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Abstract
Rationale Dopamine neurotransmission has long been
known to exert a powerful influence over the vigor,
strength, or rate of responding. However, there exists no
clear understanding of the computational foundation for this
effect; predominant accounts of dopamine’s computational
function focus on a role for phasic dopamine in controlling
the discrete selection between different actions and have
nothing to say about response vigor or indeed the free-
operant tasks in which it is typically measured.
Objectives We seek to accommodate free-operant behav-
ioral tasks within the realm of models of optimal control
and thereby capture how dopaminergic and motivational
manipulations affect response vigor.

Methods We construct an average reward reinforcement
learning model in which subjects choose both which action
to perform and also the latency with which to perform it.
Optimal control balances the costs of acting quickly against
the benefits of getting reward earlier and thereby chooses a
best response latency.
Results In this framework, the long-run average rate of
reward plays a key role as an opportunity cost and mediates
motivational influences on rates and vigor of responding.
We review evidence suggesting that the average reward rate
is reported by tonic levels of dopamine putatively in the
nucleus accumbens.
Conclusions Our extension of reinforcement learning mod-
els to free-operant tasks unites psychologically and com-
putationally inspired ideas about the role of tonic dopamine
in striatum, explaining from a normative point of view why
higher levels of dopamine might be associated with more
vigorous responding.

Keywords Dopamine .Motivation . Response rate .

Energizing . Reinforcement learning . Free operant

Introduction

Dopamine is perhaps the most intensively studied neuro-
modulator due to its critical involvement in normal
behaviors, including learning and performance in appetitive
conditioning tasks, and also in a variety of abnormal
behaviors such as addiction, electrical self-stimulation,
and numerous neurological and psychiatric disorders.
Influenced particularly by the dramatic effects of pharma-
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cological manipulations of dopamine neurotransmission on
response rates, psychological theories of the neuromodula-
tor’s function have long focused on a putative role in
modulating the vigor of behavior. These theories attribute
the vigor effects to a variety of underlying psychological
mechanisms, including incentive salience (Beninger 1983;
Berridge and Robinson 1998; Ikemoto and Panksepp
1999), Pavlovian–instrumental interactions (Dickinson et
al. 2000; Murschall and Hauber 2006), and effort–benefit
tradeoffs (Salamone and Correa 2002). However, despite
their psychological foundations, these theories do not, in
general, offer a computational or normative understanding
for why dopaminergic manipulations might exert such
influence over response vigor.

A different influential line of empirical and theoretical
work on the involvement of dopamine in appetitive condi-
tioning tasks arose from electrophysiological recordings of
midbrain dopamine neurons in awake, behaving monkeys.
These recordings suggested that the phasic (bursting and
pausing) spiking activity of dopamine cells reports to the
striatum a specific “prediction error” signal (Ljungberg et al.
1992; Schultz et al. 1993; Schultz 1998; Waelti et al. 2001).
Computational models showed that this signal can be used
efficiently both for learning to predict rewards and for
learning to choose actions so as to maximize reward intake
(Sutton and Barto 1990; Friston et al. 1994; Barto 1995;
Montague et al. 1996; Schultz et al. 1997).

However, these computational theories suffer from three
deficiencies that prevent them from providing a comprehen-
sive picture of the role of dopamine in conditioned
responding: first, because they only treat the choice between
discrete actions, they say nothing about the strength or vigor
of responding. These models are therefore not capable of
addressing free-operant behavior. Barring the interesting
exception of McClure et al. (2003), which we discuss later,
they also say nothing about the most obvious behavioral
effect of pharmacological manipulations of dopamine,
namely, their profound impact on response vigor.

Second, the computational theories generally assume
that dopamine influences behavior only indirectly by
controlling learning (e.g., Wickens 1990; Wickens and
Kötter 1995). Although some behavioral effects of low-
dose dopaminergic drug manipulations indeed emerge
gradually, as if by learning (Wise 2004), more immediate
effects are seen with higher drug doses (or medial
forebrain bundle stimulation; Gallistel et al. 1974), and
it seems implausible that dopaminergic drug effects are,
in general, wholly mediated by learning (Ikemoto and
Panksepp 1999).

Finally, whereas the unit recording data and associated
computational theories are only concerned with the phasic
release of dopamine, the tonic level of dopamine constitutes a
potentially distinct and carefully controlled channel of

neurotransmission (Grace 1991; Floresco et al. 2003;
Bergstrom and Garris 2003; Goto and Grace 2005) for
which a key role in enabling (Schultz 1998) or energizing
(Weiner and Joel 2002) behavior has been suggested. Indeed,
dopamine alterations affect a wide range of behaviors, many
of which do not seem to be accompanied by phasic activity
in dopamine cells. Furthermore, dopamine agonists can
reverse many behavioral effects of dopamine loss, although
they probably do not fully restore dopamine phasic
transmission (Le Moal and Simon 1991; Schultz 1998).
More directly, dopamine agonists or artificial increases in
dopamine level (e.g., using amphetamine) have been shown
to invigorate a range of behaviors (Lyon and Robbins 1975;
Evenden and Robbins 1983; Taylor and Robbins 1984,
1986; Ljungberg and Enquist 1987).

Here we suggest that these three lacunæ are interrelated
and can be jointly addressed. We do so by proposing a
normative account of response vigor which extends the
conventional computational view from discrete-choice,
discrete-trial tasks to a more general continuous-time
setting. We assume that animals choose the latency, time,
or vigor with which they perform an action as well as
which action actually to perform. We show that optimal
decision making in the new framework has exactly the
characteristics expected from psychological studies of the
motivational sensitivity of response rates, including accom-
modating such apparent anomalies as hungry animals
behaving more avidly even when performing actions (such
as lever-pressing for water) that are not directed toward food
gathering (Niv et al. 2005a, 2006).

The new theoretical model utilizes one new signal,
namely, the average rate of reward, which we designate R.
The average rate of reward exerts significant influence over
overall response propensities largely by acting as an
opportunity cost, which quantifies the cost of sloth. That
is, if the average rate of reward is high, every second in
which a reward is not delivered is costly, and therefore, it is
worth subjects’ while performing actions more speedily
even if the energetic costs of doing so are greater. The
converse is true if the average rate of reward is low.

In the following, we first detail the extension of the
standard model of learned action choice to the case of free-
operant tasks, which brings about the need for this signal,
and describe the results regarding its effects on response
rates. We then argue on computational, psychopharmaco-
logical, and neural grounds that this average reward rate
may be reported by tonic levels of dopamine, putatively in
the nucleus accumbens, and show how it can account,
without mediation through learning, for a wealth of
reported effects of dopamine manipulations on response
vigor in a variety of tasks. Finally, we consider how tonic
and phasic dopamine signaling may interact in controlling
behavior.
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Methods: modeling response choice in free-operant
tasks

Reinforcement learning (RL) is a computational framework
for understanding how animals can predict future rewards
and punishments, and choose actions that optimize those
affective consequences (Sutton and Barto 1998). Not only
does RL have a sound mathematical basis in the engineer-
ing theory of dynamic programming (Bertsekas and
Tsitsiklis 1996), it also has long had a very close relation
with psychological accounts of behavioral learning (Sutton
and Barto 1981). Furthermore, RL offers a formal treatment
of the phasic activity of dopamine neurons in primate
ventral tegmental area (VTA) and substantia nigra pars
compacta during appetitive conditioning tasks (Montague et
al. 1996; Schultz et al. 1997). Briefly, it seems that phasic
dopamine projections to the nucleus accumbens (as well as
to the amygdala and prefrontal areas) report a form of
prediction error about future rewards that is used to learn
predictions of those future rewards. A similar phasic
dopamine signal conveyed from the substantia nigra to the
dorsal striatum seems to be involved in the adaptation of
habitual actions to maximize future rewards (Packard and
Knowlton 2002; Yin et al. 2004; Faure et al. 2005; Daw et
al. 2005).

