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Tonal Consonance and Critical Bandwidth 

R. PLOMP AND W. J. M. LEVELT 

Institute for Perec pi ion RVO-TNO, Socstcrberg, Netherlands 

firstly, theories are reviewed on the explanation of tonal consonance as the singular nature of tone intervals 
with frequency ratios corresponding with small integer numbers. An evaluation of these explanations in the 
light of some experimental studies supports the hypothesis, as promoted by von Helmholtz, that the dif-
ference between consonant and dissonant intervals is related to beats of adjacent partials. This relation 
was studied more fully by experiments in which subjects had to judge simple-tone intervals as a function of 
lest frequency and interval width. The results may be considered as a modification of von Hclmholtz's 
conception and indicate that, as a function of frequency, the transition range between consonant and dis-
sonant intervals is related to critical bandwidth. Simple-tone intervals are evaluated as consonant for 
frequency differences exceeding this bandwith, whereas the most dissonant intervals correspond with fre-
quency differences of about a quarter of this bandwidth. On the base of these results, some properties of 
consonant intervals consisting of complex tones are explained. To answer the question whether critical 
bandwidth also plays a role in music, the chords of two compositions (parts of a trio sonata of J. S. Bach 
and of a string quartet of A. Dvorak) were analyzed by computing interval distributions as a function of 
frequency and number of harmonics taken into account. The results strongly suggest that, indeed, critical 
bandwidth plays an important role in music: for a number of harmonics representative for musical instru-
ments, the "density" of simultaneous partials alters as a function of frequency in the same way as critical 
bandwidth does. 

INTRODUCTION 

OHM'S acoustical law, as formulated by von 
Helmholtz,1 states that the human ear is able to 

analyze a complex of tones into its sinusoidal compon-
ents. Jn a previous paper,2 one of the authors reported 
experiments on the number of distinguishable partials 
of multitone signals and showed that partials can be 
"heard out" only if their frequency separation exceeds 
critical bandwidth. 

The fact that there are certain limitations to the 
validitv of Ohm's law was not overlooked by von 
Helmholtz. In his opinion, however, the exceptions did 
manifest themselves mainly in the appearance of beats 
in the case of small frcquencv differences between two 
simultaneous tones.:{ On this basis, by taking into 
account also beats between adjacent harmonics, von 
Helmholtz was able to explain why the phenomenon of 
musical consonance is related to simple frequency ratios 
of the tones involved.4 Though this conception became 

1 H. von Helmholtz, Die Lclire von dcr Tonempfindungen ah 
physiologisehe Grundlage j'iir die Theorie der Musik (Verlag 
F. Vieweg & Sohn, Braunschweig, 1863), Chap. 2. 

2R. Plomp, "The Ear as a Frequency Analyzer," J. Acousl. 
Soc. Am. 36, 1628-1636 (1964). 

3Ref. 1, Chap. 8. 
4Ref. 1, Chap. 10. 

well-known, it was criticized severely, in particular by 

psychologists and musicologists. 

In this paper, the relation between beats and conson-

ance is studied again.5 To avoid misunderstandings, it 

may be useful to emphasize in advance that our sole 

concern is the question of why consonance is related to 

simple frequency ratio. Though the concept of conson-

ance is rather vague and mav be different for musicians 

and laymen, this relationship is always involved. In our 

opinion, consonance refers to the peculiar sensorial 

experience associated to isolated tone pairs with simple 

frequency ratios. We use the term tonal consonance 

to indicate this characteristic experience. As we shall 

see, experimental results concerning "tonal consonance" 

support von Hclmholtz's conception, but they also 

necessitate a number of qualifications in which the 

concept of critical bandwidth will appear to play an 

important role. 

6 A preliminary report of it was read at the Fourth International 
Congress on Acoustics, Copenhagen, 1962 : R. Plomp and \Y. J. M. 
Levelt, "Musical Consonance and Critical Bandwidth," Paper 
P55 in Proceedings of the Fourth International Congress on Acoustics, 
J062, Copenhagen (Organization Committee of the 4th ICA and 
Harlang & Toksvig, Copenhagen, 1963). 
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T O N A L C O N S O N A N C E A N D 

I. HISTORICAL REVIEW 
t 

A. Explanations of Consonance 

Traditionally, Pythagoras is considered to be the 
discoverer of the fact that tones produced by a string 
vibrating in two parts with length ratios of 1:1, 1:2, 
2:3, and 3:4, respectively, give much better harmonies 
than all other ratios. These tone intervals were called 
consonances, and on their singular character the har-
mony of Western music has been developed, especially 
after, in the Middle Ages, other intervals with ratios 
of 4:5, 3:5, 5:6, and 5:8 were accepted as imperfect 
consonances. 

The question why consonance is related to simple 
integer ratios of string lengths has occtipied many 
scholars through the ages. In particular, between about 
I860 and 1920 numerous studies were devoted to it. 
Essentially all explanations proposed'"' are based on one 
or more of the following data. 

J. Frequency Ratio 

One of the first and most important discoveries in 
acoustics durini: the rise of modem science in the loth 
and 17th centuries was the dependence of pitch on 
frequency.7 The latter implied that consonant intervals 
are characterized by simple frequency ratios, which 
suggested an attractive hypothesis concerning the origin 
of consonance. So Galilei stated: "Agreeable con-
sonances are pairs of tones which strike the ear with a 
certain regularity; this regularity consists in the fact 
that the pulses delivered by the two tones, in the same 
interval of time, shall be commensurable in number, so 
as not to keep the ear drum in perpetual torment, 
bending in two different directions in order to yield 
to the ever-discordant impulses."s Other scientists as 
Leibniz and Eider refined this explanation, exchang-
ing the eardrum for the unconsciously counting soul 
that would prefer intervals the more as the vibrations 
of the constituting tones concur more frequently. 
Substantially the same idea was promoted and worked 
out by Lapps9 and Polak,1" whereas the recent "common 
long pattern theory" of Boomsliter and Creel11 also 
must be considered as belonging to this group. 

0 In this survey, only explanations related to hearing theory 
are included. 

7 A thoroughgoing study of this discovery is given by C. Trues-
dell, The Rational Mechanics of Flexible or Elastic Bodies, 1638-
1788, Leonhardi Failed Opera Omnia Ser. IX, 11, Ft. 2 (Verlag 
0 . Fussli, Ziirich, I960), Pt . 1. 

