varying protein 
density. For tomogram 1, 2 and 8, 150 particles per protein were gener-
ated, for tomograms 3 and 4, 125 particles per protein, for tomograms 
5 and 6, 100 particles per protein and for tomogram 7, 75 particles 
per protein. Tomograms 1–7 were used for training and tomogram 8 
for validation. The generated tomograms used in this study with all 
meta-data are publicly available53. These simulated data were used to 
construct the training and validation sets54 to evaluate network train-
ing, particle localization and model generalizability.

Convolutional network architecture
To encode volumetric cryo-ET data as embedding vectors in a 
high-dimensional space, TomoTwin uses a 3D CNN consisting of five 

convolutional blocks followed by a head network (Extended Data  
Fig. 1b). Each convolution block consists of two 3D convolutional layers 
with a kernel size of 3 × 3 × 3. Each convolutional layer is followed by a 
normalization layer and a leaky rectified linear activation function. In 
the first convolutional layer of each convolutional block, the number 
of output channels is twice the input channels and in the second con-
volutional layer the number of output channels matches the output 
from the previous layer. Maximum pooling is performed with a kernel 
size of 2 × 2 × 2 after the first convolutional block and adaptive max 
pooling to a size of 2 × 2 × 2 is performed after the final convolutional 
block. As a result, when provided with a 37 × 37 × 37 subvolume with 
one channel as a normalized, 37 × 37 × 37 × 1 array, the convolutional 
blocks transform the input to a 2 × 2 × 2 × 1,024 feature vector that is 
then fed to the head network. In the head network, the feature vector is 
first flattened channel-wise before being subject to a dropout layer and 
then passed through a series of fully-connected layers that transform 
the flattened vector to a 32D feature vector. Finally, this feature vector is 
L2-normalized to yield an output embedding vector for the subvolume.

Triplet generation
TomoTwin is trained on triplets of subvolumes consisting of an anchor 
volume A, a positive volume P and a negative volume N (Extended Data 
Fig. 1c). Each subvolume is assigned to a data class corresponding to the 
macromolecule contained within and has a size of 37 × 37 × 37 voxels. 
Triplets are constructed where A and P are sampled from the same data 
class and N from a different data class. Given a distance function D and 
an embedding function f, the triplet loss is defined as:

L(A,P,N) = max (D (f(A), f(P)) − D (f(A), f(N)) + a,0)

where the hyperparameter α is the margin value. As distance function 
D, we use cosine similarity that is defined as

D(Q,P) = Q ⋅ P
‖Q‖ × ‖P‖

where Q and P are arbitrary embedding vectors, • is the dot product 
and ‖⋅‖ the length of the vector. During training, triplets are generated 
by online semihard triplet mining wherein a batch of subvolumes are 
embedded and triplets generated automatically with the negative 
subvolume embedding being selected from those only with a distance 
to the anchor greater than the positive subvolume embedding but not 
greater than a margin αminer:

D (a,p) < D (a,n) < d (a,p) + αminer

where a, p and n are the embedding vectors of the anchor, positive and 
negative, respectively, and αminer is the margin of the miner.

Training of the general picking model
Training of the 3D CNN was performed for 600 epochs using an adap-
tive moment estimation (ADAM) optimizer55. The model from the 
epoch with the best F1 score on the subvolumes in the validation set 
was further evaluated in the localization and generalization tasks and 
used as the general picking model.

Data augmentation
To prevent overfitting during training and to improve generalization of 
the model, online data augmentations were applied to each normalized 
volume before its embedding was calculated including rotation, drop-
out, translation, and the addition of noise. For the rotation augmenta-
tion, subvolumes were rotated by a random angle in the xy plane but not 
xz or yz to prevent reorientation of the missing wedge. In the dropout 
augmentation, a random portion between 5 and 20% of the voxels were 
set to the subvolume mean value. In the translation augmentation, the 
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subvolume was shifted by 1–2 pixels in each direction. The addition of 
noise augmentation added Gaussian noise with a randomly chosen 
standard deviation between 0 and 0.3 to the subvolume.

