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Abstract 

The research described herein was undertaken to develop and test a novel tongue interface based on classification 

of tongue motions from the surface electromyography (EMG) signals of the suprahyoid muscles detected at the 

underside of the jaw. The EMG signals are measured via 22 active surface electrodes mounted onto a special flexible 

boomerang-shaped base. Because of the sensor’s shape and flexibility, it can adapt to the underjaw skin contour. 

Tongue motion classification was achieved using a support vector machine (SVM) algorithm for pattern recognition 

where the root mean square (RMS) features and cepstrum coefficients (CC) features of the EMG signals were analyzed. 

The effectiveness of the approach was verified with a test for the classification of six tongue motions conducted 

with a group of five healthy adult volunteer subjects who had normal motor tongue functions. Results showed that 

the system classified all six tongue motions with high accuracy of 95.1 ± 1.9 %. The proposed method for control 

of assistive devices was evaluated using a test in which a computer simulation model of an electric wheelchair was 

controlled using six tongue motions. This interface system, which weighs only 13.6 g and which has a simple appear-

ance, requires no installation of any sensor into the mouth cavity. Therefore, it does not hinder user activities such as 

swallowing, chewing, or talking. The number of tongue motions is sufficient for the control of most assistive devices.
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Suprahyoid muscles
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Background
A tongue is an intra-oral locomotorium that can be 

moved quickly and precisely according to one’s own will. 

Anyone can set their own tongue position precisely and 

can smoothly change the magnitude of the force imposed 

on the teeth or palate. In fact, tongue motor functions are 

usually preserved even in people with cervical spinal cord 

damage. Various studies have demonstrated that people 

with a high level of movement paralysis can use tongue 

motions to control home appliances such as a PCs and 

electric wheelchairs [1, 2].

An interface system based on a small joystick oper-

ated by the tongue has been presented in the literature 

[3]. �e joystick is fixed in a suitable position via a spe-

cial arm mount. �e application of such an interface 

is limited to people with sufficient head motion that is 

able to reach the joystick. �e same design might hin-

der conversation, eating, and drinking because a part of 

the joystick is located in the mouth cavity during use. In 

addition, such a solution might allow flow of excess saliva 

out of the mouth.

Numerous studies have examined control interfaces 

containing an artificial palate with buttons activated by 

the tongue tip [4–6]. In other solutions, a few pairs of 

light emitting diodes and photodiodes are mounted on 

an artificial palate to detect the tongue position [7, 8]. By 

changing the tongue position and thereby activating dif-

ferent sensors, the user sets control commands. A ben-

efit of such solutions is that the tongue interface device 

remains hidden to others (intra-oral interface). In addi-

tion, the number of sensors and their location on the arti-

ficial palate can be customized easily. However, because 

the artificial palate must remain in the mouth cavity for 

prolonged periods of time, such a design might require 
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additional efforts for maintaining oral hygiene and might 

entail various difficulties related to talking and eating.

Some recent studies present solutions that consist of a 

small magnet or a piece of ferromagnetic material attached 

to the tongue tip via gluing or piercing, and a sensor array 

that detects the tongue tip position [9–13]. Sensor systems 

that include a small permanent magnet fixed to the tongue 

tip and an array of magnetic sensors have been presented 

in the literature [9–11]. Some earlier reports introduced a 

tongue interface that includes an air-cored coil with induct-

ance changed by a small ferromagnetic stud attached to 

the tongue [12, 13]. Although such an approach is a simple 

interface solutions, the (ferro) magnetic stud on the tongue 

tip might cause some inconvenience to users.

�e electromyography (EMG) signals created by skel-

etal muscles have been used for many years in human 

movement studies and for control of prostheses [14–26]. 

Our earlier study specifically addressed the potential of 

EMG signals and explored the viability of a tongue inter-

face based on surface EMG signals detected at the under-

side of the jaw [27]. �e initial interface system consisted 

of nine single-surface electrodes attached on the under-

side of the jaw and connected via multiple lead wires. 

�e proposed tongue interface, which is based entirely 

on analysis of extra-oral EMG signals, requires no inser-

tion of a palatal plate or a joystick in the mouth, attach-

ment of a magnet or ferromagnetic studs to the tongue, 

or physical contact of the tongue with any sensor. An 

artificial neural network (ANN) with three layers of neu-

rons (input, hidden and output) was used as the motion 

classifier. During the ANN training stage, three thin-film 

force sensors were installed on an upper jaw mouthpiece 

to deliver training data for voluntary tongue motions 

of three types: right, left, and forward. After this initial 

experiment, a new experiment was conducted for clas-

sification of the same voluntary motions without using 

signals from force sensors [28]. �ese initial experi-

ments demonstrated that the tongue motions are classi-

fiable from the EMG signals of the suprahyoid muscles. 