Almost all existing applications of RL have been to
discrete-trial tasks, in which the only choices that subjects
make are between different punctate actions (such as
pressing either the left or the right lever in an operant
chamber or running either left or right in a maze). This is
clearly inadequate as a model of free-operant tasks, in
which the key dependent variable has to do with when or at
what rate an animal performs an action, in the light of
different schedules of reinforcement and the animal’s
motivational (e.g., deprivational) state (Domjan 2003).
Indeed, behavioral results indicate a delicate interplay
between the costs of behaving faster and the possible
benefits in terms of obtaining more rewards. This interplay
results, for instance, in slower response rates the higher the
interval or ratio schedule (Herrnstein 1970; Barrett and
Stanley 1980; Mazur 1983; Killeen 1995; Foster et al.
1997) and faster responding on ratio schedules compared
with yoked interval schedules (Zuriff 1970; Catania et al.
1977; Dawson and Dickinson 1990). Existing RL models
also fail to capture key issues in discrete trial tasks for
which the (e.g., energetic) costs of actions are balanced
against their appetitive benefits (Cousins et al. 1996;
Salamone and Correa 2002).

Here we suggest an extension to the standard RL model to
the case that, along with making a choice between different
possible actions, subjects also choose the latency (interpreted
as response strength or vigor) with which they perform it
(Niv et al. 2005a). Formalizing this allows the new model to

accommodate all the issues raised above. The model may
seem rather abstract and removed from either the behavior
or the neural substrate. However, most of the definitions are
directly related to the specification of the behavioral task
itself. Furthermore, our abstraction of the optimizing task
for the subject in a free-operant setting directly extends and
parallels the abstraction of discrete-choice tasks in standard
RL that has previously led to an account of psychological
and neural data (Friston et al. 1994; Houk et al. 1995;
Montague et al. 1996; Schultz et al. 1997). The model’s
abstractions and dynamics are summarized in Fig. 1 and are
described below. A more detailed computational description
can be found in the “Appendix”.

We start by considering a simple free-operant task in
which a (simulated) rat is placed in an operant chamber
containing one lever and a food magazine. Several actions
are possible: lever pressing (LP), nose poking (NP), and an
action we will call “Other”, which includes the range of
other things that rats do in such scenarios (e.g., grooming,
sniffing, and rearing). Food pellets fall into the food
magazine as a result of lever pressing according to a
designated schedule of reinforcement such as a fixed or
random ratio or interval schedule (Domjan 2003). For
simplicity, we assume that the rat can hear the food pellet
falling into the magazine and therefore knows when it is
actually available to be harvested via a nose-poke action.

We significantly simplify the dynamics of the interaction
between the rat and the task by considering punctate
choices. That is, at decision points, the rat chooses an
action (a=NP, LP, or “Other”) and the latency τ with which
to perform this chosen action. Time τ then passes with no
other actions allowed (the critical simplification), after
which the action is completed. Latency (or rather inverse
latency) is intended to formalize vigor—to complete a lever
press within a shorter time, the animal must work harder.
Following the period τ, any rewards that are immediately
available for the action are harvested, and pellets scheduled
to fall into the magazine do so. This may lead to a change
in the state of the environment as observed by the rat. The
rat then chooses another action and latency pair (a,τ), and
the process continues. To allow comparison with experi-
mental results (Foster et al. 1997), we also assume that
eating a reward pellet is itself time-consuming; thus,
whenever a nose-poking action is chosen and a pellet is
available in the magazine, a variable “eating time” with a
mean of several seconds (Niv et al. 2005b), must pass
before the rat can make its next (a,τ) choice.

To complete the formal specification of the task for the
rat, we have to describe the costs of performing actions, the
utilities associated with the rewards, and the goal for the rat
in the sense of what we consider it to be optimizing. We
assume that each chosen action incurs both a fixed per-unit
cost and a latency-dependent vigor cost (Staddon 2001), the
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latter being proportional to the vigor of execution, that is,
inversely proportional to the latency τ. Both costs can
depend on the identity of the previous and the current
action, for instance, so the cost of lever pressing after nose
poking can take account of the unit and vigor costs of
traveling from the magazine to the lever.1 Together, these
costs mean that lever pressing three times in 1 s is more
costly than lever pressing three times in 3 s, and furthermore,
lever pressing with a latency of 1 s after a previous lever
press is less costly than lever pressing with the same latency
after a nose poke. That some of the costs are vigor-related
means that response rate selection is not trivial—responding
too quickly is very costly, whereas responding too slowly
means rewards will be obtained only after a considerable
delay.

To model motivational manipulations such as hunger and
satiety, we assume that the utility of the reward is dependent
on the motivational (deprivational) state. That is, because we
are modeling the delivery of pellets of food, we assume that
their utility scales with hunger—food pellets will naturally
be more valuable to a hungrier rat than to a sated one.
Unfortunately, available data do not pin down the form of

this mapping precisely, and we set it arbitrarily (for instance,
a pellet might be worth three times as much to a hungry rat as
to a sated rat). For simplicity, we also ignore small changes in
reward utility potentially resulting from progressive satiation
over the course of a session.

Last, but not least, we formalize the problem for the rats
in terms of optimizing the long-run average rate of (net)
utility per unit time. That is, the goal of the rat is to choose
actions and latencies that maximize the accumulated
rewards less the incurred costs, per unit time. This is a
slightly different formulation from the more common
exponentially discounted form of RL and is better suited
for modeling many aspects of free-running, free-operant
behavioral tasks which have a cyclic nature, and are not
externally divided into trials and intertrial intervals (Daw
2003; Daw and Touretzky 2002; Daw et al. 2002). This
average-reward RL formulation has also previously
(Kacelnik 1997) been related to hyperbolic discounting
(Ainslie 1975), which, in behavioral tests, typically bests
exponential discounting.

In summary, we use RL techniques to determine the value
of each pair (defined as the future expected rewards when
taking this action with this latency compared to the average
expected reward; Mahadevan 1996), at each state in the
task. Once these values are known, the rat can achieve
optimal performance simply by choosing, in every state, the
(a,τ) pair with the highest value. The values can be

1 Given that the actions we include in “Other” are typically performed
in experimental scenarios despite not being rewarded by the
experimenter, we assume these entail some “internal” reward, modeled
simply as a negative unit cost.

choose
(lever press, τ1)

τ1 time
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rewards
accrued

start
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mag τ2 time
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(nose poke, τ2)
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co
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…

Fig. 1 Model dynamics. The simulated rat begins at the start state and
selects both an action a to perform and the speed (i.e., the latency τ)
with which to perform it. For instance, here, the rat selects the (action,
latency) pair of (lever press, τ1). As a simplification, we assume that
the lever-press action is then executed (to the exclusion of all other

actions) throughout the chosen latency τ1. The action is completed at
the end of this period, at which point all costs and available rewards
are accrued and any state changes in the environment occur. In the
ensuing state, the rat again selects an (a,τ) pair, and the process
repeats
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computed using only local information (see “Appendix” for
details). There are also online learning rules for acquiring
the values based on experiencing many trials (Schwartz
1993; Mahadevan 1996), and indeed, those learning rules
have been used as models of phasic and tonic dopamine
and serotonin signaling (Daw 2003; Daw and Touretzky
2002; Daw et al. 2002). However, in this paper, we
concentrate mostly on properties of the optimal solution,
that is, how we expect well-trained animals to behave in the
steady state, and leave the detailed time course of learning
to future work.