Hyperparameter optimization
The training of modern CNNs involves the selection of many hyper-
parameters, some of these choices affect the architecture while oth-
ers affect the learning process itself. While some heuristics exist to 
guide hyperparameter selection, finding a combination of settings that 
maximize the utility of a machine learning tool by hand quickly becomes 
intractable. Optuna56 was applied to explore the hyperparameter search 
space and identify an optimized set of parameters for training. Models 
were trained on a subset of the training data for 200 epochs and the F1 
score calculated on the validation set after each epoch. Pruning was per-
formed after 50 epochs for training runs with an F1 score lower than the 
global median. In total, searches were applied for the hyperparameters 
of learning rate, dropout rate, optimizer, batch size, weight decay, size 
of the first convolution kernel, number of output layer nodes, online 
triplet mining strategy (semihard57, easyhard58, none), normalization 
type (group norm59, batch norm60), loss function (TripletLoss31, Sphere-
Face61, ArcFace62) and loss margin (Extended Data Fig. 10).

Most notably, the type of normalization applied during training 
was the largest overall affecter of performance with group normaliza-
tion59 outperforming the more common batch normalization60 strategy 
(Extended Data Fig. 10b). Additionally noted was the increased perfor-
mance of a standard triplet loss function over the theoretically superior 
SphereFace61 and ArcFace62 loss functions (Extended Data Fig. 10c). 
These findings underpin the necessity to explore a wide range of hyper-
parameters during training as heuristics alone are not enough to guide 
optimal hyperparameter selection for the training of modern CNNs.

Particle picking workflow with the general model
For each dataset picked with the general model, first all tomograms 
were embedded. To achieve this, the tomograms were subdivided into 
a series of overlapping 37 × 37 × 37 subvolumes with a stride of 2 voxels. 
For the reference-based workflow, a random particle for each protein of 
interest was selected as reference and embedded to generate a target 
embedding. The tomogram and target embeddings were provided to 
TomoTwin Map that calculated the distance matrix between each target 
embedding and each subvolume embedding from the tomogram and 
returned this along with a similarity map for each target embedding. 
This matrix was then provided to TomoTwin Locate that identified areas 
of high confidence as target locations using a region-growing based 
maximum detection procedure followed by nonmaxima suppression. 
The returned candidate positions were then subject to confidence and 
size thresholding in the TomoTwin graphical user interface to produce 
final coordinates for each protein of interest.

Evaluation of simulated data
The performance of particle localization was calculated from three 
metrics: recall, precision and, the harmonic mean of the two, the F1 
score that are defined as:

precision = truepositive
truepositive + false positive

recall = truepositive
truepositive + false negative

F1 = 2precision × recall
precision + recall

Selected particle locations counted as true positives if the inter-
section over union of the box of the selected particle location and the 

ground-truth box was greater than 0.6. The intersection over union is 
defined as the ratio of the intersecting volume of two bounding boxes 
and the volume of their union.

The particle localization accuracy of the trained model was 
assessed for each tomogram in the validation set (Extended Data  
Fig. 3a). To test model generalization, the localization task was per-
formed on a tomogram containing seven proteins not included in the 
training set for which TomoTwin was therefore naïve (Fig. 2).

Evaluation of experimental data
Ground-truth particle coordinates are not available for experimental 
data, which makes the calculation of performance metrics such as 
precision and recall complicated. One approach to estimate these is 
to manually count true positives, false positives and false negatives 
for either the complete tomogram or a reference region.

However, as this is not always possible due to the difficulty of 
manually picking some proteins, another approach to measure the 
picking precision without introducing reference bias is by extracting 
subvolumes at the picked coordinates of each protein, projecting the 
3D subvolumes to 2D using SPHIRE63 and performing reference-free 2D 
classification46. 2D classification on few particles can lead to extrane-
ous results because only the most common poses of a protein will have 
enough particles to be clustered effectively, possibly resulting in many 
true-positive particles classified incorrectly as false positives. Never-
theless, the percentage of particles in good 2D classes was measured 
as an indicator of the precision.

Clustering
For clustering analysis, a random sample of 400,000 embeddings 
from the high-dimensional tomogram embeddings were fit to a uni-
form 2D manifold with uniform manifold approximation (UMAP) 
with GPU-acceleration provided by the RAPIDS package64. The UMAP 
model was used as the basis to transform the entire tomogram embed-
dings and the results plotted (Fig. 5a,c). Clusters were identified by 
eye and selected by drawing a closed shape containing the desired 
points. The enclosed points were then traced back to their original 
high-dimensional embeddings and the average embedding of them was 
calculated. This average embedding was then used as a target embed-
ding for classification, localization and picking in the same manner as 
for the reference-based workflow.

