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ABSTRACT Although the Internet of Things (IoT) can increase efficiency and productivity through

intelligent and remote management, it also increases the risk of cyber-attacks. The potential threats to IoT

applications and the need to reduce risk have recently become an interesting research topic. It is crucial

that effective Intrusion Detection Systems (IDSs) tailored to IoT applications be developed. Such IDSs

require an updated and representative IoT dataset for training and evaluation. However, there is a lack of

benchmark IoT and IIoT datasets for assessing IDSs-enabled IoT systems. This paper addresses this issue

and proposes a new data-driven IoT/IIoT dataset with the ground truth that incorporates a label feature

indicating normal and attack classes, as well as a type feature indicating the sub-classes of attacks targeting

IoT/IIoT applications for multi-classification problems. The proposed dataset, which is named TON_IoT,

includes Telemetry data of IoT/IIoT services, as well as Operating Systems logs and Network traffic of IoT

network, collected from a realistic representation of a medium-scale network at the Cyber Range and IoT

Labs at the UNSWCanberra (Australia). This paper also describes the proposed dataset of the Telemetry data

of IoT/IIoT services and their characteristics. TON_IoT has various advantages that are currently lacking

in the state-of-the-art datasets: i) it has various normal and attack events for different IoT/IIoT services,

and ii) it includes heterogeneous data sources. We evaluated the performance of several popular Machine

Learning (ML) methods and a Deep Learning model in both binary and multi-class classification problems

for intrusion detection purposes using the proposed Telemetry dataset.

INDEX TERMS Internet of Things (IoT), Industrial Internet of Things (IIoT), cybersecurity, intrusion

detection systems (IDSs), dataset.

I. INTRODUCTION

The Internet of Things (IoT) is an emerging paradigm that

enables the interconnection of physical objects and com-

puting capabilities to connect to the Internet. The IoT can

help to build flexible and efficient applications in various

domains such as health care, environmental monitoring, and

industrial control systems [1], [2]. Although IoT can increase

productivity and efficiency through intelligent and remote

management, it also increases the risk of cyber attacks due

The associate editor coordinating the review of this manuscript and

approving it for publication was Giacomo Verticale .

to a lack of security measures in the IoT ecosystem that

exposes IoT devices to malicious attacks from both inside

and outside of enterprise networks [3]. The potential threats

to IoT applications and the need to reduce risks have recently

become a hot topic in the cyber security area. Some IoT-based

applications, also commonly known as Industrial IoT (IIoT)

in the Industry 4.0 revolution, involve mission-critical tasks

such as industrial control and infrastructure systems which

require a high level of security. Reportedly, in the latest attack

on the IIoT applications, several power substations in Ukraine

were compromised resulting in a power black-out which

affects approximately 225,000 customers [4]. A Supervisory
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Control and Data Acquisition (SCADA) system that controls

and monitors the smart grid’s IIoT devices was compromised

by an attacker who successfully acquired privileges to access

SCADA systems through an IT network and took the power

offline [4]. Another example of IoT attacks is the Mirai

botnet in late 2016, which consisted primarily of compro-

mised smart cameras, causing Internet-wide outages when

it overwhelmed several high-profile companies with mas-

sive distributed denial-of-service (DDoS) attacks [5]. Hence,

an efficient and accurate security measure is required to

secure IoT/IIoT applications.

Several security tools (e.g., firewalls, encryption, and

intrusion detection systems) have been extensively used

in traditional IT-based systems. However, such mea-

sures cannot be directly deployed for IoT/IIoT-based

applications without considering their different nature and

characteristics [2], [6], [7]. In general, IoT and IIoT appli-

cations consist of lightweight communication protocols and

resource-constrained devices that have limited computation

power and storage capacity [2], [7]. Consequently, security

applications and cryptographic solutions that require high

computational capabilities cannot be applied to Iot/IIoT.

Moreover, none of these security measures is sufficient to

entirely protect IoT applications from potential threats. Yet,

a full complement of these security tools can design a robust

security system. In order to identify cyber threats against

IoT/IIoT services, it is vital that cyber-security applications

such as intrusion detection systems (IDS) be developed,

specifically designed for IoT and IIoT applications to meet

their special requirements [2], [6], [7].

Intrusion detection systems (IDSs) are widely used as

a second line of defence to monitor systems or network

events to detect possible malicious activities that successfully

evade security perimeters (e.g., firewalls) [8]. The evaluation

of intrusion detection methods is essential and the use of

IoT-related datasets that reflect real-world IoT applications

plays an essential role in evaluating the accuracy as well as

the efficiency of IoT security methods. However, the lack

of availability of real-world datasets for IoT and IIoT

applications presents a major obstacle to the evaluation of

intrusion detection methods tailored to IoT/IIoT applications.

The scarcity of these datasets hinders the design and devel-

opment of IoT-based intrusion detection methods since the

empirical validation and evaluation of such methods should

meet performance expectations [7], [9], [10]. This lack of

availability ismainly due to privacy issues which is whymany

large companies who create these IoT datasets do not show

interest in sharing their data with research communities [9],

[10]. Finally, Buczak and Guven [11] conducted a survey of

cyber-security research using data mining and machine learn-

ing methods for intrusion detection systems. They confirmed

that the unavailability of a labelled dataset is a significant gap

in the literature that must be addressed in order to develop a

promising anomaly-based intrusion detection method.

Various network datasets, for example, KDDCUP99,

NSL-KDD [12], UNSW-NB15 [13] and ISCX [14], were

generated for evaluating IDSs; however, they do not include

any specific characteristics of IoT/IIoT applications as these

datasets contain neither sensors’ reading data (i.e., teleme-

try or measurement data) nor IoT network traffic. The

LWSNDR [15] dataset contains only a homogeneous data

collected from a single and multi-hop Wireless Sensor Net-

works (WSNs), and it does not include any attack scenarios.

Another known dataset is the AWID [16] dataset, which only

contains the network features extracted from Media Access

Control (MAC) layer frame from 802.11 wireless network.

It also does not have the telemetry data of IoT devices.

Sivanathan et al. [17] proposed IoT-based datasets

for IoT device classifications based on network traffic

characteristics; however, these datasets did not include

attack scenarios. Responding to the aforementioned issues,

Koroniotis et al. [18] and Hamza et al. [19] recently proposed

network-based IoT datasets that include attack scenarios.

However, the datasets did not have a variety of attack types

such as ransomware and Cross-site Scripting (XSS); nor they

contain sensor measurement data of IoT devices.

Most of the recently published datasets [12]–[14],

[17]–[19] are network-based datasets, which primarily con-

tain packet-level and flow-level information or a combination

of both, for detecting attacks on the IoT network. However,

they do not have the actual data generated from sensor read-

ings. While these types of datasets could assist in detecting

network-based attacks targeting IIoT systems, they cannot

adequately detect sensor attacks that manipulate sensory data

or compromise IoT devices [20]–[22]. Therefore, there is a

real need for real-world datasets that not only contain sen-

sors’ reading data but also includes various types of attacks

to enable a comprehensive evaluation of data-driven IoT

intrusion detection solutions. These issues have motivated

us to come up with an IoT-related dataset that contains sen-

sors’ reading data as an information source for data-driven

IoT-based IDS to properly monitor the internal behaviour

of IoT applications, hereby protecting them from malicious

activities that are intended to sabotage the functionality of the

targeted applications.

The aim of this paper is to provide a representative and

recent dataset that can be used to accurately design and

evaluate IoT/IIoT defence solutions. We propose a new

data-driven IIoT-based dataset (i.e., Telemetry data) gath-

ered from a representative scale-down testbed for each IoT

device. The proposed datasets are made publicly available

for use by the research community [23]. The testbed includes

seven IoT and IIoT sensors, such as weather and Modbus

sensors, that were used to capture their telemetry data. The

datasets aremade publicly available for the use of the research

community. Moreover, a description of the datasets and their

characteristics are provided here. We also evaluated the per-

formance of data-driven intrusion detection methods as a

binary classification problem, based on several supervised

machine learning methods using the proposed IIoT-based

datasets. Then, all IoT device datasets are combined into a

single dataset, named combined_IoT_dataset , and evaluated
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on binary and multi-class classification problems. Through-

out the paper, we will use the terms IoT and IIoT interchange-

ably since the proposed datasets have a variety of IoT and

IIoT sensors.

The key contributions of this study are listed as follows:

1) A representative medium-scale testbed for the gen-

eration and collection of datasets is introduced. The

testbed was designed based on interacting network ele-

ments and IoT/IIoT systems with the three layers of

Edge, Fog and Cloud to simulate a realistic represen-

tation of IoT/IIoT network configuration.

2) New datasets are proposed with new data features for

IoT services based on the proposed testbed. These

datasets are named TON-IoT as they containTelemetry

data, Operating systems’ data, and Network data from

the testbed IoT/IIoT network.