Results: average reward rate and tonic dopamine

Figure 2 shows that optimal action selection under this
scheme reproduces many characteristics of free-operant

responding that are seen experimentally (Niv et al. 2005a).
For instance, response rates are greater when rewards have
higher values and are lower when the interval or ratio
requirement of the reinforcement schedule is larger,
according to the well-known hyperbolic relation (Catania
and Reynolds 1968; see Fig. 2a,b). Furthermore, if two
levers are available, each rewarding on a separate random-
interval schedule, the model’s behavior (Fig. 2d) is
consistent with the ubiquitous experimental finding that
the ratio of response rates on each lever matches the ratio of
their reward rates (Herrnstein 1970; see Fig. 2c). Other
characteristics such as faster responding on ratio schedules
compared with yoked interval schedules (Zuriff 1970;
Catania et al. 1977; Dawson and Dickinson 1990) are also
reproduced by the model (Niv et al. 2005a).

In our model, the numerical value R of the average net
reward per unit time plays a critical role in vigor selection,
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Fig. 2 Free operant behavior. a The relation between rate of
responding (here, key pecking by a pigeon) and rate of reinforcement
(the reciprocal of the interval between reinforcements) on a random-
interval schedule (adapted from Herrnstein 1970; data originally from
Catania and Reynolds 1968). b Model simulations capture the essence
of the behavioral data. The relation between the total number of
responses in a 30-min session (circles) and the rate of reinforcement is

hyperbolic (solid line; hyperbolic curve fit). c Operant choice between
two options, each reinforced on a separate random-interval schedule,
follows the classic “Matching Law” (Herrnstein 1961) by which the
proportion of responses (here, key pecking by pigeons) on one of the
keys is equal to the proportion of rewards on that key (adapted from
Herrnstein 1961). d Model simulations on a similar two-lever
concurrent random-interval schedule also show matching behavior
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acting as what might be seen as an opportunity cost. This is
because when the rat chooses the latency with which to
perform an action, it is occupied exclusively with that
action for this entire duration. The cost of this commitment
is τ�R because the rat is effectively forgoing this much
reward on average by doing nothing other than the action it
chose. Of course, if the chosen action is expected to yield
more reward than this cost, it might still be worthwhile
performing it. Thus, when choosing actions and latencies,
the opportunity cost has to be weighed together with the
cost of performing actions more quickly or vigorously and
the benefit of getting the actual rewards sooner. In this way,
the average reward introduces competition between differ-
ent latencies of responding (Dragoi and Staddon 1999).

Analysis of the optimal solution in standard operant
reinforcement schedules shows that the optimal latency of
all actions is inversely proportional to the average reward
rate (“Appendix”), a relation that turns out to be very
revealing. It means that when the average reward rate is
higher, optimal responding will be faster, and conversely,
when the reward rate is lower, responding will be slower.
This result can explain the well-known observation that
hungrier rats are more “jumpy,” performing all actions at a
faster pace. The model shows that such counterintuitive,
seemingly energy-wasting behavior is actually optimal:
when hungry, the food pellets are subjectively more
valuable, and thus, the overall expected reward rate in the
experiment is higher. Thus, any action that is performed
incurs a higher opportunity cost per unit time, implying a
shorter optimal latency for all actions. Even when choosing
an action such as grooming (“Other”), which does not lead
to the coveted food reward, the optimal latency for this
action will be shorter than that for a sated rat—intuitively,
the rat should perform it quickly to resume lever pressing
for the valuable food as soon as possible. Indeed, when
hungry, the model rats not only choose to perform more
food-obtaining actions, and at shorter latencies (resulting in
a higher rate of lever pressing), but in addition, when they
choose to perform “Other”, they do this with a shorter
latency as well. In this way, the model explains a type of
“generalized drive” effect of motivation (Bolles 1967).

We therefore posit, on computational grounds, a slowly
changing, tonic average reward signal that should exert
control over generalized response vigor. Given the link
between tonic dopamine and energizing of behavior
(Weiner and Joel 2002), we propose that tonic dopamine
carries this average reward signal. Much experimentation
shows that higher levels of striatal dopamine are first and
foremost associated with enhanced responsivity (Jackson et
al. 1975; Carr and White 1987; Williams et al. Submitted)
even before any learning-related effects are seen (Ikemoto
and Panksepp 1999). Conversely, striatal dopamine deple-
tion or antagonism profoundly reduces rates of responding

(Sokolowski and Salamone 1998; Aberman and Salamone
1999; Salamone et al. 2001; Correa et al. 2002; Mingote et
al. 2005). These direct effects of dopaminergic manipu-
lations are exactly what is seen in our model if the average
rate of reward is elevated or reduced. Therefore, the model
provides a computational and normative foundation for
understanding these effects and a bridge to psychological
theories concerning them. Related to this interpretation,
Montague (2006) has suggested that the lack of voluntary
initiated movement in later stages of Parkinson’s disease
might be a normative consequence of a reduced expectation
of average reward.

If we do indeed identify the average reward rate with
tonic dopamine, we can now explicitly model the cost–
benefit tradeoff experiments pioneered by Salamone and his
colleagues (Salamone and Correa 2002). In the free-operant
variant of these, it has been shown that 6-hydroxydopamine
lesions in the accumbens have minimal effects on respond-
ing on low fixed-rate (FR) schedules while severely
reducing responding on high FR schedules (Aberman and
Salamone 1999; Salamone et al. 2001; Mingote et al.
2005). Figure 3a shows a representative experimental
result. Figure 3b shows the result of the simulation in our
model, with dopamine depletion simulated by reducing the
average reward rate R while leaving all other aspects of the
model intact (“Appendix”). A similar pattern of results is
seen, with dopamine-depleted rats lever pressing less than
control rats, an effect that is more pronounced for higher
ratio schedules. This arises because the optimal latencies
for lever pressing are longer once tonic dopamine reports a
lower expected average reward rate. Thus, fewer presses are
performed throughout the 30-min time allotted.

Note, however, that the apparently small effect on lever
press rates in lower ratio schedules actually results in the
simulation from a greater proportion of the session time
spent eating in these schedules (at a consumption speed that
is unaffected by dopamine depletions; Sokolowski and
Salamone 1998; Aberman and Salamone 1999; Salamone et
al. 2001; Salamone and Correa 2002) and not from a
smaller effect on lever-press latencies. In the model, tonic
dopamine (R) depletion causes longer lever-press latencies
in all schedules. However, in a schedule such as FR1, in
which the rat performs a few hundred lever presses and is
rewarded with several hundred pellets, the majority of the
session time is spent consuming rewards rather than lever
pressing for them. By comparison, in the FR16 condition,
the rat presses over a thousand times and only obtains
several tens of pellets; thus, effects of the dopamine
depletion treatment on lever pressing seem more prominent.

It is noteworthy that dopamine depletions in our model
also result in less switching between different actions
because of the slower responding. This arises because
slower actions incur lower vigor costs, against which the
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impact of the vigor-independent switching costs loom
comparatively larger. Action selection will therefore be
biased toward repeating the currently chosen action, result-
ing in a free-operant form of perseveration. Indeed, lesion
and drug studies have shown that dopamine loss results in
perseveration, whereas increased dopamine promotes be-
havioral switching (e.g., Taghzouti et al. 1985; van den Bos
et al. 1991), leading several researchers to suggest a role for
dopamine in the control of switching (e.g., Robbins and
Everitt 1982; Oades 1985; Weiner 1990; Le Moal and
Simon 1991; Redgrave et al. 1999; Weiner and Joel 2002).

Discussion

We have presented a computational model of optimal action
selection in free-operant tasks, incorporating the important,
but often neglected, aspect of response vigor into an RL
framework. Our model highlights the importance of the
average rate of reward in determining optimal response
rates and shows that higher reward rates should normatively
be associated with faster responding and lower rates with
slower responding. We suggest that the average reward rate
is encoded by tonic levels of dopamine. This explains why
this neuromodulator plays a critical role in determining the
vigor of responding and provides a route by which
dopamine could mediate the effects of motivation on vigor.

This theory dovetails neatly with both computational
theories which suggest that the phasic activity of dopamine
neurons reports appetitive prediction errors, and psycholog-
ical theories about dopamine’s role in energizing responses.