8 Galileo Galilei, Discorsi e dimoslrazioni malematiclie intcnio a 
due nuove scienze atlencnti alia mecanica ed i movimenli local! 
(Klsevier, Leiden, 1638). The quotation is from the Knglish 
translation, Dialogues concerning Two Nciu Sciences, transl. by 
H. Crew and A. de Salvio (McGraw-Hill Book Co., Inc., New 
York, 1963), p. 100. 

,J Th. Lipps, Psychologische Sludien (Verlag G. Weiss, Heidel-
berg, 1885), pp. 92-161. 

10 A. J. Polak, Vbcr Zeilein/ieil in Beziig auf Konsonanz, llar-
>nonie und Tonalital (Verlag Breitkopf & Harlcl, Leipzig, 1900). 

11 P. Boomsliter and \V. Creel, "The Long Pattern Hypothesis 
in Harmony and Hearing," j . Music Theory 5, No. 2, 2-30 (1961). 
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2. Relationship of Harmonics 

The discovery (17th century) that the tones of 
musical instruments are composed of partials2 gave rise 
to an alternative explanation of consonance. At first, 
the mere presence of harmonics with frequency ratios 
1:2, 2:3, etc., in every (complex) tone was considered 
as a sufficient proof of the consonance of these ratios 
(Rameau). In the 19th century, more-thorough lv 
formulated implications of the existence of harmonics 
were presented. Both von Helmholtz12 and Wundtl:! 

based the development of melody and harmony on the 
coinciding harmonics for consonant intervals. The 

O 

opinion that consonance itself originates in these coin-
cidences was defended more recent lv by Ogden14 and 
Husmann,15 though from different points of view. 
Montani10 has tried to give this explanation a phy-
siological base. 

3. Beats between Harmonics 

The existence of harmonics led also to a quite different 
hypothesis, in which the phenomenon of consonance was 
related to beats and roughness, appearing for small 
frequency differences of simultaneous tones. Though 
nearly always von Helmholtz is mentioned as the 
originator of this conception, there are much older 
statements of a quite similar nature (Sorge17). von 
Helmholtz"'5 stated that for small frequency differences 
the beats between two simple tones can be heard in-
dividually, but for larger distances this becomes impossi-
ble, due to their rapid succession, and the sound obtains 
a rough and unpleasant character. He ascertained that 
this roughness has a maximum for a frequency difference 
of 30—10 cps, independent of frequency, but admitted 
also that for a constant difference the roughness in-
creases with frequency. For larger frequency differences, 
roughness decreases and the sound becomes consonant 
and agreeable, independent of frequency ratio. For 
complex tones, as produced by musical instruments, 
also beats between harmonics of the lower tone and 
harmonics of the higher one must be taken into account. 
In this way, von Helmholtz explained-1 that the smaller 
that the numbers are in which the frequency ratio can 
be expressed, the more consonant the interval is. The 
octave, with a frequency ratio of 1:2, is the most con-
sonant interval because all partials of the higher tone 
coincide with partials of the lower one and no beats are 
introduced. The next most consonant interval is the 

12 kef. 1, Chaps. 14, 15. 
la W. YVundt, Grundziige dcr physiolo^ischen Psychologie (Verlag 

W. Engelmann, Leipzig, 1880),'2nd ed., Vol. 1, pp. 402-408; 
Vol. 2, pp. 35-48. 

11 R. M. Ogden, "A Contribution to the Theory of Tonal Con-
sonance," Psychol. Bull. 6, 297-303 (1909). 

15 H. Husmann, Vom Wescn der Konsonanz (Muller-Thiergarten-
Verlag, Heidelberg, 1953). 

16 A. Montani, "Outline of a Physiological Theorv of Musical 
Consonance," Riv. Musicale Ital. 49, 168-176 (1947). 

17 G. A. Sorge, Yorgcmach dcr musicalischen Composition (Verlag 
des Autoris, Lobenslein, 1745-1747), pp. 333, 334. 
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fifth (2 :3), for in this case half of the partials coincides, 

whereas the other ones lie just half-way between partials 

of the lower tone. He considered it an affirmation of his 

theory that , in musical practice, thirds and sixths are 

avoided in the low-frequency range where partials are 

nearer to each other than at higher frequencies. 

4. Difference Tones 

Though von Helmhollz had not denied that also 

beats between difference tones may contribute to dis-

sonance, this aspect was much more emphasized by 

IVeyer,18 and in particular by Krueger.1!l--" On the basis 

of detailed experiments on difference tones,21 Krueger 

concluded that the significance of these tones was 

strongly underestimated bv von Helmholtz. As the 

total number of difference tones increases with com-

plexity of frequency ratio, these tones could explain 

the order of consonant intervals, not only for complex 

but also for simple primary tones. More recently, 

Sandig22 compared the character of intervals with both 

tones presented to the same ear and intervals with one 

tone presented to the left and the other one to the right 

ear, respectively, regarding the more neutral character 

of intervals in the last case as an affirmation of Krueger's 

theory. 
5. Fusion 

A quite different point of view was developed by 
Stumpf.23 In his opinion, neither harmonics nor differ-
ence tones are essential to discriminate between 
consonant and dissonant intervals, whereas he re-
jected the frequency-ratio theory as mere specula-
tion. Stumpf called attention to the fact, investigated 
by him before-4 and confirmed by many others after 
him, that the degree of fusion ("Yerschmelzung") of 
intervals depends on simple frequency ratio in the same 
order as consonance does. Bv fusion, he meant the 
tendency of two simultaneous tones to be perceived as a 
unity. Stumpf understood the close connection to con-
sonance as a causal relation, fusion being the basis of 
consonance. However, many years later, he admitted 
that this conclusion was not justified and that the rela-
tion cannot be considered as a satisfacton' explanation 
of the consonance phenomenon.25 

18 W. Prevcr, Akustische Vnlersuchungcn (Verlag G. Fischer, 
Jena, 1879),'pp. 44-61. 

19 F. Krueger, "Differcnztone unci Konsonanz," Arch. Ges. 
Psychol. 1, 205-275 (1903); 2, 1-80 (1904). 

20 F. Krueger, "Die Theorie der Konzonanz," Psvchol. Studied 
I, 305-387 (1906); 2, 205-255 (1907); 4, 201-282 (1909); 5, 
294-411 (1910). 

21 A summary of the results of these experiments can he found 
in R. Plomp, "Dctectabilitv Threshold for Combination Tones," 
J. Acuust. Soc. Am. 37, 1110-1123 (1965). > 

22 H. Sandig, "Beobachtungen an Zweikliingen in getrennt-
ohriger und beidohriger Darbietung. Ein Beitrag zur Theorie 
der Konsonanz," Neue Psychol. Studien 14, 25-131 (1939). 