�ey have some potential for use in control interfaces. 

However, the initial interface system classified only a 

small number of tongue motions. Additionally, ANN-

based classifiers are well known to have a few important 

shortcomings: long learning time, local optimal solution 

depending on the initial value of parameters, and com-

plicated procedures for selection of the number of neu-

rons in the hidden layer. Furthermore, the initial sensor 

module consists of single electrodes and wires, which 

can pose severe difficulties. For practical application, the 

initial interface system required further improvement in 

few main directions: increased number of classified vol-

untary tongue motions, improvement of the classification 

accuracy, and redesign of the electrode module.

�is paper proposes a novel tongue interface based 

on classification of the tongue motions from surface 

EMG signals of the suprahyoid muscles detectable at the 

underside of the jaw. �e interface allows classification of 

six tongue motions, which are sufficient for the control of 

PCs and electric wheelchairs. �e new system was evalu-

ated using a computer simulation experiment to assess 

control of an electric wheelchair.

EMG-based tongue interface
EMG measurement approach

Tongue motions are produced by the coordinated actions 

of intrinsic muscles, which control tongue posture and 

tongue tip position, and extrinsic muscles, which con-

trol tongue protrusion and retraction [29, 30]. �e EMG 

activity of the lingual muscles has been studied using 

tungsten microelectrodes and hook-wire electrodes [31] 

and surface electrodes [32] placed within the oral cav-

ity. However, intra-oral electrodes are unsuitable for the 

practical control of assistive devices.

�e EMG signals of the suprahyoid muscles are detect-

able via electrodes placed on the skin of the underside of 

the jaw [33–35]. �e suprahyoid muscles comprise sev-

eral muscle groups such as digastric muscles, stylohyoid 

muscles, mylohyoid muscles, and geniohyoid muscles, 

as presented in Fig.  1 [29, 30]. �e suprahyoid muscles 

control the position of the hyoid according to the direc-

tion, position, and force of the tongue tip. �erefore, 

they contain sufficient information about the performed 

tongue motions. However, the suprahyoid muscles also 

contribute to motions that are unrelated to the tongue 

position. Such motions produce EMG signals when such 

motions are performed. For example, suprahyoid muscles 

help jaw-opening by pulling the mandible down when 

the hyoid position is fixed by the infrahyoid muscles. 

�ey also pull the hyoid up to assist swallowing when 

the mandible position is fixed to the muscles used for 

mastication. A great challenge to the design of a reliable 

tongue interface is the identification and suppression of 

EMG signals that do not originate from voluntary tongue 

motions. �at difficulty cannot be resolved merely by 

electrode positioning because measured EMG signals are 

always composed of several signals from different mus-

cles around the electrode.

In this study, the EMG signals of the suprahyoid muscles 

are measured at multiple points of the skin using a multi-

electrode array. �e multi-electrode approach makes the 

interface system less sensitive to eventual positioning 

errors of the electrode unit. Moreover, it enables people 

with little experience or little knowledge of EMG meas-

urement to apply the sensor. Current research was based 

on initial experiments conducted for the classification of 

tongue motions from the EMG signals patterns [27, 28].
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Sensor module and signal pre-processing

�e electrode module was designed as a thin flexible 

boomerang-shaped patch attached to the underside of 

the jaw (Fig.  2). �e prototype sensor dimensions were 

decided by considering the average size of the lower jaw 

and curvature near the lower jaw and neck of the sub-

jects in the tests (see “Experiments and data acquisition” 