Preparation of experimental samples
The components of the mixture were either thawed from long-term 
storage at −80 °C or freshly prepared. P. luminescens holotoxin was 
expressed, purified and the holotoxin formed as described previ-
ously65 and used at a stock concentration of 0.49 mg ml−1. RhsA 
from P. protegens was expressed and purified as described pre-
viously35 and used at 4 mg ml−1 concentration. Liposomes were 
prepared by extrusion. 4 mg ml−1 of each POPC (1-palmitoyl-2-
oleoyl-glycero-3-phosphocholine, Avanti Polar Lipids) and DOPS 
(1,2-dioleoyl-sn-glycero-3-phospho-l-serine, Avanti Polar Lipids) were 
mixed in buffer (50 mM Tris, pH 8, 150 NaCl, 0.05% Tween20) and after 
brief sonication (1 min in water bath) and three cycles of freeze–thawing 
(−196 °C and 50 °C), the liposome solution was passed 11 times through 
a polycarbonate membrane with a 400 nm pore size in a mini extruder 
(Avanti Polar Lipids). Total lipid concentration was diluted with buffer 
to 0.16 mg ml−1. The freeze-dried content of one vial tobacco mosaic 
virus (DSMZ GmbH Braunschweig, Germany, PC-0107) was solved in 
1 ml of buffer and diluted 500 times as working solution. The apoferritin 
plasmid was a kind gift from C. Savva (Midlands Regional Cryo-Electron 
Microscopy Facility). Expression and purification of apoferritin was 
optimized based on the protocol described earlier34 and final concen-
tration of frozen stock was 3 mg ml−1.

Different ratios of the mixture were prepared and then exam-
ined after vitrification using cryo-EM. For cryo-ET, a mixture ratio of 
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1:2:2:20:10 (tobacco mosaic virus:apoferritin:liposomes:Tc toxin:RhsA) 
was chosen.

Grid preparation
Grids were prepared using a Vitrobot Mark IV (Thermo Fisher Scientific) 
at 4 °C and 100% humidity. Then 4 µl of the freshly prepared mixture 
were applied to glow-discharged (Quorum GloQube) R1.2/1.4 Cu 200 
(Quantifoil) grids. After blotting (3.5 s at blot force −1, no drain time) 
the specimen was vitrified in liquid ethane.

Cryo-ET
Grids of different mixing ratios were screened using a Talos Arctica 
electron microscope (Thermo Fisher Scientific) equipped with a X-FEG 
and Falcon 3 camera. Small datasets of 100–200 images were collected 
using the software EPU (Thermo Fisher Scientific). The best specimen 
was transferred to a Titan Krios G3 electron microscope equipped with 
X-FEG. Images were recorded on a K3 camera (Gatan) operated in count-
ing mode at a nominal magnification of 63,000, resulting in a pixel size 
of 1.484 Å per pixel. A Bioquantum post-column energy (Gatan) was 
used for zero loss imaging with a slit width of 20 eV.

Tilt series were acquired using SerialEM66 with the Plugin PACE-
tomo67 and with a dose symmetric tilt scheme68 from −60° to 60° with 
a step size of 3°. Each movie was collected as an exposure of 0.2 s sub-
divided into ten frames. Frames were then exported to Warp v.1.0.9  
(ref. 26) for motion correction, contrast transfer function estimation 
and generation of tilt series. Tilt series were aligned with patch tracking 
and tomograms reconstructed by weighted back projection in IMOD52 
with a pixel size of 5.936. Tomograms were scaled by Fourier shrinking 
to 10 Å per pixel for embedding with TomoTwin.

Raw frames of M. pneumoniae cells were downloaded from 
EMPIAR (EMPIAR 10499). Motion correction and contrast transfer 
function estimation were performed in Warp v.1.0.9, which was then 
used to generate tilt series. These tilt series were aligned with patch 
tracking and tomograms reconstructed by weighted back projection 
in IMOD with a pixel size of 6.802 Å per pixel. Tomograms were then 
scaled by Fourier shrinking to 13.6 Å per pixel for embedding with 
TomoTwin.

Evaluation of experimental data
For tomograms from samples prepared in-house, coordinates of 
particles identified with TomoTwin were scaled to a pixel size of 
5.936 to match the originally reconstructed tomograms. The tomo-
grams were imported and these coordinates were used to extract 
subtomograms in Relion v.3.0 (ref. 46). For reference-free analysis, 
3D subtomograms were projected to 2D with SPHIRE63 and then used 
for 2D classification.