3) Afirst-hand evaluation of seven popular machine learn-

ing methods as well as a deep learning model on the

proposed datasets is also provided as a baseline for

further research.

This paper is organised as follows. Section II discusses

current studies related to existing security datasets. Section III

presents an overview of the testbed architecture used for the

generation and collection of the proposed datasets. A detailed

description of TON_IoT datasets as well as the method-

ology used to develop the proposed datasets are given in

Section IV. Also, normal and attack scenarios are discussed

in this Section. An overview of candidate machine learn-

ing (ML) methods used to evaluate their performance on the

proposed datasets is presented in Section V, and the evalu-

ation and experimental results of these methods are shown

in Section VI. Finally, the conclusion and possible future

directions are given in Section VII.

II. RELATED WORK

The evaluation of intrusion detection methods tailored to

IIoT applications is vital and the use of IoT-related datasets

reflecting real-world IoT applications plays an important role

in evaluating the accuracy and efficiency of IIoT security

methods. However, the lack of availability of real-world

datasets for IIoT applications is a major obstacle to the eval-

uation of intrusion detection solutions tailored to IoT/IIoT

applications. The absence of such datasets hinders the design

and development of IIoT-based intrusion detection methods

since the empirical validation and evaluation of such methods

should be showing promising performance [9], [10]. Buczak

andGuven [11] conducted a survey of cyber-security research

using data mining and ML methods for IDSs. They stated

that the unavailability of labelled datasets is a significant gap

found in the literature to develop promising anomaly-based

intrusion detection solutions. This is mainly due to privacy

issues, as most the IoT datasets from large companies are not

made available nor shared with research communities [10].

Well-known datasets (e.g., KDDCUP99, NSL-KDD [12],

UNSW-NB15 [13] and ISCX [14]) were then designed

to fill this gap for evaluation purposes; these datasets

however do not include the specific characteristics of

IoT/IIoT applications, as they do not contain either sensor

measurements nor IoT network traffic. Even though several

studies did use such datasets to evaluate their IoT-related

intrusion detection solutions [24]–[28], one can argue that

these datasets do not reflect IIoT characteristics since none

of which contains any IoT device in their testbeds. The

LWSNDR [15] dataset contains only homogeneous data col-

lected only from humidity-temperature sensor deployed in

a single and multi-hop Wireless Sensor Networks (WSNs).

Although it has some anomalous points since the author used

a hot water kettle to introduce the anomalies, the dataset

does not include any attack scenarios. Sivanathan et al. [17]

came up later with IoT-based datasets for the classification

of IoT devices based on network traffic characteristics. They

developed a smart home testbed, where IoT traffic is collected

and relied on flow-based characteristics to classify each IoT

device. They assumed that each IoT device exhibits identifi-

able patterns in their traffic flows such as activity cycles and

volume patterns. Nonetheless, such datasets do not have any

attack scenario since they were generated for the purpose of

device classification.

Addressing the aforementioned issues, [16], [18], [19]

proposed network-based IoT datasets that included attack

scenarios. Kolias et al. [16] proposed Aegean WiFi Intrusion

Dataset (AWID) dataset for intrusion detection in wireless

networks. This AWID dataset was collected from a Small

Office/HomeOffice SOHO 802.11 wireless network contain-

ing the following devices: a desktop machine, two laptops,

two smartphones, one tablet and a smart TV. However, The

dataset contains only the traces from Media Access Con-

trol (MAC) layer frame, and it does not have the telemetry

data of IoT devices.

Koroniotis et al. [18] generated a BoT-IoT dataset col-

lected from a realistic representation of an IoT network

that comprises both legitimate and attack traffic, the attacks

included are DDoS, DoS, service scan, keylogging, and data

exfiltration. The BoT-IoT dataset contains over 72 million

records of network traffic collected from a simulated IoT

environment. The author also provided a scaled-down version

of the dataset with roughly 3.6 million records for evaluation

purposes. Hamza et al. [19] proposed an IoT-based dataset to

detect DoS attacks in an IoT network, where they collected

normal and various type of DoS attacks traffic (e.g., TCP

SYN flooding, Ping of Death, and SNMP/TCMP flooding).

They imitated a smart home environment to collect their data.

Nevertheless, these datasets neither do have a variety of attack

types (e.g., ransomware and XSS-Cross-site Scripting) nor

contain sensor readings of IoT devices.

In summary, the majority of recently published IoT

datasets were designed to validate IoT network-based IDSs.

They mostly contain packet/flow-level information or a com-

bination of both to detect attacks on IoT networks; they do not

however have the actual data generated from sensor readings

(i.e., measurement/telemetry data). While this can assist in

detecting network-based attacks targeting IIoT systems, it is
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TABLE 1. A comparison of the popular and publicly available datasets with the proposed datasets.

still not sufficient to detect those attacks that either manipu-

late sensory data or compromise IoT devices [20]–[22]. This

has motivated the community to come up with IoT-related

datasets that contain sensor readings as an information source

for data-driven IoT IDSs to monitor the internal behaviour

of the given IoT applications as well to protect them from

malicious activities intended to sabotage the functionality of

targeted applications. Mohammadi et al. [10] conducted an

extensive survey about the use of deep learning in IoT and big

data for streaming analysis, where twenty-five (25) IoT-based

datasets generated from sensor readings in different domains

and used in DL (Deep Learning) implementations. Yet, none

of these contained attack data. Therefore, there is a need

for a real-world dataset that not only contains sensor mea-

surements but also has various types of attacks to enable

the evaluation of data-driven intrusion detection approaches.

This paper addresses the aforementioned limitations and pro-

poses a new T-IIoT dataset to accurately design and evaluate

IIoT defence solutions. To the best of our knowledge, this is

first time in the security area where the (proposed) datasets

include IoT telemetry data collected from heterogeneous

IoT/IIoT data sources, network traffic and audit traces of

operating systems. Moreover, the proposed dataset contains a

variety of IoT-related attacks and legitimate scenarios, includ-

ing the ground truth of both attack and legitimate instances.

Table 1 provides a summary of the unique properties of the

new proposed dataset when compared to existing datasets.

As can be seen from the table, both KDDCUP99, NSL-KDD

are outdated compared to the other datasets. The

KDDCUP99, NSL-KDD, UNSW-NB15 and ISCX datasets

do not include the specific characteristics of IoT/IIoT appli-

cations, as they do not contain either IoT telemetry data or IoT

network traffic. The LWSNDR only contains a homogeneous

data, and it does not contain any attack scenarios. The AWID

dataset contains only the network features extracted from

Media Access Control (MAC) layer frame from 802.11 wire-

less network, and it does not have the telemetry data. Fur-

thermore, the UNSW-IoT trace dataset does not have any

1UNSW-NB15 was generated at University of New SouthWales (UNSW)
in Canberra. The UNSW-IoT trace and UNSW-IoTwere generated at UNSW
in Sydney.

attack scenario since it was generated for device classification

purposes only. The UNSW-IoT and Bot-IoT datasets do not

contain sensor readings of IoT devices. In contrast, the new

proposed dataset has new properties compared with the

existing datasets: (i) it has various normal and attack events

for several IoT/IIoT services, (ii) it includes heterogeneous

data sources, and (iii) it was collected from a testbed with a

realistic representation of a IoT architecture for communicat-

ing Edge, Fog and Cloud layers.

III. DETAILS OF THE TESTBED

This section describes the testbed environment created for the

generation and collection of the proposed TON_IoT teleme-

try datasets. As depicted in Figure 1, a new systematic testbed

of Industry 4.0/Industrial IoT (IIoT) networks was designed

to create new representative datasets comprising data col-

lected from several normal and cyber-attack events in a realis-

tic representation of IoT networks. The testbed was designed

based on interacting network elements and IoT/IIoT systems

with the three layers of Edge, Fog and Cloud to simulate

a real-world execution of current production IoT/IIoT net-

works. Software-defined Network (SDN) [30] and Network

Function Virtualisation (NFV) [31] were used to facilitate

the management of the interaction between the three layers,

and included physical and simulated systems. To do that,

the NSX-VMware platform [32] was utilised to provide the

features of SDN and NFV.

Briefly, NSX-VMware platform [32] is a network virtu-

alisation technology used to facilitate the implementation of

virtual networks on a physical network and within the virtual

server infrastructure. The SDN feature in the NSX-VMware

platform allows network administrators to automatically con-

trol, change, and manage network and security behaviour

in a dynamic way with minimal human intervention [30].

In the proposed testbed, the NSX-VMware platform with

SDN enables us to automatically manage and control the

programmable IoT/IIoT applications and network devices.