section below). �e sensor was designed to cover the 

entire jaw. �e number of the electrodes was determined 

experimentally. �e electrodes were positioned on equal 

inter-electrode distances. �e interface assembly, which 

consisted of 22 active electrodes shaped as φ2 × 2.5 mm 

pure silver rods, was positioned at the inter-electrode 

distance of 12.5  mm on a polyimide film. �e interface 

unit was 50.0-mm-long and 87.5-mm-wide. �e thick-

ness of the entire substrate including the reinforcement 

film was 0.3 mm. �e electrode tips were shaped as hemi-

spheres to facilitate the skin contact. Voltage follower cir-

cuits were incorporated into the same interface mount to 

reduce the output impedance. �e electrode base thick-

ness was 1.7 mm. For electric insulation of the electronic 

parts, both sides of the substrate were covered with a 

layer of silicon. �e interface system was only 13.6 g. For 

the experiments, the interface module was adhered to 

the underside of the jaw of the subject. A ground elec-

trode and an active common electrode were connected 

respectively to the left and right earlobes via ear clips 

(Fig.  2c). �e electric potential between each electrode 

and the active common electrode was amplified using a 

separate differential amplifier. �e gain of the differential 

amplifiers was set to 2052. A band-pass filter with a pass-

band from 16 to 440 Hz bandwidth was used to remove 

the direct current component and high-frequency noise 

superimposed on the EMG signals. �e EMG signals of 

all 22 EMG channels were digitized by a 16 bit analog-

to-digital converter (USB-6218; National Instruments 

Corp.). In general, the EMG signal frequency range is 

0–1000 Hz. Its usable energy is limited to 0–500 Hz [36]. 

�erefore, the sampling rate was set to 2000 Hz in com-

pliance with the Nyquist theorem.

Classi�cation of tongue motions

Figure  3 portrays the tongue motion classification pro-

cedure. It comprises the EMG measurement, feature 

extraction, and motion classification.

Feature extraction

�e feature extraction process was based on the over-

lapped windowing technique proposed by Englehart et al. 

[37]. It allows faster system response. �e EMG signals 

measured from all 22 channels were segmented for fea-

ture extraction into windows consisting of 256 sam-

ples, as portrayed in Fig.  4. �e length of each window 

was 128 ms. �e next sampling segment slides over the 

current segment with an increment time of 16  ms. For 

composition of the feature vector, the root mean square 

(RMS) and the cepstrum coefficients (CC) of the EMG 

signals were calculated for each window. �e RMS fea-

tures are characteristics of a time domain. �e CC fea-

tures are characteristics of the frequency domain [28, 

38, 39]. Cepstrum analysis techniques have been used 

for many years for speech recognition because of their 

fast response and accurate results. Some recent studies 

have demonstrated that the techniques are useful also for 

motion classification based on EMG signals [39–41].

Stylohyoid muscle

Posterior belly of

digastric muscle

Mylohyoid muscle

Anterior belly of

digastric muscle

Hyoid

Lower jaw

Fig. 1 Structure of suprahyoid muscles

a surface view                                  b rear view 

c positioning of the electrodes

d schematic view of the position of the pin electrodes 
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�e RMS features provide information related to the 

amplitude of the EMG signals. Let us denote the EMG sig-

nals of the l-th electrode in the n-th sample of the p-th anal-

ysis window as EMGl, n(p) (n = 0, …, N − 1; l = 1, …, L), 

where N is the number of samples in one analysis window 

(N = 256), and L is the number of electrodes (L = 22). �e 

RMS features can be expressed as the following equation:

�e equation above is useful for calculation of the RMS 

features of all channels.

To calculate the CC features, the Hanning window pro-

cedure was applied to each analysis window of the EMG 

signals. �e Fourier transform Xl
k(p) (k = 0, …, N − 1) of 

EMGl, n(p) can be expressed as shown below.

�e CC features CCl
n(p) are calculated from the follow-

ing equation.

(1)RMSl(p) =

√

√

√

√

1

N

N−1
∑

n=0

EMGl, n(p)
2

(2)Xk
l (p) =

N−1∑

n=0

EMGl, n(p)e
−j2πkn/N

(3)CCn
l (p) =

1

N

N−1
∑

k=0

log
∣

∣

∣
Xk
l (p)

∣

∣

∣
ej2πkn/N

Cepstrum analysis enables separation of the power 

spectrum of the EMG signals into a smooth component 

(spectral envelope) and a fine fluctuation component (fine 

structure). Low-order cepstrum coefficients include infor-

mation about the spectral envelope whereas the high-

order coefficients include fine structure information. �e 

low-order coefficients were calculated using formula (3) 

and by varying n from n = 0 to n = W − 1. Here, W is a 

CC feature parameter (order of the cepstrum coefficients).

�e feature vector x(p) for classifying tongue motions 

can be expressed as

where the dimension of the feature vector x(p) is 

L(1 + W).

Motion classi�cation

For this study, the support vector machine (SVM) classi-

fier was used to classify tongue motions. �e SVM classi-

fier has the following benefits for this classification:

 – �e SVM classifier offers excellent recognition perfor-

mance.

  – SVM has high generalization capability because it 

applies a maximum-margin classification function.

  – It converges to a global optimal solution and therefore 

does not fall into a local optimum solution.

 – It has extremely short learning time because of the 

simple procedures used for calculation of the hyperpa-

rameters used for training.