Our framework puts in center stage the tradeoffs
between costs and benefits that are explicit in the so-called
cost–benefit T-maze tasks (Cousins et al. 1996), are implicit
in free-operant tasks, and are manifest in day-to-day
decisions about the vigor of actions. As these tradeoffs
are typically continuous rather than binary, we suggest that
rather than asking whether an animal is willing to put the
effort into performing an action or not, we should ask how
willing it is. In a recent model directed at somewhat similar
data, McClure et al. (2003) made an explicit connection
between response vigor and RL models of phasic, rather
than tonic, dopamine function. Their theory effectively
constructed a continuously varying response vigor (running
speed) from a long series of binary decisions of whether to
respond or to do nothing. This allowed them to incorporate
effects of (phasic) dopamine on response vigor but did not
license the sort of analysis of the tradeoff between response
effort and benefit on which we have focused here.

Predictions

Our theory makes several readily testable predictions. First,
we predict that lever-pressing latencies will be affected by
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accumbens dopamine depletions of the sort employed by
Salamone and colleagues, even in schedules requiring less
effort per reward. This effect may not be straightforward to
measure, however, because a molecular measure of re-
sponse latency is needed rather than the molar measure of
number of responses in a session. Indeed, a more detailed
reaction time analysis in Mingote et al. (2005) points in this
direction. One option would be to test effects of dopamine
depletion during extinction to remove interactions with
eating time. This would nicely separate immediate effects
of changes in tonic dopamine levels from those of new
learning due to a diminished phasic signal (see below), but
albeit potentially at the expense of an interaction with
extinction learning. Alternatively, higher-order schedules
could be used to look at responding for conditioned stimuli,
thereby eliminating the interference of rewards without
inducing extinction.

We also predict similar effects of changes in motivation-
al state. In particular, the higher the state of deprivation, the
shorter the latency of all actions should be. Again, it would
be important here to use a molecular measure of response
latency to distinguish the effects of satiety on response rates
from its effects on eating time (which, in this case, do
appear to be significant; Aberman and Salamone 1999).
Moreover, we predict that tonic levels of striatal dopamine
will be higher in a deprived state than in a sated state (as
also suggested by Weiner and Joel 2002), given that the
animal has reason to expect a higher overall reward rate in
its motivated state. Although difficult to measure directly,
there is some supportive evidence for this (Wilson et al.
1995; Hernandez et al. 2006).

Immediate vs learned effects

Previous RL models have mostly concentrated on how
phasic dopamine can affect behavioral preferences gradu-
ally and indirectly through a learning process. In contrast,
we have modeled steady-state behavior in a well-learned
task and focused on explaining how a change in tonic
dopamine, caused either pharmacologically or by a change
in deprivational state, can also affect behavior directly and
immediately without requiring learning. The idea is that
the system can take advantage of the fact that a higher
average reward rate (arising, for instance, from a shift
from satiety to hunger) will necessarily produce more
vigorous optimal responding. It can then adjust response
vigor directly on the basis of the tonic dopamine-reported
average reward rate signal even before the new values of
different (a,τ) pairs in the new situation have been learned.
Importantly, such a mechanism provides some flexibility in
rapidly adapting the overall level of behavior to changes in
circumstance that are associated with changes in expected
average reward rates.

Of course, the decision of how vigorously to respond is
only one of the twin decisions underlying behavior in our
framework. The decision as to which action to perform in a
new motivational state is more difficult to adjust because it
requires reestimating or relearning the values of different
actions. In RL models of the sort we have considered,
relearning involves additional training experience and
utilizes the phasic dopamine signal. Thus, for instance, if a
rat lever-pressing for food is shifted from hunger to thirst, the
system will need new experience (and learning mediated by
phasic dopamine) to direct its responding to an altogether
different action to receive water. This complicated combina-
tion of direct motivational sensitivity (of vigor, through the
tonic dopamine signal) and insensitivity (of choice, as a
result of required learning) turns out to match well the results
of experiments on a particular psychological category of
“habitual” or “stimulus–response” behaviors (Dickinson
1985; Dickinson and Balleine 2002; Niv et al. 2006).
Moreover, these are indeed associated with dopamine and
the striatum (e.g., Yin et al. 2004; Faure et al. 2005).

We have not considered here the anatomically and
psychologically distinct category of “goal-directed” behav-
iors (Dickinson and Balleine 1994), whose pattern of
immediate and learned motivational sensitivity is rather
different, and to which another class of RL models is more
appropriate (Daw et al. 2005). Although our current model
addresses habit-based instrumental control, optimizing the
vigor of responding is as much an issue for goal-directed
instrumental control and, indeed, for Pavlovian actions, and
it is possible that average reward rates play a part in
determining vigor for these as well.

We also have not treated here the learning of a new task
but concentrated only on the steady-state situation. It is at
this stage, in which responding is nearly optimal with
respect to the reinforcement schedule and task, that we may
analyze the optimal interrelation between reward rate and
response vigor, and that these variables might stably be
measured experimentally.2 In contrast, learning is charac-
terized by progressive (and likely complex) changes both in
behavior and in the obtained average reward rate. Over the
course of learning, the animal must continually estimate the
average reward rate primarily from recently obtained
rewards and costs. We predict that this estimate will control
the dynamically changing tonic dopamine levels. In
general, throughout acquisition, we can expect the experi-
enced average reward rate to increase as the subject learns

2 Realistically, even in a well-learned task, the average reward rate and
response rates may not be perfectly stable. For instance, during a
session, both would decline progressively as satiety reduces the utility
of obtained rewards. However, this is negligible in most free-operant
scenarios in which sessions are short or sparsely rewarded.
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the contingencies and optimizes responding, obtaining
more rewards while reducing action costs. Higher average
reward rates reported by higher levels of tonic dopamine
will further enhance response rates in a feedback cycle.

Tonic and phasic dopamine

Our model does not specify a mechanism by which tonic
dopamine levels come to match the expected average
reward rate. Various immediate and learned factors are
likely to be important, and the complex pattern of
interaction between tonic and phasic dopamine (e.g., Grace
1991; Moore et al. 1999; Floresco et al. 2003; Phillips et al.
2003; Goto and Grace 2005; Lodge and Grace 2005)
appears to be key. One simple computational truth is that if
the phasic responses of dopamine neurons indeed report a
prediction error for future reward, their integration over
time should, by definition, equal the average reward rate
received. Indeed, phasic dopamine signals are discernable
outside the synaptic cleft (Phillips and Wightman 2004;
Roitman et al. 2004), so if tonic dopamine concentrations
were solely determined by the slow accumulation of
dopamine from phasic events, filtered by reuptake, they
could directly measure throughout behavior the long-term
cumulative average reward signal we posit. However, a
view of the tonic signal as just the running average of the
phasic signals is probably incomplete on both computa-
tional and physiological grounds. Computationally, we
should expect the tonic average reward signal to be used
predictively and not only reactively, which would require it
to be somewhat decoupled from the actual obtained phasic
reward signal. This would allow events such as changes in
deprivation state to give rise to an immediate change in
behavioral vigor based on previous learning of the relation
between deprivation and expected average reward rate and
before actually obtaining and averaging over rewards in the
new motivational state.

Physiologically, there is indeed evidence that the two
signals are somewhat decoupled, with phasic signals
resulting from bursting activity and tonic dopamine levels
determined mainly by the overall percentage of active
(nonsilent) dopaminergic neurons and by presynaptic
glutamatergic inputs (Chéramy et al. 1990; Chesselet
1990; Grace 1991; Floresco et al. 2003; Lodge and Grace
2006) (although these two modes of activity also interact in
a facilitatory manner; Lodge and Grace 2005). Moreover,
input structures to the VTA (e.g., the pedunculopontine
nucleus and the ventral pallidum, respectively) appear to
affect either bursting activity or population activity in
dopamine neurons (Floresco et al. 2003; Goto and Grace
2005; Lodge and Grace 2006), providing another mecha-
nism for independent modulation of phasic and tonic
dopamine levels.