Moreover, the NSX-VMware platform was deployed with

VMware vSphere hypervisor NFV [33] to allow the cre-

ation and management of various virtual machines (VMs)

that simultaneously operate to offer the IoT/IIoT and

network services. Furthermore, the vCloud NFV [32]
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FIGURE 1. Testbed environment for generating and collecting the
proposed datasets from the IIoT networks.

platform in NSX-VMware was utilised to provide a modular

design with abstractions that facilitates multi-domain, hybrid

physical, and VM deployment [31]. The benefit of using

the vCloud NFV platform is that it provides and manages

orchestrated VMs of the proposed testbed. Finally, using the

NSX-VMware, we designed a blueprint architectural design

that emulates and controls multiple VMs in the testbed for

both hacking and normal operations, allowing the intercon-

nections between the three layers. The Edge layer of the

testbed includes a set of simulated and physical IoT/IIoT ser-

vices, a NSX-VMware Server and different network devices

(e.g., switches and routers). The Fog layer consists of the

virtualisation technology, Offensive Kali systems [34], sev-

eral VMs and Middleware Node-RED Server [35]. Finally,

the Cloud layer contains various cloud services such as a

Hive-MQTT broker [36], a vulnerable PHP website [37] and

Cloud centres services (e.g., Microsoft Azure IoT Hub [38]

and AmazonWeb Services Lambda [39]). A detailed descrip-

tion of these three layers configured in the testbed is provided

in the following subsections.

A. EDGE LAYER

This layer is the fundamental one of the entire IoT/IIoT

applications since it can acquire data by directly measur-

ing real-world physical conditions and sending information

to the Fog or Cloud for further analysis [40]. As shown

in Figure 1, the Edge layer includes physical devices,

a NSX-VMware Server [41] and different network equip-

ment (e.g., switches and routers) that are all connected to

different LAN interfaces as well as linked to the Fog layer

through the vSwitch. It includes a set of simulated and phys-

ical IoT/IIoT services and sensors, such as a thermostat and

weather sensors, connected to a Message Queue Telemetry

Transport (MQTT) gateway [42] to publish and subscribe to

different topics, such as measuring temperature and pressure.

Additionally, the NSX-VMware platform [32] was installed

on the host server (i.e., NSX-VMware Server) to allow inter-

action between network elements and IoT/IIoT systems with

the three layers of Edge, Fog and Cloud; thus it can lead to the

realistic execution of current production IoT/IIoT networks.

The hypervisor technology (VMware vSphere hypervisor

NFV) of NSX-VMware [33] was installed on a host server

(i.e., vSphere System) to manage the VMs created at the

Fog layer. Finally, the testbed network contains other devices

in this layer (e.g., two iPhone 7 and Smart TV) and their

patterns have been recorded in the network traffic of the

datasets.

B. FOG LAYER

The original idea of this layer is to extend the Cloud com-

puting and services to the Edge of the network to pro-

vide limited computing capacity and storage near to the

data sources [40], [43]. As it can be seen from Figure 1,

the Fog layer consists of the virtualisation technology,

the offensiveKali systems [34], variousVMs andMiddleware

Node-RED Server [35]. The virtualisation technology pro-

vides uswith a control on theVMs and their services using the

NSX-VMware [41] and vCloud [32] platforms to offer

the framework of executing SDN and NFV in the pro-

posed testbed. The NSX vCloud NFV platform provides

the design of a dynamic IoT/IIoT network testbed of the

ToN_IoT dataset with creating and controlling several VMs

for attacks and normal operations, allowing the interconnec-

tions between the three layers via vSwitches and gateways.

Moreover, the Fog layer includes Offensive Kali systems

(Linux-based OS) [34] that contains ten Kali Linux VMswith

static IP addresses (i.e., 192.168.1.30-39) and various bash

and python scripts of attacks scenarios that exploit vulnerable

systems in the IIoT network. More details are provided in

Section IV-B.

The Virtual Machines (VMs) shown in the green box

were used to offer vulnerabilities such as the VMs of

DVWA service [44], Metasploitable3 [45] and OWASP Secu-

rity Shepherd [46], and others such as Windows 7 and 10

were employed as the remote web connection of the

Node-RED tool. The Damn Vulnerable Web Application

(DVWA) [44] is used as a vulnerable Web application coded

in PHP/MySQL that contains the most common Web vulner-

abilities. The DVWA VM (IP: 192.168.1.192) was utilised to

make security vulnerabilities through Web applications that

were attacked by the Offensive Kali systems. The Metas-

ploitable3 [45] is a free vulnerable VM with various security
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vulnerabilities. The Metasploitable3 VM (IP: 192.168.1.194)

was deployed in the testbed to increase the vulnerabil-

ity of Fog devices as well as to attack them using vari-

ous hacking methods by the Offensive Kali systems. The

Open Web Application Security Project (OWASP) Secu-

rity Shepherd [46] (IP: 192.168.1.184) is a security plat-

form that exploits common security vulnerabilities in Web

and mobile applications being exploited of the offensive

systems. Finally, the remaining VMs are the Orchestrated

server and the Security Onion VM [47]. The Orchestrated

server (OS:Ubuntu 14.04 LTS with IP: 192.168.1.190) is

configured to offer some orchestrated services, such as FTP,

Kerberos, HTTPS, and DNS to reflect real production net-

works. The Security Onion (IP: 192.168.1.180) was used

to log network data from all the active systems in the

testbed.

The Middleware Node-RED Server is the IoT/IIoT virtu-

alised server deployed in the testbed. This server included

the scripts that run IoT/IIoT services through public and

local MQTT gateways utilised in the testbed and linked with

the Cloud layer to subscribe and publish the telemetry data

of IoT/IIoT sensors. Also, a data logger on the Middle-

ware Node-RED Server was used to store telemetry data

of IoT/IIoT sensors, and a Node-RED tool [35] used for

simulating various IoT/IIoT sensors.

The IoT and IIoT services on the Middleware Node-RED

Server were simulated through a Node-RED tool [35] and

Modbus of Node-RED tools [48]. The Node-RED is an

open-source development tool developed by IBM Emerg-

ing Technology used for the integration of IoT physical

devices with APIs and their backend cloud server [35].

The main benefit of this tool is to enable develop-

ers/researchers to easily design and configure real-time

IoT/IIoT applications on end-devices and connect them with

their corresponding Cloud infrastructure. As mentioned in

Section IV-A, using the Node-RED tool, various JavaScript

scripts were designed to simulate various IoT/IIoT ser-

vices (e.g., Smart Fridge, temperature, GPS, weather and

Modbus) to present a variety of the most popular real-world

IoT/IIoT applications found in smart home, smart cities and

smart manufacturing. The various pieces of scripts were

triggered for publishing and subscribing to a specific topic

as explained later in Section IV-A. The data generated

by several sensors were transferred to their corresponding

backend cloud server using a Message Queue Telemetry

Transport (MQTT) protocol [42]. The MQTT was mainly

designed for resource-constrained devices such as IoT/IIoT

sensors as a lightweight messaging transportation protocol

that links machine-to-machine (M2M) communications and

it also operates via a topic-based publish-subscribe mode.

Accordingly, when a sensor (i.e., a publisher) publishes a

message to a broker (server-side) under a particular topic, all

the sensors (i.e., subscribers) that have subscribed to the same

topic can receive this message. The broker is the primary

component that completes the transfer process based on one-

to-many connections [42].

C. CLOUD LAYER

This layer generally hosts large-size data centres with sig-

nificant capacity for both computation power and storage

to support IoT/IIoT applications and satisfy the resource

requirements for big data analysis [43]. In the testbed,

the Cloud layer contains various Cloud services such as a

Hive-MQTT broker [36], a vulnerable PHP website [37] and

Cloud centres services (e.g., Microsoft Azure IoT Hub [38]

and Amazon Web Services Lambda [39]). The Hive-MQTT

broker receives the IoT data from the lower layer for further

analysis. As mentioned in Section III-B, IoT/IIoT sensors

send the data to the corresponding Hive-MQTT broker using

MQTT protocol. The Hive-MQTT broker is a public IoT

MQTT-basedmessaging platform designed for fast and effec-

tive data transportation to and from the connected IoT/IIoT

devices [36]. TheHive-MQTTbroker has a list of subscribers,

which receive the data sent by publishers. The use of the

public IoT platform (i.e., Hive-MQTT broker) in the testbed

ensures that it reflects a realistic IIoT network configura-

tion. The vulnerable public PHP website was used to launch

injection attacks events against websites as discussed later

in Section IV-B. Finally, Microsoft Azure IoT Hub [38]

and AWS Lambda [39] were used to subscribe and publish

IoT/IIoT topics between them and the Fog VMs through

the MQTT protocol. These Cloud services were used due

to their popular use in most IoT applications, and to deter-

mine the variations of IoT legitimate samples when applying

ML methods.