23 C. Stumpf, "Konsonanz und Dissonanz," Jicitr. Akust. 
Musikwiss. 1, 1-108 (1898). 

24 C. Stumpf, Ton psychologic (Verlag S. Hirzcl, Leipzig, 1890), 
Vol. 2, pp. 127-218. 

25 C. Stumpf, Die Sprachlaulc (Verlag J. Springer, Berlin, 
1926), p. 281. 

D L R V K L T 

B. Evaluation of These Explanations 

The existence of these divergent theories suggests 
that consonance is a complex phenomenon and that 
conclusive experiments on the value of the explanations 
mentioned arc difficult to find. In contrast with I he-
time before about 1920, modern books on hearing pay 
only little or no attention to consonance.2'' Is this lack 
of interest justified and must we admit that those in-
vestigators are right who considered consonance as 
determined mainly or exclusively by cultural27-28 or 
even genetic1429 factors? 

In answering this question, we have to realize that 

our consonance perception is indeed profoundly in-

fluenced by the development of Western music and 

musical training;. This is illustrated in two ways. 

1. The primary reason why von Helmholtz's ex-
planation of consonance by beats was rejected by many 
investigators was that in their opinion the degree of 
consonance or dissonance of an interval is not altered 
by removing the harmonics of the component tones. A 
study of the observations on which this opinion was 
based shows that, without exception, musically trained 
subjects were used to judge the intervals. This was not 
considered as a difficulty but, on the contrary, as an 
essential condition to obtain relevant responses. Stumpf 
himself, perhaps the most important critic of the beat 
theory, may be presented as a good illustration. Hi^ 
large interest in the psychology of tone was due to the 
fact that originally he intended to become a musician.30 

For him, judgment of a particular tone interval was 
identical to finding out its musical name, and this 
knowledge determined entirely the consonance value 
that he attached to the interval. For this reason, he 
considered intervals like 8:15 and 7:10 as dissonants, 
also in cases without audible harmonics and difference 
tones. Apparently, this approach was so self-evident to 
him (and many others) that he did not realize that his 
results had nothing to do with the origin of consonance 
and dissonance but must be considered only as a demon-
stration of the success of his musical education and 
training. The large influence of training was demon-
strated bv an investigation bv Moran and Pratt3 1 in 

26 This mav be illustrated bv S. S. Stevens and H. Davis, 
Hearing (John Wiley & Sons, Inc., New York, 1938). Though 
E. G. Boring in his "Perspective" at the beginning of the book 
refers to the work of H. von Helmholtz and closes with the words, 
"Certainly we are ready now for a new Lclirc von den Tonempfin-
dungen to orient us among the complexities of the new physiologi-
cal acoustics which is now so successfully answering questions 
which Helmholtz posed," this book spends only one paragraph to 
the phenomenon of consonance, merely mentioning von Helm-
holtz's expanation without comments. 

27 N. Cazden, "Musical Consonance and Dissonance: A Cultural 
Criterion," J. Aesthet. 4, 3-11 (1945). 

28 R. \V. Lundin, "Toward a Cultural Theorv of Consonance," 
J. Psychol. 23, 45-49 (1947). 

2<J H. T. Moore, "The Genetic Aspects of Consonance and 
Dissonance," Psychol. Monogr. 17, No. 2, 1-68 (1914). 

30 C. Stumpf, Tonpsychologie (Verlag S. Hirzel, Leipzig, 1883), 
Vol. 1, Preface. 

31 H. Moran and C. C. Pratt, "Variability of Judgments on 
Musical Intervals," J. Exptl. Psychol. 9, 492-500 (1926). 
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which 3 observers, who were able to recognize any given 

musical interval, had to adjust the frequency of one of 

the tones of each of a series of intervals to the correct 

value for that interval. The results, obtained for simple 

tones, indicated that for each of the subjects the average 

settings were more in agreement with the interval widths 

after the equally tempered scale, as used in music, than 

after the natural scale, given by simple frequency 

ratios. These results show that we have to make a clear 

distinction between interval recognition and conson-

ance judgment. The ability to recognize frequently used 

intervals does not explain why the singular nature of the 

impressions produced by particular intervals is related 

to simple frequency ratios of the component tones. 

2. The influence of music on the judgment of intervals 
can be shown in another way also. Originally, only 1:1, 
1:2, 2:3, and 3 :4 were considered as consonant and 
agreeable intervals. Nowadays, the situation is much 
more complex. Asking a jury of musicians and psy-
chologists to ascertain the rank order of consonance of 
all intervals within the octave, Malmberg32 obtained the 
order 1:2, 2 :3 , 3:5 , 3:4 and 4 :5 , 5:8, 5:6, 5:7, 5:(), 
8:9, 8:15, and 15:16. Guernsey** has confirmed the 
well-known fact that musicians make a clear distinc-
tion between pleasantness and consonance. In this 
study, it was found that for a group of musicians the 
ranking of intervals for consonance was about the same 
as that obtained by Malmberg, but the ordering in terms 
of pleasantness was quite different: sixths (3:5, 5:8), 
thirds (4:5, 5 :6), fourth (3 :4), and minor seventh (5 :9) 
did share the highest rank. For naive subjects, however, 
consonance and pleasantness are much more similar 
concepts, as was demonstrated by the authors'14 in an 
experiment in which 10 subjects had to judge a large 
number of intervals on 10 different semantic scales. A 
high correlation between consonance and pleasantness 
scores was found. In fact "consonance" appeared to be 
used as an evaluation category. For these subjects, too, 
the sixths, thirds, and fourth were the most pleasant 
intervals, but their evaluation of the octave and fifth 
was much higher than for musicians, as was also the 
case in Guernsey's experiments.83 From these results, 
we may conclude that the original concept of consonance 
has been split up in two opinions: one held by musicians, 
the other by naive subjects. This development must be 
seen as a consequence of the fact that , in the course of 
history, preference did shift from intervals given by 1:2, 
2 :3 , and 3:4 to more-complex frequency ratios. For 
laymen, the meaning of the term consonance followed 
this shift. Musicians, however, did maintain the tradi-
tional rank order of intervals in terms of consonance, 

32 C. V. Malmberg, "The Perception of Consonance and Dis-
sonance," Psychol. Monogr. 25, No. 2, 93-133 (1917-1918). 

33 M. Guernsey, "The Role of Consonance and Dissonance in 
Music," Am. J. Psychol. 40, 173-204 (1928). 

31 J. P. van de Geer, YV. J. M. Levelt, and R. Plomp, "The 
Connotation of Musical Consonance," Acta Psychol. 20, 308-319 
(1962). 
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characterized by smoothness and uniform itv, independ-
ent from evaluation. 