Because pharmacological manipulations of dopamine are
likely to affect both tonic and phasic signaling, their effects
on behavior can often be subtle to tease apart. This is
illustrated, for instance, by considering our interpretation of
responding in the cost–benefit T-maze task of Salamone
and colleagues (Cousins et al. 1996; Denk et al. 2005). In
this task, a rat can obtain four food pellets by choosing one
arm of a T maze or one food pellet by choosing the other
arm. However, the highly rewarding arm is partly blocked
by a barrier which the rat must scale to reach the reward.
Hungry rats typically choose the high-rewarding arm on the
majority of trials. In contrast, after nucleus accumbens
dopamine depletion, they prefer the low-rewarding arm,
which demands less effort. We suggest that this reversal in
discrete-action propensities is due to learned effects on
choice preferences, mediated by the phasic dopamine
signal. In particular, if the phasic signal is blunted by the
drug, this would reduce the efficacy on learning of the four-
pellet reward signal, making it, say, equivalent to the
learning signal that would normally be seen on receiving
only two food pellets. Of course, the reward signal for the
low-rewarding arm would also be blunted, say, to the
equivalent of half a pellet. In this case, although the three-
pellet difference in reward before the lesion was sufficient
to justify the extra cost of scaling the barrier, the 1.5-pellet
difference after dopamine depletion might not, thereby
altering the rats’ choice toward the low-rewarding arm
within a few trials of learning.

At the same time, we would expect reduced tonic
dopamine to reduce the reported opportunity cost of slower
responding without affecting the other aspects of the task.
Thus, before new learning, rats should still be willing to
climb the barrier for four food pellets; however, they need
not hurry to do so. As a result of this separation of tonic and
phasic effects, we predict that transiently, for instance, in
the first postdepletion choice trial, dopamine-depleted rats
should maintain their preference for the high-rewarding
barrier arm, albeit acting distinctly more slothfully. Even as
the phasic-induced learning effects accumulate and produce
a shift in discrete action choice, the tonic effects should
persistently promote slower responding. Indeed, Denk et al.
(2005; see also Walton et al. 2006) show that dopamine
depletion significantly lengthened the latencies to reach the
reward when the barrier arm was chosen.

A final interaction between tonic and phasic aspects of
dopamine is the finding that responding to cues predictive
of higher reward is typically faster than responding to less
valuable cues (e.g., Watanabe et al. 2001; Takikawa et al.
2002; Lauwereyns et al. 2002; Schoenbaum et al. 2003).
Although vigor is generally associated with tonic rather than
phasic dopamine in our model, unit recordings have shown a
linear relation between reaction times and phasic dopami-
nergic responding (Satoh et al. 2003; see also Roitman et al.
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2004). One possible explanation for these effects is that
phasic signals transiently affect dopamine tone (Phillips and
Wightman 2004; Roitman et al. 2004; Wise 2004),
influencing vigor selection. Larger phasic prediction-error
signals for stimuli previously associated with higher rewards
(Fiorillo et al. 2003; Tobler et al. 2005) would then result in
faster responding to these cues. Such effects of “incentive
motivation” for the outcome (Dickinson and Balleine 2002;
McClure et al. 2003; Berridge 2004) likely also involve
temporal discounting (which we have not directly modeled
here) by which delayed rewards are viewed as less valuable
than proximal ones. The additional value of receiving a
larger reward faster could thus be expected to offset the cost
of a more vigorous response.

Future directions

In our model, we used response timing as a proxy for
response vigor, adopting the rather simplistic view that
animals select a particular latency for their chosen action
and then set about doing it exactly that slowly and with no
interruption. Although this has allowed us to capture some
effects of response timing in free-operant tasks, the model
in its current form misses others such as the prominent
scalloped responding in fixed interval schedules (Gallistel
and Gibbon 2000). A key lacuna in this respect is the
assumption that animals can time latencies exactly, whereas
it is known that interval timing is notoriously inaccurate
(Gibbon 1977; Gallistel and Gibbon 2000). However, it is
straightforward to include temporal noise in the model, and
we expect our main conclusions about vigor to remain
valid.

Among the most critical issues left for future work are
aversively motivated conditioning and the relation between
dopamine and serotonin in the striatum. Daw et al. (2002)
suggested an opponency between serotonin and dopamine
in controlling appetitive and aversive conditioning based on
data showing various forms of antagonism between these
neuromodulators (e.g., Fletcher and Korth 1999) and in
light of long-standing psychological ideas (Konorski 1967;
Solomon and Corbit 1974; Dickinson and Balleine 2002)
that two opponent motivational systems exist. Their model
suggested that if phasic dopamine reports appetitive
prediction errors, then phasic serotonin should report
aversive prediction errors. This was construed in the
context of an average-reward RL model, rather like the
one we have discussed here. Furthermore, Daw et al. (2002)
suggested that opponency also extended to the tonic
signals, with tonic dopamine representing the average rate
of punishment (inspired by microdialysis data, suggesting
dopamine concentrations rise during prolonged aversive
stimulation) and tonic serotonin, conversely, reporting the
average reward rate.

The present model’s association of tonic dopamine with
average reward rather than punishment seems to reverse
this prior suggestion. However, it may be possible to
integrate the two views. For instance, in active avoidance
tasks, responding is known to be under dopaminergic
control. In this case, there is an analogous form of
opportunity cost that forces fast avoidance coming from
the possibility of failing to escape a punishment. This link
between average rate of punishment and vigor could
potentially be realized by the same dopaminergic substrate
as the appetitive energizing we have discussed. In any
event, the hypothetical joint dopaminergic and serotonergic
coding for appetitive and aversive signals presents burning
empirical questions.

Conclusions

In conclusion, we suggest a computational model of striatal
dopamine which incorporates both tonic and phasic
dopamine signals into an action selection framework
emphasizing both the identity of the chosen action and the
vigor of its execution. The novel aspect of our model—the
account of action vigor and its relation to the average
reward rate, which we suggest is reported by tonic
dopamine levels—allows for the modeling of free-operant
behavior within the framework of RL and the understand-
ing of effects of both motivational manipulations and
dopaminergic interventions on response rates. Our account
emphasizes the nonbinary nature of cost–benefit tradeoffs
which animals and humans continuously face, as the
decision on action vigor (or latency) embodies a continuous
valued decision as to how much effort to exert given the
available benefits. This framework provides another step in
the direction of clarifying the role of striatal dopamine and
its effects on behavior, even as it opens the door to a wealth
of experimental work that can quantify the precise interplay
between cost and benefit and between tonic and phasic
dopamine.
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Appendix

Here we describe in more mathematical detail the proposed
RL model of free-operant response rates (Niv et al. 2005a)
from which the results in this paper were derived.

Formally, the action selection problem faced by the rat
can be characterized by a series of states, S∈S, in each of
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which the rat must choose an action and a latency (a,τ)
which will entail a unit cost, Cu, and a vigor cost, Cv /τ, and
result in a possible transition to a new state, S0, and a
possible immediate reward with utility, Ur . The unit cost
constant Cu and the vigor cost constant Cv can take
different values depending on the identity of the currently
chosen action a∈{LP, NP, “Other”} and on that of the
previously performed action. The transitions between states
and the probability of reward for each action are governed
by the schedule of reinforcement. For instance, in a
random-ratio 5 (RR5) schedule, every LP action has
p=0.2 probability of inducing a transition from the state in
which no food is available in the magazine to that in which
food is available. An NP action in the “no-reward-available”
state is never rewarded and, conversely, is rewarded with
certainty (pr=1) in the “food-available-in-magazine” state.
As a simplification, for each reinforcement schedule, we
define states that incorporate all the available information
relevant to decision making, such as the identity of the
previously chosen action, whether or not food is available
in the magazine, the time that has elapsed since the last
lever press (in random-interval schedules only), and the
number of lever presses since the last reward (in fixed ratio
schedules only). The animal’s behavior in the experiment is
thus fully described by the successive actions and latencies
chosen at the different states the animal encountered {(ai, τi,
Si), i=1,2,3, ...}. The average reward rate R is simply the
sum of all the rewards obtained minus all the costs
incurred, all divided by the total amount of time.