IV. IIoT DATASETS AND EXPERIMENTAL SETUP

A. OVERVIEW OF THE DATASETS

The ToN-IoT datasets include heterogeneous data sources

gathered from the Telemetry data of IoT/IIoT services, as well

as the Operating Systems logs and Network traffic of IoT

network, which were collected from a realistic representation

of a medium-scale network designed at the Cyber Range

and IoT Labs at the UNSW Canberra. The main focus of

this work is on the proposed dataset of the Telemetry data

of IoT/IIoT services and their characteristics. The ToN-IoT

datasets can be accessed at ToN-IoT repository [23]. More-

over, the proposed datasets were labelled with a label feature

(indicating whether an observation is normal or attack) and a

type feature (indicating the attacks sub-classes for multi-class

classification problems). Nine (9) types of cyber-attacks

(e.g., Scanning, DoS, DDoS, ransomware, backdoor, data

injection, Cross-site Scripting (XSS), password cracking

attack and Man-in-The-Middle (MITM)) were launched

against various IoT and IIoT sensors across the IIoT network.

Details of the dataset can be accessed in [23].

The generated data were stored in log and CSV files, and

seven (7) IoT and IIoT sensors (e.g. weather, temperature

and Modbus sensors) were used to capture their telemetry

data, and two smartphones and a smart TV were logged

in network traffic. The two main folders of IIoT datasets

are ’Processed_datasets’ and ‘Train_Test_datasets’. The

’Processed datasets’ folder contains a processed and filtered
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version of the datasets with their standard features and label

in the format of CSV files. In the ‘Train_Test_datasets’

folder, samples of the datasets are used as train-test datasets

in a CSV format selected for evaluating the accuracy and

efficiency of new cybersecurity applications and machine

learning methods. Each IoT device has its own CSV file such

as ‘Train_Test_IoT_device_name.csv’. The total number of

Train-Test IIoT datasets is seven (7), which covers each of

the IIoT devices: Fridge, GPS Tracker, Motion Light, Garage

Door, Modbus, Thermostat and Weather.

The testbed has a combination of physical and simulated

IoT/IIoT services. The real devices include two smartphones

and a smart TV configured with dynamic IP addresses using

the DHCP server installed on the Orchestrated Server. They

also include physical ESP8266 weather sensors [49]. These

sensors were deployed at the edge layer and linked with

the Node-RED to subscribe and publish sensory data to the

public MQTT broker in the cloud layer. The testbed also has

six simulated IoT services found in most popular IoT/IIoT

applications. These services were developed using Javascript

in the Node-RED API and linked to the public MQTT broker

in the cloud layer. To generate the telemetry data for the

simulator, JavaScript codes were written to publish the data to

the broker, and this data was logged in order to evaluate cyber

security solutions. In what follows, three algorithms (i.e,

JavaScript code) of the simulated IoT devices are provided

namely: Fridge, GPS and Thermostat sensors. The remaining

JavaScript codes of all the simulated IoT/IIoT services are

provided in this link [50].

Algorithms 1, 2 and 3 show three of the simulated IoT/IIoT

services (i.g., Fridge, GPS and thermostats) used in the

testbed. Algorithm 1 describes the script of the simulated

fridge sensor that runs against the message payload that is

passed through it as an input. The main idea of the script

is to measure the fridge’s temperature (fridge_temperature),

given as an input from the message payload, and adjust it

Algorithm 1 Fridge Simulation Script

Input: fridgeTemp, tempCondition

Output: data

1: timeStamp← date()

2: fridgeTemp ← retrieve temperature from message pay-

load or set it to a random number

3: if (RandomNumber ≥ 0.5 or fridgeTemp ≥ 6) then

4: fridgeTemp = fridgeTemp + (randomNumber ×

fridgeTemp ≥ 6)

5: end if

6: if fridgeTemp ≥ 6 then

7: tempCondition← high

8: else

9: tempCondition← low

10: end if

11: data← timeStamp, fridgeTemp, tempCondition

12: return data

below a predefined threshold. First, the timestamp is retrieved

from the date function, which will be sent with the teleme-

try data. As shown in the Algorithm 1, the if statement is

used as a threshold to ensure that the fridge_temperature

does not exceed the predefined value and adjust it accord-

ingly. temp_condition is set to high or low based on the

fridge_temperature value. Then, the generated values of

fridge_temperature and temp_condition together with the

timestamp will be published to the MQTT broker as the

telemetry data of the Node-RED fridge sensor. Algorithm 2

gives the script of the simulated a GPS sensor where latitude

and longitude values of GPS tracker sensor are given as

inputs. Then, calculations are performed on both values to

generate the telemetry data of the GPS sensor. Finally, Algo-

rithm 3 gives the script of simulated thermostats’ sensors,

where currentTemperature and sensorState are retrieved from

the message payload as input values. currentTemperature

is the current temperature reading of a thermostat sensor

connected to the testbed environment, where sensorState is

the status of a thermostat sensor which is either on or off.

The task of this script is to maintain the temperature between

25 and 26 ◦C , the default value of the temperature is set

to 25 ◦C . Then, the generated values of currentTemperature,

sensorState and timestamp will be published to the MQTT

broker as the telemetry data of the thermostat sen-

sor. This is just a brief explanation of simulated IoT

devices, and each scenario of IoT devices together with

a description of their features is provided below in more

details.

For the generation of the dataset, various IoT/IIoT scenar-

ios were simulated in the testbed. These scenarios could be

applied to the following popular IoT/IIoT applications: smart

homes, smart cities, and smart manufacturing. For instance,

Smart Fridge, garage door and Motion lights sensors can be

found in most smart homes. The GPS sensor can be found

in the smart cities. The Modbus, Thermostat, and weather

Algorithm 2 GPS Simulation Script

Input: latitude, longitude

Output: data

1: timeStamp← date()

2: x ← 0

3: y← 10

4: z← 0.01

5: sign1← set to a random number

6: i1← set to (a random number ×9)

7: latitude← retrieve it frommessage payload+sign1∗i1∗

z or x

8: sign2← set to a random number

9: i2← set to (a random number ×9)

10: longitude← retrieve it from message payload +sign2 ∗

i2 ∗ z or y

11: data← latitude, longitude, timeStamp

12: return data
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Algorithm 3 Thermostat Simulation Script

Input: currentTemperature, sensorState

Output: data

1: timeStamp← date()

2: default ← 25

3: Initialize currentTemperature and difference

4: difference = currentTemperature− 25

5: currentTemperature← retrieve it from message payload

or set it to default

6: sensorState← retrieve it from message payload or set it

to false

7: if currentTemperature 6= 25 then

8: sensorState← true

9: else

10: sensorState← false

11: end if

12: if sensorState← true then

13: if 0 < difference < 1 then

14: currentTemperature = currentTemperature −

difference

15: sensorState← false

16: else if −1 < difference < 0 then

17: currentTemperature = currentTemperature −

difference

18: sensorState← false

19: else

20: set the currentTemperature to a random number

21: end if

22: end if

23: data← currentTemperature, sensorState, timeStamp

24: return data

monitoring can be found in most smart manufacturing and

industrial applications. We extracted the features in these

scenarios based on the sensing functionality of the simulated

IoT/IIoT services. The detail of the IoT/IIoT scenarios and

the extracted features are as follows:

• Smart fridge measures the temperature and adjusts it

below a threshold when needed. Table 2 shows the fea-

ture column in IoT fridge dataset with their descriptions.

• A remotely activated garage door enables opening or

closing of the door based on a probabilistic input.

The features of the garage door sensors are listed

in Table 3.

• Global Positioning System GPS tracks the location

coordinates such as latitude and longitude of an

object remotely, and the GPS features are shown

in Table 4.

• Smart sense motion, which turn on or off the light based

on a pseudo-random generated signal and the features

description is presented in Table 5.

• Modbus service, which simulates the functionality of the

Modbus devices found in many industrial applications

as these devices communicate with each other using a

master-slave communication to transmit register types

such as input, discrete, holding and Coil over serial

lines. We extracted the register type features as it is the

functionality of the Modbus service. More details can be

found in Table 6.

• Smart thermostat regulates the temperature of a phys-

ical system by controlling a heating/cooling system

(e.g., the central heating, Air-conditioning, or water

heaters system). The main two features in a smart ther-

mostat sensor are the current temperature and thermostat

status as explained in Table 7.

• Weather monitoring system generates data about air

pressure, humidity, and temperature. More details are

presented in Table 8.

B. NORMAL AND ATTACK SCENARIOS

Asmentioned in Section IV-A, seven (7) IoT and IIoT sensors

were simulated. TheNode-RED tool was used to connect sen-

sors and their corresponding backend cloud server to generate

normal data. Various cyber-security incidents (i.e., DDoS and

ransomware, XSS - Cross-site Scripting, backdoor and injec-

tion) were launched against different IoT and IIoT sensors.