After these two digressions on the relation of con-

sonance to music the question can be asked as to how 

to evaluate the various consonance explanations men-

tioned in Sec. 1-A. In our attempt to answer this ques-

tion, we are interested in perception of consonance not 

so much as a product of musical education and training 

but as a basis of it. In our opinion, there exists a. typical 

sensorial phenomenon that is related to simple integer 

frequency ratios and that is of a general nature, holdin 

also for subjects without any experience in musical 

harmony. This particular sensorial phenomenon, which 

we call "tonal consonance," may be considered to be 

basic to the relation between the concept of conson-

ance, as held by musicians and laymen, and simple 

frequency ratios. 

With these restrictions in mind, the results of only 
a few experiments are relevant to decide upon the 
merits of the five different types of consonance ex-
planation. The most pertinent stud}- is that by Guthrie 
and Morrill5 ' on the judgment of intervals composed 
of two simple tones. In this experiment, about 380 
subjects were presented with 44 different intervals, 
with frequency ratios from 1:1 to beyond 2:3 , and the 
subjects were asked to judge the interval as consonant 
or dissonant, and as pleasant or unpleasant, respectively. 
In Fig. 1, the average results are reproduced. The fact 
that the two curves are quite similar is in agreement 
with the conclusion, mentioned above, that for the 
naive subject the notions consonance and pleasantness 
are nearly identical. 

In this connection, another investigation, in which 

only pleasantness was examined, is also relevant. In 

that study, carried out by Kaestner,36 pairs of intervals 

100 150 
frequency difference in c p s 

FIG. 1. Percentage of subjects who judged simple-tone intervals 
as consonant (solid curve) and pleasant (dashed curve), re-
spectively, plotted as a function of frequency difference between 
the tones. For all intervals the frequency of the lower tone was 
395 cps. [After Guthrie and Morrill.35] 

35 E. R. Guthrie and H. Morrill, "The Fusion of Non-Musical 
Intervals," Am. J. Psychol. 40, 624-625 (1928). 

36 G. Kaestner, "Untersuchungen iiber den Gefiihlseindruck 
unanalysierler Zweikliinge," Psychol. Studicn 4, 473-504 (1909). 
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FlG. 2. Percentage of cases in which a tone interval was judged 
as more pleasant than the other ones, plotted as a fund ion of 
frequency difference between the tones. The solid curve represents 
the data for simple, the dashed curve for complex tones. For all 
intervals, the frequency of the lower tone was 320 cps. [After 
Kaes trier.36! 

were presented successively to observers who were 

asked to indicate which one was more pleasant. These 

experiments were performed for intervals composed of 

either simple or complex tones. In both cases, about 30 

intervals within the octave were involved and all pairs 

of intervals were judged. In Fig. 2, the mean values of 

the most important results are presented. The simple-

tone curve agrees with the curves of Fig. 1, whereas the 

other curve, based on complex tones, shows marked 

peaks for simple frequency ratios. 
These experiments are very useful to evaluate the 

different explanations of consonance. As we see, for 
intervals composed of simple tones, simple frequency 
ratios did not result in singular points of the curves. 
On the contrary, the curves stiggest that frequency 
distance rather than frequency ratio is the decisive 
parameter. For increasing frequency difference, the 
curves show a marked minimum, followed by a broad 
maximum. 

The only explanation supported by the results of 
these two experiments is the theory promoted by von 
Helmholtz, after which the dissonance of an interval 
is primarily due to rapid beats between the component 
tones. In both investigations, the minimum of the 
curves corresponds very well with a frequency differ-
ence of 30-40 cps, in accordance with von Helmholtz's 
statement of maximum dissonance. The fact that the 
curve of Fig. 2 based on complex tones shows marked 
peaks for the intervals corresponding with simple fre-
quency ratios is in agreement with this explanation. 

On the other hand, the experiments do not support 
the other explanations mentioned in Sec. I-A. Against 
these views, the following objections can be raised: 

1. The hypothesis that , anywise, frequency ratio is 
perceived is contradictory to the finding that the simple-
tone curves of Figs. 1 and 2 do not have peaks for simple 
ratios. All evidence in this direction must be due to 
interval recognition as a result of musical training, the 

importance of which is demonstrated by the experi-

ments of Moran and Pratt , mentioned above. 

2. Insofar as consonance explanations based on re-

lationships of harmonics imply that the presence of 

harmonics in every complex tone results in a "condi-

tioning" for simple frequency ratios, the objections of 

(1) again do apply. In another view on the influence 

of harmonics, consonance is considered to be related to 

the number of coinciding harmonics during actual 

sounding of two complex tones simultaneously. How-

ever, it is not clear how this coincidence may be relevant 

to consonance other than by the absence of beats or 

difference tones, because every common partial may be 

regarded as belonging to only one of the complex tones. 

3. The influence of difference tones on consonance 

perception also is not very probable in view of the data 

reproduced in Figs. 1 and 2. Moreover, experiments of 

one of the authors on the audibility of combination 

tones'21 showed that the nonlinear distortion of the 

hearing organ is so small that it cannot be regarded as 

a constitutive base for consonance. 

4. The fact that the rank order of consonant intervals 

is correlated with their degree of fusion cannot be 

considered as a satisfactory explanation, as Stumpf25 

himself admitted. This does not mean that the relation 

has no relevance. However, in this paper it is left otit 

of consideration. 

From this survey, we may conclude that it is of inter-

est to investigate more thoroughly the hypothesis thai 

tonal consonance, the peculiar character of intervals 

composed of complex tones with simple frequency 

ratios, is due to the absence of rapid beats between 

harmonics of the component tones. 

II. EXPERIMENTS 

In the investigation by Guthrie and Morrill, lone 
intervals were involved onlv with a lower tone of 
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FIG. 3. Consonance rating scores of simple-tone intervals with a 
mean frequency of 125 cps as a function of frequency difference 
between the tones. The solid curve corresponds with the median, 
the dashed curves with the lower and upper quartiles of the 
scores (11 subjects). 
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395 cps. Kaestner used 256 and 320 cps for this fre-
quency. So these studies do not give information on 
the degree to which evaluation of intervals, composed of 
simple tones, depends on frequency. For a. better in-
sight in the relation between consonance and beats, the 
answer to this question is of great interest, and for this 
reason the authors planned the following experiments. 