Using this formulation, we can define the differential
value of a state, denoted V(S), as the expected sum of future
rewards minus costs encountered from this state and
onward compared with the expected average reward rate.
Defining the value as an expectation over a sum means that
the value can be written recursively as the expected reward
minus cost due to the current action, compared with the
immediately forfeited average reward, plus the value of the
next state (averaged over the possible next states). To find
the optimal differential values of the different states, that is,
the values V � Sð Þ (and average value R

�
) given the optimal

action selection strategy, we can simultaneously solve the
set of equations defining these values:

V � Sð Þ ¼ max
a;C

pr a; C; Sð ÞUr � Cu a; aprev
� �� Cv a; aprev

� �
C

�

�R� � Cþ P
S02S

p S0ja; C; Sð ÞV � S0ð Þ
�
;

in which there is one equation for every state S∈S, and p(S0|
a,τ,S) is the schedule-defined probability to transition to
state S0 given (a,τ) was performed at state S.

The theory of dynamic programming (Bertsekas and
Tsitsiklis 1996) ensures that these equations have one

solution for the optimal attainable average reward R
�
, and

the optimal differential state values V � Sð Þ (which are
defined up to an additive constant). This solution can be
found using iterative dynamic programming methods such
as “value iteration” (Bertsekas and Tsitsiklis 1996) or
approximated through online sampling of the task dynamics
and temporal-difference learning (Schwartz 1993; Mahade-
van 1996; Sutton and Barto 1998). Here we used the former
and report results using the true optimal differential values.
We compare these model results to the steady-state
behavior of well-trained animals as the optimal values
correspond to values learned online throughout an exten-
sive training period.

Given the optimal state values, the optimal differential
value of an (a,τ) pair taken at state S, denoted Q� a; C; Sð Þ, is
simply:

Q� a; C; Sð Þ ¼ pr a; C; Sð Þ � Ur � Cu a; aprev
� �

� Cv a; aprev
� �

C
� R

� � C

þ
X
S02S

p S0ja; C; Sð ÞV � S0ð Þ ð2Þ

The animal can select actions optimally (that is, such as
to obtain the maximal possible average reward rate R�) by
comparing the differential values of the different (a,τ) pairs
at the current state and choosing the action and latency that
have the highest value. Alternatively, to allow more flexible
behavior and occasional exploratory actions (Daw et al.
2006), response selection can be based on the so-called
“soft-max” rule (or Boltzmann distribution) in which the
probability of choosing an (a,τ) pair is proportional to its
differential value. In this case, which is the one we used
here, actions that are “almost optimal” are chosen almost as
frequently as actions that are strictly optimal. Specifically,
the probability of choosing (a,τ) in state S is:

p a; C; Sð Þ ¼ eβQ� a;C;Sð ÞP
a0;C0

eβQ� a0;C0;Sð Þ ; ð3Þ

where β is the inverse temperature controlling the steepness
of the soft-max function (a value of zero corresponds to
uniform selection of actions, whereas higher values
correspond to a more maximizing strategy).

To simulate the (immediate) effects of depletion of tonic
dopamine (Fig. 3b), Q values were recomputed from the
optimal V values (using Eq. 2), but taking into account a
lower average reward rate (specifically, Rdepleted ¼ 0:4R

�
).

Actions were then chosen as usual, using the soft-max
function of these new Q values, to generate behavior.

(1)
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Finally, note that Eq. 2 is a function relating actions and
latencies to values. Accordingly, one way to find the
optimal latency is to differentiate Eq. 2 with respect to τ
and find its maximum. For ratio schedules (in which the
identity and value of the subsequent state S0 is not
dependent on τ), this gives:

C� ¼
ffiffiffiffiffiffiffi
Cv
R
�
;

s
ð4Þ

showing that the optimal latency t� depends solely on the
vigor cost constant and the average reward rate. This is true
regardless of the action a chosen, which is why a change in
the average reward has a similar effect on the latencies of
all actions. In interval schedules, the situation is slightly
more complex because the identity of the subsequent state
is dependent on the latency, and this must be taken into
account when taking the derivative. However, in this case
as well, the optimal latency is inversely related to the
average reward rate.

References

Aberman JE, Salamone JD (1999) Nucleus accumbens dopamine
depletions make rats more sensitive to high ratio requirements
but do not impair primary food reinforcement. Neuroscience 92
(2):545–552

Ainslie G (1975) Specious reward: a behavioural theory of impul-
siveness and impulse control. Psychol Bull 82:463–496

Barrett JE, Stanley JA (1980) Effects of ethanol on multiple fixed-
interval fixed-ratio schedule performances: dynamic interac-
tions at different fixed-ratio values. J Exp Anal Behav 34
(2):185–198

Barto AG (1995) Adaptive critics and the basal ganglia. In: Houk JC,
Davis JL, Beiser DG (eds) Models of information processing in
the basal ganglia. MIT Press, Cambridge, pp 215–232

Beninger RJ (1983) The role of dopamine in locomotor activity and
learning. Brain Res Brain Res Rev 6:173–196

Bergstrom BP, Garris PA (2003) ‘Passive stabilization’ of striatal
extracellular dopamine across the lesion spectrum encompass-
ing the presymptomatic phase of Parkinson’s disease: a
voltammetric study in the 6-OHDA lesioned rat. J Neurochem
87(5):1224–1236

Berridge KC (2004) Motivation concepts in behavioral neuroscience.
Physiol Behav 81(2):179–209

Berridge KC, Robinson TE (1998) What is the role of dopamine in
reward: hedonic impact, reward learning, or incentive salience?
Brain Res Brain Res Rev 28:309–369

Bertsekas DP, Tsitsiklis JN (1996) Neuro-dynamic programming.
Athena, Belmont

Bolles RC (1967) Theory of motivation. Harper and Row, New York
Carr GD, White NM (1987) Effects of systemic and intracranial

amphetamine injections on behavior in the open field: a detailed
analysis. Pharmacol Biochem Behav 27:113–122

Catania AC, Reynolds GS (1968) A quantitative analysis of the
responding maintained by interval schedules of reinforcement.
J Exp Anal Behav 11:327–383

Catania AC, Matthews TJ, Silverman PJ, Yohalem R (1977) Yoked
variable-ratio and variable-interval responding in pigeons. J Exp
Anal Behav 28:155–161

Chéramy A, Barbeito L, Godeheu G, Desce J, Pittaluga A, Galli T,
Artaud F, Glowinski J (1990) Respective contributions of neuronal
activity and presynaptic mechanisms in the control of the in vivo
release of dopamine. J Neural Transm Suppl 29:183–193

Chesselet MF (1990) Presynaptic regulation of dopamine release.
Implications for the functional organization of the basal ganglia.
Ann N Y Acad Sci 604:17–22

Correa M, Carlson BB, Wisniecki A, Salamone JD (2002) Nucleus
accumbens dopamine and work requirements on interval sched-
ules. Behav Brain Res 137:179–187

Cousins MS, Atherton A, Turner L, Salamone JD (1996) Nucleus
accumbens dopamine depletions alter relative response allocation
in a T-maze cost/benefit task. Behav Brain Res 74:189–197

Daw ND (2003) Reinforcement learning models of the dopamine
system and their behavioral implications. Unpublished doctoral
dissertation, Carnegie Mellon University

Daw ND, Touretzky DS (2002) Long-term reward prediction in
TD models of the dopamine system. Neural Comp 14:2567–
2583

Daw ND, Kakade S, Dayan P (2002) Opponent interactions between
serotonin and dopamine. Neural Netw 15(4–6):603–616