SVM is a method for classification of an unknown fea-

ture vector x(p) (hereinafter designated as x) into two 

classes [42]. �e decision function is

(4)

x(p) = (RMS1(p), . . . ,RMSL(p),

CC0
1 (p), . . . ,CC

W−1
1

(p), . . . ,

CC0
L(p), . . . ,CC

W−1
L (p))T

(5)f (x) = sgn

(

D
∑

i=1

�iyiK (xi, x) + b

)
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where D denotes the number of training samples, yi signi-

fies the class label that corresponds to the i-th training 

sample x, λi is a Lagrangian undetermined multiplier, b 

is a bias term, and K (xi, x) denotes a kernel function. For 

this study, the radial basis function (RBF) was selected 

as the kernel function to map the input data in a high 

dimensional feature space. �e RBF kernel is expressed as

where γ is a kernel parameter. �e Lagrangian undeter-

mined multiplier λi in the decision function is derived by 

solving the following equation (quadratic programming).

�e SVM classification performance depends on 

the selection of the kernel parameter γ and the penalty 

parameter C. �e optimal combination of γ and Ccan be 

obtained using a grid search.

Usually, the SVM classifier is used for classification of 

features into two classes. In this study, the SVM algo-

rithm was extended to multi-class classification using 

the one-against-one method [43]. For the classification 

of M classes tongue motions, M(M − 1)/2 decision func-

tions are constructed initially for all combinations of 

these M classes. �e feature vector x is classified against 

each decision function. �e final decision on the class is 

obtained by majority vote.

Experiments and data acquisition

Subjects

�is investigation examined five healthy adult male 

subjects (22.2  ±  1.3  years old, 169.7  ±  7.4  cm tall, 

61.0 ± 11.3 kg weight) who were free of musculoskeletal 

deficits and neurological impairment and who had nor-

mal tongue motor functions. Approval for the tests was 

obtained in advance by the Ethical Review Board of Iwate 

University. Before the start of the tests, the study objec-

tive, experimental protocol and risks were explained to 

each subject. Written consent was received from each.

Experimental protocol

First, the skin surface of the underside of the jaw was 

cleaned with alcohol and electrode paste (Elefix; Nihon 

Kohden Corp.) was applied to reduce the skin-electrode 

impedance. �e 22-channel active electrode was adhered 

to the underside of the subject’s jaw using film dress-

ing (CATHEREEPLUS; Nichiban Co. Ltd.). A ground 

(6)K (xi, x) = exp(−γ||xi − x||2)

(7)max
�i

D∑

i=1

�i −
1

2

D∑

i,j=1

�i�jyiyjK (xi, x)

(8)subject to

D∑

i=1

�iyi = 0, 0 ≤ �i ≤ C

electrode and an active common electrode were attached 

on the left and right earlobe of the subject using ear clips.

�e tongue motion set included five tongue motions 

(right, left, up, down, and forward) performed with 

a closed mouth and a saliva swallowing (Fig.  5). Dur-

ing these motions, subjects were asked to position their 

tongue tips sequentially in the maxillary right second 

molar tooth, the maxillary left second molar tooth, the 

hard palate, the floor of the mouth, and near the maxil-

lary central incisor. Saliva swallowing is an unintentional 

action that is repeated frequently. �e saliva swallowing 

was included in tests to evaluating its effects on tongue 

motion classification. In the experiment, each tongue 

motion was executed for 2  s at a subject’s comfortable 

speed. A resting period of 2  s was given to the subject 

before the start of the next motion. Consequently, all six 

motions in the set were completed for 22 s. Each subject 

was asked to perform the motion set 14 times. �e EMG 

signals during each test were recorded. As a result, 14 

datasets were produced for each subject.

Data analysis

Matlab (R2013a; �e MathWorks Inc.) was used for data 

analysis. �e SVM classification algorithm was designed 

using an SVM library: LIBSVM [44]. �e programs 

were executed on a PC (Windows 7 64-bit OS, i7-3770 

CPU/3.4 GHz, 16 GB RAM).

To justify the selection of the kernel function, it was 

confirmed that the RBF kernel matrix calculated from 

the first four datasets is a symmetric, positive semi-def-

inite matrix (i.e., all eigenvalues of the kernel matrix are 

non-negative). �en the datasets were used as training 

data of the SVM. �e remaining ten datasets were used 

for tongue motion classification. �e feature vector x for 

tongue motion classification was defined according to 

Eq. (4). �e values of the RMS features and CC features 

were calculated, respectively, according to Eq.  (1) and 

Eq. (3). �e class labels yi representing the type of motion 

in Eq. (5) were obtained using threshold triggering of the 

EMG signals [45]. �e relation between the composition 

of the feature vector and its classification accuracy was 

evaluated by comparing the classification results when 

the CC feature parameter W was varied from 0 to 10. For 

simplicity in these analyses, W =  0 expresses the situa-

tion when the CC features are not included in the feature 

vector.