Tomograms containing M. pneumoniae were attained from EMPIAR 
(EMPIAR 10499), coordinates of particles identified with TomoTwin 
were scaled to a pixel size of 6.802 Å per pixel to match the originally 
reconstructed tomograms. The tomograms were imported and coor-
dinates were imported and used to reconstruct pseudo-subtomograms 
in Relion 4.0 (ref. 38). A reference was created from a 70S ribosome 
(EMD-11650) by lowpass filtering to 30 Å and then scaling the pixel size 
to 6.802 Å per pixel. This reference was used for 3D classification with 
the pseudo-subtomograms in Relion v.4.0.

The tilt series and alignment files for the tomogram containing 
Chlamydomonas reinhardtii cells was attained from EMPIAR (EMPIAR 
10694) and used to reconstruct the tomogram at a pixel size of 13.68 Å 
per pixel for picking and 6.84 Å per pixel for STA. Picking of RuBisCO 
was performed using the TomoTwin reference-based workflow and the 
resulting coordinates scaled to the pixel size to be used for extraction 
and, subsequently, STA in Relion v.3.0 (ref. 46). Extracted subtomo-
grams were used for initial 3D refinement using a reference generated 
by lowpass filtering a known model of RuBisCO (PDB 1BXN) to 60 Å. 
This map was used to fit the model of RuBisCO.

Reconstructed tomograms were binned to 9.288 Å per pixel  
and picked with the TomoTwin clustering workflow. Picked  
coordinates for each cluster were rescaled to 4.644 Å per pixel 
for extraction. Tomograms were imported and these coordinates  
used to extract subtomograms in Relion v.3.0 (ref. 46). An initial 
3D refinement was performed with a spherical reference to elimi-
nate the possibility of reference bias, and the resulting map used  
for 3D classification without alignment. Finally, 3D refinement was 
repeated using one of the 3D classes as reference to achieve a coherent 
3D refined map that was then used to fit the PDB models of candidate 
proteins.

Hardware
Two computational setups were used for calculations, a distributed  
computing system and a local workstation. The distributed computing 
system consisted of the Max Planck Gesellschaft Supercomputer ‘Raven’ 
using up to 30 Nvidia A100 graphical processing units (GPUs), where 
each GPU has 40 GB memory. Each process had 18 cores of Intel Xeon 
IceLake-SP 8360Y processors and 128 GB system memory available. The 
local workstation consisted of a local unit equipped with a Nvidia Titan 
V (12 GB memory) GPU and an Intel i9-7920X CPU with 64 GB system 
memory.

Hyperparameter optimization was done in parallel for 7 d once 
the distributed computing setup and embeddings were calculated on 
this, also using two GPUs. In all cases, a box size of 37 and stride of two 
were used for embedding.

The in-house workstation was used for miscellaneous tasks and 
for calculating timings using two GPUs.

Timings
The calculation of the embeddings is the only function of TomoTwin 
requiring notable processing time. To measure this, we embedded our 
largest experimental tomogram (608 × 855 × 148 after Fourier shrink-
ing) on a local workstation and a distributed computing system. Using 
two GPUs, tomogram embedding took 80 min for the local setup and 
30 min for the distributed setup, corresponding to the total time to 
pick all proteins of interest per tomogram on each setup.

Statistics and reproducibility
Embeddings produced by the general model are deterministic allowing 
users to reproduce picking results at will. The only package used that is 
not deterministic is the Nvidia RAPIDS UMAP that is used for visualiza-
tion in the clustering workflow. However, as picking and thresholding 
calculations are always performed on the original embeddings, the 
overall picking results remain consistent.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All simulated tomograms and subvolumes used to train and evaluate 
the performance of TomoTwin are available at https://doi.org/10.5281/
zenodo.6637357 (tomograms) and https://doi.org /10.5281/
zenodo.6637456 (subvolumes).