Daw ND, Niv Y, Dayan P (2005) Uncertainty based competition
between prefrontal and dorsolateral striatal systems for behavior-
al control. Nat Neurosci 8(12):1704–1711

Daw ND, O’Doherty JP, Dayan P, Seymour B, Dolan RJ (2006)
Cortical substrates for exploratory decisions in humans. Nature
441:876–879

Dawson GR, Dickinson A (1990) Performance on ratio and interval
schedules with matched reinforcement rates. Q J Exp Psychol B
42:225–239

Denk F, Walton ME, Jennings KA, Sharp T, Rushworth MF,
Bannerman DM (2005) Differential involvement of serotonin
and dopamine systems in cost–benefit decisions about delay or
effort. Psychopharmacology (Berl) 179(3):587–596

Dickinson A (1985) Actions and habits: the development of
behavioural autonomy. Philos Trans R Soc Lond B Biol Sci
308(1135):67–78

Dickinson A, Balleine B (1994) Motivational control of goal-directed
action. Anim Learn Behav 22:1–18

Dickinson A, Balleine B (2002) The role of learning in the operation
of motivational systems. In: Pashler H, Gallistel R (eds) Stevens’
handbook of experimental psychology. Learning, motivation and
emotion, 3rd edn, vol 3. Wiley, New York, pp 497–533

Dickinson A, Smith J, Mirenowicz J (2000) Dissociation of Pavlovian
and instrumental incentive learning under dopamine agonists.
Behav Neurosci 114(3):468–483

Domjan M (2003) Principles of learning and behavior, 5th edn.
Thomson/Wadsworth, Belmont

Dragoi V, Staddon JER (1999) The dynamics of operant conditioning.
Psychol Rev 106(1):20–61

Evenden JL, Robbins TW (1983) Increased dopamine switching,
perseveration and perseverative switching following D-amphet-
amine in the rat. Psychopharmacology (Berl) 80:67–73

Faure A, Haberland U, Condé F, Massioui NE (2005) Lesion to the
nigrostriatal dopamine system disrupts stimulus–response habit
formation. J Neurosci 25:2771–2780

Fiorillo C, Tobler P, Schultz W (2003) Discrete coding of reward
probability and uncertainty by dopamine neurons. Science 299
(5614):1898–1902

Fletcher PJ, Korth KM (1999) Activation of 5-HT1B receptors in the
nucleus accumbens reduces amphetamine-induced enhancement
of responding for conditioned reward. Psychopharmacology
(Berl) 142:165–174

Floresco SB, West AR, Ash B, Moore H, Grace AA (2003) Afferent
modulation of dopamine neuron firing differentially regulates tonic
and phasic dopamine transmission. Nat Neurosci 6(9):968–973

Psychopharmacology



Foster TM, Blackman KA, Temple W (1997) Open versus closed
economies: performance of domestic hens under fixed-ratio
schedules. J Exp Anal Behav 67:67–89

Friston KJ, Tononi G, Reeke GNJ, Sporns O, Edelman GM (1994)
Value-dependent selection in the brain: simulation in a synthetic
neural model. Neuroscience 59(2):229–243

Gallistel CR, Gibbon J (2000) Time, rate and conditioning. Psychol
Rev 107:289–344

Gallistel CR, Stellar J, Bubis E (1974) Parametric analysis of
brain stimulation reward in the rat: I. The transient process
and the memory-containing process. J Comp Physiol Psychol
87:848–860

Gibbon J (1977) Scalar expectancy theory and Weber’s law in animal
timing. Psychol Rev 84(3):279–325

Goto Y, Grace A (2005) Dopaminergic modulation of limbic and
cortical drive of nucleus accumbens in goal-directed behavior.
Nat Neurosci 8:805–812

Grace AA (1991) Phasic versus tonic dopamine release and the
modulation of dopamine system responsivity: a hypothesis for
the etiology of schizophrenia. Neuroscience 41(1):1–24

Hernandez G, Hamdani S, Rajabi H, Conover K, Stewart J,
Arvanitogiannis A, Shizgal P (2006) Prolonged rewarding
stimulation of the rat medial forebrain bundle: neurochemical
and behavioral consequences. Behav Neurosci 120(4):888–904

Herrnstein RJ (1961) Relative and absolute strength of response as a
function of frequency of reinforcement. J Exp Anal Behav 4
(3):267–272

Herrnstein RJ (1970) On the law of effect. J Exp Anal Behav 13
(2):243–266

Houk JC, Adams JL, Barto AG (1995) A model of how the basal
ganglia generate and use neural signals that predict reinforce-
ment. In: Houk JC, Davis JL, Beiser DG (eds) Models of
information processing in the basal ganglia. MIT Press, Cam-
bridge, pp 249–270

Ikemoto S, Panksepp J (1999) The role of nucleus accumbens
dopamine in motivated behavior: a unifying interpretation with
special reference to reward-seeking. Brain Res Brain Res Rev
31:6–41

Jackson DM, Anden N, Dahlstrom A (1975) A functional effect of
dopamine in the nucleus accumbens and in some other
dopamine-rich parts of the rat brain. Psychopharmacologia
45:139–149

Kacelnik A (1997) Normative and descriptive models of decision
making: time discounting and risk sensitivity. In: Bock GR,
Cardew G (eds) Characterizing human psychological adapta-
tions: Ciba Foundation symposium 208. Wiley, Chichester,
pp 51–70

Killeen PR (1995) Economics, ecologies and mechanics: the dynamics
of responding under conditions of varying motivation. J Exp
Anal Behav 64:405–431

Konorski J (1967) Integrative activity of the brain: an interdisciplinary
approach. University of Chicago Press, Chicago

Lauwereyns J, Watanabe K, Coe B, Hikosaka O (2002) A neural
correlate of response bias in monkey caudate nucleus. Nature 418
(6896):413–417

Le Moal M, Simon H (1991) Mesocorticolimbic dopaminergic
network: functional and regulatory roles. Physiol Rev 71:155–234

Ljungberg T, Enquist M (1987) Disruptive effects of low doses of
D-amphetamine on the ability of rats to organize behaviour into
functional sequences. Psychopharmacology (Berl) 93:146–151

Ljungberg T, Apicella P, Schultz W (1992) Responses of monkey
dopaminergic neurons during learning of behavioral reactions.
J Neurophys 67:145–163

Lodge DJ, Grace AA (2005) The hippocampus modulates dopamine
neuron responsivity by regulating the intensity of phasic neuron
activation. Neuropsychopharmacology 31:1356–1361

Lodge DJ, Grace AA (2006) The laterodorsal tegmentum is essential
for burst firing of ventral tegmental area dopamine neurons. Proc
Nat Acad Sci U S A 103(13):5167–5172

Lyon M, Robbins TW (1975) The action of central nervous system
stimulant drugs: a general theory concerning amphetamine
effects. In: Current developments in psychopharmacology.
Spectrum, New York, pp 80–163

Mahadevan S (1996) Average reward reinforcement learning: founda-
tions, algorithms and empirical results. Mach Learn 22:1–38

Mazur JA (1983) Steady-state performance on fixed-, mixed-, and
random-ratio schedules. J Exp Anal Behav 39(2):293–307

McClure SM, Daw ND, Montague PR (2003) A computational
substrate for incentive salience. Trends Neurosci 26(8):423–428

Mingote S, Weber SM, Ishiwari K, Correa M, Salamone JD (2005)
Ratio and time requirements on operant schedules: effort-related
effects of nucleus accumbens dopamine depletions. Eur J
Neurosci 21:1749–1757

Montague PR (2006) Why choose this book?: how we make
decisions. Dutton, New York

Montague PR, Dayan P, Sejnowski TJ (1996) A framework for
mesencephalic dopamine systems based on predictive Hebbian
learning. J Neurosci 16(5):1936–1947

Moore H, West AR, Grace AA (1999) The regulation of forebrain
dopamine transmission: relevance to the psychopathology of
schizophrenia. Biol Psychiatry 46:40–55