Right           Left             Up              Down           Forward       Swallowing 

Fig. 5 Definition of the tongue motions included in the tests
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As explained in the section describing “Motion clas-

sification”, the SVM classification performance depends 

on selection of kernel parameter γ and penalty param-

eter C. �e optimal combination of γ and C was ascer-

tained using a grid search within the training data. 

�e search included 96 combinations of γ and C for 

γ = {2−10, 2−9, . . . , 21} and C= {21, 22, . . . , 28}. �e 

combination with the highest classification rate was 

defined using fivefold cross validation. Results showed 

that the optimum values of γ and C differ for each sub-

ject. After training of the SVM with the optimized hyper-

parameters for γ and C, motion classification of the test 

data was performed. �e predicted class was replaced 

with a “neutral” tongue position when all EMG signals 

are under the threshold level (i.e., relaxed state). Next, 

a majority voting technique was applied to reduce the 

effect of misclassification. Majority voting was applied to 

a moving window composed of 20 frames that included 

the present frame and the prior 19 frames. Classification 

of the tongue motion was determined from the class with 

the largest number of wins.

�e classification accuracy (CA) of the tongue motions 

was evaluated using the following equation.

Results
E�ect of feature parameter selection on classi�cation 

accuracy

�e average classification accuracy and the standard devi-

ation of the classification accuracy for all five subjects are 

presented in Fig.  6. Results reveal the relation between 

the feature vector and classification accuracy. In cases 

where the feature vector was composed of RMS features 

only (W  =  0), the classification accuracy of the tongue 

motions was 84.1  ±  1.5  %. �e classification accuracy 

(9)CA =
number of correct feature vectors

total number of feature vectors
× 100 [%]

increased substantially when the CC features were added 

to the feature vector (W  =  1, …, 10). �e classification 

accuracy exceeded 95  % and remained almost constant 

when the CC feature parameter was W = 5 or higher. �e 

classification accuracy for W = 5 was 95.1 ± 1.9 %. For 

W = 10, the classification accuracy was 95.1 ± 1.3 %. No 

significant difference was found between the classifica-

tion accuracies calculated with W = 5 and W = 10.

�e dimension of the feature vector x for tongue 

motion classification was set to L(1 + W) (see Eq.  (4)). 

Because the computational complexity increases sig-

nificantly for greater values of W, the smallest possible 

W that gives comparable classification accuracy should 

be used. As explained above, no significant difference 

was found between the classification results with W = 5 

and W  =  10, which suggests that satisfying classifica-

tion results are obtainable with a feature vector based 

on W = 5. For that reason, a more detailed examination 

of the classification results is given here for the case in 

which the CC feature parameter was selected as W = 5.

Tongue motion classi�cation accuracy

Table 1 presents classification results for all five subjects. 

�e lowest total classification accuracy was 91.9  % (for 

subject A) and the highest total classification accuracy 

was 96.7 % (for subject B). �e average total classification 

accuracy for all subjects was 95.1 %. Analysis of the clas-

sification results for the separate tongue motions demon-

strates that the “left” tongue motion was recognized with 

the highest classification accuracy (97.6 %). �e classifica-

tion accuracy for the “down” tongue motion was slightly 

lower (96.7  %), followed by results for “saliva swallow-

ing” (95.3 %), “right” tongue motion (95.0 %), “up” tongue 

motion (94.5 %), and “forward” tongue motion (91.4 %). 

Table  2 presents details of the classification errors. �e 

“forward” tongue motions were misclassified as “up”, 

“down”, and “saliva swallowing”. �e “up” tongue motion 

has the second lowest classification accuracy. Frequently, 

it has been misclassified as “right” tongue motion.

Short signals at the start and the end of the main 

motion were often misclassified. By applying majority 

voting technique, the number of these misclassifications 

was reduced; 1.0  % of all motions were misclassified as 

a “neutral” tongue position. However, misclassification 

as a “neutral” tongue position is less important because 

the “neutral” tongue position is useful as a stop command 

when the assistive device is controlled by the developed 

interface. Misclassification of other motions as a “neu-

tral” tongue position cannot create dangerous situations. 