The hacking scenarios were launched to exploit either the

Node-RED’s IP address, public and local MQTT brokers or

WiFi connections of the physical IoT sensors. In order to label

the data as either normal or attack, we used the timestamp

field of each well-known attack that occurred to tag each

vector in the dataset. Then, after labelling the attacks and their

types (i.e., the attack sub-classes), we added the remaining

vectors as either normal operations (that occurred via publish-

ing and subscribing through public) or local MQTT brokers.

As mentioned in Section III-B, the attack scenarios were

carried out by the Offensive Kali systems that include ten Kali

Linux VMs with static IP addresses (i.e., 192.168.1.30-39)

and various bash and python scripts of attacks scenar-

ios that exploit vulnerable systems in the IIoT network

and launch the attacks scenarios against IoT/IIoT services

(e.g., IoT/IIoT devices and public MQTT brokers). More

details of the hacking scenarios and different scripts used

to launch such attacks in the dataset are made available

in [51]. A brief description of these cyber-attacks is provided

below.

• Scanning [52], [53] is considered to be the first step

where an attacker gathers information about a target sys-

tem, such as opening ports and available services about

a victim device or sensor, before launching the actual

attack. The attacker usually uses scanning tools such

as Nmap [54] or Nessus [55] to perform port scanning.

We used both Nmap and Nessus tools from the offensive

Kali systems to perform scanning attacks against the

victim IoT/IIoT devices in the subnet (192.168.1.0/24)

and the Public MQTT broker. The attack IP addresses

of the Offensive Kali systems used to perform the scan-

ning attack are as follows: 192.168.1.30, 192.168.1.31,

192.168.1.32, 192.168.1.33 and 192.168.1.38.
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TABLE 2. IoT fridge features and description.

TABLE 3. IoT garage door features and description.

TABLE 4. IoT GPS tracker features and description.

TABLE 5. IoT motion light features and description.

TABLE 6. IoT IoT modbus features and description.
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TABLE 7. IoT thermostat features and description.

TABLE 8. IoT weather features and description.

• Denial of Service (DoS) [52], [53] is a well-known

flooding attack where an attacker typically launches

sequences of malicious attempts against a legitimate

user to disrupt access to services. Distributed Denial of

Service (DDoS) and Denial of Service (DoS) attacks

are included in the IIoT dataset. DDoS is usually

launched by a large number of compromised devices

known as bots or botnets [18], [52]. This attack can

be done by flooding target IIoT devices with a numer-

ous number of connections so to exhaust the device

resources (e.g., CPU and memory). As mentioned in

Section I, IIoT devices have a limited computation

power and storage capacity which makes them eas-

ily vulnerable to DoS attacks [2]. To launch such

attacks against vulnerable IoT/IIoT devices in our sce-

narios, a python script (e.g., dos.py) was developed

to perform DoS attacks using the Scapy package [56]

and different python scripts (e.g, ddos.py, ddos2.py

and ddos2_broker.py) were written to launch DDoS

attacks using the UFONet toolkit [57]. The IP addresses

of the offensive Kali systems used to perform DoS

attacks are: 192.168.1.30, 192.168.1.31, 192.168.1.39

where DDoS attacks were launched by 192.168.1.30,

192.168.1.31 and 192.168.1.{34-38}.

• Ransomware [58] is a sophisticated type of malware

that denies a legitimate user access to a system or ser-

vices by encrypting them and tries to sell the decryption

key that allows the user to get back access to the sys-

tem. An IoT ransomware is similar, however it denies

access to IoT devices. IIoT devices and applications are

potential victims of IoT ransomware since they often

carry out mission-critical tasks where denied access

or locked down to these applications could lead to

catastrophic consequences such as financial losses to

organisations [58], [59]. We used aMetasploitable3 [45]

framework to exploit weaknesses in the target devices

and then executed the ransomware attack. The ran-

somware attack was performed by the offensive

Kali systems with IP addresses: 192.168.1.33 and

192.168.1.37.

• Backdoor [16] is a passive attack that allows an adver-

sary to gain unauthorised remote access to the infected

IIoT devices by a backdoor malware. The adversary

uses the backdoor to control infected IIoT devices and

makes it a part of botnets to attempt DDoS attack [16],

[60]. We utilised the Metasploitable3 [45] framework

to perform backdoor attacks, which were launched by

two offensive Kali systems with IP addresses as follows:

192.168.1.33 and 192.168.1.37.

• Injection Attack [16], [60] often tries to execute mali-

cious codes or inject malicious data into the IIoT

applications. Also, the injection attack can manipulate

telemetry data and the control commands in the IIoT

system and disrupt the normal operation. To perform

injection attacks two bash scripts (e.g., injection-1.sh

and injection-2.sh) were written to inject data inputs

against web applications (e.g., DVWA and the vul-

nerable public PHP) and Security Shepherd VMs and

webpages of IoT services. The IP addresses of the

offensive Kali systems participated in injection attacks

are: 192.168.1.{30,31,33,35,36,38}.

• Cross-Site Scripting (XSS) [60] often attempts to run

malicious commands on a Web server in the IIoT

applications. The XSS allows an attacker to remotely

inject arbitrary Web scripts such as malicious HTTP or

JavaScript codes. This attack can compromise the data
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and the authentication procedures between IIoT devices

and a remote Web server. We developed two bash

scripts (e.g., xss1-sh and xss2.sh) using the Cross-Site

Scripter (XSSer) toolkit [61] to perform XSS attacks on

theWeb applications of DVWA, Security ShepherdVMs

and webpages of IoT services. The attack IP addresses

of the offensive Kali systems used to perform the XSS

attacks are: 192.168.1.{32,35,36,39}.

• Password Cracking Attack [62] when an attacker

uses password cracking methods such as brute force

and dictionary attacks to guess the password of IIoT

devices. This can enable the attacker to bypass authen-

tication methods and compromise IIoT devices [16].

We developed two bash scripts: (e.g., password-1.sh)

using the CeWL toolkit [63] for dictionary attacks and

(password-2.sh) using the Hydra toolkit [64] for brute

force attacks. These scripts were developed to simul-

taneously launch password attacks scenarios against

vulnerable IoT/IIoT devices in the testbed. The pass-

word cracking attacks were launched by the follow-

ing the offensive Kali systems with IP addresses,

namely 192.168.1.30, 192.168.1.31, 192.168.1.33,

192.168.1.35 and 192.168.1.38.

• Man-In-The-Middle (MITM) attack [9] is a

well-known network attack that can intercept the com-

munication channel between two devices and may

manipulate their data. Some of the common MITM

attacks are ARP Cache poisoning, ICMP redirect and

port-stealing [9]. The offensive Kali VMs with IP

addresses 192.168.1.31-34 were utilized to launch vari-

ous MITM scenarios in our testbed. We used the Etter-

cap tool [65] to execute ARP Cache poisoning, ICMP

redirection and port-stealing attacks.

V. CANDIDATE SUPERVISED ML METHODS

Having explained the various types of attacks included in the

proposed datasets, we next present the statistics of normal

and attack data records in each Train-Test IIoT dataset (see

Figures 2 and 3). Several supervised ML methods along with

a Deep Learning model have been applied to evaluate their

performance on the proposed Telemetry datasets when such

methods are used to train different classifiers for intrusion

detection purposes. In particular, a combination of classifi-

cation methods are implemented on the proposed datasets to

evaluate their performance in terms of accuracy and other

evaluation metrics (e.g., precision, recall, F-score) along with

the required time for training and testing each classifier.

Candidatemethodswere chosen based on their widely used

in the security domain as they have demonstrated a good

performance on the design of IDSs, and have shown effec-

tiveness in a variety of areas [11]. In particular, we consider

these seven methods: Support Vector Machines (SVM) [66],

k-Nearest Neighbour (kNN) [67], Naïve Bayes (NB) [68],

decision tree-based methods (i.e., Random Forest (RF) &

Classification and Regression Trees (CART) [66]), as well

as Logistics Regression (LR) [69], and Linear Discriminant

FIGURE 2. Statistics of the training and testing records in Fridge, GPS,
Garage and Thermostat datasets.

FIGURE 3. Statistics of the training and testing records in Motion_light,
Weather and Modbus datasets.

Analysis (LDA) [70]. The authors in [11], [67] also showed

that SVM, kNN,NB and CART are themost popular methods

used for IDS development. Additionally, Resende and Drum-

mond [71] conducted a survey that shows the effectiveness

of the Random Forest (RF) [66] algorithm for IDSs since

this can provide both a classification and embedded feature

selection. Therefore, Random Forest is chosen here as the

ensemble algorithm. LR and LDA are considered in this paper

as they have low computation overheads [72]. Finally, Long

Short-Term Memory (LSTM) [73] has been chosen as the

deep learning method based on the reviewer’s suggestion;

moreover, it achieves state-of-the-art performance in dealing

with sensor data and learning long-term dependencies from

observations [74].