Murschall A, Hauber W (2006) Inactivation of the ventral tegmental
area abolished the general excitatory influence of Pavlovian cues
on instrumental performance. Learn Mem 13:123–126

Niv Y, Daw ND, Dayan P (2005a) How fast to work: response vigor,
motivation and tonic dopamine. In: Weiss Y, Schölkopf B, Platt J
(eds) NIPS 18. MIT Press, Cambridge, pp 1019–1026

Niv Y, Daw ND, Joel D, Dayan P (2005b) Motivational effects on
behavior: towards a reinforcement learning model of rates of
responding. COSYNE 2005, Salt Lake City

Niv Y, Joel D, Dayan P (2006) A normative perspective on
motivation. Trends Cogn Sci 10:375–381

Oades RD (1985) The role of noradrenaline in tuning and dopamine in
switching between signals in the CNS. Neurosci Biobehav Rev 9
(2):261–282

Packard MG, Knowlton BJ (2002) Learning and memory functions of
the basal ganglia. Annu Rev Neurosci 25:563–593

Phillips PEM, Wightman RM (2004) Extrasynaptic dopamine and
phasic neuronal activity. Nat Neurosci 7:199

Phillips PEM, Stuber GD, Heien MLAV, Wightman RM, Carelli RM
(2003) Subsecond dopamine release promotes cocaine seeking.
Nature 422:614–618

Redgrave P, Prescott TJ, Gurney K (1999) The basal ganglia: a
vertebrate solution to the selection problem? Neuroscience
89:1009–1023

Robbins TW, Everitt BJ (1982) Functional studies of the central
catecholamines. Int Rev Neurobiol 23:303–365

Roitman MF, Stuber GD, Phillips PEM, Wightman RM, Carelli RM
(2004) Dopamine operates as a subsecond modulator of food
seeking. J Neurosci 24(6):1265–1271

Salamone JD, Correa M (2002) Motivational views of reinforcement:
implications for understanding the behavioral functions of
nucleus accumbens dopamine. Behav Brain Res 137:3–25

Salamone JD, Wisniecki A, Carlson BB, Correa M (2001) Nucleus
accumbens dopamine depletions make animals highly sensitive
to high fixed ratio requirements but do not impair primary food
reinforcement. Neuroscience 5(4):863–870

Satoh T, Nakai S, Sato T, Kimura M (2003) Correlated coding of
motivation and outcome of decision by dopamine neurons.
J Neurosci 23(30):9913–9923

Schoenbaum G, Setlow B, Nugent S, Saddoris M, Gallagher M (2003)
Lesions of orbitofrontal cortex and basolateral amygdala complex

Psychopharmacology



disrupt acquisition of odor-guided discriminations and reversals.
Learn Mem 10:129–140

Schultz W (1998) Predictive reward signal of dopamine neurons.
J Neurophys 80:1–27

Schultz W, Apicella P, Ljungberg T (1993) Responses of monkey
dopamine neurons to reward and conditioned stimuli during
successive steps of learning a delayed response task. J Neurosci
13:900–913

Schultz W, Dayan P, Montague PR (1997) A neural substrate of
prediction and reward. Science 275:1593–1599

Schwartz A (1993) A reinforcement learning method for maximizing
undiscounted rewards. In: Proceedings of the tenth international
conference on machine learning. Morgan Kaufmann, San
Francisco, pp 298–305

Sokolowski JD, Salamone JD (1998) The role of accumbens
dopamine in lever pressing and response allocation: effects of
6-OHDA injected into core and dorsomedial shell. Pharmacol
Biochem Behav 59(3):557–566

Solomon RL, Corbit JD (1974) An opponent-process theory of
motivation. I. Temporal dynamics of affect. Psychol Rev 81:119–145

Staddon JER (2001) Adaptive dynamics. MIT Press, Cambridge
Sutton RS, Barto AG (1981) Toward a modern theory of adaptive

networks: expectation and prediction. Psychol Rev 88:135–170
Sutton RS, Barto AG (1990) Time-derivative models of Pavlovian

reinforcement. In: Gabriel M, Moore J (eds) Learning and
computational neuroscience: foundations of adaptive networks.
MIT Press, Cambridge, pp 497–537

Sutton RS, Barto AG (1998) Reinforcement learning: an introduction.
MIT Press, Cambridge

Taghzouti K, Simon H, Louilot A, Herman J, Le Moal M (1985)
Behavioral study after local injection of 6-hydroxydopamine into
the nucleus accumbens in the rat. Brain Res 344:9–20

Takikawa Y, Kawagoe R, Itoh H, Nakahara H, Hikosaka O (2002)
Modulation of saccadic eye movements by predicted reward
outcome. Exp Brain Res 142(2):284–291

Taylor JR, Robbins TW (1984) Enhanced behavioural control by
conditioned reinforcers following microinjections of D-amphet-
amine into the nucleus accumbens. Psychopharmacology (Berl)
84:405–412

Taylor JR, Robbins TW (1986) 6-Hydroxydopamine lesions of the
nucleus accumbens, but not of the caudate nucleus, attenuate

enhanced responding with reward-related stimuli produced by
intra-accumbens D-amphetamine. Psychopharmacology (Berl)
90:390–397

Tobler P, Fiorillo C, Schultz W (2005) Adaptive coding of reward
value by dopamine neurons. Science 307(5715):1642–1645

van den Bos R, Charria Ortiz GA, Bergmans AC, Cools AR (1991)
Evidence that dopamine in the nucleus accumbens is involved in
the ability of rats to switch to cue-directed behaviours. Behav
Brain Res 42:107–114

Waelti P, Dickinson A, Schultz W (2001) Dopamine responses comply
withbasic assumptions of formal learning theory.Nature412:43–48

Walton ME, Kennerley SW, Bannerman DM, Phillips PEM, Rushworth
MFS (2006) Weighing up the benefits of work: behavioral and
neural analyses of effort-related decision making. Neural networks
(in press)

Watanabe M, Cromwell H, Tremblay L, Hollerman J, Hikosaka K,
Schultz W (2001) Behavioral reactions reflecting differential
reward expectations in monkeys. Exp Brain Res 140(4):511–518

Weiner I (1990) Neural substrates of latent inhibition: the switching
model. Psychol Bull 108:442–461

Weiner I, Joel D (2002) Dopamine in schizophrenia: dysfunctional
information processing in basal ganglia-thalamocortical split
circuits. In: Chiara GD (ed) Handbook of experimental pharma-
cology, vol 154/II. Dopamine in the CNS II. Springer, Berlin
Heidelberg New York, pp 417–472

Wickens J (1990) Striatal dopamine in motor activation and reward-
mediated learning: steps towards a unifying model. J Neural
Transm 80:9–31

Wickens J, Kötter R (1995) Cellular models of reinforcement. In: Houk
JC, Davis JL, Beiser DG (eds) Models of information processing
in the basal ganglia. MIT Press, Cambridge, pp 187–214

Wilson C, Nomikos GG, Collu M, Fibiger HC (1995) Dopaminergic
correlates of motivated behavior: importance of drive. J Neurosci
15(7):5169–5178

Wise RA (2004) Dopamine, learning and motivation. Nat Rev
Neurosci 5:483–495

Yin HH, Knowlton BJ, Balleine BW (2004) Lesions of dorsolateral
striatum preserve outcome expectancy but disrupt habit formation
in instrumental learning. Eur J Neurosci 19:181–189

Zuriff GE (1970) A comparison of variable-ratio and variable-interval
schedules of reinforcement. J Exp Anal Behav 13:369–374

Psychopharmacology


	Tonic dopamine: opportunity costs and the control of response vigor
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Methods: modeling response choice in free-operant tasks
	Results: average reward rate and tonic dopamine
	Discussion
	Predictions
	Immediate vs learned effects
	Tonic and phasic dopamine
	Future directions

	Conclusions
	Appendix
	References



