
Tool Condition Monitoring using the TSK Fuzzy 
Approach based on Subtractive Clustering Method 

Qun Ren1, Marek Balazinski1, Luc Baron1, Krzysztof Jemielniak2 
  
 

1 Mechanical Engineering Department, École Polytechnique de Montréal 
C.P. 6079, succ. Centre-Ville, Montréal, Québec, Canada, H3C 3A7 

{qun.ren, marek.balazinski, luc.baron}@polymtl.ca 
2 Faculty of Production Engineering, Warsaw University of Technology 

Narbutta 86, 02-524 Warsaw, Poland 
k.jemielniak@ wip.pw.edu.pl 

Abstract. This paper presents a tool condition monitoring approach using 
Takagi-Sugeno-Kang (TSK) fuzzy logic incorporating a subtractive 
clustering method. The experimental results show its effectiveness and 
satisfactory comparisons with several other artificial intelligence methods.  
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1   Introduction 

Tool condition has a strong influence on the resulting surface finish and dimensional 
integrity of the workpiece, as well as vibration levels of the machine tool. The 
information obtained from tool wear monitoring can be used for several purposes that 
include: establishing tool change policy, economic optimization of machining 
operations, compensating for tool wear on-line and to some extent avoiding 
catastrophic tool failures [1]. Effective monitoring of a manufacturing process is 
essential for ensuring product quality and reducing production costs. Analysis, 
implementation and evaluation of machining processes present significant challenges 
to the manufacturing industry.  
      Cutting force measurement, currently the most reliable and accurate sensing 
method available in metal cutting, is one of the most commonly employed methods 
for on-line tool wear monitoring. It is frequently applied in turning processes because 
cutting force values are more sensitive to tool wear than other measurements such as 
vibration or acoustic emission [2]. 
      In a tool condition monitoring system, real-time data are acquired from sensors 
located at different locations on the workpiece, tool and machine-tool, then a signal 
processing technique is used to extract valid data. A decision making system is then 
used to analyse the data and classify the results to make a reliable estimate of the state 
of the tool and consequently of the machined parts themselves [3].  
     Advanced signal processing techniques and artificial intelligence play a key role in 
the development of modern tool condition monitoring systems [4]. The most 
frequently chosen methods are neural network (NN) [5], Mamdani fuzzy logic (FL) 



[6], [7], or a combination of NN with either Mamdani FL [8] or an automatic 
generating method, i.e., genetic algorithm (GA) [9]. All these methods have a similar 
objective – matching the estimate of average cutting tool wear with the directly 
measured wear value.  
        The aim of this paper is to present an effective tool wear monitoring method 
using the Takagi-Sugeno-Kang (TSK) fuzzy approach incorporating a subtractive 
clustering method [10] to accomplish the integration of multi-sensor information and 
tool wear information. It generates fuzzy rules directly from the input-output data 
acquired from sensors, and provides high accuracy and high reliability of the tool 
wear prediction over a range of cutting conditions.  
       This paper is divided into four sections. Section I contains tool wear monitoring 
development and some introductory remarks. Section II recalls the initial theoretical 
foundation: TSK fuzzy logic system (FLS), subtractive clustering method and least-
square estimation. Section III is a specific turning case study. The experimental 
results show the effectiveness and advantages of the TSK fuzzy approach compared 
with other different artificial intelligence methods – NN, Mamdani FL and a neural 
network based fuzzy system (NF). Section IV contains concluding remarks and future 
research recommendations. 

2   Theoretical Foundation 

The proposed linguistic approach by Zadeh [11, 12], following the first “Fuzzy Sets” 
paper in 1965 [13], is effective and versatile in modeling ill-defined systems with 
fuzziness or fully-defined systems with realistic approximations. Later it is expanded 
into fuzzy systems modeling as a qualitative modeling approach. Qualitative 
modeling has the capability to model complex system behavior in such a qualitative 
way that the model is more effective and versatile in capturing the behavior of ill-
defined systems with fuzziness or fully defined system with realistic approximation. 
In the literature, different modeling techniques can be found, and TSK FLS [14], [15] 
has attracted much attention. 

2.1 TSK Fuzzy Logic System 

TSK FLS was proposed in an effort to develop a systematic approach to generate 
fuzzy rules from a given input-output data set. This model consists of rules with fuzzy 
antecedents and a mathematical function in the consequent part. Usually the 
conclusion function is in the form of a dynamic linear equation [14], [15]. The 
antecedents divide the input space into a set of fuzzy regions, while consequents 
describe behaviours of the system in those regions. The main difference with more 
traditional [16] (Mamdani FL) fuzzy rules is that the consequents of the rules are a 
function of the values of the input variables. TSK FLSs are widely used for model-
based control and model-based fault diagnosis. This is due to the model’s properties; 
on one hand being a general non-linear approximator that can approximate every 
continuous mapping, and on the other hand being a piecewise linear model that is 



relatively easy to interpret [17] and whose linear sub-models can be exploited for 
control and fault detection [18]. 