A. Method and Procedure 

In the experiments, observers had to judge tone 
intervals as a function of two parameters: situation ol 
the interval in the frequency range and frequency 
difference between the component tones. As a measure 
of the first parameter, the geometric mean of the fre-
quencies of the two tones was taken. In order to separ-
ate the influence of the parameters as much as possible, 
this mean frequency has advantages to frequency oi the 
lower tone of the intervals which was used in earlier 
studies. For the same reason, different groups of ob-
servers were ttsed for each of the mean frequencies 
involved. 

The subjects judged each tone interval on a 7-point 
scale, "consonant-dissonant," 1 corresponding with 
most dissonant, 7 with most consonant. Some subjects 
asked for the meaning of consonant. In that case, the 
experimenter circumscribed the term by beautiful and 
euphonious. This procedure is justified because, as was 
ascertained earlier,1'5'1 consonant, beautiful, and euphonious 

are highly correlated for naive subjects. In fact, the}' 
represent one dimension in semantic space: evaluation. 

The experimental setup was very simple. The tones 
were produced by 2 sine-wave oscillators and repro-
duced by a loudspeaker in front of the observer. The 
sound pressure near the subject's ear was kept at a 
constant level of about 65 (IB re 2.10"4 dyn cm-. The 
subjects were tested individually in a soundproof room 
with sound-absorbing walls. The experimenter was 
seated in another room and presented each interval 
during about 4- sec. After each exposure, he had to 
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FIG. 4. As Fig. 3, but with mean frequency 250 cps (10 subjects). 

readjust the frequency of the oscillators, resulting in a 
pause of 10-20 sec between exposures. An electronic 
counter was used to adjust frequencies very accurately. 

The experiments were carried out for 5 values of the 
mean frequency of the intervals: 125, 250, 500, 1000, 
and 2000 cps. Each subject was used only in one test 
session, in which he had to judge 12-14 different 
interval-width values around one of these mean 
frequencies. To avoid the influence of interval recogni-
tion, the widths of these intervals were chosen on base 
of frequency difference, not on frequency ratio. 

The following procedure was used. First, the subject 
read written instructions concerning the purpose of the 
test and the way in which he had to record his responses 
on a sheet with horizontal lines, each provided with 7 
short vertical dashes. After that, a preliminary series 
of 10 different intervals, chosen at random out of the 
interval widths used in the experiment, was presented 
in order to make the subject familiar to the differences 
between the stimuli and to warrant an adequate use 
of the 7-point scale. Then, 5 series of 12-14 intervals 
were presented (12 for 125 cps, 14 for the other mean 
frequencies). Each of these series contained the same 
interval widths but in a different (random) order. Al-
ways the first interval of a series was different from the 
last one of the preceding series. 

The test subjects were young male adults of about 20 
years of age and with secondary-school training. For 
the mean frequencies 125, 250, 500, 1000, and 2000 cps, 
the number of subjects was 19, 22, 18, 11, and 18, 
respectively. 

B. Results 

To exclude data of subjects who were not able to 
give consistent responses, for each of them test-retest 
reliability was determined by calculating the correla-
tion coefficient between the scores of the first and the 
last of the 5 series of interval widths presented to the 
subjects. Only the data of those subjects were main-
tained who had a correlation coefficient above 0.5. 
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Their average scores of the 5 series were used for further 
calculations. In this way, the number of accepted 
subjects was reduced to 11, 10, 11, 10, and 8, respec-
tively, for the mean frequencies 125-2000 cps. 

In Figs. 3-7, the experimental results for the dif-
ferent mean frequencies are reproduced as a function 
of interval width. In each of these graphs, the solid line 
connects points representing the median; the other 
lines correspond with the lower and upper quartiles 
of the scores. 

C. Discussion 
i 

The curves of Figs. 3-7 have the same general course 
as of Figs. 1 and 2 (solid line). For small frequency 
differences, the}' show a minimum, followed, for larger 
differences, by a more or less broad maximum. To 
characterize the curves, two points can be used: the 
minimum and the frequency difference for which the 
maximum is reached. We pay some attention to each 
of them. 

In Fig. 8, the interval widths corresponding with the 
minima of the curves of Figs. 3-7 are plotted as a 
function of mean frequency. Also, for the curves of 
Guthrie and Morrill and of Kaestner, the minima are 
marked. 

The only other data found in literature with which 
our results can be compared are from Cross and Good-
win,37 who published some data concerning the "point 
at which the harshness of the dissonance produced by 
the tones of two resonators reaches a maximum." 
These points, investigated for only one subject, are 
reproduced in Fig. 8. 

In comparing and evaluating these data, we have to 
realize that the minima in the consonance curves are 
rather broad, so that the points are not very precise. 
Nevertheless, it will be clear that the experimental 

results do not confirm von Helmholtz's opinion that the 
frequency difference for maximum roughness is in-
dependent ui frequency. Though the value of 30-40 
cps, given by him, agrees with the data points in the 
frequency range between 500 and 1000 cps, the general 
trend of the data indicates that, for increasing fre-
quency, also the interval width for maximum rough-
ness or dissonance increases. The solid curve corres-
ponds with 25% of the critical bandwidth, adopted from 
a paper of Zwicker, Flottorp, and Stevens.38 This curve 
is based on the results of several investigations on 
masking, loudness, and the ear's sensitivity to phase 
differences. The graph suggests that, instead of von 
Helmholtz's hypothesis of a constant frequency dif-
ference, a frequency difference proportional to critical 
bandwidth gives a better lit to the data. 

Similar things can be said about the minimum fre-
quency difference of intervals that are judged as con-
sonant. In Fig. 9, the vertical dashes represent the 
interval widths for which the curves of Figs. 1-7 reach 
their maximum. As, for some curves, this value cannot 
be determined exactly, dashes instead of points are 
plotted. In the same graph, relevant data of some other 
studies are reproduced. The open points correspond 
with the limit of audible beats as determined by Cross 
and Goodwin37; the crosses correspond with the smallest 
consonant intervals after an investigation bv Maver.39 

A clear relationship exists between these data, justify-
ing the conclusion that consonance is closely related to 
the absence of (rapid) beats, as in von Helmholtz's 
theory. But, again, this consonance maximum is not 
independent of the mean frequency of the interval. The 
curve of the critical bandwidth gives a better lit, 
especially for the authors' own data. 