Below is a brief description of these methods:

• Logistic Regression (LR) [69]: even though it has the

name ‘regression’, LR is commonly used for classifi-

cation problems such as intrusion detection and spam
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filtering, as it can estimate the probability that an obser-

vation belongs to a particular class [72]. For instance,

if the estimated probability is greater than 50%, then the

model will predict that the observation belongs to attack

class since it exceeds the threshold; otherwise, it will

predict it as a normal class. LR estimates the probability

based on the following equation:

hθ (x) = σ (θT ∗ x) (1)

where hθ is the hypothesis function which outputs the

estimated probability, x is the observation’s feature

vector, θ is the model’s parameter, θT is the transpose

of θ , and σ (.) is a sigmoid (i.e., logistic) function which

defines the threshold, and the equation of σ (.) is defined

as:

σ (z) =
1

1+ e-z
(2)

where z is the term (θT ∗ x) in Eq. (1). Basically,

the sigmoid function outputs a number between 0 and

1, where the value closest to 0 indicates that an obser-

vation is normal and value closest to 1 indicates that

an observation is attack. The model’s parameter θ is

estimated during the training phase based on k-fold cross

validation as explained in Section VI-A2.

• Linear Discriminant Analysis (LDA) [75] is a

well-known linear algorithm commonly implemented

as a dimensionality reduction method during the

pre-processing step. In this work, however, LDA is not

employed as a dimensionality reduction, rather it is

applied as a classification method to build an intrusion

detection model (i.e., a classifier) [72]. Initially, LDA

estimates the means, and covariance matrix for mul-

tivariate features from the training data for each class

based on the assumption that the data is normally dis-

tributed. Then, LDA uses Bayes’ Theorem to estimate

the probability of the output class (k) (whether it is a

normal/attack class) given the observation (x) using the

probability of each class. Bayes’ Theorem is explained

further in Naïve Bayes below. All the means, covariance

matrix, and the estimated probability are estimated from

the training data, and used in the LDA equation (i.e.,

a discriminate function). Finally, LDA uses the discrim-

inate function to make the final prediction as the class

with a highest probability is the output classification.

The discriminate function is defined as:

fk (x) = x ∗
µk

6
−

µ2
k

2 ∗6
+ log(Pk ) (3)

where fk (x) is the discriminate function for class k given

observation x,µ is the mean,6 is the covariance matrix,

and P is the estimated probability.

• k-Nearest Neighbour (kNN) [67]: unlike LDA, kNN

is a non-parametric method that does not make any

assumption about the underlying data distribution. This

is also considered as a simple method that classifies an

incoming observation from a test sample to the nearest

sample in the training set based on specific metrics.

In particular, kNN attempts to find a group of k observa-

tions in the training set that is closest to the test observa-

tion, and assigns a label based on themost common class

among its k nearest neighbours. The kNN method has

twomain parameters [66]: a distance or similarity metric

(i.e., to compute the distance between observations), and

the value of k (i.e., the number of nearest neighbours).

In this work, the value of k was set to 5 as it is considered

as the default value, and Euclidean Distance is chosen

as it is a widely-used distance metric [66], [70]. The

equation of Euclidean Distance is defined as:

d(x, y) =

√

√

√

√

n
∑

i=1

(xi − yi)
2 (4)

where d(x, y) is a function that calculates the Euclidean

Distance between two observations, xi is the first obser-

vation, yi is the second observation of data, n is the total

number of observations and i is the index to a specific

column as we sum across all columns.

• Classification and Regression Trees (CART) [66],

[67] is a decision tree-based algorithm that constructs

a binary tree structure from the training set. Each root

node, also known as a non-leaf node, indicates a single

input variable (x) and a split point on that variable

whereas each leaf node (i.e., it does not have any chil-

dren nodes) corresponds to an output of variable (y) used

to make a prediction. The CART algorithm provides

a foundation for other important tree-based methods

(e.g., RF - Random Forest) which will be explained

next. In this work, Gini impurity is used based on the

recommendation in the current literature [67] as a split

criterion to decide which feature to split at each step of

the tree building process, as shown in Eq 5:

G(D) =

c
∑

i=1

(P(i)) ∗ (1− P(i)) = 1−

c
∑

i=1

P(i)2 (5)

whereD is the dataset,C is a set of classes, and p(i) is the

fraction of the number of samples with the class label, i

in c. Gini impurity has 0 when there is only one class in

c and reaches the maximum value when all classes are

potentially equal.

• Random Forest (RF) [66], [71] is an ensemble learning

that combines multiple decision trees that use randomly

picked data points as their input. For classification task,

RF can be used to classify an observation based on

the results of a collection of decision trees. The final

classification result can be decided by majority voting

or weighted voting. In this work, the weighted voting is

used as the voting technique, and the number of trees in

the forest was set to 10 as it is the popular initial value

to start with [70]. The Gini impurity (Eq. 5) is also used

as a split criterion.
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• Naïve Bayes (NB) [68] is a probabilistic-based approach

which applies Bayes’ theorem to perform the classifi-

cation approach. Like LDA, NB assumes the data is

normally distributed, and it calculates the conditional

probability of a class label given a dataset. Moreover,

the Bayes theorem provides a principled approach for

computing this conditional probability with indepen-

dence assumptions between the features, such as each

input feature is independent of all other input features.

Bayes’ theorem is stated in Eq 6:

P(C|x) =
P(C) ∗ P(x|C)

P(x)
(6)

where P(C|x) is the posterior probability of class C

given the provided observation x, P(C) is the prior prob-

ability,P(x|C) is the likelihood, andP(x) is the evidence.

These parameters are estimated from the training set.

During the training phase, the Maximum A Posteri-

ori (MAP) estimation is used to estimate the P(C) and

P(x|C), as the goal of NB is to classify a given observa-

tion x to the class with the highest posterior probability.

• Support Vector Machine (SVM) [66] is a discrimina-

tive classifier used for both linear and nonlinear data, and

it is mainly defined by a separating hyperplane. SVM is

intended to derive a hyperplane that maximizes the sep-

arating margin between the normal and attack classes.

Different kernel functions exist for expressing the hyper-

plane, ranging from a linear kernel that attempts to find a

simple linear separation between the data, to a non-linear

one (e.g., Gaussian Radial Basis Function (RBF) ker-

nel) [66]. In the experiment, we use the widely adopted

Gaussian RBF kernel function of SVM [66], [70], and

the kernel coefficient gamma is set to ‘auto’ as suggested

in [70]. RBF is used as a nonlinear mapping to transform

the original training data to a higher dimension in which

it searches for the linear optimal separating hyperplane.

The equation of the hyperplane is defined as:

g(x) =

n
∑

i=1

Wi ∗ xi+ b0 (7)

where g(x) is the hyperplane function, W is a weight

vector, n is the number of features in n-dimensional

space and b is a bias.

• Long Short-Term Memory (LSTM) [73] is a vari-

ant of Recurrent Neural Network (RNN) architecture

used in the field of deep learning, which is primarily

designed to accurately model temporal sequences and

their long-term dependencies by introducing a collection

of memory units in the recurrent hidden layer. LSTM

usually consists of memory cells and gates. The use of

different gate units in LSTMcan address the issue of gra-

dient vanishing or explosion caused by memory loss for

long-term sequences, which can be encountered when

training RNN [73]. An LSTM model can be formulated

as a classification problem in a supervised manner to

be used for attack detection by computing a mapping

function from an input observation x = (x1, x2, . . . , xN )

to an output label ywithin the [0,1] set, by calculating the

activation function of the network units. A typical LSTM

memory cell is configured with an input vector x<t>,

hidden input vector h<t−1> from previous timestep, and

output vector h<t>. The implementation of the memory

cell can be established using the following equations in

iterative manner [76].

i<t> = σ (Wix
<t> +Wih

<t−1> + bi) (8)

f <t> = σ (Wf x
<t> +Wf h

<t−1> + bf ) (9)

o<t> = σ (Wox
<t> +Woh

<t−1> + bo) (10)

u<t> = tanh(Wux
<t> +Wuh

<t−1> + bu) (11)

c<t> = it ⊙ u<t> + f <t> ⊙ c<t−1> (12)

h<t> = o<t> ⊙ tanh(c<t>) (13)

y<t> = φ(Wy.h
<t> + by) (14)

where x<t> is the input at the current time, σ is the

logistic sigmoid function and ⊙ indicates element-wise

multiplication. The W terms indicate weight matrices,

and the b terms indicate bias vectors. u is the cell input

activation. i, f , o, and c are the input gate, forget gate,

output gate, and memory cell, respectively. These gates

collectively decide how to update the current memory

cell c<t> and the current hidden state h<t>. The input

gate manages the flow of input activation into the mem-

ory cell. The forget gate is used to rest the memory

cells when their contents are outdated. The output gate

controls the output flow of internal memory state to the

rest of the network [76]. Lastly, y is the network output,

and φ is the network activation function. In this work,

the sigmoid function was used as φ for binary classi-

fication, whereas the softmax was used for multi-class

classification task which maps the last hidden layer vec-

tor into a vector whose length is equal to the number of

class labels.