It will merely cause the controlled device to stop. Overall, 

the misclassification errors that might affect the opera-

tion of the controlled assistive devices were estimated 

from the total classification accuracy as about 3.9 %.
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Fig. 6 Relation between the composition of the feature vector and 
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included in a feature vector
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Computer simulation of wheelchair control
A computer simulation model of an electric wheelchair 

was developed to evaluate the applicability of the devel-

oped tongue interface to control assistive devices. �e 

wheelchair model was controlled virtually by operation 

commands generated from a confusion matrix presented 

in Table 2. �e error of the commands was set to occur 

according to the possibility in the confusion matrix. In 

other words, this is a Monte Carlo method. �e error 

timing was determined using a random number with a 

uniform probability distribution. �e virtual trajectory of 

the wheelchair’s center of gravity was used as an indica-

tor to evaluate the effects of misclassification errors on 

the wheelchair operability.

Simulation model of an electric wheelchair

Figure 7 portrays a simplified model of the electric wheel-

chair. �e angle θ and the center of gravity position PG 

(XG, YG) of an electric wheelchair are defined using the 

following equations.

(10)θ(t) =

1

T

∫
t

0

(Rrωr(t) − Rlωl(t))dt

(11)XG(t) =
1

2

∫
t

0

(Rrωr(t) + Rlωl(t)) cos θ(t)dt

Therein, Rr and Rl respectively denote the radii of the 

right and left wheel. ωr(t) and ωl(t) respectively denote 

the angular velocity of the right and the left wheel. T 

is the distance between the right and left wheels. For 

the wheelchair model, wheels with radius 165  mm 

were selected. The distance between the wheels was 

530 mm.

�e maximum velocity of the electric wheelchair model 

Vmax was set to 4 km/h. �e model is based on a trapezoi-

dal model of acceleration and deceleration. �e accelera-

tion time Ta and the deceleration time Td were set to 1 s. 

In this simulation, a new operation command is sent to 

the virtual wheelchair every Ti = 16 ms because, in the 

tongue motion classification experiment, the EMG sig-

nals were classified at 16 ms intervals (see Fig. 4). �ere-

fore, velocity commands are sent to the right and the left 

wheel every 16  ms. �ese commands are based on the 

rules presented in Table  3. �e wheel velocities Rrωr(t) 

and Rlωl(t) are defined by the following equations.

(12)YG(t) =
1

2

∫
t

0

(Rrωr(t) + Rlωl(t)) sin θ(t)dt

(13)Rrωr(t) = VmaxSr(t)Ti

/

Ta

(14)Rlωl(t) = VmaxSl(t)Ti

/

Ta

Table 1 Classi�cation accuracy of tongue motions

Subject Right Left Up Down Forward Saliva swallowing Total

A 96.1 93.8 84.9 98.3 88.3 90.1 91.9

B 94.1 97.8 97.4 95.8 96.4 98.9 96.7

C 99.5 98.8 97.6 99.9 90.0 92.9 96.4

D 89.1 100 96.0 92.4 95.4 96.2 94.9

E 96.2 97.8 96.5 97.2 87.0 98.4 95.5

Mean 95.0 97.6 94.5 96.7 91.4 95.3 95.1

Table 2 Confusion matrix for six tongue motions

Estimated class

Right Left Up Down Forward Saliva swallowing Neutral

Actual class

Right 95.0 0.1 1.6 0.4 2.1 0.0 0.8

Left 1.2 97.6 0.1 0.2 0.0 0.0 0.9

Up 2.6 0.4 94.5 0.4 0.7 0.2 1.2

Down 0.0 0.0 0.7 96.7 1.9 0.3 0.4

Forward 0.4 0.0 2.2 3.4 91.4 1.2 1.4

Saliva swallowing 0.2 0.0 0.9 0.3 2.2 95.3 1.1
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�erein, Sr(t) and Sl(t) respectively represent the com-

mands sent to the right and the left wheel in sequential 

moments of time. Sr(t) and Sl(t) are defined as follows.

Linking tongue motions with commands for control of the 

wheelchair model

Commands for the wheelchair model operation are pre-

sented in Table 4. �ey are based on the confusion matrix 

of tongue motions, as shown in Table  2. Initially, the 

“Brake” command is set via the “neutral” tongue position. 