In conclusion, von Helmholtz's theory, stating that 
the degree of dissonance is determined by the roughness 

2 5 101 2 

frequency difference in cps • 

37 Ch. R. Cross and H. M. Goodwin, "Some Considerations 
regarding Helmholtz's Theory of Consonance," Proc. Am. Acad. 
Arts Sci. New Ser. 19, 1-12 (1893). 

FIG. 7. As Fig. 3, but with mean frequency 2000 cps (8 subjects). 
as K. Zwicker, G. Flottorp, and S. S. Stevens, "Critical Band 

Width in Loudness Summation," J. Acoust. Soc. Am. 29, 548-557 
(1957). 

39 A. M. Mayer, "Researches in Acoustics. No. IX," Phil. 
Mag. 5th Ser. 37, 259-288 (1894). 
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of rapid beats, may be maintained. However, a modifica-
tion has to be made in the sense that minimal and 
maximal roughness of intervals are not independent of 
the mean frequency of the interval. A better hypothesis 
seems to be that the}- are related to critical bandwidth, 
with the ride of thumb that maximal tonal dissonance 
is produced by intervals subtending 25% of the critical 
bandwidth, and that maximal tonal consonance is 
reached for interval widths of 100% of the critical 
bandwidth. In all experiments in which critical bands 
have been investigated, the width of this band repre-
sents the frequency-difference limit over which simple-
tones cooperate. So it is not surprising that roughness 
appears only for tones at a frequency distance not 
exceeding critical bandwidth. 

III. CONSONANCE FOR COMPLEX-
TONE INTERVALS 

In this section, the data of the preceding experiments 
are used to explain not only why, for complex-tones, 
consonance is related to simple frequency ratio, but 
also to illustrate some other well-known properties of 
consonant intervals. 

As Figs. 3-7 show, the curves, plotted on a logarith-
mic frequency scale, have approximately identical 
shapes. This means that they all can be substituted by 
the same curve in which consonance score is represented 
as a function of the interval width with critical band-
width as a unit. This standard curve is reproduced in 
Fig. 10. It has been derived by plotting in one graph the 

data points for each of the mean frequencies as a func-
tion of critical bandwidth and drawing the curve that 

best fits all the data. For small frequency differences, 
the curve is extended on base of the curves of Figs. 1 
and 2. Bv a linear transformation, the evaluation scale 
is substituted by a. "consonance" scale, 1 corresponding 
with maximum and 0 with minimum appreciation. 

The curve of Fig. 10 can be used to get some impres-
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si on of how, for complex tones, consonance varies as a 
function of the frequency difference between the funda-
mentals. In this case, consonance depends not only on 

the distance between the fundamental tones, but also 
between the harmonics. 

We assume that the total dissonance of such an 
interval is equal to the sum of the dissonances of each 
pair of adjacent partials, using the right-hand scale 
of Fig. 10 to compute the total dissonance. This assump-
tion implies that these dissonance values may be added. 
Though these presuppositions are rather speculative, 
they are not unreasonable as a first approximation, and 
may be justified for illustrating how, for complex-tone 
intervals, consonance depends on frequency and fre-
quency ratio. 

hi this way, the curves of Figs. 11 and 12 were com-
puted for complex tones consisting of 6 harmonics. 
Figure 11 illustrates in what way consonance varies as a 
function of interval width, whereas Fig. 12 shows how 
the consonance of some intervals, given by simple 
frequency ratios, depends on frequency. 

The curves of Figs. 11 and 12 mav be considered as 
an illustration of the following properties of tone 
intervals. 

1. With simple frequeue}' ratios of the component 
tones, singular points of the curve of Fig. 11 corres-
pond. As we restricted the number of harmonics to 6, 
onlv peaks for frequency ratios containing the numbers 
1-6 could appear. If also the 7th and 8th harmonics 
were included, the curve would have shown extra peaks 
for 4:7, 5:7, 6:7, 5:8, and 7:8. In this way, it may be 
clear that, for complex tones, as produced by musical 
instruments, consonance is related to simple frequency 
ratios. 

2. More-simple frequency ratios are represented by 
sharper peaks. This means that octave and fifth are 

i 
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much more sensitive to a deviation of their light fre-
(jiicncv ratio than the other consonant intervals are. 
This explains why, in the equally tempered scale (verti-
cal lines of Fig. 11), the impure thirds are much better 
tolerable than impure octaves and fifths would have 

been. 
.3. The rank order of consonant intervals as given bv 

Malmberg:i- (see Sec. I -B) agrees rather well with the 
relative heights of the peaks of Fig. 11 and the curves 
of Fig. 12. Furthermore, Fig. 12 suggests that there 
are onlv minor differences between the degree of con-
sonance of the fourth and the thirds. 

4. As Fig. 12 shows, the degree of consonance is 
nearly independent of frequency over a large range. 
However, below a critical frequency, the intervals 
become more and more dissonant, due to the bend in 
the critical-bandwidth curve at about 500 cps. The 
critical frequency is lower for more consonant intervals. 
This behavior reflects the musical practice to avoid 
thirds at low frequencies and to use mostly octaves or 
wider intervals. 

5. Apart from the range below 100 cps, the disson-
ance value is 0 for the octave (Fig. 12). This means 
that, for up to 6 harmonics, all frequency differences 
between adjacent harmonics exceed critical band 
width. It appears that this does not apply for tones 
with higher partials. This fact explains why complex-
tones with strong higher harmonics sound much sharper 
than tones consisting of only 6 harmonics. It is interest-
ing that this fact was already emphasized by von 
Helmholtz.40 

IV. STATISTICAL ANALYSIS OF CHORDS IN MUSIC 

The preceding section showed that several properties 
of tone intervals can be explained by interference of 
partials. This interference occurs, as the experiments 
indicated, for frequency differences smaller than critical 
bandwidth. Apparently, this bandwidth plays an im-
portant role in the sensation of simultaneous tones. 

•"•Ref. 1, Chap. 5. 

This conclusion raises the interesting question 
whether in music, too, we may find properties related 
to critical bandwidth. Some preliminary investigations, 
in which chords of musical compositions were analyzed/' 
were very promising, and for that reason a more 
detailed study was made. 