The LSTM’s hyperparameters were selected based on

a grid search method [77], which designs an auto-

mated search to test different network configurations.

The grid search was performed on the Fridge dataset

as it has a combination of both discrete and continuous

values; then these configurations were used for all the

other datasets. The final hyperparameters used to con-

figure the LSTM network are shown in Table 9. The

number of epochs is set to 35 and the batch size is set

to 64. In general, an epoch is the number of complete

passes through the entire dataset so that each example

is seen once by the model, where examples were sepa-

rated into randomly selected ‘‘batch size’’ groups [78].

In addition, The LSTM models were configured with

one input layer with ‘‘the number of units equal to the

number of input features’’ based on the number of fea-

tures at each dataset, and with three hidden layers with

{128, 100, 64} units, respectively. The output layer was

configured with a single unit and a sigmoid activation
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TABLE 9. The hyperparameters of LSTM network.

function for the binary classification. For the multi-class

classification, the softmax was used with units equal to

the number of classes. As RNN like LSTM generally

has the problem of overfitting [78], the dropout layer has

been added after each layer to prevent model overfitting.

The crossentropy was used as the loss function where

‘‘binary crossentropy’’ was used for binary classifica-

tion and ‘‘sparse_categorical crossentropy’’ was used

for the multi-class classification. Finally, we used Adam

optimiser [79] for stochastic gradient descent to update

network weights based in training data.

VI. EXPERIMENTAL RESULTS

This section discusses the performance of the candidates

ML methods for intrusion detection purposes using the pro-

posed IIoT datasets. As discussed in Section V, we utilised

the parameters recommended in the current literature [66],

[70], and adopted the default values as the initialisation of

the candidate methods, because the goal of this experiment

is to provide a first-hand evaluation of the performance of

candidate ML methods applied to the proposed datasets as a

baseline for further research. The experiments were carried

out in Python version 3.7.3. The data processing and ML

evaluation were implemented by extension packages includ-

ing the packages of NumPy [80], SciPy [81], Pandas [82],

and Scikit-learn v0.22.1 [83]. For LSTM implementation,

TensorFlow v2.1.0 [84] was used with Keras v2.3.1 [85]. All

experiments were executed under Windows 7 enterprise with

core i7 3.60 GHz CPU and 8 GB memory. In what follows,

we will describe the experimental methodology applied to

evaluate the performance of the selected ML methods using

the proposed IIoT datasets. The experimental results and

discussion are also presented for both the per-device IoT

datasets and the combined_IoT_dataset .

A. EXPERIMENTAL METHODOLOGY

1) DATA PREPARATION

It is essential to clean and prepare the data before applying

any ML method to achieve good accuracy and accelerate the

learning process. This is often carried out by removing unnec-

essary features that may degrade the performance, converting

non-numerical features and replacing missing values if they

exist. The main two steps applied during the data preparation

process are data pre-processing and data normalisation.

• Data Pre-processing: categorical features that have

nominal values were converted to numeric values in

order to easily applyMLmethods. For instance, the tem-

perature feature in the Fridge dataset, which has cat-

egorical values ‘high’ and ‘low’, were mapped into

‘0’ and ‘1’. These categorical values have been con-

verted to consecutive numeric values by applying a

label-encoding method [70]. The following features

(date, time, and timestamp) were emitted from feature

vectors as they may cause some ML methods to over-

fit the training data. For LSTM, the input data were

reshaped into three dimensions (e.g., number of sam-

ples, timesteps, and feature numbers) in order to fed

it into LSTM network. The timesteps has been set to

one as it is the default representation when designing a

LSTM network [78].

• Data Normalisation: some features have larger values

than others, and this can lead to inaccurate results since a

model might be biased to the large feature values. Thus,

data normalisation plays an important role in preventing

features with large values from outweighing the features

with smaller values by scaling features within a range

between [0.0,1.0] without changing the normality of

data behaviour [86], [87]. As shown in Eq. 15, a min-

max normalisationmethod is used to scale feature values

within [0.0,1.0].

z =
(x − xmin)

xmax − xmin
(15)

where x is an original value, z is the normalised value,

and xmax and xmin the minimum and maximum values of

the feature, respectively.

2) TRAINING PROCESS

As discussed in Section IV-A, the train-test IIoT datasets are

formatted in CSV files where each device has its own CSV

file that contains both the training and the testing data. First,

we further divided the dataset into two parts (i.e., train and

test splits): 80% of the data was used to train/evaluate the

selected ML methods, and the 20% of the data was held back

for the testing dataset for further evaluation of the models

(i.e., trained classifiers) with unseen data. The percentage

of 80% for training and 20% for testing are chosen as sug-

gested in [70] since the (80% train - 20% test) split is con-

sidered to be the best ratio to avoid the over-fitting problem

where a model memorises the data rather than learns from

it [88]. Next, a k-fold cross-validation was used for parameter

tuningwhere it is applied to each training dataset by randomly

dividing the set of observations into k subsets of equal size.

Each time, one of the subsets was treated as a validation set,

while the remaining k-1 subsets were used to train themodels.

Then, the average value of all folds was used as the final

result [66], [70]. In this experiment, the k value was set to 4 as

we used a different set of values (3,4,7 and 10). We found that

4 gives a better result, while the accuracy slightly decreases

with a large k value such as 10 in some models. However,
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the k value is a user parameter and should not affect the

results as such. The performance of the generated models

is evaluated with different evaluation metrics, which will be

discussed in Section VI-B1. Figure 4 summarises the above

steps involved in evaluating the performance of different can-

didates ofMLmethods using the proposed datasets discussed.

FIGURE 4. Evaluation process on the datasets with candidate ML
methods.

B. FURTHER EVALUATION

1) EVALUATION METRICS

several metrics were used to evaluate the effectiveness of ML

methods on the proposed IIoT dataset. In particular, accuracy,

recall, precision, and F-score were used to quantitatively

evaluate the performance of the selected ML methods [8].

The accuracy metric shows the overall effectiveness of a

model as the fraction of all normal and attack observations

that are correctly classified. The recall metric shows the

number of attacks correctly detected divided by the total

number of attack observations in the test dataset [8]. The

precision metric shows the percentage of correctly detected

attack observations over all the detected attacks. The F-score

calculates the harmonic (equally-weighted) mean of preci-

sion and recall [8]. These metrics are defined as follows:

Accuracy =
(TP+ TN )

TP+ TN + FP+ FN
(16)

Recall =
TP

TP+ FN
(17)

Precision =
TP

TP+ FP
(18)

F − Score = 2 ∗
(Recall ∗ Precision)

Recall + Precision
(19)

where True Positive (TP) is the # of actual attack records that

are correctly detected as attacks, True Negative (TN) is the #

of actual normal data that are correctly classified as normal,

False Negative (FN) is the # of actual attack instances that are

incorrectly classified as normal and False Positive (FP) is the

# of actual normal instances that are incorrectly detected as

attacks.

In addition, we consider the training time (i.e., the CPU

time to build model), and testing time (i.e., the CPU time to

test the model) as they are important to evaluate the execution

time taken by the model especially during the testing/runtime

phase to report the predicted results.

C. PER-DEVICE DATA SET EVALUATION

This section shows the experimental results for per-device

datasets. The 4-fold cross validation was applied to all the

models. The average value of all the evaluation metrics was

computed and shown as the final results. In addition, the train-

ing and testing time are presented.

Tables 10 and 11 show the average accuracy, precision,

recall and F-score as well as the training and testing time

for the candidate methods applied to the seven benchmark

datasets. In general, all the candidate methods show signif-

icant results for Garage Door dataset with an overall score

of (1.00) for all the evaluation metrics. The reason behind

this success of all the methods could be due to the fact that

the Garage dataset has only discrete values which are easier

to deal with, while the other datasets contain continuous

values or a combination of both (e.g., discrete and continuous

values). In contrast, all these methods perform poorly when

applied to both Light sensor and Thermostat datasets with

average accuracy and precision of (0.58 and 0.34) for the

Light dataset, and (0.66 and 0.44) for the Thermostat dataset.

These fluctuations in the performance of these methods could

be explained by the heterogeneity of the data sources in IoT

datasets. Long Short-Term Memory (LSTM) demonstrates

significant results in the Fridge dataset with an overall (1.00)

for all the evaluation metrics, followed by the k-Nearest

Neighbour (kNN) which shows the second-best results (0.99)

for all the evaluationmetrics.Moreover, both LSTMand kNN

show almost similar result in the GPS dataset with approxi-

mate values of (0.88) in all the evaluation metrics. Random

Forest (RF), and Classification and Regression Trees (CART)

outperform most of the other models in the Modbus dataset

where they show accuracy of (0.97) and (0.98), respectively.