(15)−Ta

/

Ti ≤ Sr(t) ≤ Ta

/

Ti

(16)−Ta

/

Ti ≤ Sl(t) ≤ Ta

/

Ti

It is assumed that the “Brake” command is sent to the 

wheelchair when all EMG signals are under the threshold 

level (i.e., relaxed state). �e “Brake” command causes the 

wheelchair to decelerate and stop. �e “Forward” com-

mand was linked with the “down” tongue motion because 

the probability for misclassification of the “down” tongue 

motion as “right” or “left” is nearly zero in the confusion 

matrix. “Right” and “left” tongue motions were used, 

respectively, as commands for turning of the wheelchair 

model to the right and left. Reverse wheelchair move-

ment (“back” command) is initiated by “forward” tongue 

motion.

�e classification accuracy of “forward” tongue motion 

was lower than that of “up” tongue motion. However, 

the rate of misclassification of “forward” tongue motion 

as “right” tongue motion is much lower (0.4 %) than that 

of “up” tongue motion (2.6  %). Its characteristic means 

that “forward” tongue motion ensures the straight driv-

ing performance. In addition, although “forward” tongue 

motion is misclassified as “down” tongue motion as about 

3.4 %, it does not affect the straight driving performance 

so much because this misclassification reduces the driv-

ing velocity while moving backward.

�e remaining “saliva swallowing” and “up” tongue 

motions were defined as no command.

�e driving test consisted of six tasks:

E1  Driving the wheelchair forward 5 m

E2  Driving the wheelchair backward 5 m

E3  Turning the wheelchair 360° to the right

E4  Turning the wheelchair 360° to the left

E5  Swallowing saliva while the wheelchair model 

is stopped

E6  Swallowing saliva while the wheelchair model 

is moving straight at maximum velocity

�e saliva swallowing times in tests E5 and E6 were set 

to 1 s.

In this situation, the 100 patterns of velocity commands 

of right and left wheel Sr, Sl considering that the rate of 

misclassification as shown in Table 2 was generated using 

a random function. �en, these resultant trajectories 

were compared with the ideal trajectory, which was cal-

culated as a classification accuracy of all tongue motions 

is 100 %.

Simulation results

�e simulation results of the angle θ and the center of 

gravity position PG (XG, YG) of an electric wheelchair are 

presented in Fig. 7. In addition, the differences between 

the ideal trajectory and the trajectory including the effect 

of misclassification are presented in Fig. 8.

Fig. 7 Simplified model of an electric wheelchair

Table 3 Change amount of  velocity commands for  right 

and left wheel

Command Sr(t) Sl(t)

Forward +1 +1

Back −1 −1

Right rotation −1 +1

Left rotation +1 −1

Brake
{

+1 if Rrωr(t) < 0

−1 if Rrωr(t) > 0

{

+1 if Rlωl(t) < 0

−1 if Rlωl(t) > 0

None +0 +0

Table 4 De�nition of operation commands

Operation commands Tongue motions

Forward Down

Back Forward

Right rotation Right

Left rotation Left

Brake Neutral

None Saliva swallowing, up
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In test E1, both the angle θ and the driving trajectory 

in y-direction YG were, respectively, 0° and 0  mm. �e 

difference between the maximum time required for 5 m 

moving of the wheelchair and the time for ideal trajec-

tory was only 40.5  ms. In test E2, the maximum devia-

tions of θ and YG for moving the wheelchair backward 

were, respectively, −1.2° and 99.4 mm. Because the dis-

tance of moving backward is about 1 m in daily life, the 

influence of these errors is believed to present no diffi-

culty. �ese results suggest that the straight driving per-

formance of an electric wheelchair using the proposed 

tongue interface is sufficient for practical use.

In test E3, maximum XG and YG while turning the 

wheelchair 360° to the right were, respectively, −8.2 and 

12.7 mm. In test E4, maximum XG and YG for turning to 

the left were, respectively, 1.6 and 2.3 mm. �e deviation 

of the center of gravity position is slight, which suggests 

good turning performance.

In test E5, the respective variations of the θ, XG, and 

YG via swallowing saliva while stopping did not exceed 

−0.6°, −11.3 and 0.0 mm. In test E6, the respective maxi-

mum variations of θ and YG via swallowing saliva while 

moving straight with maximum velocity were −0.9° and 

−5.7  mm. Moreover, the driving velocity was reduced 

from 4.0 km/h of maximum velocity to 3.8 km/h. From 

these results, it was confirmed that the influence of saliva 

swallowing on wheelchair operation can be inhibited at 

most to 11.3 mm.

Discussion
�e proposed interface, which has simple appearance, 

can be attached easily and quickly even by a non-expe-

rienced caregiver, as depicted in Fig.  2. �e prototype 

tongue interface was extremely lightweight: just 13.6  g. 