Code availability
The TEM-Simulator-Scripts package used for automated tilt-series 
simulation and reconstruction is available at https://github.com/
MPI-Dortmund/tem-simulator-scripts. TomoTwin is available under 
an open-source license at https://github.com/MPI-Dortmund/
tomotwin-cryoet. A code demonstration for TomoTwin complete with 
system requirements, installation instructions, demonstration scripts, 
data and usage instructions is available at https://doi.org/10.5281/
zenodo.7186070.
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Extended Data Fig. 1 | TomoTwin convolutional architecture and metric 
learning strategy for particle picking. a, TomoTwin user interface in Napari 
for visualizing protein picks. Picks for 3 proteins are shown as spheres. Lefthand 
panel allows users to adjust visualization settings for the. Righthand panel 
to filter picks for each cluster according to similarity threshold, minimum 
and maximum size, and adjust the box size for viewing. b. Architecture 
of 3D convolutional network utilized by TomoTwin to embed tomogram 

subvolumes for deep metric learning. c. Overview of the deep metric learning 
training scheme wherein data triplets are constructed of anchor, positive, and 
negative subvolumes. The subvolumes are each convolved by the CNN and the 
embeddings are used to calculate the distance metrics in the triplet loss function. 
d. UMAP of protein subvolume embeddings colored according to protein  
PDB ID from TomoTwin 3D CNN in first training epoch and best model after  
600 training epochs.
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Extended Data Fig. 2 | Characterization of the training dataset. a, Pairwise 
cross-correlation matrix for all 120 proteins sorted by size. Cross-correlations 
were calculated by converting the individual PDBs to density maps with a pixel 
size of 1 nm, aligning them pairwise with EMAN2 and calculating the cross-
correlation of the aligned pairs. To maximize the value for training, we selected 

proteins so that all pairs except 3 have a cross-correlation value below 0.6. The 
three pairs with higher correlation are from the SHREC dataset and were not 
simulated by us. Higher correlation values are more likely for smaller proteins. b, 
Histogram of the pairwise cross correlation values. The mean cross correlation 
value is 0.22 with a standard deviation of 0.13.
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Extended Data Fig. 3 | TomoTwin identifies proteins with high accuracy 
by using single particle subvolumes as reference. a, F1 scores of TomoTwin 
on the validation tomograms. Each box extends from the 1st quartile (Q1) to 
the 3rd quartile (Q3). The median is marked by a line inside the box. Whisker 
lines correspond to box edges +/− 1.5 times interquartile range. The number 
of proteins n in each set is 10, except for SHREC (n = 12) and Set 2 and 4 (n = 8). 
The median F1 score of the individual sets is most often above 0.8 and not lower 
than 0.76. b, The overall distribution of F1 scores for the complete training set. 

The distribution has a median of 0.92, but also a tail of low F1 scores can be seen. 
c, Size distribution of particles that show good F1 scores (F1 > = 0.7) and those 
with rather low F1 scores (F1 < 0.7). d, Examples of proteins of similar size with 
low (yellow) and high (cyan) F1 score. On the left side the individual particles are 
depicted in a noisy and noise-free reconstruction, respectively. On the right side, 
the respective structures, PDB IDs, sizes, and F1 scores are shown. The proteins 
which were not identified properly by TomoTwin have a lower contrast than the 
other proteins. Scale bars 100 nm.
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Extended Data Fig. 4 | TomoTwin locates particles accurately in densely 
packed tomograms and with Z-centering. a. Picking in simulated dense 
generalization tomogram for PDB IDs: 1AVO (red), 1E9R (yellow), 1FPY (green), 
1FZG (light blue), 1JZ8 (dark blue), 1OAO (brown), and 2DF7 (magenta). b. XZ 
view of picking simulated generalization tomogram (color scheme: PDB ID: 1AVO 
(red); PDB ID: 1E9R (orange); PDB ID: 1FPY (green); PDB ID: 1FZG (teal); PDB ID: 
1JZ8 (blue); PDB ID: 1OAO (purple); PDB ID: 2DF7 (magenta)). Scale bar 50 nm. 

c. XZ view of picking tomogram containing a pyrenoid inside a C. reinhardtii 
cell with RuBisCO picked. Scale bar 75 nm. d. XZ view of picking tomogram 
containing a M. pneuomoniae cell with ribosomes picked. Scale bar 50 nm.  
e. XZ view of picking tomogram containing a mixture of apoferritin (red), TcdA1 
(magenta), and RhsA (teal). Scale bar 50 nm. f. XZ view of picking tomogram 
containing a Y. entomophaga cell with ribosomes (blue) and RNA polymerases 
(red) picked. Scale bar 75 nm.
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Extended Data Fig. 5 | Picking evaluation of in-vitro tomogram. The accuracy 
was evaluated on one full tomogram for TcdA1 and apoferritin by manual 
counting of picked and missed particles. For TcdA1 (a.) 9 particles were picked 
(blue) and two particles were missed (orange). For apoferritin (b.) 126 particles 
were picked (red) and 11 particles missed (orange). The results give an estimated 
recall of 0.81 and 0.91 for TcdA1 and apoferritin respectively. There were no 