A generalized type-1 TSK model can be described by fuzzy IF-THEN rules 
which represent input-output relations of a system. For an MISO first–order type-1 
TSK model, its kth rule can be expressed as: 
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2.2   Subtractive Clustering Method 

The structure of a fuzzy TSK model can be done manually based on knowledge about 
the target process or using data-driven techniques. Identification of the system using 
clustering involves formation of clusters in the data space and translation of these 
clusters into TSK rules such that the model obtained is close to the system to be 
identified. 

The aim of Chiu’s subtractive clustering identification algorithm [10] is to 
estimate both the number and initial location of cluster centers and extract the TSK 
fuzzy rules from input/output data. Subtractive clustering operates by finding the 
optimal data point to define a cluster centre based on the density of surrounding data 
points. This method is a fast clustering method designed for high dimension problems 
with a moderate number of data points. This is because its computation grows linearly 
with the data dimension and as the square of the number of data points. A brief 
description of Chiu’s subtractive clustering method is as follows:  

Consider a group of data points { }wxxx ....,, ,
21  for a specific class. The M 

dimensional feature space is normalized so that all data are bounded by a unit 
hypercube. 

Then calculate potential  for each point as follows: iP
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and is the hypersphere cluster radius. Data points outside have 

little influence on the potential. 
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denotes the Euclidean distance.  

     Thus, the measure of potential for a data point is a function of the distance to all 
other data points. A data point with many neighboring data points will have a high 
potential value. After the potential of every data point is computed, suppose  
where  is a cluster counter. The data point with the maximum potential  
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with  is selected as the first cluster center . Then the potential of each 
data point  is revised using the formula 
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with  and is the hypersphere penalty radius. Thus, an amount representing 

the potential of each data point is subtracted as a function of its distance from  . 
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 More generally, when the kth cluster center  has been identified, the potential of 
all data is revised using the formula: 
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      When the potential of all data points has been revised using (4), the data point 

with the highest remaining potential is chosen as the next cluster center. The 
process of acquiring a new cluster center and revising potentials uses the following 
criteria: 
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   Reject and end the clustering process tx
else 
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Accept as the next cluster center. Cluster counter tx 1+= kk , and continue. 
        else 

          Reject and set .  tx 0=tP

Select with the next highest potential as the new candidate cluster center 
and retest. 

tx

    end if 
end if 

The number of clusters obtained is the number of rules in the TSK FLS. Because 
Gaussian basis functions (GBFs) have the best approximation property [19], Gaussian 
functions are chosen as the MFs. A Gaussian MF can be expressed by the following 
formula for the vth variable: 
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where  is the mean of the vth input feature in the kth rule for  . The 
standard deviation of Gaussian MF 
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2.3   Least Square Estimation 

For the first order model presented in this paper, the consequent functions are linear. 
In the method of Sugeno and Kang [15], least-square estimation is used to identify the 
consequent parameters of the TSK model, where the premise structure, premise 
parameters, consequent structure, and consequent parameters were identified and 
adjusted recursively. In a TSK FLS, rule premises are represented by an exponential 
membership function. The optimal consequent parameters , , , …,  
(coefficients of the polynomial function) in (1) for a given set of clusters are obtained 
using the least-square estimation method. 
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     When certain input values , , …,  are given to the input variables , , 
…, , the conclusion from the kth rule (1) in a TSK model is a crisp value : 
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with a certain rule firing strength (weight) defined as  
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where , , …,  are membership grades for fuzzy sets , , …, 
and   in the kth rule.  The symbol I is a conjunction operator, which is a T-norm 
(the minimum operator  or the product operator 
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     Moreover, the output of the model is computed (using weighted average 
aggregation) as 
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Then, (9) can be converted into a linear least-square estimation problem, as 
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For a group of λ  data vectors, the equations can be obtained as 
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These equations can be represented as: 
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Using the standard notation WAP = , this becomes a least square estimation 
problem where A  is a constant matrix (known), W  is a matrix of output values 
(known) and P is a matrix of parameters to be estimated. The well-known pseudo-
inverse solution that minimizes 2WAP − is given by 

  
                                                                                               (14)                  WAAAP TT 1)( −=

3   Case Study 

The experiments described in this paper were conducted on a conventional lathe 
TUD-50. A CSRPR 2525 tool holder equipped with a TiN-Al2O3-TiCN coated 
sintered carbide insert SNUN 120408 was used in the test. To simulate factory floor 
conditions, six sets of cutting parameters were selected and applied in sequence as 
presented in Fig. 1. During machining, the feed force ( ) and the cutting force ( ) 
were recorded while the tool wear was manually measured after each test. 

fF cF

     For our purposes tool wear (VB) was estimated from three input sources: ,  
and . The choice of input variables was based on the following two observations: 

is independent of , but rather depends on VB and the depth of cut, denoted .  