Because the silicon insulation comprises about 60.7  % 

of the whole sensor mass, further reduction of the sen-

sor mass can be achieved using thinner silicon insulation 

sheets. Future studies will explore the optimal electrode 

unit size and the optimal number and location of elec-

trodes for different categories of individuals. Further 

improvement might include the development of wireless 

communication between the sensor and the computer.

Tongue motion classification is based on analysis of 

the EMG activity of the suprahyoid muscles, which con-

tribute not only voluntary tongue motions but also swal-

lowing motion. �erefore, classification must be done 

of the large number of voluntary tongue motions that 

might be used for controlling an electric wheelchair and 

With 100 % classification accuracy  With classification accuracy of proposed method (n=100) 

(E1) 

(E2)  

(E3)  

(E4) 

(E5)  

(E6) 

(E1) 

(E2)  

(E3)  

(E4) 

(E5)  

(E6) 

Driving trajectory of wheelchair’s COG                            Angle of wheelchair 

Fig. 8 Simulation results of an electric wheelchair
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a PC. Such classification is also necessary for the detec-

tion of involuntary motions to inhibit malfunctions of 

such assistive devices. �is study achieved classification 

accuracy of 95.1 ±  1.9 % using SVM classifier with fea-

tures of time and frequency domains for five voluntary 

tongue motions and saliva swallowing. �e voluntary 

tongue motions classified in this study were much more 

numerous than in our preliminary experiments. �ey are 

sufficiently numerous and diverse to control an electric 

wheelchair and a PC. Our future studies will emphasize 

further improvement of the tongue motion classifica-

tion accuracy by optimizing the parameters of classifica-

tion algorithms such as features and the SVM kernel. In 

addition, effects of the combination of classifiable tongue 

motions on the classification accuracy will be clarified.

Computer simulations of driving of an electric wheel-

chair were conducted to investigate the effectiveness 

of the proposed classification algorithm. �e high per-

formance of straight driving was achieved by finding 

a voluntary tongue motion that is not misclassified as 

a “right” or “left” tongue motion from the confusion 

matrix (Table  2) and by matching this motion with the 

“forward” command of an electric wheelchair (Table  4). 

Saliva swallowing during wheelchair driving reduces the 

velocity slightly. �erefore, this malfunction by saliva 

swallowing affects driving performance only slightly. 

However, saliva swallowing while the wheelchair is stop-

ping made the wheelchair back up slightly. To provide a 

safety margin, some improvement of electric wheelchair 

control methods must be conducted as future work. As 

described above, electric wheelchair operation based on 

the proposed tongue interface has been demonstrated. 

Future studies will be conducted to evaluate the effects of 

yawning, talking, drinking, tongue motion speed, muscle 

fatigue, and head motion on the classification accuracy. 

�e effects of small tongue positioning errors on the clas-

sification accuracy of the system will also be assessed. 

�e usability of the tongue interface will be evaluated via 

new experiments using actual electric wheelchairs, PCs, 

and other assistive devices, and with testing of people 

with disabilities.

�is study tested the design concept of the new inter-

face through experimentation with five healthy adult 

male subjects. �e results were sufficient to verify the 

viability of the concept, but a new detailed study will be 

necessary for evaluation of the developed interface when 

used by different categories of users. Such a new study 

will specifically examine the acceptance of the new inter-

face by various users.

Conclusions
�is study was conducted to develop and test a novel 

tongue interface based on the classification of tongue 

motions from surface EMG signals of the suprahyoid 

muscles detected at the underside of the jaw. �e EMG 

signals of the suprahyoid muscles were measured via 22 

active surface electrodes mounted on a special flexible 

boomerang-shaped base. �e tongue motions were clas-

sified from RMS features and CC features of the EMG 

signals using an SVM classifier. Because the developed 

interface and this approach require no installation of any 

sensor into the mouth cavity, the system does not hinder 

the user’s other activities such as eating, chewing, and 

talking. To verify the effectiveness of the tongue interface, 

an experiment was conducted with five healthy adult 

male subjects who had normal motor tongue functions. 

Results showed that the six tongue motions (i.e., five vol-

untary tongue motions and saliva swallowing) were clas-

sified with high accuracy of 95.1 ± 1.9 %. In addition, the 

potential of the proposed method was evaluated with a 

test whereby a computer simulation of an electric wheel-

chair was controlled using tongue commands. Results 

from the steering test demonstrated that the computer 

model was controlled precisely. �e developed interface 

elaborates signals of sufficient number for the control 

of most assistive devices. �is device is therefore use-

ful for people with a high degree of movement paralysis. 

�e tongue control interface can be simplified for use by 

patients with moderate movement disorders.
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