In the Weather dataset, CART has the best results of (0.88)

in precision and (0.87) in the other metrics while RF shows

the second-best results of (0.84) in all the evaluation metrics.

LSTM and kNN show competitive results in the Weather

dataset where LSTM has accuracy and precision of (0.82),

and kNN has results of (0.81) in all the metrics.
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TABLE 10. The evaluation metrics results for Fridge, Garage Door, GPS and Modbus datasets (training and testing time is in seconds). [The abbreviations
are as follows: LR- Logistic Regression, LDA- Linear Discriminant Analysis, kNN- k-Nearest Neighbour, CART- Classification and Regression Trees, RF-
Random Forest, NB- Naïve Bayes, SVM- Support Vector Machine and LSTM- Long Short-Term Memory. These abbreviations also apply to Table (11-13).
Note: the best value for each metric is highlighted in bold for each dataset].

For most of the benchmark dataset, both RF and CART

obtain very similar results which could be due to the

tree-based structure of their design. In addition, Logistics

Regression (LR) and Linear Discriminant Analysis (LDA)

achieve relatively similar results for most of the datasets

and this could be due to the fact that they are both a

linear-based algorithm, so they produce similar results. Naïve

Bayes (NB) shows a good result only for the GPS dataset with

an accuracy of (0.86), and it achieves average results for the

other datasets. The results produced by the Support Vector

Machines (SVM) average between (0.63) and (0.67) for most

of the datasets. In terms of the training and testing time,

LSTM has the longest training and testing times compared

with those of other models, followed by SVM which has

the second-longest times. Both LR and LDA have the lowest

training and testing times.

Further evaluation is carried out in this section to assess

the performance of the candidatesMLmethods using the pro-

posed datasets by combing all the per-device datasets into a

single dataset, combined_IoT_dataset . This can reflect some

real-time scenarios since most real-time systems keep their

data in a central database where all the data gathered from

the system is stored for maintenance, historical, auditing and

analysis purposes. Furthermore, the selected ML methods

were evaluated for both binary and multi-class classification

problems using the combined_IoT_dataset .

1) COMBINED_IoT_DATASET

Each IoT dataset was combined into one CSV file

combined_IoT_dataset . A python script was implemented to

automatically combine all IoT dataset into a single CSV file

with a total of 22 features. Then, amedian value for each col-

umn was used as an imputation to fill missing values in such

column. The use of median is recommended as it is less sus-

ceptible to outlier errors compared to mean imputation [70].

The class distribution of the combined_IoT_dataset is shown

in Figure 5.

2) BINARY CLASSIFICATION ON combined_IoT_dataset

The combined_IoT_dataset was similarly used to evalu-

ate the ML methods as the per-device IoT dataset. Accu-

racy, recall, precision, and F-score were used to quantita-

tively evaluate the performance of the candidate ML meth-

ods on the combined_IoT_dataset . Additionally, the training

VOLUME 8, 2020 165145



A. Alsaedi et al.: TON_IoT Telemetry Dataset

TABLE 11. The evaluation metrics results for Light_Motion, Thermostat and Weather datasets (training and testing time is in seconds).

TABLE 12. Evaluation of binary classification models using combined_IoT_dataset (training and testing time is in seconds) [ Note: the best value for each
metric is highlighted in bold].

FIGURE 5. Statistics of combined_IoT _dataset .

and testing time for each model were calculated. Table 12

shows a summary of the results: CART achieves the highest

score of 0.88 in (accuracy, recall and F-score), and a sore

of 0.90 for precision with a test time of (0.022 second).

RF and kNN score the second good results. RF has a

score of 0.85 for (accuracy, recall and F-score), and a score

of 0.87 in the precision while kNN shows a score of 0.84 for

(accuracy, recall & F-score), and a score of 0.85 in the

precision. In terms of the time, RF requires 0.164 seconds

which is less testing time than kNN which requires a signifi-

cant amount of testing time (109.361 seconds). This can be

explained as kNN is a lazy leaner which uses the training

phase to store the data, and then it uses the data during

the test phase to make a prediction which makes the test-

ing phase slower. LSTM shows a precision of (0.83) and a

score of (0.81) for both accuracy and recall. LDA has an

accuracy of (0.68) and a precision of (0.74). LR, NB and

SVM have an overall accuracy around (0.61) but LR and

SVM have a precision of (0.37) which is lower than all

other models. The low precision of LR and SVM may indi-

cate that most of the predicted labels are incorrect (high

false positives). Finally, SVM has by far the longest train-

ing and testing time at (3525.052) and (558.663), seconds

respectively.
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TABLE 13. Evaluation of multi-class classification models on a combined_IoT_dataset (training and testing time is in seconds) [ Note: the best value for
each metric is highlighted in bold].

3) MULTI-CLASS CLASSIFICATION ON

combined_IoT_dataset

As mentioned earlier in Section IV-A, the proposed datasets

have a type feature that indicates the attack sub-classes for

the multi-classification problems. In this sub-section, we fur-

ther test the candidates ML methods to evaluate their per-

formance on multi-classification problems. The evaluation

of candidates ML methods for a multi-class classification

problem requires some considerations. To begin, Logistic

Regression (LR) is usually used for a binary classification

and it cannot be directly applied to solve a mutli-class

problem. Therefore, LR is implemented with the one-vs-

rest (OvR) scheme to be used for multi-class classifica-

tion. The one-vs-rest (OvR) scheme involves training a

single LR classifier per class, with the training samples

of that class as positive samples and all other samples as

negatives. Each LR classifier predicts the probability of a

particular class, and the class with the highest probability

is selected [70]. For LSTM, the softmax was used as the

network output activation function and ‘‘sparse_categorical

crossentropy’’ was used as the loss function as mentioned

in Section V.

Lastly, a weighted average is calculated by means of eval-

uation metrics as a final result for each model. The weighted

average can be computed by multiplying each class with

a weight factor (i.e., the # instances with that target class)

and then calculating the sum for other classes [70]. The

evaluation metrics used to compare all models are accuracy,

precision, recall and F-score. Table 13 shows a summary of

the multi-class classification results. CART achieves good

results compared to the other methods with a score of (0.77)

for all the metrics, and F-score of (0.75). kNN and RF

achieve the second best results where kNN scores accuracy

of 0.72 and recall of (0.73), whereas the RF shows accu-

racy of (0.71) and recall of (0.72). LSTM has a score of

(0.68) in both the accuracy and recall metrics. LR and LDA

show almost similar results for accuracy of (LR = 0.61 and

LDA= 0.62) and recall of (LR= 0.62 and LDA= 0.63). Both

SVMand LR have theworst precision score, (0.37) and (0.38)

respectively. NB has the lowest accuracy score of (0.54). The

SVM model shows an overall score of 0.60 for accuracy and

0.61 for recall. In terms of the execution time, SVM requires

the longest training and testing time. Surprisingly, the LR has

a training time of (30.778 seconds) which is the third-longest

training time after the LSTM which has a training time of

(1375.305 seconds).

VII. CONCLUSION

This paper proposed new IIoT-based datasets, called

TON_IoT, which incorporate both normal sensor measure-

ment data as well as various types of attacks targeting IIoT

applications. These datasets were designed on a realistic rep-

resentation of an IoT network testbed and were given a ‘label’

column to indicate normal and attack instances, and a ‘type’

column to indicate attack sub-classes for possible multi-class

classification purposes. In addition, the datasets were com-

bined into a single dataset, named combined_IoT_dataset ,

to represent real-world scenarios. Various evaluation metrics

(i.e., accuracy, precision, recall and F-score) were used to

evaluate the performance of seven supervised ML methods

along with LSTM as a deep learning method for the purpose

of intrusion detection using the proposed datasets. The results

of the evaluation have indicated that the proposed datasets

can be efficiently utilised to implement and train various

MLmethods for anomaly-based detection research. Themain

finding of the evaluation was that RF and CART achieved the

highest score in all metrics on both per-device datasets and the

combined one. This finding indicated an inherent advantage

of both methods in distinguishing normal class and different

attack classes. The results have also shown both LSTM and

kNN had the second-best performance compared to the other

methods. Overall, these results may pave the way for the

future design and development of robust detection models for

the specific datasets. In addition, we aspire that the findings

provided in this work, and the contribution of the proposed

datasets, will significantly benefit the research community

working on IDSs for IoT/IIoT applications. As a future direc-

tion, more work could be done to improve the performance

of the baseline methods on the proposed datasets. Advanced

parameter optimisation methods (e.g., Bayesian optimisation

and genetic algorithm) can be utilised to optimise the model’s

hyperparameters and achieve better results.
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