false positives in either case (precision 1.0). A manual evaluation for RhsA 
was not feasible by eye. Example 2D classes from previous studies by single 
particle analysis of c. apoferritin34, d. RhsA35, and e. TcdA136; 2D class averages of 
TomoTwin picked subvolumes after projection to 2D. Classes outlined in blue 
were judged to be positive classes by expert inspection, indicating that they 
contain particles of the appropriate protein. Scale bar: 5 nm.
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Extended Data Fig. 6 | TomoTwin locates proteins in a cellular environment. 
a, Representative slice view of a tomogram containing Mycoplasma pneumoniae. 
b. Slice view highlighting positions of picked 70S ribosomes localized in 3D with 
TomoTwin. Scale bar 100 nm. c, 3D representation of ribosome positioning 

within the tomogram, a represented slice is superimposed with 3D classes 
of ribosomes arranged according to their corresponding coordinates and 
orientation. d, 3D classes from 18,246 particles. Scale bar 10 nm.
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Extended Data Fig. 7 | TomoTwin outperforms template matching and adapts 
to picking across a variety of experimental parameters. a, F1 score benchmark 
for TomoTwin and template matching of n = 120 proteins on the respective 
validation tomograms. For TomoTwin the results of the reference mode with 
a single subvolume as reference are shown. TomoTwin similarity and size 
threshold were optimized for each protein. For template matching the EMAN2 
implementation with a density as reference generated by the respective protein 
PDB was used. The median F1 score is represented by a white dot and the 25th 
and 75th percentile by the indicated range. Width of plots indicates the density 
of F1 scores across the dataset. b, Detailed comparison for the generalization 

tomogram. TomoTwin and template matching were applied analogously to (a). 
In contrast, the best results of either the reference mode or the clustering mode 
are shown for TomoTwin. c. F1 picking score for each protein in the simulated 
generalization tomogram reconstructed from tilt series with varying tilt ranges. 
d. F1 picking score for each protein in the simulated generalization tomogram 
with varying total electron doses. e. Tilt range, tilt step, total dose, and detector 
used for each dataset picked with TomoTwin. Detailed picking statistics 
including F1 score, recall, precision, true positives (TP), false positives (FP) and 
false negatives (FN) for the generalization tomogram picked by f. reference 
workflow and g. clustering workflow.
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Extended Data Fig. 8 | Additional evaluation statistics for the RuBisCO 
tomogram using the reference- and clustering-based workflows. a, Color 
coded picks for a selected sub-region where purple picks were picked by both 
workflows, red by the reference workflow only and blue by the clustering 
workflow only. For both methods the threshold was set to get a visually optimal 
result. The threshold was 0.91 for both workflows. b, Missed particles by both 

workflows. c, Summary statistics for both workflows on the selected sub-region. 
Based on this we estimate that 80% of the particles were picked. d, The number 
of picked particles follows the particle density along the z-direction of the 
tomogram. Scale bars 50 nm. e. Comparison between in situ subtomogram 
averages of RuBisCO from EMDB-369442 at 16.5 Å (bottom) and the same 
tomogram picked with TomoTwin at 13.7 Å (top).
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Extended Data Fig. 9 | Automated identification of clusters of interest using HDBSCAN. A subset of the approximated manifold of Fig. 5a was used to run density-
based clustering which located 5 out of 7 proteins of interest in an unsupervised manner. R implementation of HDBSCAN was run with a min_samples of 50 and a 
minimum cluster size of 50.
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Extended Data Fig. 10 | Hyperparameter optimization of TomoTwin.  
a, Hyperparameter importance estimated by Optuna56 after 180 trials 
with different configurations. b, F1 scores for trials using either the batch 
normalization (n = 8) or group normalization layers (n = 36) in convolutional 
neural network. Group normalization performed better than batch 

normalization in all cases. c, F1 score for trials using either Triplet-, SphereFace-, 
or ArcFace-Loss (n = 19, 13, or 10 respectively). The boxes in b and c extend from 
the 1st quartile (Q1) to the 3rd quartile (Q3). The median is marked by a line inside 
the box. Whisker lines correspond to box edges +/− 1.5 times interquartile range. 
Points represent the individual trials.
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