Moreover, depends on and , while being only weakly dependent on VB. So, in  
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Fig. 1. Cutting parameters used in experiments, where  is feed rate and  t is time.  f
 
this paper  and the measurement are used to determine , and the measurement 

 is used to determine VB without requiring  as an input variable. 
f cF
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     Cutting speed of each cut was selected to ensure approximately the same share in 
the tool wear. VB was measured after carrying out each sequence. The value for  
and  were measured corresponding to a single cut using a Kistlter 9263 
dynamometer during 5-s intervals while the cut was executed. Recent research has 
attempted to investigate the application of multiple sensors with complementing 
characteristics to provide a robust estimate of tool wear condition. Since the inserts 
used in the experiments had a soft, cobalt-enriched layer of substrate under the 
coating, the tool life had a tendency to end suddenly after this coating wore through. 

fF
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     The experiments were carried out until a tool failure occurred. Two experiments 
were carried out until a tool failure occurred. In the first tests (designated W5) 10 
cycles were performed until a sudden rise of the flank wear VB occurred, reaching 
approximately 0.5 mm. In the second test (designated W7) failure of the coating 
resulted in chipping of the cutting edge at the end of 9th cycle. W5 was devised for 
TSK fuzzy rule identification, while W7 was used to verify the performance of the 
different monitoring system. Fig. 2 presents the cutting force components  and 

versus VB obtained in the experiments. 
cF

fF

 
Fig. 2 Cutting force components  and  versus tool wear VB obtained in the experiments 
with six sets of cutting parameters shown in Fig.1 

cF fF



By using TSK fuzzy approach, a six rule TSK fuzzy model can be used to describe 
the tool wear condition with cutting feed, cutting force and feeding force as input 
variables. Table 1 lists the six cluster centers obtained by subtractive clustering 
method learning from the first experiment W5. 

Table 1   Six cluster centers obtained by using subtractive clustering with the four parameters 
initialized as  , 25.0=ar 60.0=

−
ε , ,  1=ε

−

25.0=η  

Cluster f  (mm) cF  (N) fF  (N) VB(mm) 

1 0.47 1397 389 0.145 
2 0.47 1392 442 0.165 
3 0.33 1044 405 0.158 
4 0.33 1051 349 0.135 
5 0.47 1332 347 0.102 
6 0.47 1455 508 0.2 

 
Figure 3 summarizes results of tool wear conditioning from  W5 (learning) and W7 

(testing) and compares them with several different artificial intelligence methods 
described in [4], [9] applied to the same experimental arrangements. 

For these four AI methods, the quality of the tool wear estimation was evaluated 
using root-mean-square-error (rmse): 

 
    ( ) NVBVBrmse em∑ −= 2                                           (15) 

and maximum error (max):  
 

    ( )em VBVB −= maxmax                                             (16) 
 

where ,  are measured and estimated flank wear respectively, and N is the 
number of patterns in the set (N = 71 for the experiment W5 and N = 66 for the 
experiment W7). 

mVB eVB

From Table 2, the TSK fuzzy approach has the lowest root-mean-square-error and 
the smallest maximum error.  

 
Table 2   Summary of root-mean-square-error (rmse) and maximum error (max) form the 
experimental results with different AI methods 
 

AI method Learning (W5) Testing (W7) 

 rmse (mm) max (mm) rmse (mm) max (mm) 

Neural Network 0.015 0.036 0.029 0.081 
FDSS (Mamdani FL) 0.024 0.068 0.034 0.056 

NF 0.014 0.030 0.030 0.081 
TSK FL 0.011 0.023 0.015 0.037 



 (a) Learning results from W5
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(b) Testing results from W7
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Fig. 3 Tool wear monitoring using different artificial intelligent methods: Mamdani FL, neural 
network (NN), neural network based fuzzy system (NF) and TSK fuzzy approach. 
 

The TSK fuzzy modeling program used for tool condition monitoring in this paper 
was developed by Geno-flou development group in Lab CAE at École Polytechnique 
de Montréal. 

4   Conclusion 

A TSK fuzzy approach using subtractive clustering is described in detail in this 
article. It generates fuzzy rules directly from the input-output data acquired from 
sensors and provides high accuracy and high reliability of the tool wear prediction 



over a range of cutting conditions. The experimental results show its effectiveness and 
a satisfactory comparison with several other artificial intelligence methods.  
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