The basic idea, underlying these analyses was the 
following. During the process of composing, the com-
poser at every moment makes a selection of tones from 
the total set of tones "available" to him. One of the 
criteria for selection is that the composer wants to 
create a sequence of chords, in accordance with his 
musical intentions, that at the same time realizes a 
succession that varies in consonance and dissonance. 
Leaving the time dimension out of consideration, a 
"vertical" dimension remains: the composition of the 
chord out of simultaneously present tones. We may get 
some insight into this vertical dimension bv investiffat-
ing the density distribution of simultaneous tones, 
partials included, as a function of frequency. This is a 
statistical approach; it will not give information about 
occurrance of specific chords but only about the fre-
quency of occurring of different tone intervals. 

An illustration may serve to explain how the analysis 
was done. Suppose that we are interested in the density 
distribution of intervals with c2=523.3 cps as the lower 
tone. First, we restrict ourselves to the case that funda-
mental tones only are taken into account. In this case, 
we take out of a. musical composition all chords that 
contain c2 and a higher lone simultaneously. We then de-
termine the fraction of time, relative to the total duration 
of these chords, during which the nearest higher tone is 
separated from c2 by a distance of 1 semitone (c2# 
or d2i>), 2 semitones (d2), etc. In Fig. 13, an example of 
such a density distribution is given (solid line). The 
cumulative distribution, derived from the density 
distribution bv taking the fraction of time the interval 
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TABLE I. Fundamental tones containing c2 as the 1st, 2nd, 
3rd, •••, 10th harmonic, respectively. In the last column, the 
deviations of the frequency of these harmonics from the frequency 
of c- are indicated (equally tempered scale). 

100 

Fundamental 
tone 

c2 

c1 

f 
c 
G# 
F 
D 
C 
A.# 
Gx# 

Frequency 
(cps) 

523.252 
261.626 
174.614 
130.813 
103.826 
87.307 
73.416 
65.406 
58.270 
51.913 

No. of 
harmonic 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Frequency of 
harmonic 

(cps) 

523.25 
523.25 
523.84 
523.25 
519.13 
523.84 
513.91 
523.25 
524.43 
519.13 

Deviation 
from c2 

(cps) 

0 
0 

+0.59 
0 

-4.12 
+0.59 
-9.34 

0 
+ 1.18 
-4.12 

does not exceed 1 semitone, 2 semitones, etc., is also 
given (dots and dashes). 

The procedure can be repeated by including 2nd 

harmonics, 2nd and 3rd harmonics, etc. In general, in 

the case of ;/ harmonics, we take chords thai include c2 

either as a fundamental tone or as one of the first ;/ 

harmonics of a lower tone. The density distribution is 

then calculated for distances between c2 and the nearest 

higher tone, which may also be either a fundamental 

tone or one of the first n harmonics of a lower tone. In 

Fig. 13, distributions for // = 6 are plotted. It is found, 

as was to be expected, that the 5 0 % point of the cumula-

tive distribution for n = 6 gives a smaller interval value 

than the corresponding point in the cumulative dis-

tribution for / /= 1. 

Table I gives values of frequencies of tones that 
contain c2 as their nth harmonic, with n= 1,2, • • •, 10. 
The Table also gives frequencies of the harmonics of 
these tones on the basis of the equally tempered scale. 
As is well-known, these frequencies do deviate somewhat 
from the frequency of c2 in some cases. These deviations 
are left out of consideration here. 

To facilitate compution of interval distributions for 
different values of the basic frequency and different 
numbers of harmonics, special equipment has been 
developed. I t consists of (1) an apparatus to trans-
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FlG. 12. Illustration of the way in which consonance of some 
intervals with simple frequency ratios depends on the frequency 
of the lower tone, Both complex tones consist of 6 harmonics. 
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for ;/ = 1 (solid curve) and n = 6 (dashed curve). The other curves 
represent the cumulative distributions for n—\ (dots and dashes) 
and ;/ = 6 (dots). The interval distributions were computed from 
the last movement of J. S. Bach's Trio Sonata for Organ No. 3 in c 
minor. 

mute the notes and duration of chords, "played" 

successively on a keyboard, in punch code, using an 8-bit 

tape, and (2) an apparatus to read out the tape and to 

compute the interval distribution with both basic 

frequency and ;/ adjustable. 

In this way, 2 musical compositions were analyzed, 
the last movement of J. S. Bach's Trio Sonata for Organ 

I\'o. 3 in c minor, and the 3rd movement (Romarize) of 
A. Dvorak's Siring Quartet Op. 51 in E'> major. In both 
cases, interval distributions were computed for C = 65.4 
cps, G=98 .0 cps, c = 130.8 cps, g = l % cps, c' = 261.6 
cps, gx=392 cps, etc., and taking into account // har-
monics with ; /= 1, 2, 3, • • •, 10. For each of these distri-
butions the interval width was calculated (first in 
semitones and from these values in cycles/second) 
which is not exceeded during 25%, 50%, and 7 5 % of 
time, respectively. 

In Figs. 14 and 15, the results are reproduced as a 
function of frequency, with n as a parameter (solid 
lines). As the data for n— 10 were quite similar to the 
data for n = 9, the former case has been left out. The 
dashed lines represent the critical bandwidth after 
Zwicker, Flottorp and Stevens,38 plotted as a function of 
the lower cutoff frequency, and a quarter of this band-
width, corresponding with maximum dissonance (Fig. 
10). For each frequency, the total duration of time of all 
chords on which the concerning interval distribution was 
based is indicated, using the duration of the shortest 
note occurring in the composition as a time unit. 

To grasp the significance of the curves, it may be 
helpful to trace their shift as a function of the number 
of harmonics. This is done on the basis of the graphs of 
Fig. 14. For the case that onlv the fundamental tone 
was taken into account, most of the intervals exceed 
the critical bandwidth, in particular for the lower 
frequencies [Fig. 14(a)]. I t will be clear that, as a func-
tion of frequency, all intervals with the same frequency 
ratio between the component tones correspond with a 
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FIG. 14. Results of a statistical analysis of the chords of the last movement of T, S. Bach's Trio Sonata for Or van No. 3 in c minor with n 
(= number of harmonics taken into account) as a parameter. The solid curves represent the interval width in cps between adjacent 
partials, plotted as a function of frequency, which is not exceeded in 25',', 50' , , and 75', i', of time, respectively, computed from curves 
as represented in Fig. 13. The dotted curves correspond with critical bandwidth and a quarter of this bandwidth. 

straight line with a positive slope of 45°. As for octave 
intervals, the frequency difference is equal to the fre-
quency of the lower tone; we see that for the lower 
frequencies nearly all intervals of Fig. 14(a) exceed 
the octave. This implies that, including also the 2nd 
harmonic, these intervals reduce to octaves, resulting 
in a line with a slope of 45° through the point Af= 100 

cps for / = 1 0 0 cps [Fig. 14(b)] . Above c = 130.8 cps, 

however, most intervals are smaller than the octave. 
Because u=2 means that all fundamental tones are 
accompanied by their octaves, the curves of Pig. 14(b) 
extend to a corresponding higher frequency. The in-
clusion of the 3rd harmonic manifests itself in the 
following ways: (1) the points corresponding with the 

lower frequencies do not shift because the frequencies of 
the new tones all are above that range; (2) in the middle 
range, the "densi ty" of tones increases, resulting in a 
shift of the curves to smaller frequency differences; (3) 
the curves are extended to a 50% higher frequency, 
compared wilh the curves for ; / = 2 ; (4) as most of the 
intervals for the highest frequencies will be fifths, cor-
responding with the frequency distance between the 2nd 
and 3rd harmonics of the highest fundamental tones of 
the composition, this interval will determine the course 
of the curves at the higher frequencies. 

Everv time when a further harmonic is added, a 
l 

repetition of this process occurs, with the result that 

for increasing n (1) the frequency limit below which 
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FIG. 15. Results of a statistical analysis of the chords of the 3rd movement (Romanze) of Dvorak's Siring Quartet Op. 51 in Eb major. 
The curves have the same meaning as in Fig. 14. 

no new tones are added shifts to higher frequencies; as 
we saw for u= 2, this limit is about c = 130.8 cps, whereas 
for n=9 this limit is about c2= 523.5 cps; (2) in the 
frequency range above this limit, the curves will shift 
to smaller frequency differences; (3) a further extension 
of the curves to higher frequencies will take place; (4) 
for the highest frequencies, the course of the curves 
will mainly be determined by the interval (//—1)://. 

The curves of Fig. 15 show the same trends as a 
function of the number of harmonics. However, in 
this case, the interval widths between the fundamental 
tones are much smaller than in the former case. Only 
for C i= 65.4 cps do the intervals exceed the octave, as a 
comparison of the graphs (a) and (b) shows. As a con-
sequence of this fact, also for n> 1 the curves of Fig. 15 

correspond with smaller intervals than the curves of 

Fig. 14. 
After these more general remarks, we may compare 

the position of the curves with the critical-bandwidth 
curves. As we see, for increasing //, the shape of the 
interval curves agrees more and more with the dashed 
curves. In both Figures, the agreement is greatest for 
about 8 harmonics. 

These results strongly suggest that critical bandwidth 
plays an important role in music. The significance of 
this fact can be interpreted in the following way. As 
we saw in Sec. J I, simple-tone intervals with a frequency 
difference exceeding critical bandwidth are judged as 
consonant and do not differentiate in this respect. On 
the other hand, for smaller frequency differences, con-
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sonance evaluation strongly depends on interval width, 
with a minimum for about a quarter of critical band-
width. So it is not surprising that just this range is 
used for "modulation" between more-consonant and 
more-dissonant chords. However, it is surprising indeed 
that, for a number of harmonics representative of 
musical instruments, this is achieved in about the same 
measure over a wide frequency range. 

We have to realize that this equally deep "penetra-
tion" in the borderland between pronounced consonant 
and dissonant simple-tone intervals, represented by the 
upper and lower dashed curves in the graphs, respec-
tively, is a result of many factors. As the most impor-
tant ones we mav consider: 

influence their relation to the dashed curves much more 
for lower than for higher frequencies. 

6.—the number of harmonics produced by the instru-
ments on which the composition is performed. Only the 
influence of this factor has been studied here, showing 
that the frequency range over which a typical harmonic 
modifies the interval distributions shifts to higher ire-

quencies for increasing ;/. This implies that the number 
of harmonics is not very critical. Most musical instru-
ments produce strong harmonics up to a number that 
may vary from about 6 to 10, though in the last case the 
tone has a sharp quality and is more suited for solo 
parts. 

Fhe mere enumeration of these factors does not give 

1.—the fact that in the tone scale as developed in u s m u c h information about their relative importance. 

Western music, a lot of intervals agree with simple 
frequency ratios, so that harmonics of the different 
component tones of a chord may coincide; otherwise, 
the shape of the solid curves of Figs. 14 and 15 would 
have been more flat, due to more dissonant chords. 

2.—the fact that the frequencies of the partials of 
the tones are multiples of the frequency of the funda-
mental tone. A deviation from this rule would have the 
same effect as mentioned under (1). This may be re-
garded as one of the reasons (there are more!) why 
instruments with inharmonic partials are not used to 
produce musical chords. 

3.—the way in which, as a function of frequency, the 
composer selects his intervals. We saw above that in 
Bach's composition the frequency ratio between 
fundamental tones is larger at lower than at higher 
frequencies. As a comparison with Fig. 12 shows, in 
this way very dissonant chords are avoided. Though 
to a smaller degree, this is also the case in Dvorak's 
string quartet [intervals with the same frequency ratio 
between the component tones correspond with a 
straight line with a slope of 45° in Fig. 15(a)]]. 

4.—the number of notes in a chord. It is clear that, 
generally, for increasing number the mean distance 
between adjacent partials will decrease. The fact that 
the solid curves of Fig. 15 correspond with smaller 
frequency differences than the curves of Fig. 14 may 
be mainly due to this factor and the 3rd one. 

5.—the frequency limits between which the funda-
mental tones are chosen and their distribution within 
this range. So a multiplication of all frequencies by a 
certain factor shifts all curves both horizontallv and 

So it would be of interest to know more about the degree 
to which each factor determines the position of the 
horizontal and the sloping parts of the curves. Moreover, 
we should like to have more insight in the way in which 
their position depends on musical style and on the 
instruments for which the composition is written. 
Further investigations are in preparation to answer 
these questions. 

V. CONCLUSIONS 

Both the experimental results on the evaluation of 
simple-tone intervals and on the statistical analysis of 
chords in musical compositions support the explanation. 
promoted by von Helmholtz, that the singularity of 
intervals with frequency ratios determined by small 
integer numbers is due to interference of adjacent par-
tials finding expression in a roughness sensation. The 
investigations indicate that, as a function of frequency, 
the transition range between consonant and dissonant 
simple-tone intervals is related to critical bandwidth. 
These intervals are evaluated as consonant for fre-
quency differences exceeding critical bandwidth, whereas 
the most dissonant intervals correspond with frequency 
differences of about a quarter of this bandwidth. 
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